prompt
stringlengths
162
4.26M
response
stringlengths
109
5.16M
Generate the Verilog code corresponding to the following Chisel files. File IngressUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import constellation.channel._ class IngressUnit( ingressNodeId: Int, cParam: IngressChannelParams, outParams: Seq[ChannelParams], egressParams: Seq[EgressChannelParams], combineRCVA: Boolean, combineSAST: Boolean, ) (implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) { class IngressUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) { val in = Flipped(Decoupled(new IngressFlit(cParam.payloadBits))) } val io = IO(new IngressUnitIO) val route_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val route_q = Module(new Queue(new RouteComputerResp(outParams, egressParams), 2, flow=combineRCVA)) assert(!(io.in.valid && !cParam.possibleFlows.toSeq.map(_.egressId.U === io.in.bits.egress_id).orR)) route_buffer.io.enq.bits.head := io.in.bits.head route_buffer.io.enq.bits.tail := io.in.bits.tail val flows = cParam.possibleFlows.toSeq if (flows.size == 0) { route_buffer.io.enq.bits.flow := DontCare } else { route_buffer.io.enq.bits.flow.ingress_node := cParam.destId.U route_buffer.io.enq.bits.flow.ingress_node_id := ingressNodeId.U route_buffer.io.enq.bits.flow.vnet_id := cParam.vNetId.U route_buffer.io.enq.bits.flow.egress_node := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNode.U) ) route_buffer.io.enq.bits.flow.egress_node_id := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNodeId.U) ) } route_buffer.io.enq.bits.payload := io.in.bits.payload route_buffer.io.enq.bits.virt_channel_id := DontCare io.router_req.bits.src_virt_id := 0.U io.router_req.bits.flow := route_buffer.io.enq.bits.flow val at_dest = route_buffer.io.enq.bits.flow.egress_node === nodeId.U route_buffer.io.enq.valid := io.in.valid && ( io.router_req.ready || !io.in.bits.head || at_dest) io.router_req.valid := io.in.valid && route_buffer.io.enq.ready && io.in.bits.head && !at_dest io.in.ready := route_buffer.io.enq.ready && ( io.router_req.ready || !io.in.bits.head || at_dest) route_q.io.enq.valid := io.router_req.fire route_q.io.enq.bits := io.router_resp when (io.in.fire && io.in.bits.head && at_dest) { route_q.io.enq.valid := true.B route_q.io.enq.bits.vc_sel.foreach(_.foreach(_ := false.B)) for (o <- 0 until nEgress) { when (egressParams(o).egressId.U === io.in.bits.egress_id) { route_q.io.enq.bits.vc_sel(o+nOutputs)(0) := true.B } } } assert(!(route_q.io.enq.valid && !route_q.io.enq.ready)) val vcalloc_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val vcalloc_q = Module(new Queue(new VCAllocResp(outParams, egressParams), 1, pipe=true)) vcalloc_buffer.io.enq.bits := route_buffer.io.deq.bits io.vcalloc_req.bits.vc_sel := route_q.io.deq.bits.vc_sel io.vcalloc_req.bits.flow := route_buffer.io.deq.bits.flow io.vcalloc_req.bits.in_vc := 0.U val head = route_buffer.io.deq.bits.head val tail = route_buffer.io.deq.bits.tail vcalloc_buffer.io.enq.valid := (route_buffer.io.deq.valid && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) ) io.vcalloc_req.valid := (route_buffer.io.deq.valid && route_q.io.deq.valid && head && vcalloc_buffer.io.enq.ready && vcalloc_q.io.enq.ready) route_buffer.io.deq.ready := (vcalloc_buffer.io.enq.ready && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) && (vcalloc_q.io.enq.ready || !head)) route_q.io.deq.ready := (route_buffer.io.deq.fire && tail) vcalloc_q.io.enq.valid := io.vcalloc_req.fire vcalloc_q.io.enq.bits := io.vcalloc_resp assert(!(vcalloc_q.io.enq.valid && !vcalloc_q.io.enq.ready)) io.salloc_req(0).bits.vc_sel := vcalloc_q.io.deq.bits.vc_sel io.salloc_req(0).bits.tail := vcalloc_buffer.io.deq.bits.tail val c = (vcalloc_q.io.deq.bits.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U val vcalloc_tail = vcalloc_buffer.io.deq.bits.tail io.salloc_req(0).valid := vcalloc_buffer.io.deq.valid && vcalloc_q.io.deq.valid && c && !io.block vcalloc_buffer.io.deq.ready := io.salloc_req(0).ready && vcalloc_q.io.deq.valid && c && !io.block vcalloc_q.io.deq.ready := vcalloc_tail && vcalloc_buffer.io.deq.fire val out_bundle = if (combineSAST) { Wire(Valid(new SwitchBundle(outParams, egressParams))) } else { Reg(Valid(new SwitchBundle(outParams, egressParams))) } io.out(0) := out_bundle out_bundle.valid := vcalloc_buffer.io.deq.fire out_bundle.bits.flit := vcalloc_buffer.io.deq.bits out_bundle.bits.flit.virt_channel_id := 0.U val out_channel_oh = vcalloc_q.io.deq.bits.vc_sel.map(_.reduce(_||_)).toSeq out_bundle.bits.out_virt_channel := Mux1H(out_channel_oh, vcalloc_q.io.deq.bits.vc_sel.map(v => OHToUInt(v)).toSeq) io.debug.va_stall := io.vcalloc_req.valid && !io.vcalloc_req.ready io.debug.sa_stall := io.salloc_req(0).valid && !io.salloc_req(0).ready // TODO: We should not generate input/ingress/output/egress units for untraversable channels if (!cParam.traversable) { io.in.ready := false.B io.router_req.valid := false.B io.router_req.bits := DontCare io.vcalloc_req.valid := false.B io.vcalloc_req.bits := DontCare io.salloc_req.foreach(_.valid := false.B) io.salloc_req.foreach(_.bits := DontCare) io.out.foreach(_.valid := false.B) io.out.foreach(_.bits := DontCare) } }
module IngressUnit_5( // @[IngressUnit.scala:11:7] input clock, // @[IngressUnit.scala:11:7] input reset, // @[IngressUnit.scala:11:7] input io_vcalloc_req_ready, // @[IngressUnit.scala:24:14] output io_vcalloc_req_valid, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_2, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_3, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_4, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_5, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_6, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_7, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_8, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_9, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_2_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_1_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_2, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_3, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_4, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_5, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_6, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_7, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_8, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_9, // @[IngressUnit.scala:24:14] input io_out_credit_available_2_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_1_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_1, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_2, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_3, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_4, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_5, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_6, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_7, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_8, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_9, // @[IngressUnit.scala:24:14] input io_salloc_req_0_ready, // @[IngressUnit.scala:24:14] output io_salloc_req_0_valid, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_2, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_3, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_4, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_5, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_6, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_7, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_8, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_9, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_tail, // @[IngressUnit.scala:24:14] output io_out_0_valid, // @[IngressUnit.scala:24:14] output io_out_0_bits_flit_head, // @[IngressUnit.scala:24:14] output io_out_0_bits_flit_tail, // @[IngressUnit.scala:24:14] output [72:0] io_out_0_bits_flit_payload, // @[IngressUnit.scala:24:14] output [2:0] io_out_0_bits_flit_flow_vnet_id, // @[IngressUnit.scala:24:14] output [3:0] io_out_0_bits_flit_flow_ingress_node, // @[IngressUnit.scala:24:14] output [2:0] io_out_0_bits_flit_flow_ingress_node_id, // @[IngressUnit.scala:24:14] output [3:0] io_out_0_bits_flit_flow_egress_node, // @[IngressUnit.scala:24:14] output [2:0] io_out_0_bits_flit_flow_egress_node_id, // @[IngressUnit.scala:24:14] output [3:0] io_out_0_bits_out_virt_channel, // @[IngressUnit.scala:24:14] output io_in_ready, // @[IngressUnit.scala:24:14] input io_in_valid, // @[IngressUnit.scala:24:14] input io_in_bits_head, // @[IngressUnit.scala:24:14] input [72:0] io_in_bits_payload, // @[IngressUnit.scala:24:14] input [4:0] io_in_bits_egress_id // @[IngressUnit.scala:24:14] ); wire _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_valid; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_2_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_1_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_1; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_2; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_3; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_4; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_5; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_6; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_7; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_8; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_9; // @[IngressUnit.scala:76:25] wire _vcalloc_buffer_io_enq_ready; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_valid; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_bits_head; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_bits_tail; // @[IngressUnit.scala:75:30] wire [72:0] _vcalloc_buffer_io_deq_bits_payload; // @[IngressUnit.scala:75:30] wire [2:0] _vcalloc_buffer_io_deq_bits_flow_vnet_id; // @[IngressUnit.scala:75:30] wire [3:0] _vcalloc_buffer_io_deq_bits_flow_ingress_node; // @[IngressUnit.scala:75:30] wire [2:0] _vcalloc_buffer_io_deq_bits_flow_ingress_node_id; // @[IngressUnit.scala:75:30] wire [3:0] _vcalloc_buffer_io_deq_bits_flow_egress_node; // @[IngressUnit.scala:75:30] wire [2:0] _vcalloc_buffer_io_deq_bits_flow_egress_node_id; // @[IngressUnit.scala:75:30] wire _route_q_io_enq_ready; // @[IngressUnit.scala:27:23] wire _route_q_io_deq_valid; // @[IngressUnit.scala:27:23] wire _route_buffer_io_enq_ready; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_valid; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_head; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_tail; // @[IngressUnit.scala:26:28] wire [72:0] _route_buffer_io_deq_bits_payload; // @[IngressUnit.scala:26:28] wire [2:0] _route_buffer_io_deq_bits_flow_vnet_id; // @[IngressUnit.scala:26:28] wire [3:0] _route_buffer_io_deq_bits_flow_ingress_node; // @[IngressUnit.scala:26:28] wire [2:0] _route_buffer_io_deq_bits_flow_ingress_node_id; // @[IngressUnit.scala:26:28] wire [3:0] _route_buffer_io_deq_bits_flow_egress_node; // @[IngressUnit.scala:26:28] wire [2:0] _route_buffer_io_deq_bits_flow_egress_node_id; // @[IngressUnit.scala:26:28] wire [3:0] _route_buffer_io_deq_bits_virt_channel_id; // @[IngressUnit.scala:26:28] wire _route_buffer_io_enq_bits_flow_egress_node_id_T = io_in_bits_egress_id == 5'hF; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_1 = io_in_bits_egress_id == 5'h12; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_2 = io_in_bits_egress_id == 5'h15; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_3 = io_in_bits_egress_id == 5'h18; // @[IngressUnit.scala:30:72] wire [3:0] _route_buffer_io_enq_bits_flow_egress_node_WIRE = {_route_buffer_io_enq_bits_flow_egress_node_id_T_3, (_route_buffer_io_enq_bits_flow_egress_node_id_T ? 3'h5 : 3'h0) | (_route_buffer_io_enq_bits_flow_egress_node_id_T_1 ? 3'h6 : 3'h0) | {3{_route_buffer_io_enq_bits_flow_egress_node_id_T_2}}}; // @[Mux.scala:30:73] wire _GEN = _route_buffer_io_enq_ready & io_in_valid & io_in_bits_head & _route_buffer_io_enq_bits_flow_egress_node_WIRE == 4'h1; // @[Mux.scala:30:73] wire route_q_io_enq_valid = _GEN | io_in_valid & _route_buffer_io_enq_ready & io_in_bits_head & _route_buffer_io_enq_bits_flow_egress_node_WIRE != 4'h1; // @[Mux.scala:30:73] wire io_vcalloc_req_valid_0 = _route_buffer_io_deq_valid & _route_q_io_deq_valid & _route_buffer_io_deq_bits_head & _vcalloc_buffer_io_enq_ready & _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :91:{54,78}, :92:{10,41}] wire route_buffer_io_deq_ready = _vcalloc_buffer_io_enq_ready & (_route_q_io_deq_valid | ~_route_buffer_io_deq_bits_head) & (io_vcalloc_req_ready | ~_route_buffer_io_deq_bits_head) & (_vcalloc_q_io_enq_ready | ~_route_buffer_io_deq_bits_head); // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :88:30, :93:61, :94:{27,37}, :95:{27,37}, :96:29] wire vcalloc_q_io_enq_valid = io_vcalloc_req_ready & io_vcalloc_req_valid_0; // @[Decoupled.scala:51:35]
Generate the Verilog code corresponding to the following Chisel files. File ShiftQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ /** Implements the same interface as chisel3.util.Queue, but uses a shift * register internally. It is less energy efficient whenever the queue * has more than one entry populated, but is faster on the dequeue side. * It is efficient for usually-empty flow-through queues. */ class ShiftQueue[T <: Data](gen: T, val entries: Int, pipe: Boolean = false, flow: Boolean = false) extends Module { val io = IO(new QueueIO(gen, entries) { val mask = Output(UInt(entries.W)) }) private val valid = RegInit(VecInit(Seq.fill(entries) { false.B })) private val elts = Reg(Vec(entries, gen)) for (i <- 0 until entries) { def paddedValid(i: Int) = if (i == -1) true.B else if (i == entries) false.B else valid(i) val wdata = if (i == entries-1) io.enq.bits else Mux(valid(i+1), elts(i+1), io.enq.bits) val wen = Mux(io.deq.ready, paddedValid(i+1) || io.enq.fire && ((i == 0 && !flow).B || valid(i)), io.enq.fire && paddedValid(i-1) && !valid(i)) when (wen) { elts(i) := wdata } valid(i) := Mux(io.deq.ready, paddedValid(i+1) || io.enq.fire && ((i == 0 && !flow).B || valid(i)), io.enq.fire && paddedValid(i-1) || valid(i)) } io.enq.ready := !valid(entries-1) io.deq.valid := valid(0) io.deq.bits := elts.head if (flow) { when (io.enq.valid) { io.deq.valid := true.B } when (!valid(0)) { io.deq.bits := io.enq.bits } } if (pipe) { when (io.deq.ready) { io.enq.ready := true.B } } io.mask := valid.asUInt io.count := PopCount(io.mask) } object ShiftQueue { def apply[T <: Data](enq: DecoupledIO[T], entries: Int = 2, pipe: Boolean = false, flow: Boolean = false): DecoupledIO[T] = { val q = Module(new ShiftQueue(enq.bits.cloneType, entries, pipe, flow)) q.io.enq <> enq q.io.deq } }
module ShiftQueue_3( // @[ShiftQueue.scala:12:7] input clock, // @[ShiftQueue.scala:12:7] input reset, // @[ShiftQueue.scala:12:7] output io_enq_ready, // @[ShiftQueue.scala:17:14] input io_enq_valid, // @[ShiftQueue.scala:17:14] input [1:0] io_enq_bits_btb_cfiType, // @[ShiftQueue.scala:17:14] input io_enq_bits_btb_taken, // @[ShiftQueue.scala:17:14] input [1:0] io_enq_bits_btb_mask, // @[ShiftQueue.scala:17:14] input io_enq_bits_btb_bridx, // @[ShiftQueue.scala:17:14] input [38:0] io_enq_bits_btb_target, // @[ShiftQueue.scala:17:14] input [4:0] io_enq_bits_btb_entry, // @[ShiftQueue.scala:17:14] input [7:0] io_enq_bits_btb_bht_history, // @[ShiftQueue.scala:17:14] input io_enq_bits_btb_bht_value, // @[ShiftQueue.scala:17:14] input [39:0] io_enq_bits_pc, // @[ShiftQueue.scala:17:14] input [31:0] io_enq_bits_data, // @[ShiftQueue.scala:17:14] input [1:0] io_enq_bits_mask, // @[ShiftQueue.scala:17:14] input io_enq_bits_xcpt_pf_inst, // @[ShiftQueue.scala:17:14] input io_enq_bits_xcpt_ae_inst, // @[ShiftQueue.scala:17:14] input io_enq_bits_replay, // @[ShiftQueue.scala:17:14] input io_deq_ready, // @[ShiftQueue.scala:17:14] output io_deq_valid, // @[ShiftQueue.scala:17:14] output [1:0] io_deq_bits_btb_cfiType, // @[ShiftQueue.scala:17:14] output io_deq_bits_btb_taken, // @[ShiftQueue.scala:17:14] output [1:0] io_deq_bits_btb_mask, // @[ShiftQueue.scala:17:14] output io_deq_bits_btb_bridx, // @[ShiftQueue.scala:17:14] output [38:0] io_deq_bits_btb_target, // @[ShiftQueue.scala:17:14] output [4:0] io_deq_bits_btb_entry, // @[ShiftQueue.scala:17:14] output [7:0] io_deq_bits_btb_bht_history, // @[ShiftQueue.scala:17:14] output io_deq_bits_btb_bht_value, // @[ShiftQueue.scala:17:14] output [39:0] io_deq_bits_pc, // @[ShiftQueue.scala:17:14] output [31:0] io_deq_bits_data, // @[ShiftQueue.scala:17:14] output [1:0] io_deq_bits_mask, // @[ShiftQueue.scala:17:14] output io_deq_bits_xcpt_pf_inst, // @[ShiftQueue.scala:17:14] output io_deq_bits_xcpt_gf_inst, // @[ShiftQueue.scala:17:14] output io_deq_bits_xcpt_ae_inst, // @[ShiftQueue.scala:17:14] output io_deq_bits_replay, // @[ShiftQueue.scala:17:14] output [4:0] io_mask // @[ShiftQueue.scala:17:14] ); wire io_enq_valid_0 = io_enq_valid; // @[ShiftQueue.scala:12:7] wire [1:0] io_enq_bits_btb_cfiType_0 = io_enq_bits_btb_cfiType; // @[ShiftQueue.scala:12:7] wire io_enq_bits_btb_taken_0 = io_enq_bits_btb_taken; // @[ShiftQueue.scala:12:7] wire [1:0] io_enq_bits_btb_mask_0 = io_enq_bits_btb_mask; // @[ShiftQueue.scala:12:7] wire io_enq_bits_btb_bridx_0 = io_enq_bits_btb_bridx; // @[ShiftQueue.scala:12:7] wire [38:0] io_enq_bits_btb_target_0 = io_enq_bits_btb_target; // @[ShiftQueue.scala:12:7] wire [4:0] io_enq_bits_btb_entry_0 = io_enq_bits_btb_entry; // @[ShiftQueue.scala:12:7] wire [7:0] io_enq_bits_btb_bht_history_0 = io_enq_bits_btb_bht_history; // @[ShiftQueue.scala:12:7] wire io_enq_bits_btb_bht_value_0 = io_enq_bits_btb_bht_value; // @[ShiftQueue.scala:12:7] wire [39:0] io_enq_bits_pc_0 = io_enq_bits_pc; // @[ShiftQueue.scala:12:7] wire [31:0] io_enq_bits_data_0 = io_enq_bits_data; // @[ShiftQueue.scala:12:7] wire [1:0] io_enq_bits_mask_0 = io_enq_bits_mask; // @[ShiftQueue.scala:12:7] wire io_enq_bits_xcpt_pf_inst_0 = io_enq_bits_xcpt_pf_inst; // @[ShiftQueue.scala:12:7] wire io_enq_bits_xcpt_ae_inst_0 = io_enq_bits_xcpt_ae_inst; // @[ShiftQueue.scala:12:7] wire io_enq_bits_replay_0 = io_enq_bits_replay; // @[ShiftQueue.scala:12:7] wire io_deq_ready_0 = io_deq_ready; // @[ShiftQueue.scala:12:7] wire io_enq_bits_xcpt_gf_inst = 1'h0; // @[ShiftQueue.scala:12:7] wire _valid_WIRE_0 = 1'h0; // @[ShiftQueue.scala:21:38] wire _valid_WIRE_1 = 1'h0; // @[ShiftQueue.scala:21:38] wire _valid_WIRE_2 = 1'h0; // @[ShiftQueue.scala:21:38] wire _valid_WIRE_3 = 1'h0; // @[ShiftQueue.scala:21:38] wire _valid_WIRE_4 = 1'h0; // @[ShiftQueue.scala:21:38] wire _io_enq_ready_T; // @[ShiftQueue.scala:40:19] wire [2:0] _io_count_T_12; // @[ShiftQueue.scala:54:23] wire [4:0] _io_mask_T; // @[ShiftQueue.scala:53:20] wire io_enq_ready_0; // @[ShiftQueue.scala:12:7] wire [7:0] io_deq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7] wire io_deq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7] wire [1:0] io_deq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7] wire io_deq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7] wire [1:0] io_deq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7] wire io_deq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7] wire [38:0] io_deq_bits_btb_target_0; // @[ShiftQueue.scala:12:7] wire [4:0] io_deq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7] wire io_deq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7] wire io_deq_bits_xcpt_gf_inst_0; // @[ShiftQueue.scala:12:7] wire io_deq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7] wire [39:0] io_deq_bits_pc_0; // @[ShiftQueue.scala:12:7] wire [31:0] io_deq_bits_data_0; // @[ShiftQueue.scala:12:7] wire [1:0] io_deq_bits_mask_0; // @[ShiftQueue.scala:12:7] wire io_deq_bits_replay_0; // @[ShiftQueue.scala:12:7] wire io_deq_valid_0; // @[ShiftQueue.scala:12:7] wire [2:0] io_count; // @[ShiftQueue.scala:12:7] wire [4:0] io_mask_0; // @[ShiftQueue.scala:12:7] reg valid_0; // @[ShiftQueue.scala:21:30] wire _wen_T_1 = valid_0; // @[ShiftQueue.scala:21:30, :30:67] wire _valid_0_T_1 = valid_0; // @[ShiftQueue.scala:21:30, :36:67] reg valid_1; // @[ShiftQueue.scala:21:30] wire _wen_T_9 = valid_1; // @[ShiftQueue.scala:21:30, :30:67] wire _valid_1_T_1 = valid_1; // @[ShiftQueue.scala:21:30, :36:67] reg valid_2; // @[ShiftQueue.scala:21:30] wire _wen_T_17 = valid_2; // @[ShiftQueue.scala:21:30, :30:67] wire _valid_2_T_1 = valid_2; // @[ShiftQueue.scala:21:30, :36:67] reg valid_3; // @[ShiftQueue.scala:21:30] wire _wen_T_25 = valid_3; // @[ShiftQueue.scala:21:30, :30:67] wire _valid_3_T_1 = valid_3; // @[ShiftQueue.scala:21:30, :36:67] reg valid_4; // @[ShiftQueue.scala:21:30] wire _wen_T_33 = valid_4; // @[ShiftQueue.scala:21:30, :30:67] wire _valid_4_T_1 = valid_4; // @[ShiftQueue.scala:21:30, :36:67] reg [1:0] elts_0_btb_cfiType; // @[ShiftQueue.scala:22:25] reg elts_0_btb_taken; // @[ShiftQueue.scala:22:25] reg [1:0] elts_0_btb_mask; // @[ShiftQueue.scala:22:25] reg elts_0_btb_bridx; // @[ShiftQueue.scala:22:25] reg [38:0] elts_0_btb_target; // @[ShiftQueue.scala:22:25] reg [4:0] elts_0_btb_entry; // @[ShiftQueue.scala:22:25] reg [7:0] elts_0_btb_bht_history; // @[ShiftQueue.scala:22:25] reg elts_0_btb_bht_value; // @[ShiftQueue.scala:22:25] reg [39:0] elts_0_pc; // @[ShiftQueue.scala:22:25] reg [31:0] elts_0_data; // @[ShiftQueue.scala:22:25] reg [1:0] elts_0_mask; // @[ShiftQueue.scala:22:25] reg elts_0_xcpt_pf_inst; // @[ShiftQueue.scala:22:25] reg elts_0_xcpt_gf_inst; // @[ShiftQueue.scala:22:25] reg elts_0_xcpt_ae_inst; // @[ShiftQueue.scala:22:25] reg elts_0_replay; // @[ShiftQueue.scala:22:25] reg [1:0] elts_1_btb_cfiType; // @[ShiftQueue.scala:22:25] reg elts_1_btb_taken; // @[ShiftQueue.scala:22:25] reg [1:0] elts_1_btb_mask; // @[ShiftQueue.scala:22:25] reg elts_1_btb_bridx; // @[ShiftQueue.scala:22:25] reg [38:0] elts_1_btb_target; // @[ShiftQueue.scala:22:25] reg [4:0] elts_1_btb_entry; // @[ShiftQueue.scala:22:25] reg [7:0] elts_1_btb_bht_history; // @[ShiftQueue.scala:22:25] reg elts_1_btb_bht_value; // @[ShiftQueue.scala:22:25] reg [39:0] elts_1_pc; // @[ShiftQueue.scala:22:25] reg [31:0] elts_1_data; // @[ShiftQueue.scala:22:25] reg [1:0] elts_1_mask; // @[ShiftQueue.scala:22:25] reg elts_1_xcpt_pf_inst; // @[ShiftQueue.scala:22:25] reg elts_1_xcpt_gf_inst; // @[ShiftQueue.scala:22:25] reg elts_1_xcpt_ae_inst; // @[ShiftQueue.scala:22:25] reg elts_1_replay; // @[ShiftQueue.scala:22:25] reg [1:0] elts_2_btb_cfiType; // @[ShiftQueue.scala:22:25] reg elts_2_btb_taken; // @[ShiftQueue.scala:22:25] reg [1:0] elts_2_btb_mask; // @[ShiftQueue.scala:22:25] reg elts_2_btb_bridx; // @[ShiftQueue.scala:22:25] reg [38:0] elts_2_btb_target; // @[ShiftQueue.scala:22:25] reg [4:0] elts_2_btb_entry; // @[ShiftQueue.scala:22:25] reg [7:0] elts_2_btb_bht_history; // @[ShiftQueue.scala:22:25] reg elts_2_btb_bht_value; // @[ShiftQueue.scala:22:25] reg [39:0] elts_2_pc; // @[ShiftQueue.scala:22:25] reg [31:0] elts_2_data; // @[ShiftQueue.scala:22:25] reg [1:0] elts_2_mask; // @[ShiftQueue.scala:22:25] reg elts_2_xcpt_pf_inst; // @[ShiftQueue.scala:22:25] reg elts_2_xcpt_gf_inst; // @[ShiftQueue.scala:22:25] reg elts_2_xcpt_ae_inst; // @[ShiftQueue.scala:22:25] reg elts_2_replay; // @[ShiftQueue.scala:22:25] reg [1:0] elts_3_btb_cfiType; // @[ShiftQueue.scala:22:25] reg elts_3_btb_taken; // @[ShiftQueue.scala:22:25] reg [1:0] elts_3_btb_mask; // @[ShiftQueue.scala:22:25] reg elts_3_btb_bridx; // @[ShiftQueue.scala:22:25] reg [38:0] elts_3_btb_target; // @[ShiftQueue.scala:22:25] reg [4:0] elts_3_btb_entry; // @[ShiftQueue.scala:22:25] reg [7:0] elts_3_btb_bht_history; // @[ShiftQueue.scala:22:25] reg elts_3_btb_bht_value; // @[ShiftQueue.scala:22:25] reg [39:0] elts_3_pc; // @[ShiftQueue.scala:22:25] reg [31:0] elts_3_data; // @[ShiftQueue.scala:22:25] reg [1:0] elts_3_mask; // @[ShiftQueue.scala:22:25] reg elts_3_xcpt_pf_inst; // @[ShiftQueue.scala:22:25] reg elts_3_xcpt_gf_inst; // @[ShiftQueue.scala:22:25] reg elts_3_xcpt_ae_inst; // @[ShiftQueue.scala:22:25] reg elts_3_replay; // @[ShiftQueue.scala:22:25] reg [1:0] elts_4_btb_cfiType; // @[ShiftQueue.scala:22:25] reg elts_4_btb_taken; // @[ShiftQueue.scala:22:25] reg [1:0] elts_4_btb_mask; // @[ShiftQueue.scala:22:25] reg elts_4_btb_bridx; // @[ShiftQueue.scala:22:25] reg [38:0] elts_4_btb_target; // @[ShiftQueue.scala:22:25] reg [4:0] elts_4_btb_entry; // @[ShiftQueue.scala:22:25] reg [7:0] elts_4_btb_bht_history; // @[ShiftQueue.scala:22:25] reg elts_4_btb_bht_value; // @[ShiftQueue.scala:22:25] reg [39:0] elts_4_pc; // @[ShiftQueue.scala:22:25] reg [31:0] elts_4_data; // @[ShiftQueue.scala:22:25] reg [1:0] elts_4_mask; // @[ShiftQueue.scala:22:25] reg elts_4_xcpt_pf_inst; // @[ShiftQueue.scala:22:25] reg elts_4_xcpt_gf_inst; // @[ShiftQueue.scala:22:25] reg elts_4_xcpt_ae_inst; // @[ShiftQueue.scala:22:25] reg elts_4_replay; // @[ShiftQueue.scala:22:25] wire [1:0] wdata_btb_cfiType = valid_1 ? elts_1_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_btb_taken = valid_1 ? elts_1_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [1:0] wdata_btb_mask = valid_1 ? elts_1_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_btb_bridx = valid_1 ? elts_1_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [38:0] wdata_btb_target = valid_1 ? elts_1_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [4:0] wdata_btb_entry = valid_1 ? elts_1_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [7:0] wdata_btb_bht_history = valid_1 ? elts_1_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_btb_bht_value = valid_1 ? elts_1_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [39:0] wdata_pc = valid_1 ? elts_1_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [31:0] wdata_data = valid_1 ? elts_1_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [1:0] wdata_mask = valid_1 ? elts_1_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_xcpt_pf_inst = valid_1 ? elts_1_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_xcpt_gf_inst = valid_1 & elts_1_xcpt_gf_inst; // @[ShiftQueue.scala:21:30, :22:25, :27:57] wire wdata_xcpt_ae_inst = valid_1 ? elts_1_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_replay = valid_1 ? elts_1_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire _GEN = io_enq_ready_0 & io_enq_valid_0; // @[Decoupled.scala:51:35] wire _wen_T; // @[Decoupled.scala:51:35] assign _wen_T = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_4; // @[Decoupled.scala:51:35] assign _wen_T_4 = _GEN; // @[Decoupled.scala:51:35] wire _valid_0_T; // @[Decoupled.scala:51:35] assign _valid_0_T = _GEN; // @[Decoupled.scala:51:35] wire _valid_0_T_4; // @[Decoupled.scala:51:35] assign _valid_0_T_4 = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_8; // @[Decoupled.scala:51:35] assign _wen_T_8 = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_12; // @[Decoupled.scala:51:35] assign _wen_T_12 = _GEN; // @[Decoupled.scala:51:35] wire _valid_1_T; // @[Decoupled.scala:51:35] assign _valid_1_T = _GEN; // @[Decoupled.scala:51:35] wire _valid_1_T_4; // @[Decoupled.scala:51:35] assign _valid_1_T_4 = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_16; // @[Decoupled.scala:51:35] assign _wen_T_16 = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_20; // @[Decoupled.scala:51:35] assign _wen_T_20 = _GEN; // @[Decoupled.scala:51:35] wire _valid_2_T; // @[Decoupled.scala:51:35] assign _valid_2_T = _GEN; // @[Decoupled.scala:51:35] wire _valid_2_T_4; // @[Decoupled.scala:51:35] assign _valid_2_T_4 = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_24; // @[Decoupled.scala:51:35] assign _wen_T_24 = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_28; // @[Decoupled.scala:51:35] assign _wen_T_28 = _GEN; // @[Decoupled.scala:51:35] wire _valid_3_T; // @[Decoupled.scala:51:35] assign _valid_3_T = _GEN; // @[Decoupled.scala:51:35] wire _valid_3_T_4; // @[Decoupled.scala:51:35] assign _valid_3_T_4 = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_32; // @[Decoupled.scala:51:35] assign _wen_T_32 = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_36; // @[Decoupled.scala:51:35] assign _wen_T_36 = _GEN; // @[Decoupled.scala:51:35] wire _valid_4_T; // @[Decoupled.scala:51:35] assign _valid_4_T = _GEN; // @[Decoupled.scala:51:35] wire _valid_4_T_4; // @[Decoupled.scala:51:35] assign _valid_4_T_4 = _GEN; // @[Decoupled.scala:51:35] wire _wen_T_2 = _wen_T & _wen_T_1; // @[Decoupled.scala:51:35] wire _wen_T_3 = valid_1 | _wen_T_2; // @[ShiftQueue.scala:21:30, :30:{28,43}] wire _wen_T_5 = _wen_T_4; // @[Decoupled.scala:51:35] wire _wen_T_6 = ~valid_0; // @[ShiftQueue.scala:21:30, :31:46] wire _wen_T_7 = _wen_T_5 & _wen_T_6; // @[ShiftQueue.scala:31:{23,43,46}] wire wen = io_deq_ready_0 ? _wen_T_3 : _wen_T_7; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43] wire _valid_0_T_2 = _valid_0_T & _valid_0_T_1; // @[Decoupled.scala:51:35] wire _valid_0_T_3 = valid_1 | _valid_0_T_2; // @[ShiftQueue.scala:21:30, :36:{28,43}] wire _valid_0_T_5 = _valid_0_T_4; // @[Decoupled.scala:51:35] wire _valid_0_T_6 = _valid_0_T_5 | valid_0; // @[ShiftQueue.scala:21:30, :37:{23,43}] wire _valid_0_T_7 = io_deq_ready_0 ? _valid_0_T_3 : _valid_0_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43] wire [1:0] wdata_1_btb_cfiType = valid_2 ? elts_2_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_1_btb_taken = valid_2 ? elts_2_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [1:0] wdata_1_btb_mask = valid_2 ? elts_2_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_1_btb_bridx = valid_2 ? elts_2_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [38:0] wdata_1_btb_target = valid_2 ? elts_2_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [4:0] wdata_1_btb_entry = valid_2 ? elts_2_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [7:0] wdata_1_btb_bht_history = valid_2 ? elts_2_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_1_btb_bht_value = valid_2 ? elts_2_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [39:0] wdata_1_pc = valid_2 ? elts_2_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [31:0] wdata_1_data = valid_2 ? elts_2_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [1:0] wdata_1_mask = valid_2 ? elts_2_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_1_xcpt_pf_inst = valid_2 ? elts_2_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_1_xcpt_gf_inst = valid_2 & elts_2_xcpt_gf_inst; // @[ShiftQueue.scala:21:30, :22:25, :27:57] wire wdata_1_xcpt_ae_inst = valid_2 ? elts_2_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_1_replay = valid_2 ? elts_2_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire _wen_T_10 = _wen_T_8 & _wen_T_9; // @[Decoupled.scala:51:35] wire _wen_T_11 = valid_2 | _wen_T_10; // @[ShiftQueue.scala:21:30, :30:{28,43}] wire _wen_T_13 = _wen_T_12 & valid_0; // @[Decoupled.scala:51:35] wire _wen_T_14 = ~valid_1; // @[ShiftQueue.scala:21:30, :31:46] wire _wen_T_15 = _wen_T_13 & _wen_T_14; // @[ShiftQueue.scala:31:{23,43,46}] wire wen_1 = io_deq_ready_0 ? _wen_T_11 : _wen_T_15; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43] wire _valid_1_T_2 = _valid_1_T & _valid_1_T_1; // @[Decoupled.scala:51:35] wire _valid_1_T_3 = valid_2 | _valid_1_T_2; // @[ShiftQueue.scala:21:30, :36:{28,43}] wire _valid_1_T_5 = _valid_1_T_4 & valid_0; // @[Decoupled.scala:51:35] wire _valid_1_T_6 = _valid_1_T_5 | valid_1; // @[ShiftQueue.scala:21:30, :37:{23,43}] wire _valid_1_T_7 = io_deq_ready_0 ? _valid_1_T_3 : _valid_1_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43] wire [1:0] wdata_2_btb_cfiType = valid_3 ? elts_3_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_2_btb_taken = valid_3 ? elts_3_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [1:0] wdata_2_btb_mask = valid_3 ? elts_3_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_2_btb_bridx = valid_3 ? elts_3_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [38:0] wdata_2_btb_target = valid_3 ? elts_3_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [4:0] wdata_2_btb_entry = valid_3 ? elts_3_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [7:0] wdata_2_btb_bht_history = valid_3 ? elts_3_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_2_btb_bht_value = valid_3 ? elts_3_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [39:0] wdata_2_pc = valid_3 ? elts_3_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [31:0] wdata_2_data = valid_3 ? elts_3_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [1:0] wdata_2_mask = valid_3 ? elts_3_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_2_xcpt_pf_inst = valid_3 ? elts_3_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_2_xcpt_gf_inst = valid_3 & elts_3_xcpt_gf_inst; // @[ShiftQueue.scala:21:30, :22:25, :27:57] wire wdata_2_xcpt_ae_inst = valid_3 ? elts_3_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_2_replay = valid_3 ? elts_3_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire _wen_T_18 = _wen_T_16 & _wen_T_17; // @[Decoupled.scala:51:35] wire _wen_T_19 = valid_3 | _wen_T_18; // @[ShiftQueue.scala:21:30, :30:{28,43}] wire _wen_T_21 = _wen_T_20 & valid_1; // @[Decoupled.scala:51:35] wire _wen_T_22 = ~valid_2; // @[ShiftQueue.scala:21:30, :31:46] wire _wen_T_23 = _wen_T_21 & _wen_T_22; // @[ShiftQueue.scala:31:{23,43,46}] wire wen_2 = io_deq_ready_0 ? _wen_T_19 : _wen_T_23; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43] wire _valid_2_T_2 = _valid_2_T & _valid_2_T_1; // @[Decoupled.scala:51:35] wire _valid_2_T_3 = valid_3 | _valid_2_T_2; // @[ShiftQueue.scala:21:30, :36:{28,43}] wire _valid_2_T_5 = _valid_2_T_4 & valid_1; // @[Decoupled.scala:51:35] wire _valid_2_T_6 = _valid_2_T_5 | valid_2; // @[ShiftQueue.scala:21:30, :37:{23,43}] wire _valid_2_T_7 = io_deq_ready_0 ? _valid_2_T_3 : _valid_2_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43] wire [1:0] wdata_3_btb_cfiType = valid_4 ? elts_4_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_3_btb_taken = valid_4 ? elts_4_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [1:0] wdata_3_btb_mask = valid_4 ? elts_4_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_3_btb_bridx = valid_4 ? elts_4_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [38:0] wdata_3_btb_target = valid_4 ? elts_4_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [4:0] wdata_3_btb_entry = valid_4 ? elts_4_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [7:0] wdata_3_btb_bht_history = valid_4 ? elts_4_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_3_btb_bht_value = valid_4 ? elts_4_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [39:0] wdata_3_pc = valid_4 ? elts_4_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [31:0] wdata_3_data = valid_4 ? elts_4_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire [1:0] wdata_3_mask = valid_4 ? elts_4_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_3_xcpt_pf_inst = valid_4 ? elts_4_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_3_xcpt_gf_inst = valid_4 & elts_4_xcpt_gf_inst; // @[ShiftQueue.scala:21:30, :22:25, :27:57] wire wdata_3_xcpt_ae_inst = valid_4 ? elts_4_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire wdata_3_replay = valid_4 ? elts_4_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :27:57] wire _wen_T_26 = _wen_T_24 & _wen_T_25; // @[Decoupled.scala:51:35] wire _wen_T_27 = valid_4 | _wen_T_26; // @[ShiftQueue.scala:21:30, :30:{28,43}] wire _wen_T_29 = _wen_T_28 & valid_2; // @[Decoupled.scala:51:35] wire _wen_T_30 = ~valid_3; // @[ShiftQueue.scala:21:30, :31:46] wire _wen_T_31 = _wen_T_29 & _wen_T_30; // @[ShiftQueue.scala:31:{23,43,46}] wire wen_3 = io_deq_ready_0 ? _wen_T_27 : _wen_T_31; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43] wire _valid_3_T_2 = _valid_3_T & _valid_3_T_1; // @[Decoupled.scala:51:35] wire _valid_3_T_3 = valid_4 | _valid_3_T_2; // @[ShiftQueue.scala:21:30, :36:{28,43}] wire _valid_3_T_5 = _valid_3_T_4 & valid_2; // @[Decoupled.scala:51:35] wire _valid_3_T_6 = _valid_3_T_5 | valid_3; // @[ShiftQueue.scala:21:30, :37:{23,43}] wire _valid_3_T_7 = io_deq_ready_0 ? _valid_3_T_3 : _valid_3_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43] wire _wen_T_34 = _wen_T_32 & _wen_T_33; // @[Decoupled.scala:51:35] wire _wen_T_35 = _wen_T_34; // @[ShiftQueue.scala:30:{28,43}] wire _wen_T_37 = _wen_T_36 & valid_3; // @[Decoupled.scala:51:35] wire _wen_T_38 = ~valid_4; // @[ShiftQueue.scala:21:30, :31:46] wire _wen_T_39 = _wen_T_37 & _wen_T_38; // @[ShiftQueue.scala:31:{23,43,46}] wire wen_4 = io_deq_ready_0 ? _wen_T_35 : _wen_T_39; // @[ShiftQueue.scala:12:7, :29:10, :30:28, :31:43] wire _valid_4_T_2 = _valid_4_T & _valid_4_T_1; // @[Decoupled.scala:51:35] wire _valid_4_T_3 = _valid_4_T_2; // @[ShiftQueue.scala:36:{28,43}] wire _valid_4_T_5 = _valid_4_T_4 & valid_3; // @[Decoupled.scala:51:35] wire _valid_4_T_6 = _valid_4_T_5 | valid_4; // @[ShiftQueue.scala:21:30, :37:{23,43}] wire _valid_4_T_7 = io_deq_ready_0 ? _valid_4_T_3 : _valid_4_T_6; // @[ShiftQueue.scala:12:7, :35:10, :36:28, :37:43] assign _io_enq_ready_T = ~valid_4; // @[ShiftQueue.scala:21:30, :31:46, :40:19] assign io_enq_ready_0 = _io_enq_ready_T; // @[ShiftQueue.scala:12:7, :40:19] assign io_deq_valid_0 = io_enq_valid_0 | valid_0; // @[ShiftQueue.scala:12:7, :21:30, :41:16, :45:{25,40}] assign io_deq_bits_btb_cfiType_0 = valid_0 ? elts_0_btb_cfiType : io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_btb_taken_0 = valid_0 ? elts_0_btb_taken : io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_btb_mask_0 = valid_0 ? elts_0_btb_mask : io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_btb_bridx_0 = valid_0 ? elts_0_btb_bridx : io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_btb_target_0 = valid_0 ? elts_0_btb_target : io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_btb_entry_0 = valid_0 ? elts_0_btb_entry : io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_btb_bht_history_0 = valid_0 ? elts_0_btb_bht_history : io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_btb_bht_value_0 = valid_0 ? elts_0_btb_bht_value : io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_pc_0 = valid_0 ? elts_0_pc : io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_data_0 = valid_0 ? elts_0_data : io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_mask_0 = valid_0 ? elts_0_mask : io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_xcpt_pf_inst_0 = valid_0 ? elts_0_xcpt_pf_inst : io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_xcpt_gf_inst_0 = valid_0 & elts_0_xcpt_gf_inst; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_xcpt_ae_inst_0 = valid_0 ? elts_0_xcpt_ae_inst : io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] assign io_deq_bits_replay_0 = valid_0 ? elts_0_replay : io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :21:30, :22:25, :42:15, :46:{22,36}] wire [1:0] io_mask_lo = {valid_1, valid_0}; // @[ShiftQueue.scala:21:30, :53:20] wire [1:0] io_mask_hi_hi = {valid_4, valid_3}; // @[ShiftQueue.scala:21:30, :53:20] wire [2:0] io_mask_hi = {io_mask_hi_hi, valid_2}; // @[ShiftQueue.scala:21:30, :53:20] assign _io_mask_T = {io_mask_hi, io_mask_lo}; // @[ShiftQueue.scala:53:20] assign io_mask_0 = _io_mask_T; // @[ShiftQueue.scala:12:7, :53:20] wire _io_count_T = io_mask_0[0]; // @[ShiftQueue.scala:12:7, :54:23] wire _io_count_T_1 = io_mask_0[1]; // @[ShiftQueue.scala:12:7, :54:23] wire _io_count_T_2 = io_mask_0[2]; // @[ShiftQueue.scala:12:7, :54:23] wire _io_count_T_3 = io_mask_0[3]; // @[ShiftQueue.scala:12:7, :54:23] wire _io_count_T_4 = io_mask_0[4]; // @[ShiftQueue.scala:12:7, :54:23] wire [1:0] _io_count_T_5 = {1'h0, _io_count_T} + {1'h0, _io_count_T_1}; // @[ShiftQueue.scala:54:23] wire [1:0] _io_count_T_6 = _io_count_T_5; // @[ShiftQueue.scala:54:23] wire [1:0] _io_count_T_7 = {1'h0, _io_count_T_3} + {1'h0, _io_count_T_4}; // @[ShiftQueue.scala:54:23] wire [1:0] _io_count_T_8 = _io_count_T_7; // @[ShiftQueue.scala:54:23] wire [2:0] _io_count_T_9 = {2'h0, _io_count_T_2} + {1'h0, _io_count_T_8}; // @[ShiftQueue.scala:54:23] wire [1:0] _io_count_T_10 = _io_count_T_9[1:0]; // @[ShiftQueue.scala:54:23] wire [2:0] _io_count_T_11 = {1'h0, _io_count_T_6} + {1'h0, _io_count_T_10}; // @[ShiftQueue.scala:54:23] assign _io_count_T_12 = _io_count_T_11; // @[ShiftQueue.scala:54:23] assign io_count = _io_count_T_12; // @[ShiftQueue.scala:12:7, :54:23] always @(posedge clock) begin // @[ShiftQueue.scala:12:7] if (reset) begin // @[ShiftQueue.scala:12:7] valid_0 <= 1'h0; // @[ShiftQueue.scala:21:30] valid_1 <= 1'h0; // @[ShiftQueue.scala:21:30] valid_2 <= 1'h0; // @[ShiftQueue.scala:21:30] valid_3 <= 1'h0; // @[ShiftQueue.scala:21:30] valid_4 <= 1'h0; // @[ShiftQueue.scala:21:30] end else begin // @[ShiftQueue.scala:12:7] valid_0 <= _valid_0_T_7; // @[ShiftQueue.scala:21:30, :35:10] valid_1 <= _valid_1_T_7; // @[ShiftQueue.scala:21:30, :35:10] valid_2 <= _valid_2_T_7; // @[ShiftQueue.scala:21:30, :35:10] valid_3 <= _valid_3_T_7; // @[ShiftQueue.scala:21:30, :35:10] valid_4 <= _valid_4_T_7; // @[ShiftQueue.scala:21:30, :35:10] end if (wen) begin // @[ShiftQueue.scala:29:10] elts_0_btb_cfiType <= wdata_btb_cfiType; // @[ShiftQueue.scala:22:25, :27:57] elts_0_btb_taken <= wdata_btb_taken; // @[ShiftQueue.scala:22:25, :27:57] elts_0_btb_mask <= wdata_btb_mask; // @[ShiftQueue.scala:22:25, :27:57] elts_0_btb_bridx <= wdata_btb_bridx; // @[ShiftQueue.scala:22:25, :27:57] elts_0_btb_target <= wdata_btb_target; // @[ShiftQueue.scala:22:25, :27:57] elts_0_btb_entry <= wdata_btb_entry; // @[ShiftQueue.scala:22:25, :27:57] elts_0_btb_bht_history <= wdata_btb_bht_history; // @[ShiftQueue.scala:22:25, :27:57] elts_0_btb_bht_value <= wdata_btb_bht_value; // @[ShiftQueue.scala:22:25, :27:57] elts_0_pc <= wdata_pc; // @[ShiftQueue.scala:22:25, :27:57] elts_0_data <= wdata_data; // @[ShiftQueue.scala:22:25, :27:57] elts_0_mask <= wdata_mask; // @[ShiftQueue.scala:22:25, :27:57] elts_0_xcpt_pf_inst <= wdata_xcpt_pf_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_0_xcpt_gf_inst <= wdata_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_0_xcpt_ae_inst <= wdata_xcpt_ae_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_0_replay <= wdata_replay; // @[ShiftQueue.scala:22:25, :27:57] end if (wen_1) begin // @[ShiftQueue.scala:29:10] elts_1_btb_cfiType <= wdata_1_btb_cfiType; // @[ShiftQueue.scala:22:25, :27:57] elts_1_btb_taken <= wdata_1_btb_taken; // @[ShiftQueue.scala:22:25, :27:57] elts_1_btb_mask <= wdata_1_btb_mask; // @[ShiftQueue.scala:22:25, :27:57] elts_1_btb_bridx <= wdata_1_btb_bridx; // @[ShiftQueue.scala:22:25, :27:57] elts_1_btb_target <= wdata_1_btb_target; // @[ShiftQueue.scala:22:25, :27:57] elts_1_btb_entry <= wdata_1_btb_entry; // @[ShiftQueue.scala:22:25, :27:57] elts_1_btb_bht_history <= wdata_1_btb_bht_history; // @[ShiftQueue.scala:22:25, :27:57] elts_1_btb_bht_value <= wdata_1_btb_bht_value; // @[ShiftQueue.scala:22:25, :27:57] elts_1_pc <= wdata_1_pc; // @[ShiftQueue.scala:22:25, :27:57] elts_1_data <= wdata_1_data; // @[ShiftQueue.scala:22:25, :27:57] elts_1_mask <= wdata_1_mask; // @[ShiftQueue.scala:22:25, :27:57] elts_1_xcpt_pf_inst <= wdata_1_xcpt_pf_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_1_xcpt_gf_inst <= wdata_1_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_1_xcpt_ae_inst <= wdata_1_xcpt_ae_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_1_replay <= wdata_1_replay; // @[ShiftQueue.scala:22:25, :27:57] end if (wen_2) begin // @[ShiftQueue.scala:29:10] elts_2_btb_cfiType <= wdata_2_btb_cfiType; // @[ShiftQueue.scala:22:25, :27:57] elts_2_btb_taken <= wdata_2_btb_taken; // @[ShiftQueue.scala:22:25, :27:57] elts_2_btb_mask <= wdata_2_btb_mask; // @[ShiftQueue.scala:22:25, :27:57] elts_2_btb_bridx <= wdata_2_btb_bridx; // @[ShiftQueue.scala:22:25, :27:57] elts_2_btb_target <= wdata_2_btb_target; // @[ShiftQueue.scala:22:25, :27:57] elts_2_btb_entry <= wdata_2_btb_entry; // @[ShiftQueue.scala:22:25, :27:57] elts_2_btb_bht_history <= wdata_2_btb_bht_history; // @[ShiftQueue.scala:22:25, :27:57] elts_2_btb_bht_value <= wdata_2_btb_bht_value; // @[ShiftQueue.scala:22:25, :27:57] elts_2_pc <= wdata_2_pc; // @[ShiftQueue.scala:22:25, :27:57] elts_2_data <= wdata_2_data; // @[ShiftQueue.scala:22:25, :27:57] elts_2_mask <= wdata_2_mask; // @[ShiftQueue.scala:22:25, :27:57] elts_2_xcpt_pf_inst <= wdata_2_xcpt_pf_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_2_xcpt_gf_inst <= wdata_2_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_2_xcpt_ae_inst <= wdata_2_xcpt_ae_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_2_replay <= wdata_2_replay; // @[ShiftQueue.scala:22:25, :27:57] end if (wen_3) begin // @[ShiftQueue.scala:29:10] elts_3_btb_cfiType <= wdata_3_btb_cfiType; // @[ShiftQueue.scala:22:25, :27:57] elts_3_btb_taken <= wdata_3_btb_taken; // @[ShiftQueue.scala:22:25, :27:57] elts_3_btb_mask <= wdata_3_btb_mask; // @[ShiftQueue.scala:22:25, :27:57] elts_3_btb_bridx <= wdata_3_btb_bridx; // @[ShiftQueue.scala:22:25, :27:57] elts_3_btb_target <= wdata_3_btb_target; // @[ShiftQueue.scala:22:25, :27:57] elts_3_btb_entry <= wdata_3_btb_entry; // @[ShiftQueue.scala:22:25, :27:57] elts_3_btb_bht_history <= wdata_3_btb_bht_history; // @[ShiftQueue.scala:22:25, :27:57] elts_3_btb_bht_value <= wdata_3_btb_bht_value; // @[ShiftQueue.scala:22:25, :27:57] elts_3_pc <= wdata_3_pc; // @[ShiftQueue.scala:22:25, :27:57] elts_3_data <= wdata_3_data; // @[ShiftQueue.scala:22:25, :27:57] elts_3_mask <= wdata_3_mask; // @[ShiftQueue.scala:22:25, :27:57] elts_3_xcpt_pf_inst <= wdata_3_xcpt_pf_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_3_xcpt_gf_inst <= wdata_3_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_3_xcpt_ae_inst <= wdata_3_xcpt_ae_inst; // @[ShiftQueue.scala:22:25, :27:57] elts_3_replay <= wdata_3_replay; // @[ShiftQueue.scala:22:25, :27:57] end if (wen_4) begin // @[ShiftQueue.scala:29:10] elts_4_btb_cfiType <= io_enq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_btb_taken <= io_enq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_btb_mask <= io_enq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_btb_bridx <= io_enq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_btb_target <= io_enq_bits_btb_target_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_btb_entry <= io_enq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_btb_bht_history <= io_enq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_btb_bht_value <= io_enq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_pc <= io_enq_bits_pc_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_data <= io_enq_bits_data_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_mask <= io_enq_bits_mask_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_xcpt_pf_inst <= io_enq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_xcpt_ae_inst <= io_enq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7, :22:25] elts_4_replay <= io_enq_bits_replay_0; // @[ShiftQueue.scala:12:7, :22:25] end elts_4_xcpt_gf_inst <= ~wen_4 & elts_4_xcpt_gf_inst; // @[ShiftQueue.scala:22:25, :29:10, :32:{16,26}] always @(posedge) assign io_enq_ready = io_enq_ready_0; // @[ShiftQueue.scala:12:7] assign io_deq_valid = io_deq_valid_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_btb_cfiType = io_deq_bits_btb_cfiType_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_btb_taken = io_deq_bits_btb_taken_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_btb_mask = io_deq_bits_btb_mask_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_btb_bridx = io_deq_bits_btb_bridx_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_btb_target = io_deq_bits_btb_target_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_btb_entry = io_deq_bits_btb_entry_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_btb_bht_history = io_deq_bits_btb_bht_history_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_btb_bht_value = io_deq_bits_btb_bht_value_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_pc = io_deq_bits_pc_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_data = io_deq_bits_data_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_mask = io_deq_bits_mask_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_xcpt_pf_inst = io_deq_bits_xcpt_pf_inst_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_xcpt_gf_inst = io_deq_bits_xcpt_gf_inst_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_xcpt_ae_inst = io_deq_bits_xcpt_ae_inst_0; // @[ShiftQueue.scala:12:7] assign io_deq_bits_replay = io_deq_bits_replay_0; // @[ShiftQueue.scala:12:7] assign io_mask = io_mask_0; // @[ShiftQueue.scala:12:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File MulAddRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle { //*** ENCODE SOME OF THESE CASES IN FEWER BITS?: val isSigNaNAny = Bool() val isNaNAOrB = Bool() val isInfA = Bool() val isZeroA = Bool() val isInfB = Bool() val isZeroB = Bool() val signProd = Bool() val isNaNC = Bool() val isInfC = Bool() val isZeroC = Bool() val sExpSum = SInt((expWidth + 2).W) val doSubMags = Bool() val CIsDominant = Bool() val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W) val highAlignedSigC = UInt((sigWidth + 2).W) val bit0AlignedSigC = UInt(1.W) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val mulAddA = Output(UInt(sigWidth.W)) val mulAddB = Output(UInt(sigWidth.W)) val mulAddC = Output(UInt((sigWidth * 2).W)) val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ //*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN //*** UNSHIFTED C AND PRODUCT): val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a) val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b) val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c) val signProd = rawA.sign ^ rawB.sign ^ io.op(1) //*** REVIEW THE BIAS FOR 'sExpAlignedProd': val sExpAlignedProd = rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S val doSubMags = signProd ^ rawC.sign ^ io.op(0) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sNatCAlignDist = sExpAlignedProd - rawC.sExp val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0) val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S) val CIsDominant = ! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U)) val CAlignDist = Mux(isMinCAlign, 0.U, Mux(posNatCAlignDist < (sigSumWidth - 1).U, posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0), (sigSumWidth - 1).U ) ) val mainAlignedSigC = (Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist val reduced4CExtra = (orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) & lowMask( CAlignDist>>2, //*** NOT NEEDED?: // (sigSumWidth + 2)>>2, (sigSumWidth - 1)>>2, (sigSumWidth - sigWidth - 1)>>2 ) ).orR val alignedSigC = Cat(mainAlignedSigC>>3, Mux(doSubMags, mainAlignedSigC(2, 0).andR && ! reduced4CExtra, mainAlignedSigC(2, 0).orR || reduced4CExtra ) ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.mulAddA := rawA.sig io.mulAddB := rawB.sig io.mulAddC := alignedSigC(sigWidth * 2, 1) io.toPostMul.isSigNaNAny := isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) || isSigNaNRawFloat(rawC) io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN io.toPostMul.isInfA := rawA.isInf io.toPostMul.isZeroA := rawA.isZero io.toPostMul.isInfB := rawB.isInf io.toPostMul.isZeroB := rawB.isZero io.toPostMul.signProd := signProd io.toPostMul.isNaNC := rawC.isNaN io.toPostMul.isInfC := rawC.isInf io.toPostMul.isZeroC := rawC.isZero io.toPostMul.sExpSum := Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S) io.toPostMul.doSubMags := doSubMags io.toPostMul.CIsDominant := CIsDominant io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0) io.toPostMul.highAlignedSigC := alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1) io.toPostMul.bit0AlignedSigC := alignedSigC(0) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth)) val mulAddResult = Input(UInt((sigWidth * 2 + 1).W)) val roundingMode = Input(UInt(3.W)) val invalidExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_min = (io.roundingMode === round_min) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags val sigSum = Cat(Mux(io.mulAddResult(sigWidth * 2), io.fromPreMul.highAlignedSigC + 1.U, io.fromPreMul.highAlignedSigC ), io.mulAddResult(sigWidth * 2 - 1, 0), io.fromPreMul.bit0AlignedSigC ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val CDom_sign = opSignC val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext val CDom_absSigSum = Mux(io.fromPreMul.doSubMags, ~sigSum(sigSumWidth - 1, sigWidth + 1), 0.U(1.W) ## //*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO: io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ## sigSum(sigSumWidth - 3, sigWidth + 2) ) val CDom_absSigSumExtra = Mux(io.fromPreMul.doSubMags, (~sigSum(sigWidth, 1)).orR, sigSum(sigWidth + 1, 1).orR ) val CDom_mainSig = (CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)( sigWidth * 2 + 1, sigWidth - 3) val CDom_reduced4SigExtra = (orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) & lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR val CDom_sig = Cat(CDom_mainSig>>3, CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra || CDom_absSigSumExtra ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notCDom_signSigSum = sigSum(sigWidth * 2 + 3) val notCDom_absSigSum = Mux(notCDom_signSigSum, ~sigSum(sigWidth * 2 + 2, 0), sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags ) val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum) val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum) val notCDom_nearNormDist = notCDom_normDistReduced2<<1 val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext val notCDom_mainSig = (notCDom_absSigSum<<notCDom_nearNormDist)( sigWidth * 2 + 3, sigWidth - 1) val notCDom_reduced4SigExtra = (orReduceBy2( notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) & lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2) ).orR val notCDom_sig = Cat(notCDom_mainSig>>3, notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra ) val notCDom_completeCancellation = (notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U) val notCDom_sign = Mux(notCDom_completeCancellation, roundingMode_min, io.fromPreMul.signProd ^ notCDom_signSigSum ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC val notNaN_addZeros = (io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) && io.fromPreMul.isZeroC io.invalidExc := io.fromPreMul.isSigNaNAny || (io.fromPreMul.isInfA && io.fromPreMul.isZeroB) || (io.fromPreMul.isZeroA && io.fromPreMul.isInfB) || (! io.fromPreMul.isNaNAOrB && (io.fromPreMul.isInfA || io.fromPreMul.isInfB) && io.fromPreMul.isInfC && io.fromPreMul.doSubMags) io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC io.rawOut.isInf := notNaN_isInfOut //*** IMPROVE?: io.rawOut.isZero := notNaN_addZeros || (! io.fromPreMul.CIsDominant && notCDom_completeCancellation) io.rawOut.sign := (notNaN_isInfProd && io.fromPreMul.signProd) || (io.fromPreMul.isInfC && opSignC) || (notNaN_addZeros && ! roundingMode_min && io.fromPreMul.signProd && opSignC) || (notNaN_addZeros && roundingMode_min && (io.fromPreMul.signProd || opSignC)) || (! notNaN_isInfOut && ! notNaN_addZeros && Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign)) io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp) io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC mulAddRecFNToRaw_postMul.io.fromPreMul := mulAddRecFNToRaw_preMul.io.toPostMul mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc roundRawFNToRecFN.io.infiniteExc := false.B roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut roundRawFNToRecFN.io.roundingMode := io.roundingMode roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags }
module MulAddRecFNToRaw_postMul_e8_s24_63( // @[MulAddRecFN.scala:169:7] input io_fromPreMul_isSigNaNAny, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isNaNAOrB, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isInfA, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isZeroA, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_signProd, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isNaNC, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isInfC, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isZeroC, // @[MulAddRecFN.scala:172:16] input [9:0] io_fromPreMul_sExpSum, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_doSubMags, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_CIsDominant, // @[MulAddRecFN.scala:172:16] input [4:0] io_fromPreMul_CDom_CAlignDist, // @[MulAddRecFN.scala:172:16] input [25:0] io_fromPreMul_highAlignedSigC, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_bit0AlignedSigC, // @[MulAddRecFN.scala:172:16] input [48:0] io_mulAddResult, // @[MulAddRecFN.scala:172:16] output io_invalidExc, // @[MulAddRecFN.scala:172:16] output io_rawOut_isNaN, // @[MulAddRecFN.scala:172:16] output io_rawOut_isInf, // @[MulAddRecFN.scala:172:16] output io_rawOut_isZero, // @[MulAddRecFN.scala:172:16] output io_rawOut_sign, // @[MulAddRecFN.scala:172:16] output [9:0] io_rawOut_sExp, // @[MulAddRecFN.scala:172:16] output [26:0] io_rawOut_sig // @[MulAddRecFN.scala:172:16] ); wire io_fromPreMul_isSigNaNAny_0 = io_fromPreMul_isSigNaNAny; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isNaNAOrB_0 = io_fromPreMul_isNaNAOrB; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isInfA_0 = io_fromPreMul_isInfA; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isZeroA_0 = io_fromPreMul_isZeroA; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_signProd_0 = io_fromPreMul_signProd; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isNaNC_0 = io_fromPreMul_isNaNC; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isInfC_0 = io_fromPreMul_isInfC; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isZeroC_0 = io_fromPreMul_isZeroC; // @[MulAddRecFN.scala:169:7] wire [9:0] io_fromPreMul_sExpSum_0 = io_fromPreMul_sExpSum; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_doSubMags_0 = io_fromPreMul_doSubMags; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_CIsDominant_0 = io_fromPreMul_CIsDominant; // @[MulAddRecFN.scala:169:7] wire [4:0] io_fromPreMul_CDom_CAlignDist_0 = io_fromPreMul_CDom_CAlignDist; // @[MulAddRecFN.scala:169:7] wire [25:0] io_fromPreMul_highAlignedSigC_0 = io_fromPreMul_highAlignedSigC; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_bit0AlignedSigC_0 = io_fromPreMul_bit0AlignedSigC; // @[MulAddRecFN.scala:169:7] wire [48:0] io_mulAddResult_0 = io_mulAddResult; // @[MulAddRecFN.scala:169:7] wire _io_rawOut_sign_T_3 = 1'h1; // @[MulAddRecFN.scala:287:29] wire [2:0] io_roundingMode = 3'h0; // @[MulAddRecFN.scala:169:7, :172:16] wire io_fromPreMul_isInfB = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isZeroB = 1'h0; // @[MulAddRecFN.scala:169:7] wire roundingMode_min = 1'h0; // @[MulAddRecFN.scala:186:45] wire _io_invalidExc_T = 1'h0; // @[MulAddRecFN.scala:272:31] wire _io_invalidExc_T_2 = 1'h0; // @[MulAddRecFN.scala:273:32] wire _io_rawOut_sign_T_8 = 1'h0; // @[MulAddRecFN.scala:289:26] wire _io_rawOut_sign_T_10 = 1'h0; // @[MulAddRecFN.scala:289:46] wire _io_invalidExc_T_1 = io_fromPreMul_isSigNaNAny_0; // @[MulAddRecFN.scala:169:7, :271:35] wire notNaN_isInfProd = io_fromPreMul_isInfA_0; // @[MulAddRecFN.scala:169:7, :264:49] wire _io_invalidExc_T_5 = io_fromPreMul_isInfA_0; // @[MulAddRecFN.scala:169:7, :275:36] wire _notNaN_addZeros_T = io_fromPreMul_isZeroA_0; // @[MulAddRecFN.scala:169:7, :267:32] wire _io_invalidExc_T_9; // @[MulAddRecFN.scala:273:57] wire _io_rawOut_isNaN_T; // @[MulAddRecFN.scala:278:48] wire notNaN_isInfOut; // @[MulAddRecFN.scala:265:44] wire _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:282:25] wire _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:290:50] wire [9:0] _io_rawOut_sExp_T; // @[MulAddRecFN.scala:293:26] wire [26:0] _io_rawOut_sig_T; // @[MulAddRecFN.scala:294:25] wire io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7] wire [9:0] io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7] wire [26:0] io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7] wire io_invalidExc_0; // @[MulAddRecFN.scala:169:7] wire opSignC = io_fromPreMul_signProd_0 ^ io_fromPreMul_doSubMags_0; // @[MulAddRecFN.scala:169:7, :190:42] wire _sigSum_T = io_mulAddResult_0[48]; // @[MulAddRecFN.scala:169:7, :192:32] wire [26:0] _sigSum_T_1 = {1'h0, io_fromPreMul_highAlignedSigC_0} + 27'h1; // @[MulAddRecFN.scala:169:7, :193:47] wire [25:0] _sigSum_T_2 = _sigSum_T_1[25:0]; // @[MulAddRecFN.scala:193:47] wire [25:0] _sigSum_T_3 = _sigSum_T ? _sigSum_T_2 : io_fromPreMul_highAlignedSigC_0; // @[MulAddRecFN.scala:169:7, :192:{16,32}, :193:47] wire [47:0] _sigSum_T_4 = io_mulAddResult_0[47:0]; // @[MulAddRecFN.scala:169:7, :196:28] wire [73:0] sigSum_hi = {_sigSum_T_3, _sigSum_T_4}; // @[MulAddRecFN.scala:192:{12,16}, :196:28] wire [74:0] sigSum = {sigSum_hi, io_fromPreMul_bit0AlignedSigC_0}; // @[MulAddRecFN.scala:169:7, :192:12] wire [1:0] _CDom_sExp_T = {1'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :203:69] wire [10:0] _GEN = {io_fromPreMul_sExpSum_0[9], io_fromPreMul_sExpSum_0}; // @[MulAddRecFN.scala:169:7, :203:43] wire [10:0] _CDom_sExp_T_1 = _GEN - {{9{_CDom_sExp_T[1]}}, _CDom_sExp_T}; // @[MulAddRecFN.scala:203:{43,69}] wire [9:0] _CDom_sExp_T_2 = _CDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:203:43] wire [9:0] CDom_sExp = _CDom_sExp_T_2; // @[MulAddRecFN.scala:203:43] wire [49:0] _CDom_absSigSum_T = sigSum[74:25]; // @[MulAddRecFN.scala:192:12, :206:20] wire [49:0] _CDom_absSigSum_T_1 = ~_CDom_absSigSum_T; // @[MulAddRecFN.scala:206:{13,20}] wire [1:0] _CDom_absSigSum_T_2 = io_fromPreMul_highAlignedSigC_0[25:24]; // @[MulAddRecFN.scala:169:7, :209:46] wire [2:0] _CDom_absSigSum_T_3 = {1'h0, _CDom_absSigSum_T_2}; // @[MulAddRecFN.scala:207:22, :209:46] wire [46:0] _CDom_absSigSum_T_4 = sigSum[72:26]; // @[MulAddRecFN.scala:192:12, :210:23] wire [49:0] _CDom_absSigSum_T_5 = {_CDom_absSigSum_T_3, _CDom_absSigSum_T_4}; // @[MulAddRecFN.scala:207:22, :209:71, :210:23] wire [49:0] CDom_absSigSum = io_fromPreMul_doSubMags_0 ? _CDom_absSigSum_T_1 : _CDom_absSigSum_T_5; // @[MulAddRecFN.scala:169:7, :205:12, :206:13, :209:71] wire [23:0] _CDom_absSigSumExtra_T = sigSum[24:1]; // @[MulAddRecFN.scala:192:12, :215:21] wire [23:0] _CDom_absSigSumExtra_T_1 = ~_CDom_absSigSumExtra_T; // @[MulAddRecFN.scala:215:{14,21}] wire _CDom_absSigSumExtra_T_2 = |_CDom_absSigSumExtra_T_1; // @[MulAddRecFN.scala:215:{14,36}] wire [24:0] _CDom_absSigSumExtra_T_3 = sigSum[25:1]; // @[MulAddRecFN.scala:192:12, :216:19] wire _CDom_absSigSumExtra_T_4 = |_CDom_absSigSumExtra_T_3; // @[MulAddRecFN.scala:216:{19,37}] wire CDom_absSigSumExtra = io_fromPreMul_doSubMags_0 ? _CDom_absSigSumExtra_T_2 : _CDom_absSigSumExtra_T_4; // @[MulAddRecFN.scala:169:7, :214:12, :215:36, :216:37] wire [80:0] _CDom_mainSig_T = {31'h0, CDom_absSigSum} << io_fromPreMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:169:7, :205:12, :219:24] wire [28:0] CDom_mainSig = _CDom_mainSig_T[49:21]; // @[MulAddRecFN.scala:219:{24,56}] wire [23:0] _CDom_reduced4SigExtra_T = CDom_absSigSum[23:0]; // @[MulAddRecFN.scala:205:12, :222:36] wire [26:0] _CDom_reduced4SigExtra_T_1 = {_CDom_reduced4SigExtra_T, 3'h0}; // @[MulAddRecFN.scala:169:7, :172:16, :222:{36,53}] wire _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:123:57] wire CDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:118:30] wire [3:0] _CDom_reduced4SigExtra_reducedVec_0_T = _CDom_reduced4SigExtra_T_1[3:0]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_0_T_1 = |_CDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_0 = _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_1_T = _CDom_reduced4SigExtra_T_1[7:4]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_1_T_1 = |_CDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_1 = _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_2_T = _CDom_reduced4SigExtra_T_1[11:8]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_2_T_1 = |_CDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_2 = _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_3_T = _CDom_reduced4SigExtra_T_1[15:12]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_3_T_1 = |_CDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_3 = _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_4_T = _CDom_reduced4SigExtra_T_1[19:16]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_4_T_1 = |_CDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_4 = _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_5_T = _CDom_reduced4SigExtra_T_1[23:20]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_5_T_1 = |_CDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_5 = _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:118:30, :120:54] wire [2:0] _CDom_reduced4SigExtra_reducedVec_6_T = _CDom_reduced4SigExtra_T_1[26:24]; // @[primitives.scala:123:15] assign _CDom_reduced4SigExtra_reducedVec_6_T_1 = |_CDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:123:{15,57}] assign CDom_reduced4SigExtra_reducedVec_6 = _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:118:30, :123:57] wire [1:0] CDom_reduced4SigExtra_lo_hi = {CDom_reduced4SigExtra_reducedVec_2, CDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:118:30, :124:20] wire [2:0] CDom_reduced4SigExtra_lo = {CDom_reduced4SigExtra_lo_hi, CDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:118:30, :124:20] wire [1:0] CDom_reduced4SigExtra_hi_lo = {CDom_reduced4SigExtra_reducedVec_4, CDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:118:30, :124:20] wire [1:0] CDom_reduced4SigExtra_hi_hi = {CDom_reduced4SigExtra_reducedVec_6, CDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:118:30, :124:20] wire [3:0] CDom_reduced4SigExtra_hi = {CDom_reduced4SigExtra_hi_hi, CDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:124:20] wire [6:0] _CDom_reduced4SigExtra_T_2 = {CDom_reduced4SigExtra_hi, CDom_reduced4SigExtra_lo}; // @[primitives.scala:124:20] wire [2:0] _CDom_reduced4SigExtra_T_3 = io_fromPreMul_CDom_CAlignDist_0[4:2]; // @[MulAddRecFN.scala:169:7, :223:51] wire [2:0] _CDom_reduced4SigExtra_T_4 = ~_CDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21] wire [8:0] CDom_reduced4SigExtra_shift = $signed(9'sh100 >>> _CDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56] wire [5:0] _CDom_reduced4SigExtra_T_5 = CDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22] wire [3:0] _CDom_reduced4SigExtra_T_6 = _CDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _CDom_reduced4SigExtra_T_7 = _CDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_8 = _CDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_9 = _CDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_10 = {_CDom_reduced4SigExtra_T_8, _CDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_11 = _CDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_12 = _CDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_13 = _CDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_14 = {_CDom_reduced4SigExtra_T_12, _CDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20] wire [3:0] _CDom_reduced4SigExtra_T_15 = {_CDom_reduced4SigExtra_T_10, _CDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_16 = _CDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22] wire _CDom_reduced4SigExtra_T_17 = _CDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_18 = _CDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_19 = {_CDom_reduced4SigExtra_T_17, _CDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20] wire [5:0] _CDom_reduced4SigExtra_T_20 = {_CDom_reduced4SigExtra_T_15, _CDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20] wire [6:0] _CDom_reduced4SigExtra_T_21 = {1'h0, _CDom_reduced4SigExtra_T_2[5:0] & _CDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :124:20] wire CDom_reduced4SigExtra = |_CDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:222:72, :223:73] wire [25:0] _CDom_sig_T = CDom_mainSig[28:3]; // @[MulAddRecFN.scala:219:56, :225:25] wire [2:0] _CDom_sig_T_1 = CDom_mainSig[2:0]; // @[MulAddRecFN.scala:219:56, :226:25] wire _CDom_sig_T_2 = |_CDom_sig_T_1; // @[MulAddRecFN.scala:226:{25,32}] wire _CDom_sig_T_3 = _CDom_sig_T_2 | CDom_reduced4SigExtra; // @[MulAddRecFN.scala:223:73, :226:{32,36}] wire _CDom_sig_T_4 = _CDom_sig_T_3 | CDom_absSigSumExtra; // @[MulAddRecFN.scala:214:12, :226:{36,61}] wire [26:0] CDom_sig = {_CDom_sig_T, _CDom_sig_T_4}; // @[MulAddRecFN.scala:225:{12,25}, :226:61] wire notCDom_signSigSum = sigSum[51]; // @[MulAddRecFN.scala:192:12, :232:36] wire [50:0] _notCDom_absSigSum_T = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20] wire [50:0] _notCDom_absSigSum_T_2 = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20, :236:19] wire [50:0] _notCDom_absSigSum_T_1 = ~_notCDom_absSigSum_T; // @[MulAddRecFN.scala:235:{13,20}] wire [51:0] _notCDom_absSigSum_T_3 = {1'h0, _notCDom_absSigSum_T_2} + {51'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :236:{19,41}] wire [50:0] _notCDom_absSigSum_T_4 = _notCDom_absSigSum_T_3[50:0]; // @[MulAddRecFN.scala:236:41] wire [50:0] notCDom_absSigSum = notCDom_signSigSum ? _notCDom_absSigSum_T_1 : _notCDom_absSigSum_T_4; // @[MulAddRecFN.scala:232:36, :234:12, :235:13, :236:41] wire _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:106:57] wire notCDom_reduced2AbsSigSum_reducedVec_0; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_1; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_2; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_3; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_4; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_5; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_6; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_7; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_8; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_9; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_10; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_11; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_12; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_13; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_14; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_15; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_16; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_17; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_18; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_19; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_20; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_21; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_22; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_23; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_24; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_25; // @[primitives.scala:101:30] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_0_T = notCDom_absSigSum[1:0]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_0_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_0_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_0 = _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_1_T = notCDom_absSigSum[3:2]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_1_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_1_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_1 = _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_2_T = notCDom_absSigSum[5:4]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_2_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_2_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_2 = _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_3_T = notCDom_absSigSum[7:6]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_3_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_3_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_3 = _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_4_T = notCDom_absSigSum[9:8]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_4_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_4_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_4 = _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_5_T = notCDom_absSigSum[11:10]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_5_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_5_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_5 = _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_6_T = notCDom_absSigSum[13:12]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_6_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_6_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_6 = _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_7_T = notCDom_absSigSum[15:14]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_7_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_7_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_7 = _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_8_T = notCDom_absSigSum[17:16]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_8_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_8_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_8 = _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_9_T = notCDom_absSigSum[19:18]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_9_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_9_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_9 = _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_10_T = notCDom_absSigSum[21:20]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_10_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_10_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_10 = _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_11_T = notCDom_absSigSum[23:22]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_11_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_11_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_11 = _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_12_T = notCDom_absSigSum[25:24]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_12_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_12_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_12 = _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_13_T = notCDom_absSigSum[27:26]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_13_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_13_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_13 = _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_14_T = notCDom_absSigSum[29:28]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_14_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_14_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_14 = _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_15_T = notCDom_absSigSum[31:30]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_15_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_15_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_15 = _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_16_T = notCDom_absSigSum[33:32]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_16_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_16_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_16 = _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_17_T = notCDom_absSigSum[35:34]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_17_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_17_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_17 = _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_18_T = notCDom_absSigSum[37:36]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_18_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_18_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_18 = _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_19_T = notCDom_absSigSum[39:38]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_19_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_19_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_19 = _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_20_T = notCDom_absSigSum[41:40]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_20_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_20_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_20 = _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_21_T = notCDom_absSigSum[43:42]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_21_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_21_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_21 = _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_22_T = notCDom_absSigSum[45:44]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_22_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_22_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_22 = _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_23_T = notCDom_absSigSum[47:46]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_23_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_23_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_23 = _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_24_T = notCDom_absSigSum[49:48]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_24_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_24_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_24 = _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:101:30, :103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T = notCDom_absSigSum[50]; // @[primitives.scala:106:15] assign _notCDom_reduced2AbsSigSum_reducedVec_25_T_1 = _notCDom_reduced2AbsSigSum_reducedVec_25_T; // @[primitives.scala:106:{15,57}] assign notCDom_reduced2AbsSigSum_reducedVec_25 = _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:101:30, :106:57] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_2, notCDom_reduced2AbsSigSum_reducedVec_1}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_0}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_5, notCDom_reduced2AbsSigSum_reducedVec_4}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_hi = {notCDom_reduced2AbsSigSum_lo_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_3}; // @[primitives.scala:101:30, :107:20] wire [5:0] notCDom_reduced2AbsSigSum_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_hi, notCDom_reduced2AbsSigSum_lo_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_8, notCDom_reduced2AbsSigSum_reducedVec_7}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_hi_lo = {notCDom_reduced2AbsSigSum_lo_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_6}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_10, notCDom_reduced2AbsSigSum_reducedVec_9}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_12, notCDom_reduced2AbsSigSum_reducedVec_11}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced2AbsSigSum_lo_hi_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_hi_lo}; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_lo_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_lo}; // @[primitives.scala:107:20] wire [12:0] notCDom_reduced2AbsSigSum_lo = {notCDom_reduced2AbsSigSum_lo_hi, notCDom_reduced2AbsSigSum_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_15, notCDom_reduced2AbsSigSum_reducedVec_14}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_lo = {notCDom_reduced2AbsSigSum_hi_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_13}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_18, notCDom_reduced2AbsSigSum_reducedVec_17}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_hi = {notCDom_reduced2AbsSigSum_hi_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_16}; // @[primitives.scala:101:30, :107:20] wire [5:0] notCDom_reduced2AbsSigSum_hi_lo = {notCDom_reduced2AbsSigSum_hi_lo_hi, notCDom_reduced2AbsSigSum_hi_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_21, notCDom_reduced2AbsSigSum_reducedVec_20}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_hi_lo = {notCDom_reduced2AbsSigSum_hi_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_19}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_23, notCDom_reduced2AbsSigSum_reducedVec_22}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_25, notCDom_reduced2AbsSigSum_reducedVec_24}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced2AbsSigSum_hi_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_hi_lo}; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_lo}; // @[primitives.scala:107:20] wire [12:0] notCDom_reduced2AbsSigSum_hi = {notCDom_reduced2AbsSigSum_hi_hi, notCDom_reduced2AbsSigSum_hi_lo}; // @[primitives.scala:107:20] wire [25:0] notCDom_reduced2AbsSigSum = {notCDom_reduced2AbsSigSum_hi, notCDom_reduced2AbsSigSum_lo}; // @[primitives.scala:107:20] wire _notCDom_normDistReduced2_T = notCDom_reduced2AbsSigSum[0]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_1 = notCDom_reduced2AbsSigSum[1]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_2 = notCDom_reduced2AbsSigSum[2]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_3 = notCDom_reduced2AbsSigSum[3]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_4 = notCDom_reduced2AbsSigSum[4]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_5 = notCDom_reduced2AbsSigSum[5]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_6 = notCDom_reduced2AbsSigSum[6]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_7 = notCDom_reduced2AbsSigSum[7]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_8 = notCDom_reduced2AbsSigSum[8]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_9 = notCDom_reduced2AbsSigSum[9]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_10 = notCDom_reduced2AbsSigSum[10]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_11 = notCDom_reduced2AbsSigSum[11]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_12 = notCDom_reduced2AbsSigSum[12]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_13 = notCDom_reduced2AbsSigSum[13]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_14 = notCDom_reduced2AbsSigSum[14]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_15 = notCDom_reduced2AbsSigSum[15]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_16 = notCDom_reduced2AbsSigSum[16]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_17 = notCDom_reduced2AbsSigSum[17]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_18 = notCDom_reduced2AbsSigSum[18]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_19 = notCDom_reduced2AbsSigSum[19]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_20 = notCDom_reduced2AbsSigSum[20]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_21 = notCDom_reduced2AbsSigSum[21]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_22 = notCDom_reduced2AbsSigSum[22]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_23 = notCDom_reduced2AbsSigSum[23]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_24 = notCDom_reduced2AbsSigSum[24]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_25 = notCDom_reduced2AbsSigSum[25]; // @[primitives.scala:91:52, :107:20] wire [4:0] _notCDom_normDistReduced2_T_26 = {4'hC, ~_notCDom_normDistReduced2_T_1}; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_27 = _notCDom_normDistReduced2_T_2 ? 5'h17 : _notCDom_normDistReduced2_T_26; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_28 = _notCDom_normDistReduced2_T_3 ? 5'h16 : _notCDom_normDistReduced2_T_27; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_29 = _notCDom_normDistReduced2_T_4 ? 5'h15 : _notCDom_normDistReduced2_T_28; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_30 = _notCDom_normDistReduced2_T_5 ? 5'h14 : _notCDom_normDistReduced2_T_29; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_31 = _notCDom_normDistReduced2_T_6 ? 5'h13 : _notCDom_normDistReduced2_T_30; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_32 = _notCDom_normDistReduced2_T_7 ? 5'h12 : _notCDom_normDistReduced2_T_31; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_33 = _notCDom_normDistReduced2_T_8 ? 5'h11 : _notCDom_normDistReduced2_T_32; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_34 = _notCDom_normDistReduced2_T_9 ? 5'h10 : _notCDom_normDistReduced2_T_33; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_35 = _notCDom_normDistReduced2_T_10 ? 5'hF : _notCDom_normDistReduced2_T_34; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_36 = _notCDom_normDistReduced2_T_11 ? 5'hE : _notCDom_normDistReduced2_T_35; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_37 = _notCDom_normDistReduced2_T_12 ? 5'hD : _notCDom_normDistReduced2_T_36; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_38 = _notCDom_normDistReduced2_T_13 ? 5'hC : _notCDom_normDistReduced2_T_37; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_39 = _notCDom_normDistReduced2_T_14 ? 5'hB : _notCDom_normDistReduced2_T_38; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_40 = _notCDom_normDistReduced2_T_15 ? 5'hA : _notCDom_normDistReduced2_T_39; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_41 = _notCDom_normDistReduced2_T_16 ? 5'h9 : _notCDom_normDistReduced2_T_40; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_42 = _notCDom_normDistReduced2_T_17 ? 5'h8 : _notCDom_normDistReduced2_T_41; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_43 = _notCDom_normDistReduced2_T_18 ? 5'h7 : _notCDom_normDistReduced2_T_42; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_44 = _notCDom_normDistReduced2_T_19 ? 5'h6 : _notCDom_normDistReduced2_T_43; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_45 = _notCDom_normDistReduced2_T_20 ? 5'h5 : _notCDom_normDistReduced2_T_44; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_46 = _notCDom_normDistReduced2_T_21 ? 5'h4 : _notCDom_normDistReduced2_T_45; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_47 = _notCDom_normDistReduced2_T_22 ? 5'h3 : _notCDom_normDistReduced2_T_46; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_48 = _notCDom_normDistReduced2_T_23 ? 5'h2 : _notCDom_normDistReduced2_T_47; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_49 = _notCDom_normDistReduced2_T_24 ? 5'h1 : _notCDom_normDistReduced2_T_48; // @[Mux.scala:50:70] wire [4:0] notCDom_normDistReduced2 = _notCDom_normDistReduced2_T_25 ? 5'h0 : _notCDom_normDistReduced2_T_49; // @[Mux.scala:50:70] wire [5:0] notCDom_nearNormDist = {notCDom_normDistReduced2, 1'h0}; // @[Mux.scala:50:70] wire [6:0] _notCDom_sExp_T = {1'h0, notCDom_nearNormDist}; // @[MulAddRecFN.scala:240:56, :241:76] wire [10:0] _notCDom_sExp_T_1 = _GEN - {{4{_notCDom_sExp_T[6]}}, _notCDom_sExp_T}; // @[MulAddRecFN.scala:203:43, :241:{46,76}] wire [9:0] _notCDom_sExp_T_2 = _notCDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:241:46] wire [9:0] notCDom_sExp = _notCDom_sExp_T_2; // @[MulAddRecFN.scala:241:46] wire [113:0] _notCDom_mainSig_T = {63'h0, notCDom_absSigSum} << notCDom_nearNormDist; // @[MulAddRecFN.scala:234:12, :240:56, :243:27] wire [28:0] notCDom_mainSig = _notCDom_mainSig_T[51:23]; // @[MulAddRecFN.scala:243:{27,50}] wire [12:0] _notCDom_reduced4SigExtra_T = notCDom_reduced2AbsSigSum[12:0]; // @[primitives.scala:107:20] wire [12:0] _notCDom_reduced4SigExtra_T_1 = _notCDom_reduced4SigExtra_T; // @[MulAddRecFN.scala:247:{39,55}] wire _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:106:57] wire notCDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:101:30] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_0_T = _notCDom_reduced4SigExtra_T_1[1:0]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_0_T_1 = |_notCDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_0 = _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_1_T = _notCDom_reduced4SigExtra_T_1[3:2]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_1_T_1 = |_notCDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_1 = _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_2_T = _notCDom_reduced4SigExtra_T_1[5:4]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_2_T_1 = |_notCDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_2 = _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_3_T = _notCDom_reduced4SigExtra_T_1[7:6]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_3_T_1 = |_notCDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_3 = _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_4_T = _notCDom_reduced4SigExtra_T_1[9:8]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_4_T_1 = |_notCDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_4 = _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_5_T = _notCDom_reduced4SigExtra_T_1[11:10]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_5_T_1 = |_notCDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_5 = _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T = _notCDom_reduced4SigExtra_T_1[12]; // @[primitives.scala:106:15] assign _notCDom_reduced4SigExtra_reducedVec_6_T_1 = _notCDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:106:{15,57}] assign notCDom_reduced4SigExtra_reducedVec_6 = _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:101:30, :106:57] wire [1:0] notCDom_reduced4SigExtra_lo_hi = {notCDom_reduced4SigExtra_reducedVec_2, notCDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced4SigExtra_lo = {notCDom_reduced4SigExtra_lo_hi, notCDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced4SigExtra_hi_lo = {notCDom_reduced4SigExtra_reducedVec_4, notCDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced4SigExtra_hi_hi = {notCDom_reduced4SigExtra_reducedVec_6, notCDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced4SigExtra_hi = {notCDom_reduced4SigExtra_hi_hi, notCDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:107:20] wire [6:0] _notCDom_reduced4SigExtra_T_2 = {notCDom_reduced4SigExtra_hi, notCDom_reduced4SigExtra_lo}; // @[primitives.scala:107:20] wire [3:0] _notCDom_reduced4SigExtra_T_3 = notCDom_normDistReduced2[4:1]; // @[Mux.scala:50:70] wire [3:0] _notCDom_reduced4SigExtra_T_4 = ~_notCDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21] wire [16:0] notCDom_reduced4SigExtra_shift = $signed(17'sh10000 >>> _notCDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56] wire [5:0] _notCDom_reduced4SigExtra_T_5 = notCDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22] wire [3:0] _notCDom_reduced4SigExtra_T_6 = _notCDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _notCDom_reduced4SigExtra_T_7 = _notCDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_8 = _notCDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_9 = _notCDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_10 = {_notCDom_reduced4SigExtra_T_8, _notCDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_11 = _notCDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_12 = _notCDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_13 = _notCDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_14 = {_notCDom_reduced4SigExtra_T_12, _notCDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20] wire [3:0] _notCDom_reduced4SigExtra_T_15 = {_notCDom_reduced4SigExtra_T_10, _notCDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_16 = _notCDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22] wire _notCDom_reduced4SigExtra_T_17 = _notCDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_18 = _notCDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_19 = {_notCDom_reduced4SigExtra_T_17, _notCDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20] wire [5:0] _notCDom_reduced4SigExtra_T_20 = {_notCDom_reduced4SigExtra_T_15, _notCDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20] wire [6:0] _notCDom_reduced4SigExtra_T_21 = {1'h0, _notCDom_reduced4SigExtra_T_2[5:0] & _notCDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :107:20] wire notCDom_reduced4SigExtra = |_notCDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:247:78, :249:11] wire [25:0] _notCDom_sig_T = notCDom_mainSig[28:3]; // @[MulAddRecFN.scala:243:50, :251:28] wire [2:0] _notCDom_sig_T_1 = notCDom_mainSig[2:0]; // @[MulAddRecFN.scala:243:50, :252:28] wire _notCDom_sig_T_2 = |_notCDom_sig_T_1; // @[MulAddRecFN.scala:252:{28,35}] wire _notCDom_sig_T_3 = _notCDom_sig_T_2 | notCDom_reduced4SigExtra; // @[MulAddRecFN.scala:249:11, :252:{35,39}] wire [26:0] notCDom_sig = {_notCDom_sig_T, _notCDom_sig_T_3}; // @[MulAddRecFN.scala:251:{12,28}, :252:39] wire [1:0] _notCDom_completeCancellation_T = notCDom_sig[26:25]; // @[MulAddRecFN.scala:251:12, :255:21] wire notCDom_completeCancellation = _notCDom_completeCancellation_T == 2'h0; // @[primitives.scala:103:54] wire _notCDom_sign_T = io_fromPreMul_signProd_0 ^ notCDom_signSigSum; // @[MulAddRecFN.scala:169:7, :232:36, :259:36] wire notCDom_sign = ~notCDom_completeCancellation & _notCDom_sign_T; // @[MulAddRecFN.scala:255:50, :257:12, :259:36] assign notNaN_isInfOut = notNaN_isInfProd | io_fromPreMul_isInfC_0; // @[MulAddRecFN.scala:169:7, :264:49, :265:44] assign io_rawOut_isInf_0 = notNaN_isInfOut; // @[MulAddRecFN.scala:169:7, :265:44] wire notNaN_addZeros = _notNaN_addZeros_T & io_fromPreMul_isZeroC_0; // @[MulAddRecFN.scala:169:7, :267:{32,58}] wire _io_rawOut_sign_T_4 = notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :287:26] wire _io_invalidExc_T_3 = _io_invalidExc_T_1; // @[MulAddRecFN.scala:271:35, :272:57] wire _io_invalidExc_T_4 = ~io_fromPreMul_isNaNAOrB_0; // @[MulAddRecFN.scala:169:7, :274:10] wire _io_invalidExc_T_6 = _io_invalidExc_T_4 & _io_invalidExc_T_5; // @[MulAddRecFN.scala:274:{10,36}, :275:36] wire _io_invalidExc_T_7 = _io_invalidExc_T_6 & io_fromPreMul_isInfC_0; // @[MulAddRecFN.scala:169:7, :274:36, :275:61] wire _io_invalidExc_T_8 = _io_invalidExc_T_7 & io_fromPreMul_doSubMags_0; // @[MulAddRecFN.scala:169:7, :275:61, :276:35] assign _io_invalidExc_T_9 = _io_invalidExc_T_3 | _io_invalidExc_T_8; // @[MulAddRecFN.scala:272:57, :273:57, :276:35] assign io_invalidExc_0 = _io_invalidExc_T_9; // @[MulAddRecFN.scala:169:7, :273:57] assign _io_rawOut_isNaN_T = io_fromPreMul_isNaNAOrB_0 | io_fromPreMul_isNaNC_0; // @[MulAddRecFN.scala:169:7, :278:48] assign io_rawOut_isNaN_0 = _io_rawOut_isNaN_T; // @[MulAddRecFN.scala:169:7, :278:48] wire _io_rawOut_isZero_T = ~io_fromPreMul_CIsDominant_0; // @[MulAddRecFN.scala:169:7, :283:14] wire _io_rawOut_isZero_T_1 = _io_rawOut_isZero_T & notCDom_completeCancellation; // @[MulAddRecFN.scala:255:50, :283:{14,42}] assign _io_rawOut_isZero_T_2 = notNaN_addZeros | _io_rawOut_isZero_T_1; // @[MulAddRecFN.scala:267:58, :282:25, :283:42] assign io_rawOut_isZero_0 = _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:169:7, :282:25] wire _io_rawOut_sign_T = notNaN_isInfProd & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :264:49, :285:27] wire _io_rawOut_sign_T_1 = io_fromPreMul_isInfC_0 & opSignC; // @[MulAddRecFN.scala:169:7, :190:42, :286:31] wire _io_rawOut_sign_T_2 = _io_rawOut_sign_T | _io_rawOut_sign_T_1; // @[MulAddRecFN.scala:285:{27,54}, :286:31] wire _io_rawOut_sign_T_5 = _io_rawOut_sign_T_4 & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :287:{26,48}] wire _io_rawOut_sign_T_6 = _io_rawOut_sign_T_5 & opSignC; // @[MulAddRecFN.scala:190:42, :287:48, :288:36] wire _io_rawOut_sign_T_7 = _io_rawOut_sign_T_2 | _io_rawOut_sign_T_6; // @[MulAddRecFN.scala:285:54, :286:43, :288:36] wire _io_rawOut_sign_T_11 = _io_rawOut_sign_T_7; // @[MulAddRecFN.scala:286:43, :288:48] wire _io_rawOut_sign_T_9 = io_fromPreMul_signProd_0 | opSignC; // @[MulAddRecFN.scala:169:7, :190:42, :290:37] wire _io_rawOut_sign_T_12 = ~notNaN_isInfOut; // @[MulAddRecFN.scala:265:44, :291:10] wire _io_rawOut_sign_T_13 = ~notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :291:31] wire _io_rawOut_sign_T_14 = _io_rawOut_sign_T_12 & _io_rawOut_sign_T_13; // @[MulAddRecFN.scala:291:{10,28,31}] wire _io_rawOut_sign_T_15 = io_fromPreMul_CIsDominant_0 ? opSignC : notCDom_sign; // @[MulAddRecFN.scala:169:7, :190:42, :257:12, :292:17] wire _io_rawOut_sign_T_16 = _io_rawOut_sign_T_14 & _io_rawOut_sign_T_15; // @[MulAddRecFN.scala:291:{28,49}, :292:17] assign _io_rawOut_sign_T_17 = _io_rawOut_sign_T_11 | _io_rawOut_sign_T_16; // @[MulAddRecFN.scala:288:48, :290:50, :291:49] assign io_rawOut_sign_0 = _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:169:7, :290:50] assign _io_rawOut_sExp_T = io_fromPreMul_CIsDominant_0 ? CDom_sExp : notCDom_sExp; // @[MulAddRecFN.scala:169:7, :203:43, :241:46, :293:26] assign io_rawOut_sExp_0 = _io_rawOut_sExp_T; // @[MulAddRecFN.scala:169:7, :293:26] assign _io_rawOut_sig_T = io_fromPreMul_CIsDominant_0 ? CDom_sig : notCDom_sig; // @[MulAddRecFN.scala:169:7, :225:12, :251:12, :294:25] assign io_rawOut_sig_0 = _io_rawOut_sig_T; // @[MulAddRecFN.scala:169:7, :294:25] assign io_invalidExc = io_invalidExc_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isNaN = io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isInf = io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isZero = io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sign = io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sExp = io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sig = io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_191( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_343 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_178( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_318 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Atomics.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ class Atomics(params: TLBundleParameters) extends Module { val io = IO(new Bundle { val write = Flipped(Bool()) // ignore opcode val a = Flipped(new TLBundleA(params)) val data_in = Flipped(UInt(params.dataBits.W)) val data_out = UInt(params.dataBits.W) }) // Arithmetic, what to do val adder = io.a.param(2) val unsigned = io.a.param(1) val take_max = io.a.param(0) val signBit = io.a.mask & Cat(1.U, ~io.a.mask >> 1) val inv_d = Mux(adder, io.data_in, ~io.data_in) val sum = (FillInterleaved(8, io.a.mask) & io.a.data) + inv_d def sign(x: UInt): Bool = (Cat(x.asBools.grouped(8).map(_.last).toList.reverse) & signBit).orR val sign_a = sign(io.a.data) val sign_d = sign(io.data_in) val sign_s = sign(sum) val a_bigger_uneq = unsigned === sign_a // result if high bits are unequal val a_bigger = Mux(sign_a === sign_d, !sign_s, a_bigger_uneq) val pick_a = take_max === a_bigger // Logical, what to do val lut = VecInit(Seq( (0x6).U, // XOR (0xe).U, // OR (0x8).U, // AND (0xc).U))( // SWAP io.a.param(1,0)) val logical = Cat((io.a.data.asBools zip io.data_in.asBools).map { case (a, d) => lut(Cat(a, d)) }.reverse) // Operation, what to do? (0=d, 1=a, 2=sum, 3=logical) val select = Mux(io.write, 1.U, VecInit(Seq( 1.U, // PutFullData 1.U, // PutPartialData Mux(adder, 2.U, Mux(pick_a, 1.U, 0.U)), // ArithmeticData 3.U, // LogicalData 0.U, // Get 0.U, // Hint 0.U, // AcquireBlock 0.U))( // AcquirePerm io.a.opcode)) // Only the masked bytes can be modified val selects = io.a.mask.asBools.map(b => Mux(b, select, 0.U)) io.data_out := Cat(selects.zipWithIndex.map { case (s, i) => VecInit(Seq(io.data_in, io.a.data, sum, logical).map(_((i + 1) * 8 - 1, i * 8)))(s) }.reverse) }
module Atomics( // @[Atomics.scala:8:7] input clock, // @[Atomics.scala:8:7] input reset, // @[Atomics.scala:8:7] input io_write, // @[Atomics.scala:10:14] input [2:0] io_a_opcode, // @[Atomics.scala:10:14] input [2:0] io_a_param, // @[Atomics.scala:10:14] input [7:0] io_a_mask, // @[Atomics.scala:10:14] input [63:0] io_a_data, // @[Atomics.scala:10:14] input [63:0] io_data_in, // @[Atomics.scala:10:14] output [63:0] io_data_out // @[Atomics.scala:10:14] ); wire io_write_0 = io_write; // @[Atomics.scala:8:7] wire [2:0] io_a_opcode_0 = io_a_opcode; // @[Atomics.scala:8:7] wire [2:0] io_a_param_0 = io_a_param; // @[Atomics.scala:8:7] wire [7:0] io_a_mask_0 = io_a_mask; // @[Atomics.scala:8:7] wire [63:0] io_a_data_0 = io_a_data; // @[Atomics.scala:8:7] wire [63:0] io_data_in_0 = io_data_in; // @[Atomics.scala:8:7] wire [3:0][3:0] _GEN = '{4'hC, 4'h8, 4'hE, 4'h6}; wire [3:0] _lut_WIRE_0 = 4'h6; // @[Atomics.scala:34:20] wire [3:0] _lut_WIRE_1 = 4'hE; // @[Atomics.scala:34:20] wire [3:0] _lut_WIRE_2 = 4'h8; // @[Atomics.scala:34:20] wire [3:0] _lut_WIRE_3 = 4'hC; // @[Atomics.scala:34:20] wire [1:0] _select_WIRE_0 = 2'h1; // @[Atomics.scala:45:42] wire [1:0] _select_WIRE_1 = 2'h1; // @[Atomics.scala:45:42] wire [1:0] _select_WIRE_3 = 2'h3; // @[Atomics.scala:45:42] wire [1:0] _select_WIRE_4 = 2'h0; // @[Atomics.scala:45:42] wire [1:0] _select_WIRE_5 = 2'h0; // @[Atomics.scala:45:42] wire [1:0] _select_WIRE_6 = 2'h0; // @[Atomics.scala:45:42] wire [1:0] _select_WIRE_7 = 2'h0; // @[Atomics.scala:45:42] wire io_a_corrupt = 1'h0; // @[Atomics.scala:8:7, :10:14] wire [31:0] io_a_address = 32'h0; // @[Atomics.scala:8:7, :10:14] wire [7:0] io_a_source = 8'h0; // @[Atomics.scala:8:7] wire [2:0] io_a_size = 3'h0; // @[Atomics.scala:8:7, :10:14] wire [63:0] _io_data_out_T_32; // @[Atomics.scala:58:21] wire [63:0] io_data_out_0; // @[Atomics.scala:8:7] wire adder = io_a_param_0[2]; // @[Atomics.scala:8:7, :18:28] wire unsigned_0 = io_a_param_0[1]; // @[Atomics.scala:8:7, :19:28] wire take_max = io_a_param_0[0]; // @[Atomics.scala:8:7, :20:28] wire [7:0] _signBit_T = ~io_a_mask_0; // @[Atomics.scala:8:7, :22:38] wire [6:0] _signBit_T_1 = _signBit_T[7:1]; // @[Atomics.scala:22:{38,49}] wire [7:0] _signBit_T_2 = {1'h1, _signBit_T_1}; // @[Atomics.scala:22:{32,49}] wire [7:0] signBit = io_a_mask_0 & _signBit_T_2; // @[Atomics.scala:8:7, :22:{27,32}] wire [63:0] _inv_d_T = ~io_data_in_0; // @[Atomics.scala:8:7, :23:38] wire [63:0] inv_d = adder ? io_data_in_0 : _inv_d_T; // @[Atomics.scala:8:7, :18:28, :23:{18,38}] wire _sum_T = io_a_mask_0[0]; // @[Atomics.scala:8:7, :24:29] wire _selects_T = io_a_mask_0[0]; // @[Atomics.scala:8:7, :24:29, :57:27] wire _sum_T_1 = io_a_mask_0[1]; // @[Atomics.scala:8:7, :24:29] wire _selects_T_1 = io_a_mask_0[1]; // @[Atomics.scala:8:7, :24:29, :57:27] wire _sum_T_2 = io_a_mask_0[2]; // @[Atomics.scala:8:7, :24:29] wire _selects_T_2 = io_a_mask_0[2]; // @[Atomics.scala:8:7, :24:29, :57:27] wire _sum_T_3 = io_a_mask_0[3]; // @[Atomics.scala:8:7, :24:29] wire _selects_T_3 = io_a_mask_0[3]; // @[Atomics.scala:8:7, :24:29, :57:27] wire _sum_T_4 = io_a_mask_0[4]; // @[Atomics.scala:8:7, :24:29] wire _selects_T_4 = io_a_mask_0[4]; // @[Atomics.scala:8:7, :24:29, :57:27] wire _sum_T_5 = io_a_mask_0[5]; // @[Atomics.scala:8:7, :24:29] wire _selects_T_5 = io_a_mask_0[5]; // @[Atomics.scala:8:7, :24:29, :57:27] wire _sum_T_6 = io_a_mask_0[6]; // @[Atomics.scala:8:7, :24:29] wire _selects_T_6 = io_a_mask_0[6]; // @[Atomics.scala:8:7, :24:29, :57:27] wire _sum_T_7 = io_a_mask_0[7]; // @[Atomics.scala:8:7, :24:29] wire _selects_T_7 = io_a_mask_0[7]; // @[Atomics.scala:8:7, :24:29, :57:27] wire [7:0] _sum_T_8 = {8{_sum_T}}; // @[Atomics.scala:24:29] wire [7:0] _sum_T_9 = {8{_sum_T_1}}; // @[Atomics.scala:24:29] wire [7:0] _sum_T_10 = {8{_sum_T_2}}; // @[Atomics.scala:24:29] wire [7:0] _sum_T_11 = {8{_sum_T_3}}; // @[Atomics.scala:24:29] wire [7:0] _sum_T_12 = {8{_sum_T_4}}; // @[Atomics.scala:24:29] wire [7:0] _sum_T_13 = {8{_sum_T_5}}; // @[Atomics.scala:24:29] wire [7:0] _sum_T_14 = {8{_sum_T_6}}; // @[Atomics.scala:24:29] wire [7:0] _sum_T_15 = {8{_sum_T_7}}; // @[Atomics.scala:24:29] wire [15:0] sum_lo_lo = {_sum_T_9, _sum_T_8}; // @[Atomics.scala:24:29] wire [15:0] sum_lo_hi = {_sum_T_11, _sum_T_10}; // @[Atomics.scala:24:29] wire [31:0] sum_lo = {sum_lo_hi, sum_lo_lo}; // @[Atomics.scala:24:29] wire [15:0] sum_hi_lo = {_sum_T_13, _sum_T_12}; // @[Atomics.scala:24:29] wire [15:0] sum_hi_hi = {_sum_T_15, _sum_T_14}; // @[Atomics.scala:24:29] wire [31:0] sum_hi = {sum_hi_hi, sum_hi_lo}; // @[Atomics.scala:24:29] wire [63:0] _sum_T_16 = {sum_hi, sum_lo}; // @[Atomics.scala:24:29] wire [63:0] _sum_T_17 = _sum_T_16 & io_a_data_0; // @[Atomics.scala:8:7, :24:{29,44}] wire [64:0] _sum_T_18 = {1'h0, _sum_T_17} + {1'h0, inv_d}; // @[Atomics.scala:8:7, :10:14, :23:18, :24:{44,57}] wire [63:0] sum = _sum_T_18[63:0]; // @[Atomics.scala:24:57] wire _sign_a_T = io_a_data_0[0]; // @[Atomics.scala:8:7, :25:36] wire _logical_T = io_a_data_0[0]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_1 = io_a_data_0[1]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_1 = io_a_data_0[1]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_2 = io_a_data_0[2]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_2 = io_a_data_0[2]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_3 = io_a_data_0[3]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_3 = io_a_data_0[3]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_4 = io_a_data_0[4]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_4 = io_a_data_0[4]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_5 = io_a_data_0[5]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_5 = io_a_data_0[5]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_6 = io_a_data_0[6]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_6 = io_a_data_0[6]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_7 = io_a_data_0[7]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_7 = io_a_data_0[7]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_8 = io_a_data_0[8]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_8 = io_a_data_0[8]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_9 = io_a_data_0[9]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_9 = io_a_data_0[9]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_10 = io_a_data_0[10]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_10 = io_a_data_0[10]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_11 = io_a_data_0[11]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_11 = io_a_data_0[11]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_12 = io_a_data_0[12]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_12 = io_a_data_0[12]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_13 = io_a_data_0[13]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_13 = io_a_data_0[13]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_14 = io_a_data_0[14]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_14 = io_a_data_0[14]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_15 = io_a_data_0[15]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_15 = io_a_data_0[15]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_16 = io_a_data_0[16]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_16 = io_a_data_0[16]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_17 = io_a_data_0[17]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_17 = io_a_data_0[17]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_18 = io_a_data_0[18]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_18 = io_a_data_0[18]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_19 = io_a_data_0[19]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_19 = io_a_data_0[19]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_20 = io_a_data_0[20]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_20 = io_a_data_0[20]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_21 = io_a_data_0[21]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_21 = io_a_data_0[21]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_22 = io_a_data_0[22]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_22 = io_a_data_0[22]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_23 = io_a_data_0[23]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_23 = io_a_data_0[23]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_24 = io_a_data_0[24]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_24 = io_a_data_0[24]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_25 = io_a_data_0[25]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_25 = io_a_data_0[25]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_26 = io_a_data_0[26]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_26 = io_a_data_0[26]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_27 = io_a_data_0[27]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_27 = io_a_data_0[27]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_28 = io_a_data_0[28]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_28 = io_a_data_0[28]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_29 = io_a_data_0[29]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_29 = io_a_data_0[29]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_30 = io_a_data_0[30]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_30 = io_a_data_0[30]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_31 = io_a_data_0[31]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_31 = io_a_data_0[31]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_32 = io_a_data_0[32]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_32 = io_a_data_0[32]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_33 = io_a_data_0[33]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_33 = io_a_data_0[33]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_34 = io_a_data_0[34]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_34 = io_a_data_0[34]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_35 = io_a_data_0[35]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_35 = io_a_data_0[35]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_36 = io_a_data_0[36]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_36 = io_a_data_0[36]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_37 = io_a_data_0[37]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_37 = io_a_data_0[37]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_38 = io_a_data_0[38]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_38 = io_a_data_0[38]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_39 = io_a_data_0[39]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_39 = io_a_data_0[39]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_40 = io_a_data_0[40]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_40 = io_a_data_0[40]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_41 = io_a_data_0[41]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_41 = io_a_data_0[41]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_42 = io_a_data_0[42]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_42 = io_a_data_0[42]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_43 = io_a_data_0[43]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_43 = io_a_data_0[43]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_44 = io_a_data_0[44]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_44 = io_a_data_0[44]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_45 = io_a_data_0[45]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_45 = io_a_data_0[45]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_46 = io_a_data_0[46]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_46 = io_a_data_0[46]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_47 = io_a_data_0[47]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_47 = io_a_data_0[47]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_48 = io_a_data_0[48]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_48 = io_a_data_0[48]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_49 = io_a_data_0[49]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_49 = io_a_data_0[49]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_50 = io_a_data_0[50]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_50 = io_a_data_0[50]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_51 = io_a_data_0[51]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_51 = io_a_data_0[51]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_52 = io_a_data_0[52]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_52 = io_a_data_0[52]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_53 = io_a_data_0[53]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_53 = io_a_data_0[53]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_54 = io_a_data_0[54]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_54 = io_a_data_0[54]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_55 = io_a_data_0[55]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_55 = io_a_data_0[55]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_56 = io_a_data_0[56]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_56 = io_a_data_0[56]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_57 = io_a_data_0[57]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_57 = io_a_data_0[57]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_58 = io_a_data_0[58]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_58 = io_a_data_0[58]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_59 = io_a_data_0[59]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_59 = io_a_data_0[59]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_60 = io_a_data_0[60]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_60 = io_a_data_0[60]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_61 = io_a_data_0[61]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_61 = io_a_data_0[61]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_62 = io_a_data_0[62]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_62 = io_a_data_0[62]; // @[Atomics.scala:8:7, :25:36, :40:32] wire _sign_a_T_63 = io_a_data_0[63]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_63 = io_a_data_0[63]; // @[Atomics.scala:8:7, :25:36, :40:32] wire [1:0] sign_a_lo_lo = {_sign_a_T_15, _sign_a_T_7}; // @[Atomics.scala:25:{33,36}] wire [1:0] sign_a_lo_hi = {_sign_a_T_31, _sign_a_T_23}; // @[Atomics.scala:25:{33,36}] wire [3:0] sign_a_lo = {sign_a_lo_hi, sign_a_lo_lo}; // @[Atomics.scala:25:33] wire [1:0] sign_a_hi_lo = {_sign_a_T_47, _sign_a_T_39}; // @[Atomics.scala:25:{33,36}] wire [1:0] sign_a_hi_hi = {_sign_a_T_63, _sign_a_T_55}; // @[Atomics.scala:25:{33,36}] wire [3:0] sign_a_hi = {sign_a_hi_hi, sign_a_hi_lo}; // @[Atomics.scala:25:33] wire [7:0] _sign_a_T_64 = {sign_a_hi, sign_a_lo}; // @[Atomics.scala:25:33] wire [7:0] _sign_a_T_65 = _sign_a_T_64 & signBit; // @[Atomics.scala:22:27, :25:{33,83}] wire sign_a = |_sign_a_T_65; // @[Atomics.scala:25:{83,94}] wire _sign_d_T = io_data_in_0[0]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_64 = io_data_in_0[0]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_1 = io_data_in_0[1]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_65 = io_data_in_0[1]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_2 = io_data_in_0[2]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_66 = io_data_in_0[2]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_3 = io_data_in_0[3]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_67 = io_data_in_0[3]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_4 = io_data_in_0[4]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_68 = io_data_in_0[4]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_5 = io_data_in_0[5]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_69 = io_data_in_0[5]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_6 = io_data_in_0[6]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_70 = io_data_in_0[6]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_7 = io_data_in_0[7]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_71 = io_data_in_0[7]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_8 = io_data_in_0[8]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_72 = io_data_in_0[8]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_9 = io_data_in_0[9]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_73 = io_data_in_0[9]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_10 = io_data_in_0[10]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_74 = io_data_in_0[10]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_11 = io_data_in_0[11]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_75 = io_data_in_0[11]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_12 = io_data_in_0[12]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_76 = io_data_in_0[12]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_13 = io_data_in_0[13]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_77 = io_data_in_0[13]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_14 = io_data_in_0[14]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_78 = io_data_in_0[14]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_15 = io_data_in_0[15]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_79 = io_data_in_0[15]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_16 = io_data_in_0[16]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_80 = io_data_in_0[16]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_17 = io_data_in_0[17]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_81 = io_data_in_0[17]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_18 = io_data_in_0[18]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_82 = io_data_in_0[18]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_19 = io_data_in_0[19]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_83 = io_data_in_0[19]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_20 = io_data_in_0[20]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_84 = io_data_in_0[20]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_21 = io_data_in_0[21]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_85 = io_data_in_0[21]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_22 = io_data_in_0[22]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_86 = io_data_in_0[22]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_23 = io_data_in_0[23]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_87 = io_data_in_0[23]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_24 = io_data_in_0[24]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_88 = io_data_in_0[24]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_25 = io_data_in_0[25]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_89 = io_data_in_0[25]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_26 = io_data_in_0[26]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_90 = io_data_in_0[26]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_27 = io_data_in_0[27]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_91 = io_data_in_0[27]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_28 = io_data_in_0[28]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_92 = io_data_in_0[28]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_29 = io_data_in_0[29]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_93 = io_data_in_0[29]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_30 = io_data_in_0[30]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_94 = io_data_in_0[30]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_31 = io_data_in_0[31]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_95 = io_data_in_0[31]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_32 = io_data_in_0[32]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_96 = io_data_in_0[32]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_33 = io_data_in_0[33]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_97 = io_data_in_0[33]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_34 = io_data_in_0[34]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_98 = io_data_in_0[34]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_35 = io_data_in_0[35]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_99 = io_data_in_0[35]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_36 = io_data_in_0[36]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_100 = io_data_in_0[36]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_37 = io_data_in_0[37]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_101 = io_data_in_0[37]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_38 = io_data_in_0[38]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_102 = io_data_in_0[38]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_39 = io_data_in_0[39]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_103 = io_data_in_0[39]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_40 = io_data_in_0[40]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_104 = io_data_in_0[40]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_41 = io_data_in_0[41]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_105 = io_data_in_0[41]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_42 = io_data_in_0[42]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_106 = io_data_in_0[42]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_43 = io_data_in_0[43]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_107 = io_data_in_0[43]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_44 = io_data_in_0[44]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_108 = io_data_in_0[44]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_45 = io_data_in_0[45]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_109 = io_data_in_0[45]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_46 = io_data_in_0[46]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_110 = io_data_in_0[46]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_47 = io_data_in_0[47]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_111 = io_data_in_0[47]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_48 = io_data_in_0[48]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_112 = io_data_in_0[48]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_49 = io_data_in_0[49]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_113 = io_data_in_0[49]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_50 = io_data_in_0[50]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_114 = io_data_in_0[50]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_51 = io_data_in_0[51]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_115 = io_data_in_0[51]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_52 = io_data_in_0[52]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_116 = io_data_in_0[52]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_53 = io_data_in_0[53]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_117 = io_data_in_0[53]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_54 = io_data_in_0[54]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_118 = io_data_in_0[54]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_55 = io_data_in_0[55]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_119 = io_data_in_0[55]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_56 = io_data_in_0[56]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_120 = io_data_in_0[56]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_57 = io_data_in_0[57]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_121 = io_data_in_0[57]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_58 = io_data_in_0[58]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_122 = io_data_in_0[58]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_59 = io_data_in_0[59]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_123 = io_data_in_0[59]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_60 = io_data_in_0[60]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_124 = io_data_in_0[60]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_61 = io_data_in_0[61]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_125 = io_data_in_0[61]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_62 = io_data_in_0[62]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_126 = io_data_in_0[62]; // @[Atomics.scala:8:7, :25:36, :40:55] wire _sign_d_T_63 = io_data_in_0[63]; // @[Atomics.scala:8:7, :25:36] wire _logical_T_127 = io_data_in_0[63]; // @[Atomics.scala:8:7, :25:36, :40:55] wire [1:0] sign_d_lo_lo = {_sign_d_T_15, _sign_d_T_7}; // @[Atomics.scala:25:{33,36}] wire [1:0] sign_d_lo_hi = {_sign_d_T_31, _sign_d_T_23}; // @[Atomics.scala:25:{33,36}] wire [3:0] sign_d_lo = {sign_d_lo_hi, sign_d_lo_lo}; // @[Atomics.scala:25:33] wire [1:0] sign_d_hi_lo = {_sign_d_T_47, _sign_d_T_39}; // @[Atomics.scala:25:{33,36}] wire [1:0] sign_d_hi_hi = {_sign_d_T_63, _sign_d_T_55}; // @[Atomics.scala:25:{33,36}] wire [3:0] sign_d_hi = {sign_d_hi_hi, sign_d_hi_lo}; // @[Atomics.scala:25:33] wire [7:0] _sign_d_T_64 = {sign_d_hi, sign_d_lo}; // @[Atomics.scala:25:33] wire [7:0] _sign_d_T_65 = _sign_d_T_64 & signBit; // @[Atomics.scala:22:27, :25:{33,83}] wire sign_d = |_sign_d_T_65; // @[Atomics.scala:25:{83,94}] wire _sign_s_T = sum[0]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_1 = sum[1]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_2 = sum[2]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_3 = sum[3]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_4 = sum[4]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_5 = sum[5]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_6 = sum[6]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_7 = sum[7]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_8 = sum[8]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_9 = sum[9]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_10 = sum[10]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_11 = sum[11]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_12 = sum[12]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_13 = sum[13]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_14 = sum[14]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_15 = sum[15]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_16 = sum[16]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_17 = sum[17]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_18 = sum[18]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_19 = sum[19]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_20 = sum[20]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_21 = sum[21]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_22 = sum[22]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_23 = sum[23]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_24 = sum[24]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_25 = sum[25]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_26 = sum[26]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_27 = sum[27]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_28 = sum[28]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_29 = sum[29]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_30 = sum[30]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_31 = sum[31]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_32 = sum[32]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_33 = sum[33]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_34 = sum[34]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_35 = sum[35]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_36 = sum[36]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_37 = sum[37]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_38 = sum[38]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_39 = sum[39]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_40 = sum[40]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_41 = sum[41]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_42 = sum[42]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_43 = sum[43]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_44 = sum[44]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_45 = sum[45]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_46 = sum[46]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_47 = sum[47]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_48 = sum[48]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_49 = sum[49]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_50 = sum[50]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_51 = sum[51]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_52 = sum[52]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_53 = sum[53]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_54 = sum[54]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_55 = sum[55]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_56 = sum[56]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_57 = sum[57]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_58 = sum[58]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_59 = sum[59]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_60 = sum[60]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_61 = sum[61]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_62 = sum[62]; // @[Atomics.scala:24:57, :25:36] wire _sign_s_T_63 = sum[63]; // @[Atomics.scala:24:57, :25:36] wire [1:0] sign_s_lo_lo = {_sign_s_T_15, _sign_s_T_7}; // @[Atomics.scala:25:{33,36}] wire [1:0] sign_s_lo_hi = {_sign_s_T_31, _sign_s_T_23}; // @[Atomics.scala:25:{33,36}] wire [3:0] sign_s_lo = {sign_s_lo_hi, sign_s_lo_lo}; // @[Atomics.scala:25:33] wire [1:0] sign_s_hi_lo = {_sign_s_T_47, _sign_s_T_39}; // @[Atomics.scala:25:{33,36}] wire [1:0] sign_s_hi_hi = {_sign_s_T_63, _sign_s_T_55}; // @[Atomics.scala:25:{33,36}] wire [3:0] sign_s_hi = {sign_s_hi_hi, sign_s_hi_lo}; // @[Atomics.scala:25:33] wire [7:0] _sign_s_T_64 = {sign_s_hi, sign_s_lo}; // @[Atomics.scala:25:33] wire [7:0] _sign_s_T_65 = _sign_s_T_64 & signBit; // @[Atomics.scala:22:27, :25:{33,83}] wire sign_s = |_sign_s_T_65; // @[Atomics.scala:25:{83,94}] wire a_bigger_uneq = unsigned_0 == sign_a; // @[Atomics.scala:19:28, :25:94, :29:32] wire _a_bigger_T = sign_a == sign_d; // @[Atomics.scala:25:94, :30:29] wire _a_bigger_T_1 = ~sign_s; // @[Atomics.scala:25:94, :30:41] wire a_bigger = _a_bigger_T ? _a_bigger_T_1 : a_bigger_uneq; // @[Atomics.scala:29:32, :30:{21,29,41}] wire pick_a = take_max == a_bigger; // @[Atomics.scala:20:28, :30:21, :31:25] wire _select_T = pick_a; // @[Atomics.scala:31:25, :48:24] wire [1:0] _lut_T = io_a_param_0[1:0]; // @[Atomics.scala:8:7, :39:15] wire [1:0] _logical_T_128 = {_logical_T, _logical_T_64}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_129 = _GEN[_lut_T] >> _logical_T_128; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_130 = _logical_T_129[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_131 = {_logical_T_1, _logical_T_65}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_132 = _GEN[_lut_T] >> _logical_T_131; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_133 = _logical_T_132[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_134 = {_logical_T_2, _logical_T_66}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_135 = _GEN[_lut_T] >> _logical_T_134; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_136 = _logical_T_135[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_137 = {_logical_T_3, _logical_T_67}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_138 = _GEN[_lut_T] >> _logical_T_137; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_139 = _logical_T_138[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_140 = {_logical_T_4, _logical_T_68}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_141 = _GEN[_lut_T] >> _logical_T_140; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_142 = _logical_T_141[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_143 = {_logical_T_5, _logical_T_69}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_144 = _GEN[_lut_T] >> _logical_T_143; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_145 = _logical_T_144[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_146 = {_logical_T_6, _logical_T_70}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_147 = _GEN[_lut_T] >> _logical_T_146; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_148 = _logical_T_147[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_149 = {_logical_T_7, _logical_T_71}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_150 = _GEN[_lut_T] >> _logical_T_149; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_151 = _logical_T_150[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_152 = {_logical_T_8, _logical_T_72}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_153 = _GEN[_lut_T] >> _logical_T_152; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_154 = _logical_T_153[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_155 = {_logical_T_9, _logical_T_73}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_156 = _GEN[_lut_T] >> _logical_T_155; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_157 = _logical_T_156[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_158 = {_logical_T_10, _logical_T_74}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_159 = _GEN[_lut_T] >> _logical_T_158; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_160 = _logical_T_159[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_161 = {_logical_T_11, _logical_T_75}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_162 = _GEN[_lut_T] >> _logical_T_161; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_163 = _logical_T_162[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_164 = {_logical_T_12, _logical_T_76}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_165 = _GEN[_lut_T] >> _logical_T_164; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_166 = _logical_T_165[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_167 = {_logical_T_13, _logical_T_77}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_168 = _GEN[_lut_T] >> _logical_T_167; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_169 = _logical_T_168[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_170 = {_logical_T_14, _logical_T_78}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_171 = _GEN[_lut_T] >> _logical_T_170; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_172 = _logical_T_171[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_173 = {_logical_T_15, _logical_T_79}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_174 = _GEN[_lut_T] >> _logical_T_173; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_175 = _logical_T_174[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_176 = {_logical_T_16, _logical_T_80}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_177 = _GEN[_lut_T] >> _logical_T_176; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_178 = _logical_T_177[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_179 = {_logical_T_17, _logical_T_81}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_180 = _GEN[_lut_T] >> _logical_T_179; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_181 = _logical_T_180[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_182 = {_logical_T_18, _logical_T_82}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_183 = _GEN[_lut_T] >> _logical_T_182; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_184 = _logical_T_183[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_185 = {_logical_T_19, _logical_T_83}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_186 = _GEN[_lut_T] >> _logical_T_185; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_187 = _logical_T_186[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_188 = {_logical_T_20, _logical_T_84}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_189 = _GEN[_lut_T] >> _logical_T_188; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_190 = _logical_T_189[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_191 = {_logical_T_21, _logical_T_85}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_192 = _GEN[_lut_T] >> _logical_T_191; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_193 = _logical_T_192[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_194 = {_logical_T_22, _logical_T_86}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_195 = _GEN[_lut_T] >> _logical_T_194; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_196 = _logical_T_195[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_197 = {_logical_T_23, _logical_T_87}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_198 = _GEN[_lut_T] >> _logical_T_197; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_199 = _logical_T_198[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_200 = {_logical_T_24, _logical_T_88}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_201 = _GEN[_lut_T] >> _logical_T_200; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_202 = _logical_T_201[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_203 = {_logical_T_25, _logical_T_89}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_204 = _GEN[_lut_T] >> _logical_T_203; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_205 = _logical_T_204[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_206 = {_logical_T_26, _logical_T_90}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_207 = _GEN[_lut_T] >> _logical_T_206; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_208 = _logical_T_207[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_209 = {_logical_T_27, _logical_T_91}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_210 = _GEN[_lut_T] >> _logical_T_209; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_211 = _logical_T_210[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_212 = {_logical_T_28, _logical_T_92}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_213 = _GEN[_lut_T] >> _logical_T_212; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_214 = _logical_T_213[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_215 = {_logical_T_29, _logical_T_93}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_216 = _GEN[_lut_T] >> _logical_T_215; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_217 = _logical_T_216[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_218 = {_logical_T_30, _logical_T_94}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_219 = _GEN[_lut_T] >> _logical_T_218; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_220 = _logical_T_219[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_221 = {_logical_T_31, _logical_T_95}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_222 = _GEN[_lut_T] >> _logical_T_221; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_223 = _logical_T_222[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_224 = {_logical_T_32, _logical_T_96}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_225 = _GEN[_lut_T] >> _logical_T_224; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_226 = _logical_T_225[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_227 = {_logical_T_33, _logical_T_97}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_228 = _GEN[_lut_T] >> _logical_T_227; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_229 = _logical_T_228[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_230 = {_logical_T_34, _logical_T_98}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_231 = _GEN[_lut_T] >> _logical_T_230; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_232 = _logical_T_231[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_233 = {_logical_T_35, _logical_T_99}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_234 = _GEN[_lut_T] >> _logical_T_233; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_235 = _logical_T_234[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_236 = {_logical_T_36, _logical_T_100}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_237 = _GEN[_lut_T] >> _logical_T_236; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_238 = _logical_T_237[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_239 = {_logical_T_37, _logical_T_101}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_240 = _GEN[_lut_T] >> _logical_T_239; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_241 = _logical_T_240[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_242 = {_logical_T_38, _logical_T_102}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_243 = _GEN[_lut_T] >> _logical_T_242; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_244 = _logical_T_243[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_245 = {_logical_T_39, _logical_T_103}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_246 = _GEN[_lut_T] >> _logical_T_245; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_247 = _logical_T_246[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_248 = {_logical_T_40, _logical_T_104}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_249 = _GEN[_lut_T] >> _logical_T_248; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_250 = _logical_T_249[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_251 = {_logical_T_41, _logical_T_105}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_252 = _GEN[_lut_T] >> _logical_T_251; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_253 = _logical_T_252[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_254 = {_logical_T_42, _logical_T_106}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_255 = _GEN[_lut_T] >> _logical_T_254; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_256 = _logical_T_255[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_257 = {_logical_T_43, _logical_T_107}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_258 = _GEN[_lut_T] >> _logical_T_257; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_259 = _logical_T_258[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_260 = {_logical_T_44, _logical_T_108}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_261 = _GEN[_lut_T] >> _logical_T_260; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_262 = _logical_T_261[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_263 = {_logical_T_45, _logical_T_109}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_264 = _GEN[_lut_T] >> _logical_T_263; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_265 = _logical_T_264[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_266 = {_logical_T_46, _logical_T_110}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_267 = _GEN[_lut_T] >> _logical_T_266; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_268 = _logical_T_267[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_269 = {_logical_T_47, _logical_T_111}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_270 = _GEN[_lut_T] >> _logical_T_269; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_271 = _logical_T_270[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_272 = {_logical_T_48, _logical_T_112}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_273 = _GEN[_lut_T] >> _logical_T_272; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_274 = _logical_T_273[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_275 = {_logical_T_49, _logical_T_113}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_276 = _GEN[_lut_T] >> _logical_T_275; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_277 = _logical_T_276[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_278 = {_logical_T_50, _logical_T_114}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_279 = _GEN[_lut_T] >> _logical_T_278; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_280 = _logical_T_279[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_281 = {_logical_T_51, _logical_T_115}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_282 = _GEN[_lut_T] >> _logical_T_281; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_283 = _logical_T_282[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_284 = {_logical_T_52, _logical_T_116}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_285 = _GEN[_lut_T] >> _logical_T_284; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_286 = _logical_T_285[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_287 = {_logical_T_53, _logical_T_117}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_288 = _GEN[_lut_T] >> _logical_T_287; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_289 = _logical_T_288[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_290 = {_logical_T_54, _logical_T_118}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_291 = _GEN[_lut_T] >> _logical_T_290; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_292 = _logical_T_291[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_293 = {_logical_T_55, _logical_T_119}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_294 = _GEN[_lut_T] >> _logical_T_293; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_295 = _logical_T_294[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_296 = {_logical_T_56, _logical_T_120}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_297 = _GEN[_lut_T] >> _logical_T_296; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_298 = _logical_T_297[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_299 = {_logical_T_57, _logical_T_121}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_300 = _GEN[_lut_T] >> _logical_T_299; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_301 = _logical_T_300[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_302 = {_logical_T_58, _logical_T_122}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_303 = _GEN[_lut_T] >> _logical_T_302; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_304 = _logical_T_303[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_305 = {_logical_T_59, _logical_T_123}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_306 = _GEN[_lut_T] >> _logical_T_305; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_307 = _logical_T_306[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_308 = {_logical_T_60, _logical_T_124}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_309 = _GEN[_lut_T] >> _logical_T_308; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_310 = _logical_T_309[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_311 = {_logical_T_61, _logical_T_125}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_312 = _GEN[_lut_T] >> _logical_T_311; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_313 = _logical_T_312[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_314 = {_logical_T_62, _logical_T_126}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_315 = _GEN[_lut_T] >> _logical_T_314; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_316 = _logical_T_315[0]; // @[Atomics.scala:41:8] wire [1:0] _logical_T_317 = {_logical_T_63, _logical_T_127}; // @[Atomics.scala:40:{32,55}, :41:12] wire [3:0] _logical_T_318 = _GEN[_lut_T] >> _logical_T_317; // @[Atomics.scala:39:15, :41:{8,12}] wire _logical_T_319 = _logical_T_318[0]; // @[Atomics.scala:41:8] wire [1:0] logical_lo_lo_lo_lo_lo = {_logical_T_133, _logical_T_130}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_lo_lo_lo_lo_hi = {_logical_T_139, _logical_T_136}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_lo_lo_lo_lo = {logical_lo_lo_lo_lo_hi, logical_lo_lo_lo_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_lo_lo_lo_hi_lo = {_logical_T_145, _logical_T_142}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_lo_lo_lo_hi_hi = {_logical_T_151, _logical_T_148}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_lo_lo_lo_hi = {logical_lo_lo_lo_hi_hi, logical_lo_lo_lo_hi_lo}; // @[Atomics.scala:40:20] wire [7:0] logical_lo_lo_lo = {logical_lo_lo_lo_hi, logical_lo_lo_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_lo_lo_hi_lo_lo = {_logical_T_157, _logical_T_154}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_lo_lo_hi_lo_hi = {_logical_T_163, _logical_T_160}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_lo_lo_hi_lo = {logical_lo_lo_hi_lo_hi, logical_lo_lo_hi_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_lo_lo_hi_hi_lo = {_logical_T_169, _logical_T_166}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_lo_lo_hi_hi_hi = {_logical_T_175, _logical_T_172}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_lo_lo_hi_hi = {logical_lo_lo_hi_hi_hi, logical_lo_lo_hi_hi_lo}; // @[Atomics.scala:40:20] wire [7:0] logical_lo_lo_hi = {logical_lo_lo_hi_hi, logical_lo_lo_hi_lo}; // @[Atomics.scala:40:20] wire [15:0] logical_lo_lo = {logical_lo_lo_hi, logical_lo_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_lo_hi_lo_lo_lo = {_logical_T_181, _logical_T_178}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_lo_hi_lo_lo_hi = {_logical_T_187, _logical_T_184}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_lo_hi_lo_lo = {logical_lo_hi_lo_lo_hi, logical_lo_hi_lo_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_lo_hi_lo_hi_lo = {_logical_T_193, _logical_T_190}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_lo_hi_lo_hi_hi = {_logical_T_199, _logical_T_196}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_lo_hi_lo_hi = {logical_lo_hi_lo_hi_hi, logical_lo_hi_lo_hi_lo}; // @[Atomics.scala:40:20] wire [7:0] logical_lo_hi_lo = {logical_lo_hi_lo_hi, logical_lo_hi_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_lo_hi_hi_lo_lo = {_logical_T_205, _logical_T_202}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_lo_hi_hi_lo_hi = {_logical_T_211, _logical_T_208}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_lo_hi_hi_lo = {logical_lo_hi_hi_lo_hi, logical_lo_hi_hi_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_lo_hi_hi_hi_lo = {_logical_T_217, _logical_T_214}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_lo_hi_hi_hi_hi = {_logical_T_223, _logical_T_220}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_lo_hi_hi_hi = {logical_lo_hi_hi_hi_hi, logical_lo_hi_hi_hi_lo}; // @[Atomics.scala:40:20] wire [7:0] logical_lo_hi_hi = {logical_lo_hi_hi_hi, logical_lo_hi_hi_lo}; // @[Atomics.scala:40:20] wire [15:0] logical_lo_hi = {logical_lo_hi_hi, logical_lo_hi_lo}; // @[Atomics.scala:40:20] wire [31:0] logical_lo = {logical_lo_hi, logical_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_hi_lo_lo_lo_lo = {_logical_T_229, _logical_T_226}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_hi_lo_lo_lo_hi = {_logical_T_235, _logical_T_232}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_hi_lo_lo_lo = {logical_hi_lo_lo_lo_hi, logical_hi_lo_lo_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_hi_lo_lo_hi_lo = {_logical_T_241, _logical_T_238}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_hi_lo_lo_hi_hi = {_logical_T_247, _logical_T_244}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_hi_lo_lo_hi = {logical_hi_lo_lo_hi_hi, logical_hi_lo_lo_hi_lo}; // @[Atomics.scala:40:20] wire [7:0] logical_hi_lo_lo = {logical_hi_lo_lo_hi, logical_hi_lo_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_hi_lo_hi_lo_lo = {_logical_T_253, _logical_T_250}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_hi_lo_hi_lo_hi = {_logical_T_259, _logical_T_256}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_hi_lo_hi_lo = {logical_hi_lo_hi_lo_hi, logical_hi_lo_hi_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_hi_lo_hi_hi_lo = {_logical_T_265, _logical_T_262}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_hi_lo_hi_hi_hi = {_logical_T_271, _logical_T_268}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_hi_lo_hi_hi = {logical_hi_lo_hi_hi_hi, logical_hi_lo_hi_hi_lo}; // @[Atomics.scala:40:20] wire [7:0] logical_hi_lo_hi = {logical_hi_lo_hi_hi, logical_hi_lo_hi_lo}; // @[Atomics.scala:40:20] wire [15:0] logical_hi_lo = {logical_hi_lo_hi, logical_hi_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_hi_hi_lo_lo_lo = {_logical_T_277, _logical_T_274}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_hi_hi_lo_lo_hi = {_logical_T_283, _logical_T_280}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_hi_hi_lo_lo = {logical_hi_hi_lo_lo_hi, logical_hi_hi_lo_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_hi_hi_lo_hi_lo = {_logical_T_289, _logical_T_286}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_hi_hi_lo_hi_hi = {_logical_T_295, _logical_T_292}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_hi_hi_lo_hi = {logical_hi_hi_lo_hi_hi, logical_hi_hi_lo_hi_lo}; // @[Atomics.scala:40:20] wire [7:0] logical_hi_hi_lo = {logical_hi_hi_lo_hi, logical_hi_hi_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_hi_hi_hi_lo_lo = {_logical_T_301, _logical_T_298}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_hi_hi_hi_lo_hi = {_logical_T_307, _logical_T_304}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_hi_hi_hi_lo = {logical_hi_hi_hi_lo_hi, logical_hi_hi_hi_lo_lo}; // @[Atomics.scala:40:20] wire [1:0] logical_hi_hi_hi_hi_lo = {_logical_T_313, _logical_T_310}; // @[Atomics.scala:40:20, :41:8] wire [1:0] logical_hi_hi_hi_hi_hi = {_logical_T_319, _logical_T_316}; // @[Atomics.scala:40:20, :41:8] wire [3:0] logical_hi_hi_hi_hi = {logical_hi_hi_hi_hi_hi, logical_hi_hi_hi_hi_lo}; // @[Atomics.scala:40:20] wire [7:0] logical_hi_hi_hi = {logical_hi_hi_hi_hi, logical_hi_hi_hi_lo}; // @[Atomics.scala:40:20] wire [15:0] logical_hi_hi = {logical_hi_hi_hi, logical_hi_hi_lo}; // @[Atomics.scala:40:20] wire [31:0] logical_hi = {logical_hi_hi, logical_hi_lo}; // @[Atomics.scala:40:20] wire [63:0] logical = {logical_hi, logical_lo}; // @[Atomics.scala:40:20] wire [1:0] _select_T_1 = adder ? 2'h2 : {1'h0, _select_T}; // @[Atomics.scala:8:7, :10:14, :18:28, :48:{8,24}] wire [1:0] _select_WIRE_2 = _select_T_1; // @[Atomics.scala:45:42, :48:8] wire [7:0][1:0] _GEN_0 = {{2'h0}, {2'h0}, {2'h0}, {2'h0}, {2'h3}, {_select_WIRE_2}, {2'h1}, {2'h1}}; // @[Atomics.scala:45:{19,42}] wire [1:0] select = io_write_0 ? 2'h1 : _GEN_0[io_a_opcode_0]; // @[Atomics.scala:8:7, :45:19] wire [1:0] selects_0 = _selects_T ? select : 2'h0; // @[Atomics.scala:45:19, :57:{27,47}] wire [1:0] selects_1 = _selects_T_1 ? select : 2'h0; // @[Atomics.scala:45:19, :57:{27,47}] wire [1:0] selects_2 = _selects_T_2 ? select : 2'h0; // @[Atomics.scala:45:19, :57:{27,47}] wire [1:0] selects_3 = _selects_T_3 ? select : 2'h0; // @[Atomics.scala:45:19, :57:{27,47}] wire [1:0] selects_4 = _selects_T_4 ? select : 2'h0; // @[Atomics.scala:45:19, :57:{27,47}] wire [1:0] selects_5 = _selects_T_5 ? select : 2'h0; // @[Atomics.scala:45:19, :57:{27,47}] wire [1:0] selects_6 = _selects_T_6 ? select : 2'h0; // @[Atomics.scala:45:19, :57:{27,47}] wire [1:0] selects_7 = _selects_T_7 ? select : 2'h0; // @[Atomics.scala:45:19, :57:{27,47}] wire [7:0] _io_data_out_T = io_data_in_0[7:0]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_0 = _io_data_out_T; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_1 = io_a_data_0[7:0]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_1 = _io_data_out_T_1; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_2 = sum[7:0]; // @[Atomics.scala:24:57, :59:59] wire [7:0] _io_data_out_WIRE_2 = _io_data_out_T_2; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_3 = logical[7:0]; // @[Atomics.scala:40:20, :59:59] wire [7:0] _io_data_out_WIRE_3 = _io_data_out_T_3; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_4 = io_data_in_0[15:8]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_1_0 = _io_data_out_T_4; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_5 = io_a_data_0[15:8]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_1_1 = _io_data_out_T_5; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_6 = sum[15:8]; // @[Atomics.scala:24:57, :59:59] wire [7:0] _io_data_out_WIRE_1_2 = _io_data_out_T_6; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_7 = logical[15:8]; // @[Atomics.scala:40:20, :59:59] wire [7:0] _io_data_out_WIRE_1_3 = _io_data_out_T_7; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_8 = io_data_in_0[23:16]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_2_0 = _io_data_out_T_8; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_9 = io_a_data_0[23:16]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_2_1 = _io_data_out_T_9; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_10 = sum[23:16]; // @[Atomics.scala:24:57, :59:59] wire [7:0] _io_data_out_WIRE_2_2 = _io_data_out_T_10; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_11 = logical[23:16]; // @[Atomics.scala:40:20, :59:59] wire [7:0] _io_data_out_WIRE_2_3 = _io_data_out_T_11; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_12 = io_data_in_0[31:24]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_3_0 = _io_data_out_T_12; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_13 = io_a_data_0[31:24]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_3_1 = _io_data_out_T_13; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_14 = sum[31:24]; // @[Atomics.scala:24:57, :59:59] wire [7:0] _io_data_out_WIRE_3_2 = _io_data_out_T_14; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_15 = logical[31:24]; // @[Atomics.scala:40:20, :59:59] wire [7:0] _io_data_out_WIRE_3_3 = _io_data_out_T_15; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_16 = io_data_in_0[39:32]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_4_0 = _io_data_out_T_16; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_17 = io_a_data_0[39:32]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_4_1 = _io_data_out_T_17; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_18 = sum[39:32]; // @[Atomics.scala:24:57, :59:59] wire [7:0] _io_data_out_WIRE_4_2 = _io_data_out_T_18; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_19 = logical[39:32]; // @[Atomics.scala:40:20, :59:59] wire [7:0] _io_data_out_WIRE_4_3 = _io_data_out_T_19; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_20 = io_data_in_0[47:40]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_5_0 = _io_data_out_T_20; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_21 = io_a_data_0[47:40]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_5_1 = _io_data_out_T_21; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_22 = sum[47:40]; // @[Atomics.scala:24:57, :59:59] wire [7:0] _io_data_out_WIRE_5_2 = _io_data_out_T_22; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_23 = logical[47:40]; // @[Atomics.scala:40:20, :59:59] wire [7:0] _io_data_out_WIRE_5_3 = _io_data_out_T_23; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_24 = io_data_in_0[55:48]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_6_0 = _io_data_out_T_24; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_25 = io_a_data_0[55:48]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_6_1 = _io_data_out_T_25; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_26 = sum[55:48]; // @[Atomics.scala:24:57, :59:59] wire [7:0] _io_data_out_WIRE_6_2 = _io_data_out_T_26; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_27 = logical[55:48]; // @[Atomics.scala:40:20, :59:59] wire [7:0] _io_data_out_WIRE_6_3 = _io_data_out_T_27; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_28 = io_data_in_0[63:56]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_7_0 = _io_data_out_T_28; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_29 = io_a_data_0[63:56]; // @[Atomics.scala:8:7, :59:59] wire [7:0] _io_data_out_WIRE_7_1 = _io_data_out_T_29; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_30 = sum[63:56]; // @[Atomics.scala:24:57, :59:59] wire [7:0] _io_data_out_WIRE_7_2 = _io_data_out_T_30; // @[Atomics.scala:59:{12,59}] wire [7:0] _io_data_out_T_31 = logical[63:56]; // @[Atomics.scala:40:20, :59:59] wire [7:0] _io_data_out_WIRE_7_3 = _io_data_out_T_31; // @[Atomics.scala:59:{12,59}] wire [3:0][7:0] _GEN_1 = {{_io_data_out_WIRE_1_3}, {_io_data_out_WIRE_1_2}, {_io_data_out_WIRE_1_1}, {_io_data_out_WIRE_1_0}}; // @[Atomics.scala:58:21, :59:12] wire [3:0][7:0] _GEN_2 = {{_io_data_out_WIRE_3}, {_io_data_out_WIRE_2}, {_io_data_out_WIRE_1}, {_io_data_out_WIRE_0}}; // @[Atomics.scala:58:21, :59:12] wire [15:0] io_data_out_lo_lo = {_GEN_1[selects_1], _GEN_2[selects_0]}; // @[Atomics.scala:57:47, :58:21] wire [3:0][7:0] _GEN_3 = {{_io_data_out_WIRE_3_3}, {_io_data_out_WIRE_3_2}, {_io_data_out_WIRE_3_1}, {_io_data_out_WIRE_3_0}}; // @[Atomics.scala:58:21, :59:12] wire [3:0][7:0] _GEN_4 = {{_io_data_out_WIRE_2_3}, {_io_data_out_WIRE_2_2}, {_io_data_out_WIRE_2_1}, {_io_data_out_WIRE_2_0}}; // @[Atomics.scala:58:21, :59:12] wire [15:0] io_data_out_lo_hi = {_GEN_3[selects_3], _GEN_4[selects_2]}; // @[Atomics.scala:57:47, :58:21] wire [31:0] io_data_out_lo = {io_data_out_lo_hi, io_data_out_lo_lo}; // @[Atomics.scala:58:21] wire [3:0][7:0] _GEN_5 = {{_io_data_out_WIRE_5_3}, {_io_data_out_WIRE_5_2}, {_io_data_out_WIRE_5_1}, {_io_data_out_WIRE_5_0}}; // @[Atomics.scala:58:21, :59:12] wire [3:0][7:0] _GEN_6 = {{_io_data_out_WIRE_4_3}, {_io_data_out_WIRE_4_2}, {_io_data_out_WIRE_4_1}, {_io_data_out_WIRE_4_0}}; // @[Atomics.scala:58:21, :59:12] wire [15:0] io_data_out_hi_lo = {_GEN_5[selects_5], _GEN_6[selects_4]}; // @[Atomics.scala:57:47, :58:21] wire [3:0][7:0] _GEN_7 = {{_io_data_out_WIRE_7_3}, {_io_data_out_WIRE_7_2}, {_io_data_out_WIRE_7_1}, {_io_data_out_WIRE_7_0}}; // @[Atomics.scala:58:21, :59:12] wire [3:0][7:0] _GEN_8 = {{_io_data_out_WIRE_6_3}, {_io_data_out_WIRE_6_2}, {_io_data_out_WIRE_6_1}, {_io_data_out_WIRE_6_0}}; // @[Atomics.scala:58:21, :59:12] wire [15:0] io_data_out_hi_hi = {_GEN_7[selects_7], _GEN_8[selects_6]}; // @[Atomics.scala:57:47, :58:21] wire [31:0] io_data_out_hi = {io_data_out_hi_hi, io_data_out_hi_lo}; // @[Atomics.scala:58:21] assign _io_data_out_T_32 = {io_data_out_hi, io_data_out_lo}; // @[Atomics.scala:58:21] assign io_data_out_0 = _io_data_out_T_32; // @[Atomics.scala:8:7, :58:21] assign io_data_out = io_data_out_0; // @[Atomics.scala:8:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftRegisterPriorityQueue.scala: package compressacc import chisel3._ import chisel3.util._ import chisel3.util._ // TODO : support enq & deq at the same cycle class PriorityQueueStageIO(keyWidth: Int, value: ValueInfo) extends Bundle { val output_prev = KeyValue(keyWidth, value) val output_nxt = KeyValue(keyWidth, value) val input_prev = Flipped(KeyValue(keyWidth, value)) val input_nxt = Flipped(KeyValue(keyWidth, value)) val cmd = Flipped(Valid(UInt(1.W))) val insert_here = Input(Bool()) val cur_input_keyval = Flipped(KeyValue(keyWidth, value)) val cur_output_keyval = KeyValue(keyWidth, value) } class PriorityQueueStage(keyWidth: Int, value: ValueInfo) extends Module { val io = IO(new PriorityQueueStageIO(keyWidth, value)) dontTouch(io) val CMD_DEQ = 0.U val CMD_ENQ = 1.U val MAX_VALUE = (1 << keyWidth) - 1 val key_reg = RegInit(MAX_VALUE.U(keyWidth.W)) val value_reg = Reg(value) io.output_prev.key := key_reg io.output_prev.value := value_reg io.output_nxt.key := key_reg io.output_nxt.value := value_reg io.cur_output_keyval.key := key_reg io.cur_output_keyval.value := value_reg when (io.cmd.valid) { switch (io.cmd.bits) { is (CMD_DEQ) { key_reg := io.input_nxt.key value_reg := io.input_nxt.value } is (CMD_ENQ) { when (io.insert_here) { key_reg := io.cur_input_keyval.key value_reg := io.cur_input_keyval.value } .elsewhen (key_reg >= io.cur_input_keyval.key) { key_reg := io.input_prev.key value_reg := io.input_prev.value } .otherwise { // do nothing } } } } } object PriorityQueueStage { def apply(keyWidth: Int, v: ValueInfo): PriorityQueueStage = new PriorityQueueStage(keyWidth, v) } // TODO // - This design is not scalable as the enqued_keyval is broadcasted to all the stages // - Add pipeline registers later class PriorityQueueIO(queSize: Int, keyWidth: Int, value: ValueInfo) extends Bundle { val cnt_bits = log2Ceil(queSize+1) val counter = Output(UInt(cnt_bits.W)) val enq = Flipped(Decoupled(KeyValue(keyWidth, value))) val deq = Decoupled(KeyValue(keyWidth, value)) } class PriorityQueue(queSize: Int, keyWidth: Int, value: ValueInfo) extends Module { val keyWidthInternal = keyWidth + 1 val CMD_DEQ = 0.U val CMD_ENQ = 1.U val io = IO(new PriorityQueueIO(queSize, keyWidthInternal, value)) dontTouch(io) val MAX_VALUE = ((1 << keyWidthInternal) - 1).U val cnt_bits = log2Ceil(queSize+1) // do not consider cases where we are inserting more entries then the queSize val counter = RegInit(0.U(cnt_bits.W)) io.counter := counter val full = (counter === queSize.U) val empty = (counter === 0.U) io.deq.valid := !empty io.enq.ready := !full when (io.enq.fire) { counter := counter + 1.U } when (io.deq.fire) { counter := counter - 1.U } val cmd_valid = io.enq.valid || io.deq.ready val cmd = Mux(io.enq.valid, CMD_ENQ, CMD_DEQ) assert(!(io.enq.valid && io.deq.ready)) val stages = Seq.fill(queSize)(Module(new PriorityQueueStage(keyWidthInternal, value))) for (i <- 0 until (queSize - 1)) { stages(i+1).io.input_prev <> stages(i).io.output_nxt stages(i).io.input_nxt <> stages(i+1).io.output_prev } stages(queSize-1).io.input_nxt.key := MAX_VALUE // stages(queSize-1).io.input_nxt.value := stages(queSize-1).io.input_nxt.value.symbol := 0.U // stages(queSize-1).io.input_nxt.value.child(0) := 0.U // stages(queSize-1).io.input_nxt.value.child(1) := 0.U stages(0).io.input_prev.key := io.enq.bits.key stages(0).io.input_prev.value <> io.enq.bits.value for (i <- 0 until queSize) { stages(i).io.cmd.valid := cmd_valid stages(i).io.cmd.bits := cmd stages(i).io.cur_input_keyval <> io.enq.bits } val is_large_or_equal = WireInit(VecInit(Seq.fill(queSize)(false.B))) for (i <- 0 until queSize) { is_large_or_equal(i) := (stages(i).io.cur_output_keyval.key >= io.enq.bits.key) } val is_large_or_equal_cat = Wire(UInt(queSize.W)) is_large_or_equal_cat := Cat(is_large_or_equal.reverse) val insert_here_idx = PriorityEncoder(is_large_or_equal_cat) for (i <- 0 until queSize) { when (i.U === insert_here_idx) { stages(i).io.insert_here := true.B } .otherwise { stages(i).io.insert_here := false.B } } io.deq.bits <> stages(0).io.output_prev }
module PriorityQueueStage_94( // @[ShiftRegisterPriorityQueue.scala:21:7] input clock, // @[ShiftRegisterPriorityQueue.scala:21:7] input reset, // @[ShiftRegisterPriorityQueue.scala:21:7] output [30:0] io_output_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14] output [9:0] io_output_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] output [30:0] io_output_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14] output [9:0] io_output_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] input [30:0] io_input_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14] input [9:0] io_input_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] input [30:0] io_input_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14] input [9:0] io_input_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] input io_cmd_valid, // @[ShiftRegisterPriorityQueue.scala:22:14] input io_cmd_bits, // @[ShiftRegisterPriorityQueue.scala:22:14] input io_insert_here, // @[ShiftRegisterPriorityQueue.scala:22:14] input [30:0] io_cur_input_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14] input [9:0] io_cur_input_keyval_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] output [30:0] io_cur_output_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14] output [9:0] io_cur_output_keyval_value_symbol // @[ShiftRegisterPriorityQueue.scala:22:14] ); wire [30:0] io_input_prev_key_0 = io_input_prev_key; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_input_prev_value_symbol_0 = io_input_prev_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_input_nxt_key_0 = io_input_nxt_key; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_input_nxt_value_symbol_0 = io_input_nxt_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7] wire io_cmd_valid_0 = io_cmd_valid; // @[ShiftRegisterPriorityQueue.scala:21:7] wire io_cmd_bits_0 = io_cmd_bits; // @[ShiftRegisterPriorityQueue.scala:21:7] wire io_insert_here_0 = io_insert_here; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_cur_input_keyval_key_0 = io_cur_input_keyval_key; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_cur_input_keyval_value_symbol_0 = io_cur_input_keyval_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] reg [30:0] key_reg; // @[ShiftRegisterPriorityQueue.scala:30:24] assign io_output_prev_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] assign io_output_nxt_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] assign io_cur_output_keyval_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] reg [9:0] value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:31:22] assign io_output_prev_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] assign io_output_nxt_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] assign io_cur_output_keyval_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] wire _T_2 = key_reg >= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24, :52:30] always @(posedge clock) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (reset) // @[ShiftRegisterPriorityQueue.scala:21:7] key_reg <= 31'h7FFFFFFF; // @[ShiftRegisterPriorityQueue.scala:30:24] else if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7] key_reg <= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30] key_reg <= io_input_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] end else // @[ShiftRegisterPriorityQueue.scala:21:7] key_reg <= io_input_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] end if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7] value_reg_symbol <= io_cur_input_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30] value_reg_symbol <= io_input_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] end else // @[ShiftRegisterPriorityQueue.scala:21:7] value_reg_symbol <= io_input_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] end always @(posedge) assign io_output_prev_key = io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_output_prev_value_symbol = io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_output_nxt_key = io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_output_nxt_value_symbol = io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_cur_output_keyval_key = io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_cur_output_keyval_value_symbol = io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File RecFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import consts._ class RecFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int) extends chisel3.RawModule { val io = IO(new Bundle { val in = Input(Bits((inExpWidth + inSigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawIn = rawFloatFromRecFN(inExpWidth, inSigWidth, io.in); if ((inExpWidth == outExpWidth) && (inSigWidth <= outSigWidth)) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- io.out := io.in<<(outSigWidth - inSigWidth) io.exceptionFlags := isSigNaNRawFloat(rawIn) ## 0.U(4.W) } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( inExpWidth, inSigWidth, outExpWidth, outSigWidth, flRoundOpt_sigMSBitAlwaysZero )) roundAnyRawFNToRecFN.io.invalidExc := isSigNaNRawFloat(rawIn) roundAnyRawFNToRecFN.io.infiniteExc := false.B roundAnyRawFNToRecFN.io.in := rawIn roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags } } File rawFloatFromRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ /*---------------------------------------------------------------------------- | In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be | set. *----------------------------------------------------------------------------*/ object rawFloatFromRecFN { def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat = { val exp = in(expWidth + sigWidth - 1, sigWidth - 1) val isZero = exp(expWidth, expWidth - 2) === 0.U val isSpecial = exp(expWidth, expWidth - 1) === 3.U val out = Wire(new RawFloat(expWidth, sigWidth)) out.isNaN := isSpecial && exp(expWidth - 2) out.isInf := isSpecial && ! exp(expWidth - 2) out.isZero := isZero out.sign := in(expWidth + sigWidth) out.sExp := exp.zext out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0) out } }
module RecFNToRecFN_162( // @[RecFNToRecFN.scala:44:5] input [32:0] io_in, // @[RecFNToRecFN.scala:48:16] output [32:0] io_out // @[RecFNToRecFN.scala:48:16] ); wire [32:0] io_in_0 = io_in; // @[RecFNToRecFN.scala:44:5] wire io_detectTininess = 1'h1; // @[RecFNToRecFN.scala:44:5, :48:16] wire [2:0] io_roundingMode = 3'h0; // @[RecFNToRecFN.scala:44:5, :48:16] wire [32:0] _io_out_T = io_in_0; // @[RecFNToRecFN.scala:44:5, :64:35] wire [4:0] _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:65:54] wire [32:0] io_out_0; // @[RecFNToRecFN.scala:44:5] wire [4:0] io_exceptionFlags; // @[RecFNToRecFN.scala:44:5] wire [8:0] rawIn_exp = io_in_0[31:23]; // @[rawFloatFromRecFN.scala:51:21] wire [2:0] _rawIn_isZero_T = rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire rawIn_isZero = _rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] wire rawIn_isZero_0 = rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _rawIn_isSpecial_T = rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire rawIn_isSpecial = &_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] wire _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [9:0] _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [24:0] _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire rawIn_sign; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] rawIn_sig; // @[rawFloatFromRecFN.scala:55:23] wire _rawIn_out_isNaN_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _rawIn_out_isInf_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _rawIn_out_isNaN_T_1 = rawIn_isSpecial & _rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign rawIn_isNaN = _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _rawIn_out_isInf_T_1 = ~_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _rawIn_out_isInf_T_2 = rawIn_isSpecial & _rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign rawIn_isInf = _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _rawIn_out_sign_T = io_in_0[32]; // @[rawFloatFromRecFN.scala:59:25] assign rawIn_sign = _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _rawIn_out_sExp_T = {1'h0, rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign rawIn_sExp = _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _rawIn_out_sig_T = ~rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _rawIn_out_sig_T_1 = {1'h0, _rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [22:0] _rawIn_out_sig_T_2 = io_in_0[22:0]; // @[rawFloatFromRecFN.scala:61:49] assign _rawIn_out_sig_T_3 = {_rawIn_out_sig_T_1, _rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign rawIn_sig = _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] assign io_out_0 = _io_out_T; // @[RecFNToRecFN.scala:44:5, :64:35] wire _io_exceptionFlags_T = rawIn_sig[22]; // @[rawFloatFromRecFN.scala:55:23] wire _io_exceptionFlags_T_1 = ~_io_exceptionFlags_T; // @[common.scala:82:{49,56}] wire _io_exceptionFlags_T_2 = rawIn_isNaN & _io_exceptionFlags_T_1; // @[rawFloatFromRecFN.scala:55:23] assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, 4'h0}; // @[common.scala:82:46] assign io_exceptionFlags = _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:44:5, :65:54] assign io_out = io_out_0; // @[RecFNToRecFN.scala:44:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module PE_299( // @[PE.scala:31:7] input clock, // @[PE.scala:31:7] input reset, // @[PE.scala:31:7] input [7:0] io_in_a, // @[PE.scala:35:14] input [19:0] io_in_b, // @[PE.scala:35:14] input [19:0] io_in_d, // @[PE.scala:35:14] output [7:0] io_out_a, // @[PE.scala:35:14] output [19:0] io_out_b, // @[PE.scala:35:14] output [19:0] io_out_c, // @[PE.scala:35:14] input io_in_control_dataflow, // @[PE.scala:35:14] input io_in_control_propagate, // @[PE.scala:35:14] input [4:0] io_in_control_shift, // @[PE.scala:35:14] output io_out_control_dataflow, // @[PE.scala:35:14] output io_out_control_propagate, // @[PE.scala:35:14] output [4:0] io_out_control_shift, // @[PE.scala:35:14] input [2:0] io_in_id, // @[PE.scala:35:14] output [2:0] io_out_id, // @[PE.scala:35:14] input io_in_last, // @[PE.scala:35:14] output io_out_last, // @[PE.scala:35:14] input io_in_valid, // @[PE.scala:35:14] output io_out_valid, // @[PE.scala:35:14] output io_bad_dataflow // @[PE.scala:35:14] ); wire [19:0] _mac_unit_io_out_d; // @[PE.scala:64:24] wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7] wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7] wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7] wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7] wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7] wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7] wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7] wire io_in_last_0 = io_in_last; // @[PE.scala:31:7] wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7] wire io_bad_dataflow_0 = 1'h0; // @[PE.scala:31:7] wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7] wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37] wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37] wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35] wire [19:0] c1_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire [19:0] c2_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7] wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7] wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7] wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7] wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7] wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7] wire [19:0] io_out_b_0; // @[PE.scala:31:7] wire [19:0] io_out_c_0; // @[PE.scala:31:7] reg [31:0] c1; // @[PE.scala:70:15] wire [31:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15] wire [31:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38] reg [31:0] c2; // @[PE.scala:71:15] wire [31:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15] wire [31:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38] reg last_s; // @[PE.scala:89:25] wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21] wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25] wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25] wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32] wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32] wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25] wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15] wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}] wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25] wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27] wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27] wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_7 = _io_out_c_zeros_T_1 & _io_out_c_zeros_T_6; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_2 = {27'h0, shift_offset}; // @[PE.scala:91:25] wire [31:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15] wire [31:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T; // @[Arithmetic.scala:107:15] assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_2 = {_io_out_c_T[31], _io_out_c_T} + {{31{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_3 = _io_out_c_T_2[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28] wire _io_out_c_T_5 = $signed(_io_out_c_T_4) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_6 = $signed(_io_out_c_T_4) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_7 = _io_out_c_T_6 ? 32'hFFF80000 : _io_out_c_T_4; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_8 = _io_out_c_T_5 ? 32'h7FFFF : _io_out_c_T_7; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_9 = _io_out_c_T_8[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37] wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37] wire c1_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire c2_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire [1:0] _GEN_4 = {2{c1_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c1_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c1_lo_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c1_lo_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c1_hi_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c1_hi_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [2:0] c1_lo_lo = {c1_lo_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_lo_hi = {c1_lo_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_lo = {c1_lo_hi, c1_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c1_hi_lo = {c1_hi_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_hi_hi = {c1_hi_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_hi = {c1_hi_hi, c1_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c1_T = {c1_hi, c1_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c1_T_1 = {_c1_T, c1_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c1_T_2 = _c1_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c1_WIRE = _c1_T_2; // @[Arithmetic.scala:118:61] wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15] wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}] wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_16 = _io_out_c_zeros_T_10 & _io_out_c_zeros_T_15; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_5 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15] wire [31:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T_1 = _GEN_5; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15] assign _io_out_c_T_11 = _GEN_5; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_13 = {_io_out_c_T_11[31], _io_out_c_T_11} + {{31{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_14 = _io_out_c_T_13[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28] wire _io_out_c_T_16 = $signed(_io_out_c_T_15) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_17 = $signed(_io_out_c_T_15) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_18 = _io_out_c_T_17 ? 32'hFFF80000 : _io_out_c_T_15; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_19 = _io_out_c_T_16 ? 32'h7FFFF : _io_out_c_T_18; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_20 = _io_out_c_T_19[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37] wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37] wire [1:0] _GEN_6 = {2{c2_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c2_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c2_lo_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c2_lo_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c2_hi_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c2_hi_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [2:0] c2_lo_lo = {c2_lo_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_lo_hi = {c2_lo_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_lo = {c2_lo_hi, c2_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c2_hi_lo = {c2_hi_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_hi_hi = {c2_hi_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_hi = {c2_hi_hi, c2_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c2_T = {c2_hi, c2_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c2_T_1 = {_c2_T, c2_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c2_T_2 = _c2_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c2_WIRE = _c2_T_2; // @[Arithmetic.scala:118:61] wire [31:0] _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38] wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5[7:0]; // @[PE.scala:121:38] wire [31:0] _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38] wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7[7:0]; // @[PE.scala:127:38] assign io_out_c_0 = io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? c1[19:0] : c2[19:0]) : io_in_control_propagate_0 ? _io_out_c_T_10 : _io_out_c_T_21; // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :104:16, :111:16, :118:101, :119:30, :120:16, :126:16] assign io_out_b_0 = io_in_control_dataflow_0 ? _mac_unit_io_out_d : io_in_b_0; // @[PE.scala:31:7, :64:24, :102:95, :103:30, :118:101] wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35] wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35] wire [31:0] _GEN_7 = {{12{io_in_d_0[19]}}, io_in_d_0}; // @[PE.scala:31:7, :124:10] wire [31:0] _GEN_8 = {{12{_mac_unit_io_out_d[19]}}, _mac_unit_io_out_d}; // @[PE.scala:64:24, :108:10] always @(posedge clock) begin // @[PE.scala:31:7] if (io_in_valid_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :70:15, :118:101, :119:30, :124:10] c1 <= _GEN_7; // @[PE.scala:70:15, :124:10] if (~io_in_control_dataflow_0 | io_in_control_propagate_0) begin // @[PE.scala:31:7, :71:15, :118:101, :119:30] end else // @[PE.scala:71:15, :118:101, :119:30] c2 <= _GEN_7; // @[PE.scala:71:15, :124:10] end else begin // @[PE.scala:31:7] c1 <= io_in_control_propagate_0 ? _c1_WIRE : _GEN_8; // @[PE.scala:31:7, :70:15, :103:30, :108:10, :109:10, :115:10] c2 <= io_in_control_propagate_0 ? _GEN_8 : _c2_WIRE; // @[PE.scala:31:7, :71:15, :103:30, :108:10, :116:10] end last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25] end always @(posedge) MacUnit_43 mac_unit ( // @[PE.scala:64:24] .clock (clock), .reset (reset), .io_in_a (io_in_a_0), // @[PE.scala:31:7] .io_in_b (io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3) : io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE : _mac_unit_io_in_b_WIRE_1), // @[PE.scala:31:7, :102:95, :103:30, :106:{24,37}, :113:{24,37}, :118:101, :119:30, :121:{24,38}, :127:{24,38}] .io_in_c (io_in_control_dataflow_0 ? {{12{io_in_b_0[19]}}, io_in_b_0} : io_in_control_propagate_0 ? c2 : c1), // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :107:24, :114:24, :118:101, :122:24] .io_out_d (_mac_unit_io_out_d) ); // @[PE.scala:64:24] assign io_out_a = io_out_a_0; // @[PE.scala:31:7] assign io_out_b = io_out_b_0; // @[PE.scala:31:7] assign io_out_c = io_out_c_0; // @[PE.scala:31:7] assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7] assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7] assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7] assign io_out_id = io_out_id_0; // @[PE.scala:31:7] assign io_out_last = io_out_last_0; // @[PE.scala:31:7] assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7] assign io_bad_dataflow = io_bad_dataflow_0; // @[PE.scala:31:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File RegisterRouter.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes} import freechips.rocketchip.resources.{Device, Resource, ResourceBindings} import freechips.rocketchip.prci.{NoCrossing} import freechips.rocketchip.regmapper.{RegField, RegMapper, RegMapperParams, RegMapperInput, RegisterRouter} import freechips.rocketchip.util.{BundleField, ControlKey, ElaborationArtefacts, GenRegDescsAnno} import scala.math.min class TLRegisterRouterExtraBundle(val sourceBits: Int, val sizeBits: Int) extends Bundle { val source = UInt((sourceBits max 1).W) val size = UInt((sizeBits max 1).W) } case object TLRegisterRouterExtra extends ControlKey[TLRegisterRouterExtraBundle]("tlrr_extra") case class TLRegisterRouterExtraField(sourceBits: Int, sizeBits: Int) extends BundleField[TLRegisterRouterExtraBundle](TLRegisterRouterExtra, Output(new TLRegisterRouterExtraBundle(sourceBits, sizeBits)), x => { x.size := 0.U x.source := 0.U }) /** TLRegisterNode is a specialized TL SinkNode that encapsulates MMIO registers. * It provides functionality for describing and outputting metdata about the registers in several formats. * It also provides a concrete implementation of a regmap function that will be used * to wire a map of internal registers associated with this node to the node's interconnect port. */ case class TLRegisterNode( address: Seq[AddressSet], device: Device, deviceKey: String = "reg/control", concurrency: Int = 0, beatBytes: Int = 4, undefZero: Boolean = true, executable: Boolean = false)( implicit valName: ValName) extends SinkNode(TLImp)(Seq(TLSlavePortParameters.v1( Seq(TLSlaveParameters.v1( address = address, resources = Seq(Resource(device, deviceKey)), executable = executable, supportsGet = TransferSizes(1, beatBytes), supportsPutPartial = TransferSizes(1, beatBytes), supportsPutFull = TransferSizes(1, beatBytes), fifoId = Some(0))), // requests are handled in order beatBytes = beatBytes, minLatency = min(concurrency, 1)))) with TLFormatNode // the Queue adds at most one cycle { val size = 1 << log2Ceil(1 + address.map(_.max).max - address.map(_.base).min) require (size >= beatBytes) address.foreach { case a => require (a.widen(size-1).base == address.head.widen(size-1).base, s"TLRegisterNode addresses (${address}) must be aligned to its size ${size}") } // Calling this method causes the matching TL2 bundle to be // configured to route all requests to the listed RegFields. def regmap(mapping: RegField.Map*) = { val (bundleIn, edge) = this.in(0) val a = bundleIn.a val d = bundleIn.d val fields = TLRegisterRouterExtraField(edge.bundle.sourceBits, edge.bundle.sizeBits) +: a.bits.params.echoFields val params = RegMapperParams(log2Up(size/beatBytes), beatBytes, fields) val in = Wire(Decoupled(new RegMapperInput(params))) in.bits.read := a.bits.opcode === TLMessages.Get in.bits.index := edge.addr_hi(a.bits) in.bits.data := a.bits.data in.bits.mask := a.bits.mask Connectable.waiveUnmatched(in.bits.extra, a.bits.echo) match { case (lhs, rhs) => lhs :<= rhs } val a_extra = in.bits.extra(TLRegisterRouterExtra) a_extra.source := a.bits.source a_extra.size := a.bits.size // Invoke the register map builder val out = RegMapper(beatBytes, concurrency, undefZero, in, mapping:_*) // No flow control needed in.valid := a.valid a.ready := in.ready d.valid := out.valid out.ready := d.ready // We must restore the size to enable width adapters to work val d_extra = out.bits.extra(TLRegisterRouterExtra) d.bits := edge.AccessAck(toSource = d_extra.source, lgSize = d_extra.size) // avoid a Mux on the data bus by manually overriding two fields d.bits.data := out.bits.data Connectable.waiveUnmatched(d.bits.echo, out.bits.extra) match { case (lhs, rhs) => lhs :<= rhs } d.bits.opcode := Mux(out.bits.read, TLMessages.AccessAckData, TLMessages.AccessAck) // Tie off unused channels bundleIn.b.valid := false.B bundleIn.c.ready := true.B bundleIn.e.ready := true.B genRegDescsJson(mapping:_*) } def genRegDescsJson(mapping: RegField.Map*): Unit = { // Dump out the register map for documentation purposes. val base = address.head.base val baseHex = s"0x${base.toInt.toHexString}" val name = s"${device.describe(ResourceBindings()).name}.At${baseHex}" val json = GenRegDescsAnno.serialize(base, name, mapping:_*) var suffix = 0 while( ElaborationArtefacts.contains(s"${baseHex}.${suffix}.regmap.json")) { suffix = suffix + 1 } ElaborationArtefacts.add(s"${baseHex}.${suffix}.regmap.json", json) val module = Module.currentModule.get.asInstanceOf[RawModule] GenRegDescsAnno.anno( module, base, mapping:_*) } } /** Mix HasTLControlRegMap into any subclass of RegisterRouter to gain helper functions for attaching a device control register map to TileLink. * - The intended use case is that controlNode will diplomatically publish a SW-visible device's memory-mapped control registers. * - Use the clock crossing helper controlXing to externally connect controlNode to a TileLink interconnect. * - Use the mapping helper function regmap to internally fill out the space of device control registers. */ trait HasTLControlRegMap { this: RegisterRouter => protected val controlNode = TLRegisterNode( address = address, device = device, deviceKey = "reg/control", concurrency = concurrency, beatBytes = beatBytes, undefZero = undefZero, executable = executable) // Externally, this helper should be used to connect the register control port to a bus val controlXing: TLInwardClockCrossingHelper = this.crossIn(controlNode) // Backwards-compatibility default node accessor with no clock crossing lazy val node: TLInwardNode = controlXing(NoCrossing) // Internally, this function should be used to populate the control port with registers protected def regmap(mapping: RegField.Map*): Unit = { controlNode.regmap(mapping:_*) } } File RegField.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.regmapper import chisel3._ import chisel3.util.{DecoupledIO, ReadyValidIO} import org.json4s.JsonDSL._ import org.json4s.JsonAST.JValue import freechips.rocketchip.util.{SimpleRegIO} case class RegReadFn private(combinational: Boolean, fn: (Bool, Bool) => (Bool, Bool, UInt)) object RegReadFn { // (ivalid: Bool, oready: Bool) => (iready: Bool, ovalid: Bool, data: UInt) // iready may combinationally depend on oready // all other combinational dependencies forbidden (e.g. ovalid <= ivalid) // effects must become visible on the cycle after ovalid && oready // data is only inspected when ovalid && oready implicit def apply(x: (Bool, Bool) => (Bool, Bool, UInt)) = new RegReadFn(false, x) implicit def apply(x: RegisterReadIO[UInt]): RegReadFn = RegReadFn((ivalid, oready) => { x.request.valid := ivalid x.response.ready := oready (x.request.ready, x.response.valid, x.response.bits) }) // (ready: Bool) => (valid: Bool, data: UInt) // valid must not combinationally depend on ready // effects must become visible on the cycle after valid && ready implicit def apply(x: Bool => (Bool, UInt)) = new RegReadFn(true, { case (_, oready) => val (ovalid, data) = x(oready) (true.B, ovalid, data) }) // read from a ReadyValidIO (only safe if there is a consistent source of data) implicit def apply(x: ReadyValidIO[UInt]):RegReadFn = RegReadFn(ready => { x.ready := ready; (x.valid, x.bits) }) // read from a register implicit def apply(x: UInt):RegReadFn = RegReadFn(ready => (true.B, x)) // noop implicit def apply(x: Unit):RegReadFn = RegReadFn(0.U) } case class RegWriteFn private(combinational: Boolean, fn: (Bool, Bool, UInt) => (Bool, Bool)) object RegWriteFn { // (ivalid: Bool, oready: Bool, data: UInt) => (iready: Bool, ovalid: Bool) // iready may combinationally depend on both oready and data // all other combinational dependencies forbidden (e.g. ovalid <= ivalid) // effects must become visible on the cycle after ovalid && oready // data should only be used for an effect when ivalid && iready implicit def apply(x: (Bool, Bool, UInt) => (Bool, Bool)) = new RegWriteFn(false, x) implicit def apply(x: RegisterWriteIO[UInt]): RegWriteFn = RegWriteFn((ivalid, oready, data) => { x.request.valid := ivalid x.request.bits := data x.response.ready := oready (x.request.ready, x.response.valid) }) // (valid: Bool, data: UInt) => (ready: Bool) // ready may combinationally depend on data (but not valid) // effects must become visible on the cycle after valid && ready implicit def apply(x: (Bool, UInt) => Bool) = // combinational => data valid on oready new RegWriteFn(true, { case (_, oready, data) => (true.B, x(oready, data)) }) // write to a DecoupledIO (only safe if there is a consistent sink draining data) // NOTE: this is not an IrrevocableIO (even on TL2) because other fields could cause a lowered valid implicit def apply(x: DecoupledIO[UInt]): RegWriteFn = RegWriteFn((valid, data) => { x.valid := valid; x.bits := data; x.ready }) // updates a register (or adds a mux to a wire) implicit def apply(x: UInt): RegWriteFn = RegWriteFn((valid, data) => { when (valid) { x := data }; true.B }) // noop implicit def apply(x: Unit): RegWriteFn = RegWriteFn((valid, data) => { true.B }) } case class RegField(width: Int, read: RegReadFn, write: RegWriteFn, desc: Option[RegFieldDesc]) { require (width >= 0, s"RegField width must be >= 0, not $width") def pipelined = !read.combinational || !write.combinational def readOnly = this.copy(write = (), desc = this.desc.map(_.copy(access = RegFieldAccessType.R))) def toJson(byteOffset: Int, bitOffset: Int): JValue = { ( ("byteOffset" -> s"0x${byteOffset.toHexString}") ~ ("bitOffset" -> bitOffset) ~ ("bitWidth" -> width) ~ ("name" -> desc.map(_.name)) ~ ("description" -> desc.map{ d=> if (d.desc == "") None else Some(d.desc)}) ~ ("resetValue" -> desc.map{_.reset}) ~ ("group" -> desc.map{_.group}) ~ ("groupDesc" -> desc.map{_.groupDesc}) ~ ("accessType" -> desc.map {d => d.access.toString}) ~ ("writeType" -> desc.map {d => d.wrType.map(_.toString)}) ~ ("readAction" -> desc.map {d => d.rdAction.map(_.toString)}) ~ ("volatile" -> desc.map {d => if (d.volatile) Some(true) else None}) ~ ("enumerations" -> desc.map {d => Option(d.enumerations.map { case (key, (name, edesc)) => (("value" -> key) ~ ("name" -> name) ~ ("description" -> edesc)) }).filter(_.nonEmpty)}) ) } } object RegField { // Byte address => sequence of bitfields, lowest index => lowest address type Map = (Int, Seq[RegField]) def apply(n: Int) : RegField = apply(n, (), (), Some(RegFieldDesc.reserved)) def apply(n: Int, desc: RegFieldDesc) : RegField = apply(n, (), (), Some(desc)) def apply(n: Int, r: RegReadFn, w: RegWriteFn) : RegField = apply(n, r, w, None) def apply(n: Int, r: RegReadFn, w: RegWriteFn, desc: RegFieldDesc) : RegField = apply(n, r, w, Some(desc)) def apply(n: Int, rw: UInt) : RegField = apply(n, rw, rw, None) def apply(n: Int, rw: UInt, desc: RegFieldDesc) : RegField = apply(n, rw, rw, Some(desc)) def r(n: Int, r: RegReadFn) : RegField = apply(n, r, (), None) def r(n: Int, r: RegReadFn, desc: RegFieldDesc) : RegField = apply(n, r, (), Some(desc.copy(access = RegFieldAccessType.R))) def w(n: Int, w: RegWriteFn) : RegField = apply(n, (), w, None) def w(n: Int, w: RegWriteFn, desc: RegFieldDesc) : RegField = apply(n, (), w, Some(desc.copy(access = RegFieldAccessType.W))) // This RegField allows 'set' to set bits in 'reg'. // and to clear bits when the bus writes bits of value 1. // Setting takes priority over clearing. def w1ToClear(n: Int, reg: UInt, set: UInt, desc: Option[RegFieldDesc] = None): RegField = RegField(n, reg, RegWriteFn((valid, data) => { reg := (~((~reg) | Mux(valid, data, 0.U))) | set; true.B }), desc.map{_.copy(access = RegFieldAccessType.RW, wrType=Some(RegFieldWrType.ONE_TO_CLEAR), volatile = true)}) // This RegField wraps an explicit register // (e.g. Black-Boxed Register) to create a R/W register. def rwReg(n: Int, bb: SimpleRegIO, desc: Option[RegFieldDesc] = None) : RegField = RegField(n, bb.q, RegWriteFn((valid, data) => { bb.en := valid bb.d := data true.B }), desc) // Create byte-sized read-write RegFields out of a large UInt register. // It is updated when any of the (implemented) bytes are written, the non-written // bytes are just copied over from their current value. // Because the RegField are all byte-sized, this is also suitable when a register is larger // than the intended bus width of the device (atomic updates are impossible). def bytes(reg: UInt, numBytes: Int, desc: Option[RegFieldDesc]): Seq[RegField] = { require(reg.getWidth * 8 >= numBytes, "Can't break a ${reg.getWidth}-bit-wide register into only ${numBytes} bytes.") val numFullBytes = reg.getWidth/8 val numPartialBytes = if ((reg.getWidth % 8) > 0) 1 else 0 val numPadBytes = numBytes - numFullBytes - numPartialBytes val pad = reg | 0.U((8*numBytes).W) val oldBytes = VecInit.tabulate(numBytes) { i => pad(8*(i+1)-1, 8*i) } val newBytes = WireDefault(oldBytes) val valids = WireDefault(VecInit.fill(numBytes) { false.B }) when (valids.reduce(_ || _)) { reg := newBytes.asUInt } def wrFn(i: Int): RegWriteFn = RegWriteFn((valid, data) => { valids(i) := valid when (valid) {newBytes(i) := data} true.B }) val fullBytes = Seq.tabulate(numFullBytes) { i => val newDesc = desc.map {d => d.copy(name = d.name + s"_$i")} RegField(8, oldBytes(i), wrFn(i), newDesc)} val partialBytes = if (numPartialBytes > 0) { val newDesc = desc.map {d => d.copy(name = d.name + s"_$numFullBytes")} Seq(RegField(reg.getWidth % 8, oldBytes(numFullBytes), wrFn(numFullBytes), newDesc), RegField(8 - (reg.getWidth % 8))) } else Nil val padBytes = Seq.fill(numPadBytes){RegField(8)} fullBytes ++ partialBytes ++ padBytes } def bytes(reg: UInt, desc: Option[RegFieldDesc]): Seq[RegField] = { val width = reg.getWidth require (width % 8 == 0, s"RegField.bytes must be called on byte-sized reg, not ${width} bits") bytes(reg, width/8, desc) } def bytes(reg: UInt, numBytes: Int): Seq[RegField] = bytes(reg, numBytes, None) def bytes(reg: UInt): Seq[RegField] = bytes(reg, None) } trait HasRegMap { def regmap(mapping: RegField.Map*): Unit val interrupts: Vec[Bool] } // See Example.scala for an example of how to use regmap File MuxLiteral.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.log2Ceil import scala.reflect.ClassTag /* MuxLiteral creates a lookup table from a key to a list of values. * Unlike MuxLookup, the table keys must be exclusive literals. */ object MuxLiteral { def apply[T <: Data:ClassTag](index: UInt, default: T, first: (UInt, T), rest: (UInt, T)*): T = apply(index, default, first :: rest.toList) def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(UInt, T)]): T = MuxTable(index, default, cases.map { case (k, v) => (k.litValue, v) }) } object MuxSeq { def apply[T <: Data:ClassTag](index: UInt, default: T, first: T, rest: T*): T = apply(index, default, first :: rest.toList) def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[T]): T = MuxTable(index, default, cases.zipWithIndex.map { case (v, i) => (BigInt(i), v) }) } object MuxTable { def apply[T <: Data:ClassTag](index: UInt, default: T, first: (BigInt, T), rest: (BigInt, T)*): T = apply(index, default, first :: rest.toList) def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(BigInt, T)]): T = { /* All keys must be >= 0 and distinct */ cases.foreach { case (k, _) => require (k >= 0) } require (cases.map(_._1).distinct.size == cases.size) /* Filter out any cases identical to the default */ val simple = cases.filter { case (k, v) => !default.isLit || !v.isLit || v.litValue != default.litValue } val maxKey = (BigInt(0) +: simple.map(_._1)).max val endIndex = BigInt(1) << log2Ceil(maxKey+1) if (simple.isEmpty) { default } else if (endIndex <= 2*simple.size) { /* The dense encoding case uses a Vec */ val table = Array.fill(endIndex.toInt) { default } simple.foreach { case (k, v) => table(k.toInt) = v } Mux(index >= endIndex.U, default, VecInit(table)(index)) } else { /* The sparse encoding case uses switch */ val out = WireDefault(default) simple.foldLeft(new chisel3.util.SwitchContext(index, None, Set.empty)) { case (acc, (k, v)) => acc.is (k.U) { out := v } } out } } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } } File CLINT.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.devices.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.{AddressSet} import freechips.rocketchip.resources.{Resource, SimpleDevice} import freechips.rocketchip.interrupts.{IntNexusNode, IntSinkParameters, IntSinkPortParameters, IntSourceParameters, IntSourcePortParameters} import freechips.rocketchip.regmapper.{RegField, RegFieldDesc, RegFieldGroup} import freechips.rocketchip.subsystem.{BaseSubsystem, CBUS, TLBusWrapperLocation} import freechips.rocketchip.tilelink.{TLFragmenter, TLRegisterNode} import freechips.rocketchip.util.Annotated object CLINTConsts { def msipOffset(hart: Int) = hart * msipBytes def timecmpOffset(hart: Int) = 0x4000 + hart * timecmpBytes def timeOffset = 0xbff8 def msipBytes = 4 def timecmpBytes = 8 def size = 0x10000 def timeWidth = 64 def ipiWidth = 32 def ints = 2 } case class CLINTParams(baseAddress: BigInt = 0x02000000, intStages: Int = 0) { def address = AddressSet(baseAddress, CLINTConsts.size-1) } case object CLINTKey extends Field[Option[CLINTParams]](None) case class CLINTAttachParams( slaveWhere: TLBusWrapperLocation = CBUS ) case object CLINTAttachKey extends Field(CLINTAttachParams()) class CLINT(params: CLINTParams, beatBytes: Int)(implicit p: Parameters) extends LazyModule { import CLINTConsts._ // clint0 => at most 4095 devices val device = new SimpleDevice("clint", Seq("riscv,clint0")) { override val alwaysExtended = true } val node: TLRegisterNode = TLRegisterNode( address = Seq(params.address), device = device, beatBytes = beatBytes) val intnode : IntNexusNode = IntNexusNode( sourceFn = { _ => IntSourcePortParameters(Seq(IntSourceParameters(ints, Seq(Resource(device, "int"))))) }, sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) }, outputRequiresInput = false) lazy val module = new Impl class Impl extends LazyModuleImp(this) { Annotated.params(this, params) require (intnode.edges.in.size == 0, "CLINT only produces interrupts; it does not accept them") val io = IO(new Bundle { val rtcTick = Input(Bool()) }) val time = RegInit(0.U(timeWidth.W)) when (io.rtcTick) { time := time + 1.U } val nTiles = intnode.out.size val timecmp = Seq.fill(nTiles) { Reg(UInt(timeWidth.W)) } val ipi = Seq.fill(nTiles) { RegInit(0.U(1.W)) } val (intnode_out, _) = intnode.out.unzip intnode_out.zipWithIndex.foreach { case (int, i) => int(0) := ShiftRegister(ipi(i)(0), params.intStages) // msip int(1) := ShiftRegister(time.asUInt >= timecmp(i).asUInt, params.intStages) // mtip } /* 0000 msip hart 0 * 0004 msip hart 1 * 4000 mtimecmp hart 0 lo * 4004 mtimecmp hart 0 hi * 4008 mtimecmp hart 1 lo * 400c mtimecmp hart 1 hi * bff8 mtime lo * bffc mtime hi */ node.regmap( 0 -> RegFieldGroup ("msip", Some("MSIP Bits"), ipi.zipWithIndex.flatMap{ case (r, i) => RegField(1, r, RegFieldDesc(s"msip_$i", s"MSIP bit for Hart $i", reset=Some(0))) :: RegField(ipiWidth - 1) :: Nil }), timecmpOffset(0) -> timecmp.zipWithIndex.flatMap{ case (t, i) => RegFieldGroup(s"mtimecmp_$i", Some(s"MTIMECMP for hart $i"), RegField.bytes(t, Some(RegFieldDesc(s"mtimecmp_$i", "", reset=None))))}, timeOffset -> RegFieldGroup("mtime", Some("Timer Register"), RegField.bytes(time, Some(RegFieldDesc("mtime", "", reset=Some(0), volatile=true)))) ) } } /** Trait that will connect a CLINT to a subsystem */ trait CanHavePeripheryCLINT { this: BaseSubsystem => val (clintOpt, clintDomainOpt, clintTickOpt) = p(CLINTKey).map { params => val tlbus = locateTLBusWrapper(p(CLINTAttachKey).slaveWhere) val clintDomainWrapper = tlbus.generateSynchronousDomain("CLINT").suggestName("clint_domain") val clint = clintDomainWrapper { LazyModule(new CLINT(params, tlbus.beatBytes)) } clintDomainWrapper { clint.node := tlbus.coupleTo("clint") { TLFragmenter(tlbus, Some("CLINT")) := _ } } val clintTick = clintDomainWrapper { InModuleBody { val tick = IO(Input(Bool())) clint.module.io.rtcTick := tick tick }} (clint, clintDomainWrapper, clintTick) }.unzip3 }
module CLINT( // @[CLINT.scala:65:9] input clock, // @[CLINT.scala:65:9] input reset, // @[CLINT.scala:65:9] output auto_int_out_7_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_7_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_6_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_6_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_5_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_5_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_4_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_4_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_3_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_3_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_2_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_2_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_1_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_1_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_0_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_0_1, // @[LazyModuleImp.scala:107:25] output auto_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [1:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [10:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [25:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [10:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25] input io_rtcTick // @[CLINT.scala:69:16] ); wire out_front_valid; // @[RegisterRouter.scala:87:24] wire out_front_ready; // @[RegisterRouter.scala:87:24] wire out_bits_read; // @[RegisterRouter.scala:87:24] wire [10:0] out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24] wire [12:0] in_bits_index; // @[RegisterRouter.scala:73:18] wire in_bits_read; // @[RegisterRouter.scala:73:18] wire auto_in_a_valid_0 = auto_in_a_valid; // @[CLINT.scala:65:9] wire [2:0] auto_in_a_bits_opcode_0 = auto_in_a_bits_opcode; // @[CLINT.scala:65:9] wire [2:0] auto_in_a_bits_param_0 = auto_in_a_bits_param; // @[CLINT.scala:65:9] wire [1:0] auto_in_a_bits_size_0 = auto_in_a_bits_size; // @[CLINT.scala:65:9] wire [10:0] auto_in_a_bits_source_0 = auto_in_a_bits_source; // @[CLINT.scala:65:9] wire [25:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[CLINT.scala:65:9] wire [7:0] auto_in_a_bits_mask_0 = auto_in_a_bits_mask; // @[CLINT.scala:65:9] wire [63:0] auto_in_a_bits_data_0 = auto_in_a_bits_data; // @[CLINT.scala:65:9] wire auto_in_a_bits_corrupt_0 = auto_in_a_bits_corrupt; // @[CLINT.scala:65:9] wire auto_in_d_ready_0 = auto_in_d_ready; // @[CLINT.scala:65:9] wire io_rtcTick_0 = io_rtcTick; // @[CLINT.scala:65:9] wire [12:0] out_maskMatch = 13'h17F8; // @[RegisterRouter.scala:87:24] wire [2:0] nodeIn_d_bits_d_opcode = 3'h0; // @[Edges.scala:792:17] wire [63:0] _out_out_bits_data_WIRE_1_4 = 64'h0; // @[MuxLiteral.scala:49:48] wire [63:0] _out_out_bits_data_WIRE_1_5 = 64'h0; // @[MuxLiteral.scala:49:48] wire [63:0] _out_out_bits_data_WIRE_1_6 = 64'h0; // @[MuxLiteral.scala:49:48] wire [63:0] nodeIn_d_bits_d_data = 64'h0; // @[Edges.scala:792:17] wire auto_in_d_bits_sink = 1'h0; // @[CLINT.scala:65:9] wire auto_in_d_bits_denied = 1'h0; // @[CLINT.scala:65:9] wire auto_in_d_bits_corrupt = 1'h0; // @[CLINT.scala:65:9] wire nodeIn_d_bits_sink = 1'h0; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_denied = 1'h0; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17] wire _valids_WIRE_0 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_1 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_2 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_3 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_4 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_5 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_6 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_7 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_1_0 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_1_1 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_1_2 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_1_3 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_1_4 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_1_5 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_1_6 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_1_7 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_2_0 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_2_1 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_2_2 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_2_3 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_2_4 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_2_5 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_2_6 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_2_7 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_3_0 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_3_1 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_3_2 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_3_3 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_3_4 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_3_5 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_3_6 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_3_7 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_4_0 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_4_1 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_4_2 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_4_3 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_4_4 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_4_5 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_4_6 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_4_7 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_5_0 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_5_1 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_5_2 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_5_3 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_5_4 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_5_5 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_5_6 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_5_7 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_6_0 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_6_1 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_6_2 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_6_3 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_6_4 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_6_5 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_6_6 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_6_7 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_7_0 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_7_1 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_7_2 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_7_3 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_7_4 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_7_5 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_7_6 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_7_7 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_8_0 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_8_1 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_8_2 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_8_3 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_8_4 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_8_5 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_8_6 = 1'h0; // @[RegField.scala:153:53] wire _valids_WIRE_8_7 = 1'h0; // @[RegField.scala:153:53] wire _out_rifireMux_T_20 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_24 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_28 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_66 = 1'h0; // @[MuxLiteral.scala:49:17] wire _out_wifireMux_T_21 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_25 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_29 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_67 = 1'h0; // @[MuxLiteral.scala:49:17] wire _out_rofireMux_T_20 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_24 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_28 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_66 = 1'h0; // @[MuxLiteral.scala:49:17] wire _out_wofireMux_T_21 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_25 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_29 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_67 = 1'h0; // @[MuxLiteral.scala:49:17] wire _out_out_bits_data_T = 1'h0; // @[MuxLiteral.scala:49:17] wire _out_out_bits_data_T_2 = 1'h0; // @[MuxLiteral.scala:49:17] wire nodeIn_d_bits_d_sink = 1'h0; // @[Edges.scala:792:17] wire nodeIn_d_bits_d_denied = 1'h0; // @[Edges.scala:792:17] wire nodeIn_d_bits_d_corrupt = 1'h0; // @[Edges.scala:792:17] wire [1:0] auto_in_d_bits_param = 2'h0; // @[CLINT.scala:65:9] wire [1:0] nodeIn_d_bits_param = 2'h0; // @[MixedNode.scala:551:17] wire [1:0] nodeIn_d_bits_d_param = 2'h0; // @[Edges.scala:792:17] wire x1_intnodeOut_6_0; // @[MixedNode.scala:542:17] wire out_rifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_17 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_4 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_21 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_25 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_29 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_7 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_33 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_8 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_37 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_41 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_45 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_11 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_49 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_12 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_53 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_57 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_61 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_15 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_65 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_4 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_5 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_6 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_7 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_8 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_9 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_10 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_11 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_12 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_13 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_14 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_15 = 1'h1; // @[MuxLiteral.scala:49:48] wire out_rifireMux = 1'h1; // @[MuxLiteral.scala:49:10] wire out_wifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_18 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_4 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_22 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_26 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_30 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_7 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_34 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_8 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_38 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_42 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_46 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_11 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_50 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_12 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_54 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_58 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_62 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_15 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_66 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_4 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_5 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_6 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_7 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_8 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_9 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_10 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_11 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_12 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_13 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_14 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_15 = 1'h1; // @[MuxLiteral.scala:49:48] wire out_wifireMux = 1'h1; // @[MuxLiteral.scala:49:10] wire out_rofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_17 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_4 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_21 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_25 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_29 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_7 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_33 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_8 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_37 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_41 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_45 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_11 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_49 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_12 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_53 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_57 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_61 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_15 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_65 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_4 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_5 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_6 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_7 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_8 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_9 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_10 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_11 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_12 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_13 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_14 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_15 = 1'h1; // @[MuxLiteral.scala:49:48] wire out_rofireMux = 1'h1; // @[MuxLiteral.scala:49:10] wire out_wofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_18 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_4 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_22 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_26 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_30 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_7 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_34 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_8 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_38 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_42 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_46 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_11 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_50 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_12 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_54 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_58 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_62 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_15 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_66 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_4 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_5 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_6 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_7 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_8 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_9 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_10 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_11 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_12 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_13 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_14 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_15 = 1'h1; // @[MuxLiteral.scala:49:48] wire out_wofireMux = 1'h1; // @[MuxLiteral.scala:49:10] wire out_iready = 1'h1; // @[RegisterRouter.scala:87:24] wire out_oready = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_out_bits_data_WIRE_4 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_5 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_6 = 1'h1; // @[MuxLiteral.scala:49:48] wire x1_intnodeOut_6_1; // @[MixedNode.scala:542:17] wire x1_intnodeOut_5_0; // @[MixedNode.scala:542:17] wire x1_intnodeOut_5_1; // @[MixedNode.scala:542:17] wire x1_intnodeOut_4_0; // @[MixedNode.scala:542:17] wire x1_intnodeOut_4_1; // @[MixedNode.scala:542:17] wire x1_intnodeOut_3_0; // @[MixedNode.scala:542:17] wire x1_intnodeOut_3_1; // @[MixedNode.scala:542:17] wire x1_intnodeOut_2_0; // @[MixedNode.scala:542:17] wire x1_intnodeOut_2_1; // @[MixedNode.scala:542:17] wire x1_intnodeOut_1_0; // @[MixedNode.scala:542:17] wire x1_intnodeOut_1_1; // @[MixedNode.scala:542:17] wire x1_intnodeOut_0; // @[MixedNode.scala:542:17] wire x1_intnodeOut_1; // @[MixedNode.scala:542:17] wire intnodeOut_0; // @[MixedNode.scala:542:17] wire intnodeOut_1; // @[MixedNode.scala:542:17] wire nodeIn_a_ready; // @[MixedNode.scala:551:17] wire nodeIn_a_valid = auto_in_a_valid_0; // @[CLINT.scala:65:9] wire [2:0] nodeIn_a_bits_opcode = auto_in_a_bits_opcode_0; // @[CLINT.scala:65:9] wire [2:0] nodeIn_a_bits_param = auto_in_a_bits_param_0; // @[CLINT.scala:65:9] wire [1:0] nodeIn_a_bits_size = auto_in_a_bits_size_0; // @[CLINT.scala:65:9] wire [10:0] nodeIn_a_bits_source = auto_in_a_bits_source_0; // @[CLINT.scala:65:9] wire [25:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[CLINT.scala:65:9] wire [7:0] nodeIn_a_bits_mask = auto_in_a_bits_mask_0; // @[CLINT.scala:65:9] wire [63:0] nodeIn_a_bits_data = auto_in_a_bits_data_0; // @[CLINT.scala:65:9] wire nodeIn_a_bits_corrupt = auto_in_a_bits_corrupt_0; // @[CLINT.scala:65:9] wire nodeIn_d_ready = auto_in_d_ready_0; // @[CLINT.scala:65:9] wire nodeIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17] wire [10:0] nodeIn_d_bits_source; // @[MixedNode.scala:551:17] wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17] wire auto_int_out_7_0_0; // @[CLINT.scala:65:9] wire auto_int_out_7_1_0; // @[CLINT.scala:65:9] wire auto_int_out_6_0_0; // @[CLINT.scala:65:9] wire auto_int_out_6_1_0; // @[CLINT.scala:65:9] wire auto_int_out_5_0_0; // @[CLINT.scala:65:9] wire auto_int_out_5_1_0; // @[CLINT.scala:65:9] wire auto_int_out_4_0_0; // @[CLINT.scala:65:9] wire auto_int_out_4_1_0; // @[CLINT.scala:65:9] wire auto_int_out_3_0_0; // @[CLINT.scala:65:9] wire auto_int_out_3_1_0; // @[CLINT.scala:65:9] wire auto_int_out_2_0_0; // @[CLINT.scala:65:9] wire auto_int_out_2_1_0; // @[CLINT.scala:65:9] wire auto_int_out_1_0_0; // @[CLINT.scala:65:9] wire auto_int_out_1_1_0; // @[CLINT.scala:65:9] wire auto_int_out_0_0_0; // @[CLINT.scala:65:9] wire auto_int_out_0_1_0; // @[CLINT.scala:65:9] wire auto_in_a_ready_0; // @[CLINT.scala:65:9] wire [2:0] auto_in_d_bits_opcode_0; // @[CLINT.scala:65:9] wire [1:0] auto_in_d_bits_size_0; // @[CLINT.scala:65:9] wire [10:0] auto_in_d_bits_source_0; // @[CLINT.scala:65:9] wire [63:0] auto_in_d_bits_data_0; // @[CLINT.scala:65:9] wire auto_in_d_valid_0; // @[CLINT.scala:65:9] wire in_ready; // @[RegisterRouter.scala:73:18] assign auto_in_a_ready_0 = nodeIn_a_ready; // @[CLINT.scala:65:9] wire in_valid = nodeIn_a_valid; // @[RegisterRouter.scala:73:18] wire [1:0] in_bits_extra_tlrr_extra_size = nodeIn_a_bits_size; // @[RegisterRouter.scala:73:18] wire [10:0] in_bits_extra_tlrr_extra_source = nodeIn_a_bits_source; // @[RegisterRouter.scala:73:18] wire [7:0] in_bits_mask = nodeIn_a_bits_mask; // @[RegisterRouter.scala:73:18] wire [63:0] in_bits_data = nodeIn_a_bits_data; // @[RegisterRouter.scala:73:18] wire out_ready = nodeIn_d_ready; // @[RegisterRouter.scala:87:24] wire out_valid; // @[RegisterRouter.scala:87:24] assign auto_in_d_valid_0 = nodeIn_d_valid; // @[CLINT.scala:65:9] assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[CLINT.scala:65:9] wire [1:0] nodeIn_d_bits_d_size; // @[Edges.scala:792:17] assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[CLINT.scala:65:9] wire [10:0] nodeIn_d_bits_d_source; // @[Edges.scala:792:17] assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[CLINT.scala:65:9] wire [63:0] out_bits_data; // @[RegisterRouter.scala:87:24] assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[CLINT.scala:65:9] wire _intnodeOut_0_T; // @[CLINT.scala:82:37] assign auto_int_out_0_0_0 = intnodeOut_0; // @[CLINT.scala:65:9] wire _intnodeOut_1_T; // @[CLINT.scala:83:43] assign auto_int_out_0_1_0 = intnodeOut_1; // @[CLINT.scala:65:9] wire _intnodeOut_0_T_1; // @[CLINT.scala:82:37] assign auto_int_out_1_0_0 = x1_intnodeOut_0; // @[CLINT.scala:65:9] wire _intnodeOut_1_T_1; // @[CLINT.scala:83:43] assign auto_int_out_1_1_0 = x1_intnodeOut_1; // @[CLINT.scala:65:9] wire _intnodeOut_0_T_2; // @[CLINT.scala:82:37] assign auto_int_out_2_0_0 = x1_intnodeOut_1_0; // @[CLINT.scala:65:9] wire _intnodeOut_1_T_2; // @[CLINT.scala:83:43] assign auto_int_out_2_1_0 = x1_intnodeOut_1_1; // @[CLINT.scala:65:9] wire _intnodeOut_0_T_3; // @[CLINT.scala:82:37] assign auto_int_out_3_0_0 = x1_intnodeOut_2_0; // @[CLINT.scala:65:9] wire _intnodeOut_1_T_3; // @[CLINT.scala:83:43] assign auto_int_out_3_1_0 = x1_intnodeOut_2_1; // @[CLINT.scala:65:9] wire _intnodeOut_0_T_4; // @[CLINT.scala:82:37] assign auto_int_out_4_0_0 = x1_intnodeOut_3_0; // @[CLINT.scala:65:9] wire _intnodeOut_1_T_4; // @[CLINT.scala:83:43] assign auto_int_out_4_1_0 = x1_intnodeOut_3_1; // @[CLINT.scala:65:9] wire _intnodeOut_0_T_5; // @[CLINT.scala:82:37] assign auto_int_out_5_0_0 = x1_intnodeOut_4_0; // @[CLINT.scala:65:9] wire _intnodeOut_1_T_5; // @[CLINT.scala:83:43] assign auto_int_out_5_1_0 = x1_intnodeOut_4_1; // @[CLINT.scala:65:9] wire _intnodeOut_0_T_6; // @[CLINT.scala:82:37] assign auto_int_out_6_0_0 = x1_intnodeOut_5_0; // @[CLINT.scala:65:9] wire _intnodeOut_1_T_6; // @[CLINT.scala:83:43] assign auto_int_out_6_1_0 = x1_intnodeOut_5_1; // @[CLINT.scala:65:9] wire _intnodeOut_0_T_7; // @[CLINT.scala:82:37] assign auto_int_out_7_0_0 = x1_intnodeOut_6_0; // @[CLINT.scala:65:9] wire _intnodeOut_1_T_7; // @[CLINT.scala:83:43] assign auto_int_out_7_1_0 = x1_intnodeOut_6_1; // @[CLINT.scala:65:9] reg [63:0] time_0; // @[CLINT.scala:73:23] wire [63:0] pad_8 = time_0; // @[RegField.scala:150:19] wire [64:0] _time_T = {1'h0, time_0} + 65'h1; // @[CLINT.scala:73:23, :74:38] wire [63:0] _time_T_1 = _time_T[63:0]; // @[CLINT.scala:74:38] reg [63:0] timecmp_0; // @[CLINT.scala:77:41] wire [63:0] pad = timecmp_0; // @[RegField.scala:150:19] reg [63:0] timecmp_1; // @[CLINT.scala:77:41] wire [63:0] pad_1 = timecmp_1; // @[RegField.scala:150:19] reg [63:0] timecmp_2; // @[CLINT.scala:77:41] wire [63:0] pad_2 = timecmp_2; // @[RegField.scala:150:19] reg [63:0] timecmp_3; // @[CLINT.scala:77:41] wire [63:0] pad_3 = timecmp_3; // @[RegField.scala:150:19] reg [63:0] timecmp_4; // @[CLINT.scala:77:41] wire [63:0] pad_4 = timecmp_4; // @[RegField.scala:150:19] reg [63:0] timecmp_5; // @[CLINT.scala:77:41] wire [63:0] pad_5 = timecmp_5; // @[RegField.scala:150:19] reg [63:0] timecmp_6; // @[CLINT.scala:77:41] wire [63:0] pad_6 = timecmp_6; // @[RegField.scala:150:19] reg [63:0] timecmp_7; // @[CLINT.scala:77:41] wire [63:0] pad_7 = timecmp_7; // @[RegField.scala:150:19] reg ipi_0; // @[CLINT.scala:78:41] assign _intnodeOut_0_T = ipi_0; // @[CLINT.scala:78:41, :82:37] wire _out_T_35 = ipi_0; // @[RegisterRouter.scala:87:24] reg ipi_1; // @[CLINT.scala:78:41] assign _intnodeOut_0_T_1 = ipi_1; // @[CLINT.scala:78:41, :82:37] reg ipi_2; // @[CLINT.scala:78:41] assign _intnodeOut_0_T_2 = ipi_2; // @[CLINT.scala:78:41, :82:37] wire _out_T_163 = ipi_2; // @[RegisterRouter.scala:87:24] reg ipi_3; // @[CLINT.scala:78:41] assign _intnodeOut_0_T_3 = ipi_3; // @[CLINT.scala:78:41, :82:37] reg ipi_4; // @[CLINT.scala:78:41] assign _intnodeOut_0_T_4 = ipi_4; // @[CLINT.scala:78:41, :82:37] wire _out_T_467 = ipi_4; // @[RegisterRouter.scala:87:24] reg ipi_5; // @[CLINT.scala:78:41] assign _intnodeOut_0_T_5 = ipi_5; // @[CLINT.scala:78:41, :82:37] reg ipi_6; // @[CLINT.scala:78:41] assign _intnodeOut_0_T_6 = ipi_6; // @[CLINT.scala:78:41, :82:37] wire _out_T_947 = ipi_6; // @[RegisterRouter.scala:87:24] reg ipi_7; // @[CLINT.scala:78:41] assign _intnodeOut_0_T_7 = ipi_7; // @[CLINT.scala:78:41, :82:37] assign intnodeOut_0 = _intnodeOut_0_T; // @[CLINT.scala:82:37] assign _intnodeOut_1_T = time_0 >= timecmp_0; // @[CLINT.scala:73:23, :77:41, :83:43] assign intnodeOut_1 = _intnodeOut_1_T; // @[CLINT.scala:83:43] assign x1_intnodeOut_0 = _intnodeOut_0_T_1; // @[CLINT.scala:82:37] assign _intnodeOut_1_T_1 = time_0 >= timecmp_1; // @[CLINT.scala:73:23, :77:41, :83:43] assign x1_intnodeOut_1 = _intnodeOut_1_T_1; // @[CLINT.scala:83:43] assign x1_intnodeOut_1_0 = _intnodeOut_0_T_2; // @[CLINT.scala:82:37] assign _intnodeOut_1_T_2 = time_0 >= timecmp_2; // @[CLINT.scala:73:23, :77:41, :83:43] assign x1_intnodeOut_1_1 = _intnodeOut_1_T_2; // @[CLINT.scala:83:43] assign x1_intnodeOut_2_0 = _intnodeOut_0_T_3; // @[CLINT.scala:82:37] assign _intnodeOut_1_T_3 = time_0 >= timecmp_3; // @[CLINT.scala:73:23, :77:41, :83:43] assign x1_intnodeOut_2_1 = _intnodeOut_1_T_3; // @[CLINT.scala:83:43] assign x1_intnodeOut_3_0 = _intnodeOut_0_T_4; // @[CLINT.scala:82:37] assign _intnodeOut_1_T_4 = time_0 >= timecmp_4; // @[CLINT.scala:73:23, :77:41, :83:43] assign x1_intnodeOut_3_1 = _intnodeOut_1_T_4; // @[CLINT.scala:83:43] assign x1_intnodeOut_4_0 = _intnodeOut_0_T_5; // @[CLINT.scala:82:37] assign _intnodeOut_1_T_5 = time_0 >= timecmp_5; // @[CLINT.scala:73:23, :77:41, :83:43] assign x1_intnodeOut_4_1 = _intnodeOut_1_T_5; // @[CLINT.scala:83:43] assign x1_intnodeOut_5_0 = _intnodeOut_0_T_6; // @[CLINT.scala:82:37] assign _intnodeOut_1_T_6 = time_0 >= timecmp_6; // @[CLINT.scala:73:23, :77:41, :83:43] assign x1_intnodeOut_5_1 = _intnodeOut_1_T_6; // @[CLINT.scala:83:43] assign x1_intnodeOut_6_0 = _intnodeOut_0_T_7; // @[CLINT.scala:82:37] assign _intnodeOut_1_T_7 = time_0 >= timecmp_7; // @[CLINT.scala:73:23, :77:41, :83:43] assign x1_intnodeOut_6_1 = _intnodeOut_1_T_7; // @[CLINT.scala:83:43] wire [7:0] _oldBytes_T = pad[7:0]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_0 = _oldBytes_T; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_1 = pad[15:8]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_1 = _oldBytes_T_1; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_2 = pad[23:16]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_2 = _oldBytes_T_2; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_3 = pad[31:24]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_3 = _oldBytes_T_3; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_4 = pad[39:32]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_4 = _oldBytes_T_4; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_5 = pad[47:40]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_5 = _oldBytes_T_5; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_6 = pad[55:48]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_6 = _oldBytes_T_6; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_7 = pad[63:56]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_7 = _oldBytes_T_7; // @[RegField.scala:151:{47,57}] wire [7:0] _out_T_507 = oldBytes_0; // @[RegisterRouter.scala:87:24] wire [7:0] newBytes_0; // @[RegField.scala:152:31] wire [7:0] newBytes_1; // @[RegField.scala:152:31] wire [7:0] newBytes_2; // @[RegField.scala:152:31] wire [7:0] newBytes_3; // @[RegField.scala:152:31] wire [7:0] newBytes_4; // @[RegField.scala:152:31] wire [7:0] newBytes_5; // @[RegField.scala:152:31] wire [7:0] newBytes_6; // @[RegField.scala:152:31] wire [7:0] newBytes_7; // @[RegField.scala:152:31] wire out_f_woready_44; // @[RegisterRouter.scala:87:24] wire out_f_woready_45; // @[RegisterRouter.scala:87:24] wire out_f_woready_46; // @[RegisterRouter.scala:87:24] wire out_f_woready_47; // @[RegisterRouter.scala:87:24] wire out_f_woready_48; // @[RegisterRouter.scala:87:24] wire out_f_woready_49; // @[RegisterRouter.scala:87:24] wire out_f_woready_50; // @[RegisterRouter.scala:87:24] wire out_f_woready_51; // @[RegisterRouter.scala:87:24] wire valids_0; // @[RegField.scala:153:29] wire valids_1; // @[RegField.scala:153:29] wire valids_2; // @[RegField.scala:153:29] wire valids_3; // @[RegField.scala:153:29] wire valids_4; // @[RegField.scala:153:29] wire valids_5; // @[RegField.scala:153:29] wire valids_6; // @[RegField.scala:153:29] wire valids_7; // @[RegField.scala:153:29] wire [15:0] timecmp_0_lo_lo = {newBytes_1, newBytes_0}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_0_lo_hi = {newBytes_3, newBytes_2}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_0_lo = {timecmp_0_lo_hi, timecmp_0_lo_lo}; // @[RegField.scala:154:52] wire [15:0] timecmp_0_hi_lo = {newBytes_5, newBytes_4}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_0_hi_hi = {newBytes_7, newBytes_6}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_0_hi = {timecmp_0_hi_hi, timecmp_0_hi_lo}; // @[RegField.scala:154:52] wire [63:0] _timecmp_0_T = {timecmp_0_hi, timecmp_0_lo}; // @[RegField.scala:154:52] wire [7:0] _oldBytes_T_8 = pad_1[7:0]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_1_0 = _oldBytes_T_8; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_9 = pad_1[15:8]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_1_1 = _oldBytes_T_9; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_10 = pad_1[23:16]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_1_2 = _oldBytes_T_10; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_11 = pad_1[31:24]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_1_3 = _oldBytes_T_11; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_12 = pad_1[39:32]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_1_4 = _oldBytes_T_12; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_13 = pad_1[47:40]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_1_5 = _oldBytes_T_13; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_14 = pad_1[55:48]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_1_6 = _oldBytes_T_14; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_15 = pad_1[63:56]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_1_7 = _oldBytes_T_15; // @[RegField.scala:151:{47,57}] wire [7:0] _out_T_75 = oldBytes_1_0; // @[RegisterRouter.scala:87:24] wire [7:0] newBytes_1_0; // @[RegField.scala:152:31] wire [7:0] newBytes_1_1; // @[RegField.scala:152:31] wire [7:0] newBytes_1_2; // @[RegField.scala:152:31] wire [7:0] newBytes_1_3; // @[RegField.scala:152:31] wire [7:0] newBytes_1_4; // @[RegField.scala:152:31] wire [7:0] newBytes_1_5; // @[RegField.scala:152:31] wire [7:0] newBytes_1_6; // @[RegField.scala:152:31] wire [7:0] newBytes_1_7; // @[RegField.scala:152:31] wire out_f_woready_4; // @[RegisterRouter.scala:87:24] wire out_f_woready_5; // @[RegisterRouter.scala:87:24] wire out_f_woready_6; // @[RegisterRouter.scala:87:24] wire out_f_woready_7; // @[RegisterRouter.scala:87:24] wire out_f_woready_8; // @[RegisterRouter.scala:87:24] wire out_f_woready_9; // @[RegisterRouter.scala:87:24] wire out_f_woready_10; // @[RegisterRouter.scala:87:24] wire out_f_woready_11; // @[RegisterRouter.scala:87:24] wire valids_1_0; // @[RegField.scala:153:29] wire valids_1_1; // @[RegField.scala:153:29] wire valids_1_2; // @[RegField.scala:153:29] wire valids_1_3; // @[RegField.scala:153:29] wire valids_1_4; // @[RegField.scala:153:29] wire valids_1_5; // @[RegField.scala:153:29] wire valids_1_6; // @[RegField.scala:153:29] wire valids_1_7; // @[RegField.scala:153:29] wire [15:0] timecmp_1_lo_lo = {newBytes_1_1, newBytes_1_0}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_1_lo_hi = {newBytes_1_3, newBytes_1_2}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_1_lo = {timecmp_1_lo_hi, timecmp_1_lo_lo}; // @[RegField.scala:154:52] wire [15:0] timecmp_1_hi_lo = {newBytes_1_5, newBytes_1_4}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_1_hi_hi = {newBytes_1_7, newBytes_1_6}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_1_hi = {timecmp_1_hi_hi, timecmp_1_hi_lo}; // @[RegField.scala:154:52] wire [63:0] _timecmp_1_T = {timecmp_1_hi, timecmp_1_lo}; // @[RegField.scala:154:52] wire [7:0] _oldBytes_T_16 = pad_2[7:0]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_2_0 = _oldBytes_T_16; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_17 = pad_2[15:8]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_2_1 = _oldBytes_T_17; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_18 = pad_2[23:16]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_2_2 = _oldBytes_T_18; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_19 = pad_2[31:24]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_2_3 = _oldBytes_T_19; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_20 = pad_2[39:32]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_2_4 = _oldBytes_T_20; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_21 = pad_2[47:40]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_2_5 = _oldBytes_T_21; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_22 = pad_2[55:48]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_2_6 = _oldBytes_T_22; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_23 = pad_2[63:56]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_2_7 = _oldBytes_T_23; // @[RegField.scala:151:{47,57}] wire [7:0] _out_T_771 = oldBytes_2_0; // @[RegisterRouter.scala:87:24] wire [7:0] newBytes_2_0; // @[RegField.scala:152:31] wire [7:0] newBytes_2_1; // @[RegField.scala:152:31] wire [7:0] newBytes_2_2; // @[RegField.scala:152:31] wire [7:0] newBytes_2_3; // @[RegField.scala:152:31] wire [7:0] newBytes_2_4; // @[RegField.scala:152:31] wire [7:0] newBytes_2_5; // @[RegField.scala:152:31] wire [7:0] newBytes_2_6; // @[RegField.scala:152:31] wire [7:0] newBytes_2_7; // @[RegField.scala:152:31] wire out_f_woready_68; // @[RegisterRouter.scala:87:24] wire out_f_woready_69; // @[RegisterRouter.scala:87:24] wire out_f_woready_70; // @[RegisterRouter.scala:87:24] wire out_f_woready_71; // @[RegisterRouter.scala:87:24] wire out_f_woready_72; // @[RegisterRouter.scala:87:24] wire out_f_woready_73; // @[RegisterRouter.scala:87:24] wire out_f_woready_74; // @[RegisterRouter.scala:87:24] wire out_f_woready_75; // @[RegisterRouter.scala:87:24] wire valids_2_0; // @[RegField.scala:153:29] wire valids_2_1; // @[RegField.scala:153:29] wire valids_2_2; // @[RegField.scala:153:29] wire valids_2_3; // @[RegField.scala:153:29] wire valids_2_4; // @[RegField.scala:153:29] wire valids_2_5; // @[RegField.scala:153:29] wire valids_2_6; // @[RegField.scala:153:29] wire valids_2_7; // @[RegField.scala:153:29] wire [15:0] timecmp_2_lo_lo = {newBytes_2_1, newBytes_2_0}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_2_lo_hi = {newBytes_2_3, newBytes_2_2}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_2_lo = {timecmp_2_lo_hi, timecmp_2_lo_lo}; // @[RegField.scala:154:52] wire [15:0] timecmp_2_hi_lo = {newBytes_2_5, newBytes_2_4}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_2_hi_hi = {newBytes_2_7, newBytes_2_6}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_2_hi = {timecmp_2_hi_hi, timecmp_2_hi_lo}; // @[RegField.scala:154:52] wire [63:0] _timecmp_2_T = {timecmp_2_hi, timecmp_2_lo}; // @[RegField.scala:154:52] wire [7:0] _oldBytes_T_24 = pad_3[7:0]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_3_0 = _oldBytes_T_24; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_25 = pad_3[15:8]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_3_1 = _oldBytes_T_25; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_26 = pad_3[23:16]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_3_2 = _oldBytes_T_26; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_27 = pad_3[31:24]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_3_3 = _oldBytes_T_27; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_28 = pad_3[39:32]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_3_4 = _oldBytes_T_28; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_29 = pad_3[47:40]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_3_5 = _oldBytes_T_29; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_30 = pad_3[55:48]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_3_6 = _oldBytes_T_30; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_31 = pad_3[63:56]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_3_7 = _oldBytes_T_31; // @[RegField.scala:151:{47,57}] wire [7:0] _out_T_859 = oldBytes_3_0; // @[RegisterRouter.scala:87:24] wire [7:0] newBytes_3_0; // @[RegField.scala:152:31] wire [7:0] newBytes_3_1; // @[RegField.scala:152:31] wire [7:0] newBytes_3_2; // @[RegField.scala:152:31] wire [7:0] newBytes_3_3; // @[RegField.scala:152:31] wire [7:0] newBytes_3_4; // @[RegField.scala:152:31] wire [7:0] newBytes_3_5; // @[RegField.scala:152:31] wire [7:0] newBytes_3_6; // @[RegField.scala:152:31] wire [7:0] newBytes_3_7; // @[RegField.scala:152:31] wire out_f_woready_76; // @[RegisterRouter.scala:87:24] wire out_f_woready_77; // @[RegisterRouter.scala:87:24] wire out_f_woready_78; // @[RegisterRouter.scala:87:24] wire out_f_woready_79; // @[RegisterRouter.scala:87:24] wire out_f_woready_80; // @[RegisterRouter.scala:87:24] wire out_f_woready_81; // @[RegisterRouter.scala:87:24] wire out_f_woready_82; // @[RegisterRouter.scala:87:24] wire out_f_woready_83; // @[RegisterRouter.scala:87:24] wire valids_3_0; // @[RegField.scala:153:29] wire valids_3_1; // @[RegField.scala:153:29] wire valids_3_2; // @[RegField.scala:153:29] wire valids_3_3; // @[RegField.scala:153:29] wire valids_3_4; // @[RegField.scala:153:29] wire valids_3_5; // @[RegField.scala:153:29] wire valids_3_6; // @[RegField.scala:153:29] wire valids_3_7; // @[RegField.scala:153:29] wire [15:0] timecmp_3_lo_lo = {newBytes_3_1, newBytes_3_0}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_3_lo_hi = {newBytes_3_3, newBytes_3_2}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_3_lo = {timecmp_3_lo_hi, timecmp_3_lo_lo}; // @[RegField.scala:154:52] wire [15:0] timecmp_3_hi_lo = {newBytes_3_5, newBytes_3_4}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_3_hi_hi = {newBytes_3_7, newBytes_3_6}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_3_hi = {timecmp_3_hi_hi, timecmp_3_hi_lo}; // @[RegField.scala:154:52] wire [63:0] _timecmp_3_T = {timecmp_3_hi, timecmp_3_lo}; // @[RegField.scala:154:52] wire [7:0] _oldBytes_T_32 = pad_4[7:0]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_4_0 = _oldBytes_T_32; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_33 = pad_4[15:8]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_4_1 = _oldBytes_T_33; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_34 = pad_4[23:16]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_4_2 = _oldBytes_T_34; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_35 = pad_4[31:24]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_4_3 = _oldBytes_T_35; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_36 = pad_4[39:32]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_4_4 = _oldBytes_T_36; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_37 = pad_4[47:40]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_4_5 = _oldBytes_T_37; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_38 = pad_4[55:48]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_4_6 = _oldBytes_T_38; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_39 = pad_4[63:56]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_4_7 = _oldBytes_T_39; // @[RegField.scala:151:{47,57}] wire [7:0] _out_T_379 = oldBytes_4_0; // @[RegisterRouter.scala:87:24] wire [7:0] newBytes_4_0; // @[RegField.scala:152:31] wire [7:0] newBytes_4_1; // @[RegField.scala:152:31] wire [7:0] newBytes_4_2; // @[RegField.scala:152:31] wire [7:0] newBytes_4_3; // @[RegField.scala:152:31] wire [7:0] newBytes_4_4; // @[RegField.scala:152:31] wire [7:0] newBytes_4_5; // @[RegField.scala:152:31] wire [7:0] newBytes_4_6; // @[RegField.scala:152:31] wire [7:0] newBytes_4_7; // @[RegField.scala:152:31] wire out_f_woready_32; // @[RegisterRouter.scala:87:24] wire out_f_woready_33; // @[RegisterRouter.scala:87:24] wire out_f_woready_34; // @[RegisterRouter.scala:87:24] wire out_f_woready_35; // @[RegisterRouter.scala:87:24] wire out_f_woready_36; // @[RegisterRouter.scala:87:24] wire out_f_woready_37; // @[RegisterRouter.scala:87:24] wire out_f_woready_38; // @[RegisterRouter.scala:87:24] wire out_f_woready_39; // @[RegisterRouter.scala:87:24] wire valids_4_0; // @[RegField.scala:153:29] wire valids_4_1; // @[RegField.scala:153:29] wire valids_4_2; // @[RegField.scala:153:29] wire valids_4_3; // @[RegField.scala:153:29] wire valids_4_4; // @[RegField.scala:153:29] wire valids_4_5; // @[RegField.scala:153:29] wire valids_4_6; // @[RegField.scala:153:29] wire valids_4_7; // @[RegField.scala:153:29] wire [15:0] timecmp_4_lo_lo = {newBytes_4_1, newBytes_4_0}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_4_lo_hi = {newBytes_4_3, newBytes_4_2}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_4_lo = {timecmp_4_lo_hi, timecmp_4_lo_lo}; // @[RegField.scala:154:52] wire [15:0] timecmp_4_hi_lo = {newBytes_4_5, newBytes_4_4}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_4_hi_hi = {newBytes_4_7, newBytes_4_6}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_4_hi = {timecmp_4_hi_hi, timecmp_4_hi_lo}; // @[RegField.scala:154:52] wire [63:0] _timecmp_4_T = {timecmp_4_hi, timecmp_4_lo}; // @[RegField.scala:154:52] wire [7:0] _oldBytes_T_40 = pad_5[7:0]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_5_0 = _oldBytes_T_40; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_41 = pad_5[15:8]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_5_1 = _oldBytes_T_41; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_42 = pad_5[23:16]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_5_2 = _oldBytes_T_42; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_43 = pad_5[31:24]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_5_3 = _oldBytes_T_43; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_44 = pad_5[39:32]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_5_4 = _oldBytes_T_44; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_45 = pad_5[47:40]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_5_5 = _oldBytes_T_45; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_46 = pad_5[55:48]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_5_6 = _oldBytes_T_46; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_47 = pad_5[63:56]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_5_7 = _oldBytes_T_47; // @[RegField.scala:151:{47,57}] wire [7:0] _out_T_291 = oldBytes_5_0; // @[RegisterRouter.scala:87:24] wire [7:0] newBytes_5_0; // @[RegField.scala:152:31] wire [7:0] newBytes_5_1; // @[RegField.scala:152:31] wire [7:0] newBytes_5_2; // @[RegField.scala:152:31] wire [7:0] newBytes_5_3; // @[RegField.scala:152:31] wire [7:0] newBytes_5_4; // @[RegField.scala:152:31] wire [7:0] newBytes_5_5; // @[RegField.scala:152:31] wire [7:0] newBytes_5_6; // @[RegField.scala:152:31] wire [7:0] newBytes_5_7; // @[RegField.scala:152:31] wire out_f_woready_24; // @[RegisterRouter.scala:87:24] wire out_f_woready_25; // @[RegisterRouter.scala:87:24] wire out_f_woready_26; // @[RegisterRouter.scala:87:24] wire out_f_woready_27; // @[RegisterRouter.scala:87:24] wire out_f_woready_28; // @[RegisterRouter.scala:87:24] wire out_f_woready_29; // @[RegisterRouter.scala:87:24] wire out_f_woready_30; // @[RegisterRouter.scala:87:24] wire out_f_woready_31; // @[RegisterRouter.scala:87:24] wire valids_5_0; // @[RegField.scala:153:29] wire valids_5_1; // @[RegField.scala:153:29] wire valids_5_2; // @[RegField.scala:153:29] wire valids_5_3; // @[RegField.scala:153:29] wire valids_5_4; // @[RegField.scala:153:29] wire valids_5_5; // @[RegField.scala:153:29] wire valids_5_6; // @[RegField.scala:153:29] wire valids_5_7; // @[RegField.scala:153:29] wire [15:0] timecmp_5_lo_lo = {newBytes_5_1, newBytes_5_0}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_5_lo_hi = {newBytes_5_3, newBytes_5_2}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_5_lo = {timecmp_5_lo_hi, timecmp_5_lo_lo}; // @[RegField.scala:154:52] wire [15:0] timecmp_5_hi_lo = {newBytes_5_5, newBytes_5_4}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_5_hi_hi = {newBytes_5_7, newBytes_5_6}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_5_hi = {timecmp_5_hi_hi, timecmp_5_hi_lo}; // @[RegField.scala:154:52] wire [63:0] _timecmp_5_T = {timecmp_5_hi, timecmp_5_lo}; // @[RegField.scala:154:52] wire [7:0] _oldBytes_T_48 = pad_6[7:0]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_6_0 = _oldBytes_T_48; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_49 = pad_6[15:8]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_6_1 = _oldBytes_T_49; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_50 = pad_6[23:16]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_6_2 = _oldBytes_T_50; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_51 = pad_6[31:24]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_6_3 = _oldBytes_T_51; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_52 = pad_6[39:32]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_6_4 = _oldBytes_T_52; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_53 = pad_6[47:40]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_6_5 = _oldBytes_T_53; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_54 = pad_6[55:48]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_6_6 = _oldBytes_T_54; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_55 = pad_6[63:56]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_6_7 = _oldBytes_T_55; // @[RegField.scala:151:{47,57}] wire [7:0] _out_T_683 = oldBytes_6_0; // @[RegisterRouter.scala:87:24] wire [7:0] newBytes_6_0; // @[RegField.scala:152:31] wire [7:0] newBytes_6_1; // @[RegField.scala:152:31] wire [7:0] newBytes_6_2; // @[RegField.scala:152:31] wire [7:0] newBytes_6_3; // @[RegField.scala:152:31] wire [7:0] newBytes_6_4; // @[RegField.scala:152:31] wire [7:0] newBytes_6_5; // @[RegField.scala:152:31] wire [7:0] newBytes_6_6; // @[RegField.scala:152:31] wire [7:0] newBytes_6_7; // @[RegField.scala:152:31] wire out_f_woready_60; // @[RegisterRouter.scala:87:24] wire out_f_woready_61; // @[RegisterRouter.scala:87:24] wire out_f_woready_62; // @[RegisterRouter.scala:87:24] wire out_f_woready_63; // @[RegisterRouter.scala:87:24] wire out_f_woready_64; // @[RegisterRouter.scala:87:24] wire out_f_woready_65; // @[RegisterRouter.scala:87:24] wire out_f_woready_66; // @[RegisterRouter.scala:87:24] wire out_f_woready_67; // @[RegisterRouter.scala:87:24] wire valids_6_0; // @[RegField.scala:153:29] wire valids_6_1; // @[RegField.scala:153:29] wire valids_6_2; // @[RegField.scala:153:29] wire valids_6_3; // @[RegField.scala:153:29] wire valids_6_4; // @[RegField.scala:153:29] wire valids_6_5; // @[RegField.scala:153:29] wire valids_6_6; // @[RegField.scala:153:29] wire valids_6_7; // @[RegField.scala:153:29] wire [15:0] timecmp_6_lo_lo = {newBytes_6_1, newBytes_6_0}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_6_lo_hi = {newBytes_6_3, newBytes_6_2}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_6_lo = {timecmp_6_lo_hi, timecmp_6_lo_lo}; // @[RegField.scala:154:52] wire [15:0] timecmp_6_hi_lo = {newBytes_6_5, newBytes_6_4}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_6_hi_hi = {newBytes_6_7, newBytes_6_6}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_6_hi = {timecmp_6_hi_hi, timecmp_6_hi_lo}; // @[RegField.scala:154:52] wire [63:0] _timecmp_6_T = {timecmp_6_hi, timecmp_6_lo}; // @[RegField.scala:154:52] wire [7:0] _oldBytes_T_56 = pad_7[7:0]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_7_0 = _oldBytes_T_56; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_57 = pad_7[15:8]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_7_1 = _oldBytes_T_57; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_58 = pad_7[23:16]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_7_2 = _oldBytes_T_58; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_59 = pad_7[31:24]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_7_3 = _oldBytes_T_59; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_60 = pad_7[39:32]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_7_4 = _oldBytes_T_60; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_61 = pad_7[47:40]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_7_5 = _oldBytes_T_61; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_62 = pad_7[55:48]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_7_6 = _oldBytes_T_62; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_63 = pad_7[63:56]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_7_7 = _oldBytes_T_63; // @[RegField.scala:151:{47,57}] wire [7:0] _out_T_595 = oldBytes_7_0; // @[RegisterRouter.scala:87:24] wire [7:0] newBytes_7_0; // @[RegField.scala:152:31] wire [7:0] newBytes_7_1; // @[RegField.scala:152:31] wire [7:0] newBytes_7_2; // @[RegField.scala:152:31] wire [7:0] newBytes_7_3; // @[RegField.scala:152:31] wire [7:0] newBytes_7_4; // @[RegField.scala:152:31] wire [7:0] newBytes_7_5; // @[RegField.scala:152:31] wire [7:0] newBytes_7_6; // @[RegField.scala:152:31] wire [7:0] newBytes_7_7; // @[RegField.scala:152:31] wire out_f_woready_52; // @[RegisterRouter.scala:87:24] wire out_f_woready_53; // @[RegisterRouter.scala:87:24] wire out_f_woready_54; // @[RegisterRouter.scala:87:24] wire out_f_woready_55; // @[RegisterRouter.scala:87:24] wire out_f_woready_56; // @[RegisterRouter.scala:87:24] wire out_f_woready_57; // @[RegisterRouter.scala:87:24] wire out_f_woready_58; // @[RegisterRouter.scala:87:24] wire out_f_woready_59; // @[RegisterRouter.scala:87:24] wire valids_7_0; // @[RegField.scala:153:29] wire valids_7_1; // @[RegField.scala:153:29] wire valids_7_2; // @[RegField.scala:153:29] wire valids_7_3; // @[RegField.scala:153:29] wire valids_7_4; // @[RegField.scala:153:29] wire valids_7_5; // @[RegField.scala:153:29] wire valids_7_6; // @[RegField.scala:153:29] wire valids_7_7; // @[RegField.scala:153:29] wire [15:0] timecmp_7_lo_lo = {newBytes_7_1, newBytes_7_0}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_7_lo_hi = {newBytes_7_3, newBytes_7_2}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_7_lo = {timecmp_7_lo_hi, timecmp_7_lo_lo}; // @[RegField.scala:154:52] wire [15:0] timecmp_7_hi_lo = {newBytes_7_5, newBytes_7_4}; // @[RegField.scala:152:31, :154:52] wire [15:0] timecmp_7_hi_hi = {newBytes_7_7, newBytes_7_6}; // @[RegField.scala:152:31, :154:52] wire [31:0] timecmp_7_hi = {timecmp_7_hi_hi, timecmp_7_hi_lo}; // @[RegField.scala:154:52] wire [63:0] _timecmp_7_T = {timecmp_7_hi, timecmp_7_lo}; // @[RegField.scala:154:52] wire [7:0] _oldBytes_T_64 = pad_8[7:0]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_8_0 = _oldBytes_T_64; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_65 = pad_8[15:8]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_8_1 = _oldBytes_T_65; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_66 = pad_8[23:16]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_8_2 = _oldBytes_T_66; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_67 = pad_8[31:24]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_8_3 = _oldBytes_T_67; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_68 = pad_8[39:32]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_8_4 = _oldBytes_T_68; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_69 = pad_8[47:40]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_8_5 = _oldBytes_T_69; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_70 = pad_8[55:48]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_8_6 = _oldBytes_T_70; // @[RegField.scala:151:{47,57}] wire [7:0] _oldBytes_T_71 = pad_8[63:56]; // @[RegField.scala:150:19, :151:57] wire [7:0] oldBytes_8_7 = _oldBytes_T_71; // @[RegField.scala:151:{47,57}] wire [7:0] _out_T_203 = oldBytes_8_0; // @[RegisterRouter.scala:87:24] wire [7:0] newBytes_8_0; // @[RegField.scala:152:31] wire [7:0] newBytes_8_1; // @[RegField.scala:152:31] wire [7:0] newBytes_8_2; // @[RegField.scala:152:31] wire [7:0] newBytes_8_3; // @[RegField.scala:152:31] wire [7:0] newBytes_8_4; // @[RegField.scala:152:31] wire [7:0] newBytes_8_5; // @[RegField.scala:152:31] wire [7:0] newBytes_8_6; // @[RegField.scala:152:31] wire [7:0] newBytes_8_7; // @[RegField.scala:152:31] wire out_f_woready_16; // @[RegisterRouter.scala:87:24] wire out_f_woready_17; // @[RegisterRouter.scala:87:24] wire out_f_woready_18; // @[RegisterRouter.scala:87:24] wire out_f_woready_19; // @[RegisterRouter.scala:87:24] wire out_f_woready_20; // @[RegisterRouter.scala:87:24] wire out_f_woready_21; // @[RegisterRouter.scala:87:24] wire out_f_woready_22; // @[RegisterRouter.scala:87:24] wire out_f_woready_23; // @[RegisterRouter.scala:87:24] wire valids_8_0; // @[RegField.scala:153:29] wire valids_8_1; // @[RegField.scala:153:29] wire valids_8_2; // @[RegField.scala:153:29] wire valids_8_3; // @[RegField.scala:153:29] wire valids_8_4; // @[RegField.scala:153:29] wire valids_8_5; // @[RegField.scala:153:29] wire valids_8_6; // @[RegField.scala:153:29] wire valids_8_7; // @[RegField.scala:153:29] wire [15:0] time_lo_lo = {newBytes_8_1, newBytes_8_0}; // @[RegField.scala:152:31, :154:52] wire [15:0] time_lo_hi = {newBytes_8_3, newBytes_8_2}; // @[RegField.scala:152:31, :154:52] wire [31:0] time_lo = {time_lo_hi, time_lo_lo}; // @[RegField.scala:154:52] wire [15:0] time_hi_lo = {newBytes_8_5, newBytes_8_4}; // @[RegField.scala:152:31, :154:52] wire [15:0] time_hi_hi = {newBytes_8_7, newBytes_8_6}; // @[RegField.scala:152:31, :154:52] wire [31:0] time_hi = {time_hi_hi, time_hi_lo}; // @[RegField.scala:154:52] wire [63:0] _time_T_2 = {time_hi, time_lo}; // @[RegField.scala:154:52] wire _out_in_ready_T; // @[RegisterRouter.scala:87:24] assign nodeIn_a_ready = in_ready; // @[RegisterRouter.scala:73:18] wire _in_bits_read_T; // @[RegisterRouter.scala:74:36] wire _out_front_valid_T = in_valid; // @[RegisterRouter.scala:73:18, :87:24] wire out_front_bits_read = in_bits_read; // @[RegisterRouter.scala:73:18, :87:24] wire [12:0] out_front_bits_index = in_bits_index; // @[RegisterRouter.scala:73:18, :87:24] wire [63:0] out_front_bits_data = in_bits_data; // @[RegisterRouter.scala:73:18, :87:24] wire [7:0] out_front_bits_mask = in_bits_mask; // @[RegisterRouter.scala:73:18, :87:24] wire [10:0] out_front_bits_extra_tlrr_extra_source = in_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:73:18, :87:24] wire [1:0] out_front_bits_extra_tlrr_extra_size = in_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:73:18, :87:24] assign _in_bits_read_T = nodeIn_a_bits_opcode == 3'h4; // @[RegisterRouter.scala:74:36] assign in_bits_read = _in_bits_read_T; // @[RegisterRouter.scala:73:18, :74:36] wire [22:0] _in_bits_index_T = nodeIn_a_bits_address[25:3]; // @[Edges.scala:192:34] assign in_bits_index = _in_bits_index_T[12:0]; // @[RegisterRouter.scala:73:18, :75:19] wire _out_front_ready_T = out_ready; // @[RegisterRouter.scala:87:24] wire _out_out_valid_T; // @[RegisterRouter.scala:87:24] assign nodeIn_d_valid = out_valid; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_T_4; // @[RegisterRouter.scala:87:24] wire _nodeIn_d_bits_opcode_T = out_bits_read; // @[RegisterRouter.scala:87:24, :105:25] assign nodeIn_d_bits_data = out_bits_data; // @[RegisterRouter.scala:87:24] assign nodeIn_d_bits_d_source = out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24] wire [1:0] out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24] assign nodeIn_d_bits_d_size = out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24] assign _out_in_ready_T = out_front_ready; // @[RegisterRouter.scala:87:24] assign _out_out_valid_T = out_front_valid; // @[RegisterRouter.scala:87:24] assign out_bits_read = out_front_bits_read; // @[RegisterRouter.scala:87:24] assign out_bits_extra_tlrr_extra_source = out_front_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24] assign out_bits_extra_tlrr_extra_size = out_front_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24] wire [12:0] _GEN = out_front_bits_index & 13'h17F8; // @[RegisterRouter.scala:87:24] wire [12:0] out_findex; // @[RegisterRouter.scala:87:24] assign out_findex = _GEN; // @[RegisterRouter.scala:87:24] wire [12:0] out_bindex; // @[RegisterRouter.scala:87:24] assign out_bindex = _GEN; // @[RegisterRouter.scala:87:24] wire _GEN_0 = out_findex == 13'h0; // @[RegisterRouter.scala:87:24] wire _out_T; // @[RegisterRouter.scala:87:24] assign _out_T = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_2; // @[RegisterRouter.scala:87:24] assign _out_T_2 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_4; // @[RegisterRouter.scala:87:24] assign _out_T_4 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_8; // @[RegisterRouter.scala:87:24] assign _out_T_8 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_10; // @[RegisterRouter.scala:87:24] assign _out_T_10 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_12; // @[RegisterRouter.scala:87:24] assign _out_T_12 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_14; // @[RegisterRouter.scala:87:24] assign _out_T_14 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_16; // @[RegisterRouter.scala:87:24] assign _out_T_16 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_18; // @[RegisterRouter.scala:87:24] assign _out_T_18 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_20; // @[RegisterRouter.scala:87:24] assign _out_T_20 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_22; // @[RegisterRouter.scala:87:24] assign _out_T_22 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_24; // @[RegisterRouter.scala:87:24] assign _out_T_24 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _GEN_1 = out_bindex == 13'h0; // @[RegisterRouter.scala:87:24] wire _out_T_1; // @[RegisterRouter.scala:87:24] assign _out_T_1 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_3; // @[RegisterRouter.scala:87:24] assign _out_T_3 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_5; // @[RegisterRouter.scala:87:24] assign _out_T_5 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_9; // @[RegisterRouter.scala:87:24] assign _out_T_9 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_11; // @[RegisterRouter.scala:87:24] assign _out_T_11 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_13; // @[RegisterRouter.scala:87:24] assign _out_T_13 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_15; // @[RegisterRouter.scala:87:24] assign _out_T_15 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_17; // @[RegisterRouter.scala:87:24] assign _out_T_17 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_19; // @[RegisterRouter.scala:87:24] assign _out_T_19 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_21; // @[RegisterRouter.scala:87:24] assign _out_T_21 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_23; // @[RegisterRouter.scala:87:24] assign _out_T_23 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_T_25; // @[RegisterRouter.scala:87:24] assign _out_T_25 = _GEN_1; // @[RegisterRouter.scala:87:24] wire _out_out_bits_data_WIRE_0 = _out_T_1; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_9 = _out_T_3; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_1 = _out_T_5; // @[MuxLiteral.scala:49:48] wire _out_T_6 = out_findex == 13'h17F8; // @[RegisterRouter.scala:87:24] wire _out_T_7 = out_bindex == 13'h17F8; // @[RegisterRouter.scala:87:24] wire _out_out_bits_data_WIRE_7 = _out_T_7; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_13 = _out_T_9; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_12 = _out_T_11; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_2 = _out_T_13; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_8 = _out_T_15; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_15 = _out_T_17; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_14 = _out_T_19; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_10 = _out_T_21; // @[MuxLiteral.scala:49:48] wire _out_out_bits_data_WIRE_11 = _out_T_23; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24] wire _out_out_bits_data_WIRE_3 = _out_T_25; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_T_39; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_31; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_55; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_51; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_63; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_59; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_47; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_15; // @[RegisterRouter.scala:87:24] wire out_rivalid_0; // @[RegisterRouter.scala:87:24] wire out_rivalid_1; // @[RegisterRouter.scala:87:24] wire out_rivalid_2; // @[RegisterRouter.scala:87:24] wire out_rivalid_3; // @[RegisterRouter.scala:87:24] wire out_rivalid_4; // @[RegisterRouter.scala:87:24] wire out_rivalid_5; // @[RegisterRouter.scala:87:24] wire out_rivalid_6; // @[RegisterRouter.scala:87:24] wire out_rivalid_7; // @[RegisterRouter.scala:87:24] wire out_rivalid_8; // @[RegisterRouter.scala:87:24] wire out_rivalid_9; // @[RegisterRouter.scala:87:24] wire out_rivalid_10; // @[RegisterRouter.scala:87:24] wire out_rivalid_11; // @[RegisterRouter.scala:87:24] wire out_rivalid_12; // @[RegisterRouter.scala:87:24] wire out_rivalid_13; // @[RegisterRouter.scala:87:24] wire out_rivalid_14; // @[RegisterRouter.scala:87:24] wire out_rivalid_15; // @[RegisterRouter.scala:87:24] wire out_rivalid_16; // @[RegisterRouter.scala:87:24] wire out_rivalid_17; // @[RegisterRouter.scala:87:24] wire out_rivalid_18; // @[RegisterRouter.scala:87:24] wire out_rivalid_19; // @[RegisterRouter.scala:87:24] wire out_rivalid_20; // @[RegisterRouter.scala:87:24] wire out_rivalid_21; // @[RegisterRouter.scala:87:24] wire out_rivalid_22; // @[RegisterRouter.scala:87:24] wire out_rivalid_23; // @[RegisterRouter.scala:87:24] wire out_rivalid_24; // @[RegisterRouter.scala:87:24] wire out_rivalid_25; // @[RegisterRouter.scala:87:24] wire out_rivalid_26; // @[RegisterRouter.scala:87:24] wire out_rivalid_27; // @[RegisterRouter.scala:87:24] wire out_rivalid_28; // @[RegisterRouter.scala:87:24] wire out_rivalid_29; // @[RegisterRouter.scala:87:24] wire out_rivalid_30; // @[RegisterRouter.scala:87:24] wire out_rivalid_31; // @[RegisterRouter.scala:87:24] wire out_rivalid_32; // @[RegisterRouter.scala:87:24] wire out_rivalid_33; // @[RegisterRouter.scala:87:24] wire out_rivalid_34; // @[RegisterRouter.scala:87:24] wire out_rivalid_35; // @[RegisterRouter.scala:87:24] wire out_rivalid_36; // @[RegisterRouter.scala:87:24] wire out_rivalid_37; // @[RegisterRouter.scala:87:24] wire out_rivalid_38; // @[RegisterRouter.scala:87:24] wire out_rivalid_39; // @[RegisterRouter.scala:87:24] wire out_rivalid_40; // @[RegisterRouter.scala:87:24] wire out_rivalid_41; // @[RegisterRouter.scala:87:24] wire out_rivalid_42; // @[RegisterRouter.scala:87:24] wire out_rivalid_43; // @[RegisterRouter.scala:87:24] wire out_rivalid_44; // @[RegisterRouter.scala:87:24] wire out_rivalid_45; // @[RegisterRouter.scala:87:24] wire out_rivalid_46; // @[RegisterRouter.scala:87:24] wire out_rivalid_47; // @[RegisterRouter.scala:87:24] wire out_rivalid_48; // @[RegisterRouter.scala:87:24] wire out_rivalid_49; // @[RegisterRouter.scala:87:24] wire out_rivalid_50; // @[RegisterRouter.scala:87:24] wire out_rivalid_51; // @[RegisterRouter.scala:87:24] wire out_rivalid_52; // @[RegisterRouter.scala:87:24] wire out_rivalid_53; // @[RegisterRouter.scala:87:24] wire out_rivalid_54; // @[RegisterRouter.scala:87:24] wire out_rivalid_55; // @[RegisterRouter.scala:87:24] wire out_rivalid_56; // @[RegisterRouter.scala:87:24] wire out_rivalid_57; // @[RegisterRouter.scala:87:24] wire out_rivalid_58; // @[RegisterRouter.scala:87:24] wire out_rivalid_59; // @[RegisterRouter.scala:87:24] wire out_rivalid_60; // @[RegisterRouter.scala:87:24] wire out_rivalid_61; // @[RegisterRouter.scala:87:24] wire out_rivalid_62; // @[RegisterRouter.scala:87:24] wire out_rivalid_63; // @[RegisterRouter.scala:87:24] wire out_rivalid_64; // @[RegisterRouter.scala:87:24] wire out_rivalid_65; // @[RegisterRouter.scala:87:24] wire out_rivalid_66; // @[RegisterRouter.scala:87:24] wire out_rivalid_67; // @[RegisterRouter.scala:87:24] wire out_rivalid_68; // @[RegisterRouter.scala:87:24] wire out_rivalid_69; // @[RegisterRouter.scala:87:24] wire out_rivalid_70; // @[RegisterRouter.scala:87:24] wire out_rivalid_71; // @[RegisterRouter.scala:87:24] wire out_rivalid_72; // @[RegisterRouter.scala:87:24] wire out_rivalid_73; // @[RegisterRouter.scala:87:24] wire out_rivalid_74; // @[RegisterRouter.scala:87:24] wire out_rivalid_75; // @[RegisterRouter.scala:87:24] wire out_rivalid_76; // @[RegisterRouter.scala:87:24] wire out_rivalid_77; // @[RegisterRouter.scala:87:24] wire out_rivalid_78; // @[RegisterRouter.scala:87:24] wire out_rivalid_79; // @[RegisterRouter.scala:87:24] wire out_rivalid_80; // @[RegisterRouter.scala:87:24] wire out_rivalid_81; // @[RegisterRouter.scala:87:24] wire out_rivalid_82; // @[RegisterRouter.scala:87:24] wire out_rivalid_83; // @[RegisterRouter.scala:87:24] wire out_rivalid_84; // @[RegisterRouter.scala:87:24] wire out_rivalid_85; // @[RegisterRouter.scala:87:24] wire out_rivalid_86; // @[RegisterRouter.scala:87:24] wire out_rivalid_87; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_40; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_32; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_56; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_52; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_64; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_60; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_48; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_16; // @[RegisterRouter.scala:87:24] wire out_wivalid_0; // @[RegisterRouter.scala:87:24] wire out_wivalid_1; // @[RegisterRouter.scala:87:24] wire out_wivalid_2; // @[RegisterRouter.scala:87:24] wire out_wivalid_3; // @[RegisterRouter.scala:87:24] wire out_wivalid_4; // @[RegisterRouter.scala:87:24] wire out_wivalid_5; // @[RegisterRouter.scala:87:24] wire out_wivalid_6; // @[RegisterRouter.scala:87:24] wire out_wivalid_7; // @[RegisterRouter.scala:87:24] wire out_wivalid_8; // @[RegisterRouter.scala:87:24] wire out_wivalid_9; // @[RegisterRouter.scala:87:24] wire out_wivalid_10; // @[RegisterRouter.scala:87:24] wire out_wivalid_11; // @[RegisterRouter.scala:87:24] wire out_wivalid_12; // @[RegisterRouter.scala:87:24] wire out_wivalid_13; // @[RegisterRouter.scala:87:24] wire out_wivalid_14; // @[RegisterRouter.scala:87:24] wire out_wivalid_15; // @[RegisterRouter.scala:87:24] wire out_wivalid_16; // @[RegisterRouter.scala:87:24] wire out_wivalid_17; // @[RegisterRouter.scala:87:24] wire out_wivalid_18; // @[RegisterRouter.scala:87:24] wire out_wivalid_19; // @[RegisterRouter.scala:87:24] wire out_wivalid_20; // @[RegisterRouter.scala:87:24] wire out_wivalid_21; // @[RegisterRouter.scala:87:24] wire out_wivalid_22; // @[RegisterRouter.scala:87:24] wire out_wivalid_23; // @[RegisterRouter.scala:87:24] wire out_wivalid_24; // @[RegisterRouter.scala:87:24] wire out_wivalid_25; // @[RegisterRouter.scala:87:24] wire out_wivalid_26; // @[RegisterRouter.scala:87:24] wire out_wivalid_27; // @[RegisterRouter.scala:87:24] wire out_wivalid_28; // @[RegisterRouter.scala:87:24] wire out_wivalid_29; // @[RegisterRouter.scala:87:24] wire out_wivalid_30; // @[RegisterRouter.scala:87:24] wire out_wivalid_31; // @[RegisterRouter.scala:87:24] wire out_wivalid_32; // @[RegisterRouter.scala:87:24] wire out_wivalid_33; // @[RegisterRouter.scala:87:24] wire out_wivalid_34; // @[RegisterRouter.scala:87:24] wire out_wivalid_35; // @[RegisterRouter.scala:87:24] wire out_wivalid_36; // @[RegisterRouter.scala:87:24] wire out_wivalid_37; // @[RegisterRouter.scala:87:24] wire out_wivalid_38; // @[RegisterRouter.scala:87:24] wire out_wivalid_39; // @[RegisterRouter.scala:87:24] wire out_wivalid_40; // @[RegisterRouter.scala:87:24] wire out_wivalid_41; // @[RegisterRouter.scala:87:24] wire out_wivalid_42; // @[RegisterRouter.scala:87:24] wire out_wivalid_43; // @[RegisterRouter.scala:87:24] wire out_wivalid_44; // @[RegisterRouter.scala:87:24] wire out_wivalid_45; // @[RegisterRouter.scala:87:24] wire out_wivalid_46; // @[RegisterRouter.scala:87:24] wire out_wivalid_47; // @[RegisterRouter.scala:87:24] wire out_wivalid_48; // @[RegisterRouter.scala:87:24] wire out_wivalid_49; // @[RegisterRouter.scala:87:24] wire out_wivalid_50; // @[RegisterRouter.scala:87:24] wire out_wivalid_51; // @[RegisterRouter.scala:87:24] wire out_wivalid_52; // @[RegisterRouter.scala:87:24] wire out_wivalid_53; // @[RegisterRouter.scala:87:24] wire out_wivalid_54; // @[RegisterRouter.scala:87:24] wire out_wivalid_55; // @[RegisterRouter.scala:87:24] wire out_wivalid_56; // @[RegisterRouter.scala:87:24] wire out_wivalid_57; // @[RegisterRouter.scala:87:24] wire out_wivalid_58; // @[RegisterRouter.scala:87:24] wire out_wivalid_59; // @[RegisterRouter.scala:87:24] wire out_wivalid_60; // @[RegisterRouter.scala:87:24] wire out_wivalid_61; // @[RegisterRouter.scala:87:24] wire out_wivalid_62; // @[RegisterRouter.scala:87:24] wire out_wivalid_63; // @[RegisterRouter.scala:87:24] wire out_wivalid_64; // @[RegisterRouter.scala:87:24] wire out_wivalid_65; // @[RegisterRouter.scala:87:24] wire out_wivalid_66; // @[RegisterRouter.scala:87:24] wire out_wivalid_67; // @[RegisterRouter.scala:87:24] wire out_wivalid_68; // @[RegisterRouter.scala:87:24] wire out_wivalid_69; // @[RegisterRouter.scala:87:24] wire out_wivalid_70; // @[RegisterRouter.scala:87:24] wire out_wivalid_71; // @[RegisterRouter.scala:87:24] wire out_wivalid_72; // @[RegisterRouter.scala:87:24] wire out_wivalid_73; // @[RegisterRouter.scala:87:24] wire out_wivalid_74; // @[RegisterRouter.scala:87:24] wire out_wivalid_75; // @[RegisterRouter.scala:87:24] wire out_wivalid_76; // @[RegisterRouter.scala:87:24] wire out_wivalid_77; // @[RegisterRouter.scala:87:24] wire out_wivalid_78; // @[RegisterRouter.scala:87:24] wire out_wivalid_79; // @[RegisterRouter.scala:87:24] wire out_wivalid_80; // @[RegisterRouter.scala:87:24] wire out_wivalid_81; // @[RegisterRouter.scala:87:24] wire out_wivalid_82; // @[RegisterRouter.scala:87:24] wire out_wivalid_83; // @[RegisterRouter.scala:87:24] wire out_wivalid_84; // @[RegisterRouter.scala:87:24] wire out_wivalid_85; // @[RegisterRouter.scala:87:24] wire out_wivalid_86; // @[RegisterRouter.scala:87:24] wire out_wivalid_87; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_39; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_31; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_55; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_51; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_63; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_59; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_47; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_15; // @[RegisterRouter.scala:87:24] wire out_roready_0; // @[RegisterRouter.scala:87:24] wire out_roready_1; // @[RegisterRouter.scala:87:24] wire out_roready_2; // @[RegisterRouter.scala:87:24] wire out_roready_3; // @[RegisterRouter.scala:87:24] wire out_roready_4; // @[RegisterRouter.scala:87:24] wire out_roready_5; // @[RegisterRouter.scala:87:24] wire out_roready_6; // @[RegisterRouter.scala:87:24] wire out_roready_7; // @[RegisterRouter.scala:87:24] wire out_roready_8; // @[RegisterRouter.scala:87:24] wire out_roready_9; // @[RegisterRouter.scala:87:24] wire out_roready_10; // @[RegisterRouter.scala:87:24] wire out_roready_11; // @[RegisterRouter.scala:87:24] wire out_roready_12; // @[RegisterRouter.scala:87:24] wire out_roready_13; // @[RegisterRouter.scala:87:24] wire out_roready_14; // @[RegisterRouter.scala:87:24] wire out_roready_15; // @[RegisterRouter.scala:87:24] wire out_roready_16; // @[RegisterRouter.scala:87:24] wire out_roready_17; // @[RegisterRouter.scala:87:24] wire out_roready_18; // @[RegisterRouter.scala:87:24] wire out_roready_19; // @[RegisterRouter.scala:87:24] wire out_roready_20; // @[RegisterRouter.scala:87:24] wire out_roready_21; // @[RegisterRouter.scala:87:24] wire out_roready_22; // @[RegisterRouter.scala:87:24] wire out_roready_23; // @[RegisterRouter.scala:87:24] wire out_roready_24; // @[RegisterRouter.scala:87:24] wire out_roready_25; // @[RegisterRouter.scala:87:24] wire out_roready_26; // @[RegisterRouter.scala:87:24] wire out_roready_27; // @[RegisterRouter.scala:87:24] wire out_roready_28; // @[RegisterRouter.scala:87:24] wire out_roready_29; // @[RegisterRouter.scala:87:24] wire out_roready_30; // @[RegisterRouter.scala:87:24] wire out_roready_31; // @[RegisterRouter.scala:87:24] wire out_roready_32; // @[RegisterRouter.scala:87:24] wire out_roready_33; // @[RegisterRouter.scala:87:24] wire out_roready_34; // @[RegisterRouter.scala:87:24] wire out_roready_35; // @[RegisterRouter.scala:87:24] wire out_roready_36; // @[RegisterRouter.scala:87:24] wire out_roready_37; // @[RegisterRouter.scala:87:24] wire out_roready_38; // @[RegisterRouter.scala:87:24] wire out_roready_39; // @[RegisterRouter.scala:87:24] wire out_roready_40; // @[RegisterRouter.scala:87:24] wire out_roready_41; // @[RegisterRouter.scala:87:24] wire out_roready_42; // @[RegisterRouter.scala:87:24] wire out_roready_43; // @[RegisterRouter.scala:87:24] wire out_roready_44; // @[RegisterRouter.scala:87:24] wire out_roready_45; // @[RegisterRouter.scala:87:24] wire out_roready_46; // @[RegisterRouter.scala:87:24] wire out_roready_47; // @[RegisterRouter.scala:87:24] wire out_roready_48; // @[RegisterRouter.scala:87:24] wire out_roready_49; // @[RegisterRouter.scala:87:24] wire out_roready_50; // @[RegisterRouter.scala:87:24] wire out_roready_51; // @[RegisterRouter.scala:87:24] wire out_roready_52; // @[RegisterRouter.scala:87:24] wire out_roready_53; // @[RegisterRouter.scala:87:24] wire out_roready_54; // @[RegisterRouter.scala:87:24] wire out_roready_55; // @[RegisterRouter.scala:87:24] wire out_roready_56; // @[RegisterRouter.scala:87:24] wire out_roready_57; // @[RegisterRouter.scala:87:24] wire out_roready_58; // @[RegisterRouter.scala:87:24] wire out_roready_59; // @[RegisterRouter.scala:87:24] wire out_roready_60; // @[RegisterRouter.scala:87:24] wire out_roready_61; // @[RegisterRouter.scala:87:24] wire out_roready_62; // @[RegisterRouter.scala:87:24] wire out_roready_63; // @[RegisterRouter.scala:87:24] wire out_roready_64; // @[RegisterRouter.scala:87:24] wire out_roready_65; // @[RegisterRouter.scala:87:24] wire out_roready_66; // @[RegisterRouter.scala:87:24] wire out_roready_67; // @[RegisterRouter.scala:87:24] wire out_roready_68; // @[RegisterRouter.scala:87:24] wire out_roready_69; // @[RegisterRouter.scala:87:24] wire out_roready_70; // @[RegisterRouter.scala:87:24] wire out_roready_71; // @[RegisterRouter.scala:87:24] wire out_roready_72; // @[RegisterRouter.scala:87:24] wire out_roready_73; // @[RegisterRouter.scala:87:24] wire out_roready_74; // @[RegisterRouter.scala:87:24] wire out_roready_75; // @[RegisterRouter.scala:87:24] wire out_roready_76; // @[RegisterRouter.scala:87:24] wire out_roready_77; // @[RegisterRouter.scala:87:24] wire out_roready_78; // @[RegisterRouter.scala:87:24] wire out_roready_79; // @[RegisterRouter.scala:87:24] wire out_roready_80; // @[RegisterRouter.scala:87:24] wire out_roready_81; // @[RegisterRouter.scala:87:24] wire out_roready_82; // @[RegisterRouter.scala:87:24] wire out_roready_83; // @[RegisterRouter.scala:87:24] wire out_roready_84; // @[RegisterRouter.scala:87:24] wire out_roready_85; // @[RegisterRouter.scala:87:24] wire out_roready_86; // @[RegisterRouter.scala:87:24] wire out_roready_87; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_40; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_32; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_56; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_52; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_64; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_60; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_48; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_16; // @[RegisterRouter.scala:87:24] wire out_woready_0; // @[RegisterRouter.scala:87:24] wire out_woready_1; // @[RegisterRouter.scala:87:24] wire out_woready_2; // @[RegisterRouter.scala:87:24] wire out_woready_3; // @[RegisterRouter.scala:87:24] wire out_woready_4; // @[RegisterRouter.scala:87:24] wire out_woready_5; // @[RegisterRouter.scala:87:24] wire out_woready_6; // @[RegisterRouter.scala:87:24] wire out_woready_7; // @[RegisterRouter.scala:87:24] wire out_woready_8; // @[RegisterRouter.scala:87:24] wire out_woready_9; // @[RegisterRouter.scala:87:24] wire out_woready_10; // @[RegisterRouter.scala:87:24] wire out_woready_11; // @[RegisterRouter.scala:87:24] wire out_woready_12; // @[RegisterRouter.scala:87:24] wire out_woready_13; // @[RegisterRouter.scala:87:24] wire out_woready_14; // @[RegisterRouter.scala:87:24] wire out_woready_15; // @[RegisterRouter.scala:87:24] wire out_woready_16; // @[RegisterRouter.scala:87:24] wire out_woready_17; // @[RegisterRouter.scala:87:24] wire out_woready_18; // @[RegisterRouter.scala:87:24] wire out_woready_19; // @[RegisterRouter.scala:87:24] wire out_woready_20; // @[RegisterRouter.scala:87:24] wire out_woready_21; // @[RegisterRouter.scala:87:24] wire out_woready_22; // @[RegisterRouter.scala:87:24] wire out_woready_23; // @[RegisterRouter.scala:87:24] wire out_woready_24; // @[RegisterRouter.scala:87:24] wire out_woready_25; // @[RegisterRouter.scala:87:24] wire out_woready_26; // @[RegisterRouter.scala:87:24] wire out_woready_27; // @[RegisterRouter.scala:87:24] wire out_woready_28; // @[RegisterRouter.scala:87:24] wire out_woready_29; // @[RegisterRouter.scala:87:24] wire out_woready_30; // @[RegisterRouter.scala:87:24] wire out_woready_31; // @[RegisterRouter.scala:87:24] wire out_woready_32; // @[RegisterRouter.scala:87:24] wire out_woready_33; // @[RegisterRouter.scala:87:24] wire out_woready_34; // @[RegisterRouter.scala:87:24] wire out_woready_35; // @[RegisterRouter.scala:87:24] wire out_woready_36; // @[RegisterRouter.scala:87:24] wire out_woready_37; // @[RegisterRouter.scala:87:24] wire out_woready_38; // @[RegisterRouter.scala:87:24] wire out_woready_39; // @[RegisterRouter.scala:87:24] wire out_woready_40; // @[RegisterRouter.scala:87:24] wire out_woready_41; // @[RegisterRouter.scala:87:24] wire out_woready_42; // @[RegisterRouter.scala:87:24] wire out_woready_43; // @[RegisterRouter.scala:87:24] wire out_woready_44; // @[RegisterRouter.scala:87:24] wire out_woready_45; // @[RegisterRouter.scala:87:24] wire out_woready_46; // @[RegisterRouter.scala:87:24] wire out_woready_47; // @[RegisterRouter.scala:87:24] wire out_woready_48; // @[RegisterRouter.scala:87:24] wire out_woready_49; // @[RegisterRouter.scala:87:24] wire out_woready_50; // @[RegisterRouter.scala:87:24] wire out_woready_51; // @[RegisterRouter.scala:87:24] wire out_woready_52; // @[RegisterRouter.scala:87:24] wire out_woready_53; // @[RegisterRouter.scala:87:24] wire out_woready_54; // @[RegisterRouter.scala:87:24] wire out_woready_55; // @[RegisterRouter.scala:87:24] wire out_woready_56; // @[RegisterRouter.scala:87:24] wire out_woready_57; // @[RegisterRouter.scala:87:24] wire out_woready_58; // @[RegisterRouter.scala:87:24] wire out_woready_59; // @[RegisterRouter.scala:87:24] wire out_woready_60; // @[RegisterRouter.scala:87:24] wire out_woready_61; // @[RegisterRouter.scala:87:24] wire out_woready_62; // @[RegisterRouter.scala:87:24] wire out_woready_63; // @[RegisterRouter.scala:87:24] wire out_woready_64; // @[RegisterRouter.scala:87:24] wire out_woready_65; // @[RegisterRouter.scala:87:24] wire out_woready_66; // @[RegisterRouter.scala:87:24] wire out_woready_67; // @[RegisterRouter.scala:87:24] wire out_woready_68; // @[RegisterRouter.scala:87:24] wire out_woready_69; // @[RegisterRouter.scala:87:24] wire out_woready_70; // @[RegisterRouter.scala:87:24] wire out_woready_71; // @[RegisterRouter.scala:87:24] wire out_woready_72; // @[RegisterRouter.scala:87:24] wire out_woready_73; // @[RegisterRouter.scala:87:24] wire out_woready_74; // @[RegisterRouter.scala:87:24] wire out_woready_75; // @[RegisterRouter.scala:87:24] wire out_woready_76; // @[RegisterRouter.scala:87:24] wire out_woready_77; // @[RegisterRouter.scala:87:24] wire out_woready_78; // @[RegisterRouter.scala:87:24] wire out_woready_79; // @[RegisterRouter.scala:87:24] wire out_woready_80; // @[RegisterRouter.scala:87:24] wire out_woready_81; // @[RegisterRouter.scala:87:24] wire out_woready_82; // @[RegisterRouter.scala:87:24] wire out_woready_83; // @[RegisterRouter.scala:87:24] wire out_woready_84; // @[RegisterRouter.scala:87:24] wire out_woready_85; // @[RegisterRouter.scala:87:24] wire out_woready_86; // @[RegisterRouter.scala:87:24] wire out_woready_87; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T = out_front_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T = out_front_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_1 = out_front_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_1 = out_front_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_2 = out_front_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_2 = out_front_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_3 = out_front_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_3 = out_front_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_4 = out_front_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_4 = out_front_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_5 = out_front_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_5 = out_front_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_6 = out_front_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_6 = out_front_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_7 = out_front_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_7 = out_front_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_8 = {8{_out_frontMask_T}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_9 = {8{_out_frontMask_T_1}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_10 = {8{_out_frontMask_T_2}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_11 = {8{_out_frontMask_T_3}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_12 = {8{_out_frontMask_T_4}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_13 = {8{_out_frontMask_T_5}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_14 = {8{_out_frontMask_T_6}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_15 = {8{_out_frontMask_T_7}}; // @[RegisterRouter.scala:87:24] wire [15:0] out_frontMask_lo_lo = {_out_frontMask_T_9, _out_frontMask_T_8}; // @[RegisterRouter.scala:87:24] wire [15:0] out_frontMask_lo_hi = {_out_frontMask_T_11, _out_frontMask_T_10}; // @[RegisterRouter.scala:87:24] wire [31:0] out_frontMask_lo = {out_frontMask_lo_hi, out_frontMask_lo_lo}; // @[RegisterRouter.scala:87:24] wire [15:0] out_frontMask_hi_lo = {_out_frontMask_T_13, _out_frontMask_T_12}; // @[RegisterRouter.scala:87:24] wire [15:0] out_frontMask_hi_hi = {_out_frontMask_T_15, _out_frontMask_T_14}; // @[RegisterRouter.scala:87:24] wire [31:0] out_frontMask_hi = {out_frontMask_hi_hi, out_frontMask_hi_lo}; // @[RegisterRouter.scala:87:24] wire [63:0] out_frontMask = {out_frontMask_hi, out_frontMask_lo}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_8 = {8{_out_backMask_T}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_9 = {8{_out_backMask_T_1}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_10 = {8{_out_backMask_T_2}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_11 = {8{_out_backMask_T_3}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_12 = {8{_out_backMask_T_4}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_13 = {8{_out_backMask_T_5}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_14 = {8{_out_backMask_T_6}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_15 = {8{_out_backMask_T_7}}; // @[RegisterRouter.scala:87:24] wire [15:0] out_backMask_lo_lo = {_out_backMask_T_9, _out_backMask_T_8}; // @[RegisterRouter.scala:87:24] wire [15:0] out_backMask_lo_hi = {_out_backMask_T_11, _out_backMask_T_10}; // @[RegisterRouter.scala:87:24] wire [31:0] out_backMask_lo = {out_backMask_lo_hi, out_backMask_lo_lo}; // @[RegisterRouter.scala:87:24] wire [15:0] out_backMask_hi_lo = {_out_backMask_T_13, _out_backMask_T_12}; // @[RegisterRouter.scala:87:24] wire [15:0] out_backMask_hi_hi = {_out_backMask_T_15, _out_backMask_T_14}; // @[RegisterRouter.scala:87:24] wire [31:0] out_backMask_hi = {out_backMask_hi_hi, out_backMask_hi_lo}; // @[RegisterRouter.scala:87:24] wire [63:0] out_backMask = {out_backMask_hi, out_backMask_lo}; // @[RegisterRouter.scala:87:24] wire _out_rimask_T = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_12 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_12 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_40 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_40 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_84 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_84 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire out_rimask = _out_rimask_T; // @[RegisterRouter.scala:87:24] wire out_wimask = _out_wimask_T; // @[RegisterRouter.scala:87:24] wire _out_romask_T = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_womask_T = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_12 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_12 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_40 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_40 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_84 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_84 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire out_romask = _out_romask_T; // @[RegisterRouter.scala:87:24] wire out_womask = _out_womask_T; // @[RegisterRouter.scala:87:24] wire out_f_rivalid = out_rivalid_0 & out_rimask; // @[RegisterRouter.scala:87:24] wire _out_T_27 = out_f_rivalid; // @[RegisterRouter.scala:87:24] wire out_f_roready = out_roready_0 & out_romask; // @[RegisterRouter.scala:87:24] wire _out_T_28 = out_f_roready; // @[RegisterRouter.scala:87:24] wire out_f_wivalid = out_wivalid_0 & out_wimask; // @[RegisterRouter.scala:87:24] wire _out_T_29 = out_f_wivalid; // @[RegisterRouter.scala:87:24] wire out_f_woready = out_woready_0 & out_womask; // @[RegisterRouter.scala:87:24] wire _out_T_30 = out_f_woready; // @[RegisterRouter.scala:87:24] wire _out_T_26 = out_front_bits_data[0]; // @[RegisterRouter.scala:87:24] wire _out_T_154 = out_front_bits_data[0]; // @[RegisterRouter.scala:87:24] wire _out_T_458 = out_front_bits_data[0]; // @[RegisterRouter.scala:87:24] wire _out_T_938 = out_front_bits_data[0]; // @[RegisterRouter.scala:87:24] wire _out_T_31 = ~out_rimask; // @[RegisterRouter.scala:87:24] wire _out_T_32 = ~out_wimask; // @[RegisterRouter.scala:87:24] wire _out_T_33 = ~out_romask; // @[RegisterRouter.scala:87:24] wire _out_T_34 = ~out_womask; // @[RegisterRouter.scala:87:24] wire _out_T_36 = _out_T_35; // @[RegisterRouter.scala:87:24] wire _out_prepend_T = _out_T_36; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_1 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_1 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_13 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_13 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_41 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_41 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_85 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_85 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire out_rimask_1 = |_out_rimask_T_1; // @[RegisterRouter.scala:87:24] wire out_wimask_1 = &_out_wimask_T_1; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_1 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_1 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_13 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_13 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_41 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_41 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_85 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_85 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire out_romask_1 = |_out_romask_T_1; // @[RegisterRouter.scala:87:24] wire out_womask_1 = &_out_womask_T_1; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_1 = out_rivalid_1 & out_rimask_1; // @[RegisterRouter.scala:87:24] wire _out_T_38 = out_f_rivalid_1; // @[RegisterRouter.scala:87:24] wire out_f_roready_1 = out_roready_1 & out_romask_1; // @[RegisterRouter.scala:87:24] wire _out_T_39 = out_f_roready_1; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_1 = out_wivalid_1 & out_wimask_1; // @[RegisterRouter.scala:87:24] wire out_f_woready_1 = out_woready_1 & out_womask_1; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_37 = out_front_bits_data[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_165 = out_front_bits_data[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_469 = out_front_bits_data[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_949 = out_front_bits_data[31:1]; // @[RegisterRouter.scala:87:24] wire _out_T_40 = ~out_rimask_1; // @[RegisterRouter.scala:87:24] wire _out_T_41 = ~out_wimask_1; // @[RegisterRouter.scala:87:24] wire _out_T_42 = ~out_romask_1; // @[RegisterRouter.scala:87:24] wire _out_T_43 = ~out_womask_1; // @[RegisterRouter.scala:87:24] wire [1:0] out_prepend = {1'h0, _out_prepend_T}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_44 = {30'h0, out_prepend}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_45 = _out_T_44; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_1 = _out_T_45; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_2 = out_frontMask[32]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_2 = out_frontMask[32]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_14 = out_frontMask[32]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_14 = out_frontMask[32]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_42 = out_frontMask[32]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_42 = out_frontMask[32]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_86 = out_frontMask[32]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_86 = out_frontMask[32]; // @[RegisterRouter.scala:87:24] wire out_rimask_2 = _out_rimask_T_2; // @[RegisterRouter.scala:87:24] wire out_wimask_2 = _out_wimask_T_2; // @[RegisterRouter.scala:87:24] wire _out_romask_T_2 = out_backMask[32]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_2 = out_backMask[32]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_14 = out_backMask[32]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_14 = out_backMask[32]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_42 = out_backMask[32]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_42 = out_backMask[32]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_86 = out_backMask[32]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_86 = out_backMask[32]; // @[RegisterRouter.scala:87:24] wire out_romask_2 = _out_romask_T_2; // @[RegisterRouter.scala:87:24] wire out_womask_2 = _out_womask_T_2; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_2 = out_rivalid_2 & out_rimask_2; // @[RegisterRouter.scala:87:24] wire _out_T_47 = out_f_rivalid_2; // @[RegisterRouter.scala:87:24] wire out_f_roready_2 = out_roready_2 & out_romask_2; // @[RegisterRouter.scala:87:24] wire _out_T_48 = out_f_roready_2; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_2 = out_wivalid_2 & out_wimask_2; // @[RegisterRouter.scala:87:24] wire _out_T_49 = out_f_wivalid_2; // @[RegisterRouter.scala:87:24] wire out_f_woready_2 = out_woready_2 & out_womask_2; // @[RegisterRouter.scala:87:24] wire _out_T_50 = out_f_woready_2; // @[RegisterRouter.scala:87:24] wire _out_T_46 = out_front_bits_data[32]; // @[RegisterRouter.scala:87:24] wire _out_T_174 = out_front_bits_data[32]; // @[RegisterRouter.scala:87:24] wire _out_T_478 = out_front_bits_data[32]; // @[RegisterRouter.scala:87:24] wire _out_T_958 = out_front_bits_data[32]; // @[RegisterRouter.scala:87:24] wire _out_T_51 = ~out_rimask_2; // @[RegisterRouter.scala:87:24] wire _out_T_52 = ~out_wimask_2; // @[RegisterRouter.scala:87:24] wire _out_T_53 = ~out_romask_2; // @[RegisterRouter.scala:87:24] wire _out_T_54 = ~out_womask_2; // @[RegisterRouter.scala:87:24] wire [32:0] out_prepend_1 = {ipi_1, _out_prepend_T_1}; // @[RegisterRouter.scala:87:24] wire [32:0] _out_T_55 = out_prepend_1; // @[RegisterRouter.scala:87:24] wire [32:0] _out_T_56 = _out_T_55; // @[RegisterRouter.scala:87:24] wire [32:0] _out_prepend_T_2 = _out_T_56; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_3 = out_frontMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_3 = out_frontMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_15 = out_frontMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_15 = out_frontMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_43 = out_frontMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_43 = out_frontMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_87 = out_frontMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_87 = out_frontMask[63:33]; // @[RegisterRouter.scala:87:24] wire out_rimask_3 = |_out_rimask_T_3; // @[RegisterRouter.scala:87:24] wire out_wimask_3 = &_out_wimask_T_3; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_3 = out_backMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_3 = out_backMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_15 = out_backMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_15 = out_backMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_43 = out_backMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_43 = out_backMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_87 = out_backMask[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_87 = out_backMask[63:33]; // @[RegisterRouter.scala:87:24] wire out_romask_3 = |_out_romask_T_3; // @[RegisterRouter.scala:87:24] wire out_womask_3 = &_out_womask_T_3; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_3 = out_rivalid_3 & out_rimask_3; // @[RegisterRouter.scala:87:24] wire _out_T_58 = out_f_rivalid_3; // @[RegisterRouter.scala:87:24] wire out_f_roready_3 = out_roready_3 & out_romask_3; // @[RegisterRouter.scala:87:24] wire _out_T_59 = out_f_roready_3; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_3 = out_wivalid_3 & out_wimask_3; // @[RegisterRouter.scala:87:24] wire out_f_woready_3 = out_woready_3 & out_womask_3; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_57 = out_front_bits_data[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_185 = out_front_bits_data[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_489 = out_front_bits_data[63:33]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_969 = out_front_bits_data[63:33]; // @[RegisterRouter.scala:87:24] wire _out_T_60 = ~out_rimask_3; // @[RegisterRouter.scala:87:24] wire _out_T_61 = ~out_wimask_3; // @[RegisterRouter.scala:87:24] wire _out_T_62 = ~out_romask_3; // @[RegisterRouter.scala:87:24] wire _out_T_63 = ~out_womask_3; // @[RegisterRouter.scala:87:24] wire [33:0] out_prepend_2 = {1'h0, _out_prepend_T_2}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_64 = {30'h0, out_prepend_2}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_65 = _out_T_64; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_0 = _out_T_65; // @[MuxLiteral.scala:49:48] wire [7:0] _out_rimask_T_4 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_4 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_16 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_16 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_24 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_24 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_32 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_32 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_44 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_44 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_52 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_52 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_60 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_60 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_68 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_68 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_76 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_76 = out_frontMask[7:0]; // @[RegisterRouter.scala:87:24] wire out_rimask_4 = |_out_rimask_T_4; // @[RegisterRouter.scala:87:24] wire out_wimask_4 = &_out_wimask_T_4; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_4 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_4 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_16 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_16 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_24 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_24 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_32 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_32 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_44 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_44 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_52 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_52 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_60 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_60 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_68 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_68 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_76 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_76 = out_backMask[7:0]; // @[RegisterRouter.scala:87:24] wire out_romask_4 = |_out_romask_T_4; // @[RegisterRouter.scala:87:24] wire out_womask_4 = &_out_womask_T_4; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_4 = out_rivalid_4 & out_rimask_4; // @[RegisterRouter.scala:87:24] wire _out_T_67 = out_f_rivalid_4; // @[RegisterRouter.scala:87:24] wire out_f_roready_4 = out_roready_4 & out_romask_4; // @[RegisterRouter.scala:87:24] wire _out_T_68 = out_f_roready_4; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_4 = out_wivalid_4 & out_wimask_4; // @[RegisterRouter.scala:87:24] wire _out_T_69 = out_f_wivalid_4; // @[RegisterRouter.scala:87:24] assign out_f_woready_4 = out_woready_4 & out_womask_4; // @[RegisterRouter.scala:87:24] assign valids_1_0 = out_f_woready_4; // @[RegisterRouter.scala:87:24] wire _out_T_70 = out_f_woready_4; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_66 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_194 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_282 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_370 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_498 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_586 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_674 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_762 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_850 = out_front_bits_data[7:0]; // @[RegisterRouter.scala:87:24] assign newBytes_1_0 = out_f_woready_4 ? _out_T_66 : oldBytes_1_0; // @[RegisterRouter.scala:87:24] wire _out_T_71 = ~out_rimask_4; // @[RegisterRouter.scala:87:24] wire _out_T_72 = ~out_wimask_4; // @[RegisterRouter.scala:87:24] wire _out_T_73 = ~out_romask_4; // @[RegisterRouter.scala:87:24] wire _out_T_74 = ~out_womask_4; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_76 = _out_T_75; // @[RegisterRouter.scala:87:24] wire [7:0] _out_prepend_T_3 = _out_T_76; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_5 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_5 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_17 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_17 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_25 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_25 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_33 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_33 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_45 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_45 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_53 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_53 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_61 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_61 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_69 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_69 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_77 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_77 = out_frontMask[15:8]; // @[RegisterRouter.scala:87:24] wire out_rimask_5 = |_out_rimask_T_5; // @[RegisterRouter.scala:87:24] wire out_wimask_5 = &_out_wimask_T_5; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_5 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_5 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_17 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_17 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_25 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_25 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_33 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_33 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_45 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_45 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_53 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_53 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_61 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_61 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_69 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_69 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_77 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_77 = out_backMask[15:8]; // @[RegisterRouter.scala:87:24] wire out_romask_5 = |_out_romask_T_5; // @[RegisterRouter.scala:87:24] wire out_womask_5 = &_out_womask_T_5; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_5 = out_rivalid_5 & out_rimask_5; // @[RegisterRouter.scala:87:24] wire _out_T_78 = out_f_rivalid_5; // @[RegisterRouter.scala:87:24] wire out_f_roready_5 = out_roready_5 & out_romask_5; // @[RegisterRouter.scala:87:24] wire _out_T_79 = out_f_roready_5; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_5 = out_wivalid_5 & out_wimask_5; // @[RegisterRouter.scala:87:24] wire _out_T_80 = out_f_wivalid_5; // @[RegisterRouter.scala:87:24] assign out_f_woready_5 = out_woready_5 & out_womask_5; // @[RegisterRouter.scala:87:24] assign valids_1_1 = out_f_woready_5; // @[RegisterRouter.scala:87:24] wire _out_T_81 = out_f_woready_5; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_77 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_205 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_293 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_381 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_509 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_597 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_685 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_773 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_861 = out_front_bits_data[15:8]; // @[RegisterRouter.scala:87:24] assign newBytes_1_1 = out_f_woready_5 ? _out_T_77 : oldBytes_1_1; // @[RegisterRouter.scala:87:24] wire _out_T_82 = ~out_rimask_5; // @[RegisterRouter.scala:87:24] wire _out_T_83 = ~out_wimask_5; // @[RegisterRouter.scala:87:24] wire _out_T_84 = ~out_romask_5; // @[RegisterRouter.scala:87:24] wire _out_T_85 = ~out_womask_5; // @[RegisterRouter.scala:87:24] wire [15:0] out_prepend_3 = {oldBytes_1_1, _out_prepend_T_3}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_86 = out_prepend_3; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_87 = _out_T_86; // @[RegisterRouter.scala:87:24] wire [15:0] _out_prepend_T_4 = _out_T_87; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_6 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_6 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_18 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_18 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_26 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_26 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_34 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_34 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_46 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_46 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_54 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_54 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_62 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_62 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_70 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_70 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_78 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_78 = out_frontMask[23:16]; // @[RegisterRouter.scala:87:24] wire out_rimask_6 = |_out_rimask_T_6; // @[RegisterRouter.scala:87:24] wire out_wimask_6 = &_out_wimask_T_6; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_6 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_6 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_18 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_18 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_26 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_26 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_34 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_34 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_46 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_46 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_54 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_54 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_62 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_62 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_70 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_70 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_78 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_78 = out_backMask[23:16]; // @[RegisterRouter.scala:87:24] wire out_romask_6 = |_out_romask_T_6; // @[RegisterRouter.scala:87:24] wire out_womask_6 = &_out_womask_T_6; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_6 = out_rivalid_6 & out_rimask_6; // @[RegisterRouter.scala:87:24] wire _out_T_89 = out_f_rivalid_6; // @[RegisterRouter.scala:87:24] wire out_f_roready_6 = out_roready_6 & out_romask_6; // @[RegisterRouter.scala:87:24] wire _out_T_90 = out_f_roready_6; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_6 = out_wivalid_6 & out_wimask_6; // @[RegisterRouter.scala:87:24] wire _out_T_91 = out_f_wivalid_6; // @[RegisterRouter.scala:87:24] assign out_f_woready_6 = out_woready_6 & out_womask_6; // @[RegisterRouter.scala:87:24] assign valids_1_2 = out_f_woready_6; // @[RegisterRouter.scala:87:24] wire _out_T_92 = out_f_woready_6; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_88 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_216 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_304 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_392 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_520 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_608 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_696 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_784 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_872 = out_front_bits_data[23:16]; // @[RegisterRouter.scala:87:24] assign newBytes_1_2 = out_f_woready_6 ? _out_T_88 : oldBytes_1_2; // @[RegisterRouter.scala:87:24] wire _out_T_93 = ~out_rimask_6; // @[RegisterRouter.scala:87:24] wire _out_T_94 = ~out_wimask_6; // @[RegisterRouter.scala:87:24] wire _out_T_95 = ~out_romask_6; // @[RegisterRouter.scala:87:24] wire _out_T_96 = ~out_womask_6; // @[RegisterRouter.scala:87:24] wire [23:0] out_prepend_4 = {oldBytes_1_2, _out_prepend_T_4}; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_97 = out_prepend_4; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_98 = _out_T_97; // @[RegisterRouter.scala:87:24] wire [23:0] _out_prepend_T_5 = _out_T_98; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_7 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_7 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_19 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_19 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_27 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_27 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_35 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_35 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_47 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_47 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_55 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_55 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_63 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_63 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_71 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_71 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_79 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_79 = out_frontMask[31:24]; // @[RegisterRouter.scala:87:24] wire out_rimask_7 = |_out_rimask_T_7; // @[RegisterRouter.scala:87:24] wire out_wimask_7 = &_out_wimask_T_7; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_7 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_7 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_19 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_19 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_27 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_27 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_35 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_35 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_47 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_47 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_55 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_55 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_63 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_63 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_71 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_71 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_79 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_79 = out_backMask[31:24]; // @[RegisterRouter.scala:87:24] wire out_romask_7 = |_out_romask_T_7; // @[RegisterRouter.scala:87:24] wire out_womask_7 = &_out_womask_T_7; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_7 = out_rivalid_7 & out_rimask_7; // @[RegisterRouter.scala:87:24] wire _out_T_100 = out_f_rivalid_7; // @[RegisterRouter.scala:87:24] wire out_f_roready_7 = out_roready_7 & out_romask_7; // @[RegisterRouter.scala:87:24] wire _out_T_101 = out_f_roready_7; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_7 = out_wivalid_7 & out_wimask_7; // @[RegisterRouter.scala:87:24] wire _out_T_102 = out_f_wivalid_7; // @[RegisterRouter.scala:87:24] assign out_f_woready_7 = out_woready_7 & out_womask_7; // @[RegisterRouter.scala:87:24] assign valids_1_3 = out_f_woready_7; // @[RegisterRouter.scala:87:24] wire _out_T_103 = out_f_woready_7; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_99 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_227 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_315 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_403 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_531 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_619 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_707 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_795 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_883 = out_front_bits_data[31:24]; // @[RegisterRouter.scala:87:24] assign newBytes_1_3 = out_f_woready_7 ? _out_T_99 : oldBytes_1_3; // @[RegisterRouter.scala:87:24] wire _out_T_104 = ~out_rimask_7; // @[RegisterRouter.scala:87:24] wire _out_T_105 = ~out_wimask_7; // @[RegisterRouter.scala:87:24] wire _out_T_106 = ~out_romask_7; // @[RegisterRouter.scala:87:24] wire _out_T_107 = ~out_womask_7; // @[RegisterRouter.scala:87:24] wire [31:0] out_prepend_5 = {oldBytes_1_3, _out_prepend_T_5}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_108 = out_prepend_5; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_109 = _out_T_108; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_6 = _out_T_109; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_8 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_8 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_20 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_20 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_28 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_28 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_36 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_36 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_48 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_48 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_56 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_56 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_64 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_64 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_72 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_72 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_80 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_80 = out_frontMask[39:32]; // @[RegisterRouter.scala:87:24] wire out_rimask_8 = |_out_rimask_T_8; // @[RegisterRouter.scala:87:24] wire out_wimask_8 = &_out_wimask_T_8; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_8 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_8 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_20 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_20 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_28 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_28 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_36 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_36 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_48 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_48 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_56 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_56 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_64 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_64 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_72 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_72 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_80 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_80 = out_backMask[39:32]; // @[RegisterRouter.scala:87:24] wire out_romask_8 = |_out_romask_T_8; // @[RegisterRouter.scala:87:24] wire out_womask_8 = &_out_womask_T_8; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_8 = out_rivalid_8 & out_rimask_8; // @[RegisterRouter.scala:87:24] wire _out_T_111 = out_f_rivalid_8; // @[RegisterRouter.scala:87:24] wire out_f_roready_8 = out_roready_8 & out_romask_8; // @[RegisterRouter.scala:87:24] wire _out_T_112 = out_f_roready_8; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_8 = out_wivalid_8 & out_wimask_8; // @[RegisterRouter.scala:87:24] wire _out_T_113 = out_f_wivalid_8; // @[RegisterRouter.scala:87:24] assign out_f_woready_8 = out_woready_8 & out_womask_8; // @[RegisterRouter.scala:87:24] assign valids_1_4 = out_f_woready_8; // @[RegisterRouter.scala:87:24] wire _out_T_114 = out_f_woready_8; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_110 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_238 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_326 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_414 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_542 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_630 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_718 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_806 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_894 = out_front_bits_data[39:32]; // @[RegisterRouter.scala:87:24] assign newBytes_1_4 = out_f_woready_8 ? _out_T_110 : oldBytes_1_4; // @[RegisterRouter.scala:87:24] wire _out_T_115 = ~out_rimask_8; // @[RegisterRouter.scala:87:24] wire _out_T_116 = ~out_wimask_8; // @[RegisterRouter.scala:87:24] wire _out_T_117 = ~out_romask_8; // @[RegisterRouter.scala:87:24] wire _out_T_118 = ~out_womask_8; // @[RegisterRouter.scala:87:24] wire [39:0] out_prepend_6 = {oldBytes_1_4, _out_prepend_T_6}; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_119 = out_prepend_6; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_120 = _out_T_119; // @[RegisterRouter.scala:87:24] wire [39:0] _out_prepend_T_7 = _out_T_120; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_9 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_9 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_21 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_21 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_29 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_29 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_37 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_37 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_49 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_49 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_57 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_57 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_65 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_65 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_73 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_73 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_81 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_81 = out_frontMask[47:40]; // @[RegisterRouter.scala:87:24] wire out_rimask_9 = |_out_rimask_T_9; // @[RegisterRouter.scala:87:24] wire out_wimask_9 = &_out_wimask_T_9; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_9 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_9 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_21 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_21 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_29 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_29 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_37 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_37 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_49 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_49 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_57 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_57 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_65 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_65 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_73 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_73 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_81 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_81 = out_backMask[47:40]; // @[RegisterRouter.scala:87:24] wire out_romask_9 = |_out_romask_T_9; // @[RegisterRouter.scala:87:24] wire out_womask_9 = &_out_womask_T_9; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_9 = out_rivalid_9 & out_rimask_9; // @[RegisterRouter.scala:87:24] wire _out_T_122 = out_f_rivalid_9; // @[RegisterRouter.scala:87:24] wire out_f_roready_9 = out_roready_9 & out_romask_9; // @[RegisterRouter.scala:87:24] wire _out_T_123 = out_f_roready_9; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_9 = out_wivalid_9 & out_wimask_9; // @[RegisterRouter.scala:87:24] wire _out_T_124 = out_f_wivalid_9; // @[RegisterRouter.scala:87:24] assign out_f_woready_9 = out_woready_9 & out_womask_9; // @[RegisterRouter.scala:87:24] assign valids_1_5 = out_f_woready_9; // @[RegisterRouter.scala:87:24] wire _out_T_125 = out_f_woready_9; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_121 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_249 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_337 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_425 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_553 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_641 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_729 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_817 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_905 = out_front_bits_data[47:40]; // @[RegisterRouter.scala:87:24] assign newBytes_1_5 = out_f_woready_9 ? _out_T_121 : oldBytes_1_5; // @[RegisterRouter.scala:87:24] wire _out_T_126 = ~out_rimask_9; // @[RegisterRouter.scala:87:24] wire _out_T_127 = ~out_wimask_9; // @[RegisterRouter.scala:87:24] wire _out_T_128 = ~out_romask_9; // @[RegisterRouter.scala:87:24] wire _out_T_129 = ~out_womask_9; // @[RegisterRouter.scala:87:24] wire [47:0] out_prepend_7 = {oldBytes_1_5, _out_prepend_T_7}; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_130 = out_prepend_7; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_131 = _out_T_130; // @[RegisterRouter.scala:87:24] wire [47:0] _out_prepend_T_8 = _out_T_131; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_10 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_10 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_22 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_22 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_30 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_30 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_38 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_38 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_50 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_50 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_58 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_58 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_66 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_66 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_74 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_74 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_82 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_82 = out_frontMask[55:48]; // @[RegisterRouter.scala:87:24] wire out_rimask_10 = |_out_rimask_T_10; // @[RegisterRouter.scala:87:24] wire out_wimask_10 = &_out_wimask_T_10; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_10 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_10 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_22 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_22 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_30 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_30 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_38 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_38 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_50 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_50 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_58 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_58 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_66 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_66 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_74 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_74 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_82 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_82 = out_backMask[55:48]; // @[RegisterRouter.scala:87:24] wire out_romask_10 = |_out_romask_T_10; // @[RegisterRouter.scala:87:24] wire out_womask_10 = &_out_womask_T_10; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_10 = out_rivalid_10 & out_rimask_10; // @[RegisterRouter.scala:87:24] wire _out_T_133 = out_f_rivalid_10; // @[RegisterRouter.scala:87:24] wire out_f_roready_10 = out_roready_10 & out_romask_10; // @[RegisterRouter.scala:87:24] wire _out_T_134 = out_f_roready_10; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_10 = out_wivalid_10 & out_wimask_10; // @[RegisterRouter.scala:87:24] wire _out_T_135 = out_f_wivalid_10; // @[RegisterRouter.scala:87:24] assign out_f_woready_10 = out_woready_10 & out_womask_10; // @[RegisterRouter.scala:87:24] assign valids_1_6 = out_f_woready_10; // @[RegisterRouter.scala:87:24] wire _out_T_136 = out_f_woready_10; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_132 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_260 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_348 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_436 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_564 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_652 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_740 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_828 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_916 = out_front_bits_data[55:48]; // @[RegisterRouter.scala:87:24] assign newBytes_1_6 = out_f_woready_10 ? _out_T_132 : oldBytes_1_6; // @[RegisterRouter.scala:87:24] wire _out_T_137 = ~out_rimask_10; // @[RegisterRouter.scala:87:24] wire _out_T_138 = ~out_wimask_10; // @[RegisterRouter.scala:87:24] wire _out_T_139 = ~out_romask_10; // @[RegisterRouter.scala:87:24] wire _out_T_140 = ~out_womask_10; // @[RegisterRouter.scala:87:24] wire [55:0] out_prepend_8 = {oldBytes_1_6, _out_prepend_T_8}; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_141 = out_prepend_8; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_142 = _out_T_141; // @[RegisterRouter.scala:87:24] wire [55:0] _out_prepend_T_9 = _out_T_142; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_11 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_11 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_23 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_23 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_31 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_31 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_39 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_39 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_51 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_51 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_59 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_59 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_67 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_67 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_75 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_75 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_rimask_T_83 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_wimask_T_83 = out_frontMask[63:56]; // @[RegisterRouter.scala:87:24] wire out_rimask_11 = |_out_rimask_T_11; // @[RegisterRouter.scala:87:24] wire out_wimask_11 = &_out_wimask_T_11; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_11 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_11 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_23 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_23 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_31 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_31 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_39 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_39 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_51 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_51 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_59 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_59 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_67 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_67 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_75 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_75 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_romask_T_83 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_womask_T_83 = out_backMask[63:56]; // @[RegisterRouter.scala:87:24] wire out_romask_11 = |_out_romask_T_11; // @[RegisterRouter.scala:87:24] wire out_womask_11 = &_out_womask_T_11; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_11 = out_rivalid_11 & out_rimask_11; // @[RegisterRouter.scala:87:24] wire _out_T_144 = out_f_rivalid_11; // @[RegisterRouter.scala:87:24] wire out_f_roready_11 = out_roready_11 & out_romask_11; // @[RegisterRouter.scala:87:24] wire _out_T_145 = out_f_roready_11; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_11 = out_wivalid_11 & out_wimask_11; // @[RegisterRouter.scala:87:24] wire _out_T_146 = out_f_wivalid_11; // @[RegisterRouter.scala:87:24] assign out_f_woready_11 = out_woready_11 & out_womask_11; // @[RegisterRouter.scala:87:24] assign valids_1_7 = out_f_woready_11; // @[RegisterRouter.scala:87:24] wire _out_T_147 = out_f_woready_11; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_143 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_271 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_359 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_447 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_575 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_663 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_751 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_839 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_927 = out_front_bits_data[63:56]; // @[RegisterRouter.scala:87:24] assign newBytes_1_7 = out_f_woready_11 ? _out_T_143 : oldBytes_1_7; // @[RegisterRouter.scala:87:24] wire _out_T_148 = ~out_rimask_11; // @[RegisterRouter.scala:87:24] wire _out_T_149 = ~out_wimask_11; // @[RegisterRouter.scala:87:24] wire _out_T_150 = ~out_romask_11; // @[RegisterRouter.scala:87:24] wire _out_T_151 = ~out_womask_11; // @[RegisterRouter.scala:87:24] wire [63:0] out_prepend_9 = {oldBytes_1_7, _out_prepend_T_9}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_152 = out_prepend_9; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_153 = _out_T_152; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_9 = _out_T_153; // @[MuxLiteral.scala:49:48] wire out_rimask_12 = _out_rimask_T_12; // @[RegisterRouter.scala:87:24] wire out_wimask_12 = _out_wimask_T_12; // @[RegisterRouter.scala:87:24] wire out_romask_12 = _out_romask_T_12; // @[RegisterRouter.scala:87:24] wire out_womask_12 = _out_womask_T_12; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_12 = out_rivalid_12 & out_rimask_12; // @[RegisterRouter.scala:87:24] wire _out_T_155 = out_f_rivalid_12; // @[RegisterRouter.scala:87:24] wire out_f_roready_12 = out_roready_12 & out_romask_12; // @[RegisterRouter.scala:87:24] wire _out_T_156 = out_f_roready_12; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_12 = out_wivalid_12 & out_wimask_12; // @[RegisterRouter.scala:87:24] wire _out_T_157 = out_f_wivalid_12; // @[RegisterRouter.scala:87:24] wire out_f_woready_12 = out_woready_12 & out_womask_12; // @[RegisterRouter.scala:87:24] wire _out_T_158 = out_f_woready_12; // @[RegisterRouter.scala:87:24] wire _out_T_159 = ~out_rimask_12; // @[RegisterRouter.scala:87:24] wire _out_T_160 = ~out_wimask_12; // @[RegisterRouter.scala:87:24] wire _out_T_161 = ~out_romask_12; // @[RegisterRouter.scala:87:24] wire _out_T_162 = ~out_womask_12; // @[RegisterRouter.scala:87:24] wire _out_T_164 = _out_T_163; // @[RegisterRouter.scala:87:24] wire _out_prepend_T_10 = _out_T_164; // @[RegisterRouter.scala:87:24] wire out_rimask_13 = |_out_rimask_T_13; // @[RegisterRouter.scala:87:24] wire out_wimask_13 = &_out_wimask_T_13; // @[RegisterRouter.scala:87:24] wire out_romask_13 = |_out_romask_T_13; // @[RegisterRouter.scala:87:24] wire out_womask_13 = &_out_womask_T_13; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_13 = out_rivalid_13 & out_rimask_13; // @[RegisterRouter.scala:87:24] wire _out_T_166 = out_f_rivalid_13; // @[RegisterRouter.scala:87:24] wire out_f_roready_13 = out_roready_13 & out_romask_13; // @[RegisterRouter.scala:87:24] wire _out_T_167 = out_f_roready_13; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_13 = out_wivalid_13 & out_wimask_13; // @[RegisterRouter.scala:87:24] wire out_f_woready_13 = out_woready_13 & out_womask_13; // @[RegisterRouter.scala:87:24] wire _out_T_168 = ~out_rimask_13; // @[RegisterRouter.scala:87:24] wire _out_T_169 = ~out_wimask_13; // @[RegisterRouter.scala:87:24] wire _out_T_170 = ~out_romask_13; // @[RegisterRouter.scala:87:24] wire _out_T_171 = ~out_womask_13; // @[RegisterRouter.scala:87:24] wire [1:0] out_prepend_10 = {1'h0, _out_prepend_T_10}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_172 = {30'h0, out_prepend_10}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_173 = _out_T_172; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_11 = _out_T_173; // @[RegisterRouter.scala:87:24] wire out_rimask_14 = _out_rimask_T_14; // @[RegisterRouter.scala:87:24] wire out_wimask_14 = _out_wimask_T_14; // @[RegisterRouter.scala:87:24] wire out_romask_14 = _out_romask_T_14; // @[RegisterRouter.scala:87:24] wire out_womask_14 = _out_womask_T_14; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_14 = out_rivalid_14 & out_rimask_14; // @[RegisterRouter.scala:87:24] wire _out_T_175 = out_f_rivalid_14; // @[RegisterRouter.scala:87:24] wire out_f_roready_14 = out_roready_14 & out_romask_14; // @[RegisterRouter.scala:87:24] wire _out_T_176 = out_f_roready_14; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_14 = out_wivalid_14 & out_wimask_14; // @[RegisterRouter.scala:87:24] wire _out_T_177 = out_f_wivalid_14; // @[RegisterRouter.scala:87:24] wire out_f_woready_14 = out_woready_14 & out_womask_14; // @[RegisterRouter.scala:87:24] wire _out_T_178 = out_f_woready_14; // @[RegisterRouter.scala:87:24] wire _out_T_179 = ~out_rimask_14; // @[RegisterRouter.scala:87:24] wire _out_T_180 = ~out_wimask_14; // @[RegisterRouter.scala:87:24] wire _out_T_181 = ~out_romask_14; // @[RegisterRouter.scala:87:24] wire _out_T_182 = ~out_womask_14; // @[RegisterRouter.scala:87:24] wire [32:0] out_prepend_11 = {ipi_3, _out_prepend_T_11}; // @[RegisterRouter.scala:87:24] wire [32:0] _out_T_183 = out_prepend_11; // @[RegisterRouter.scala:87:24] wire [32:0] _out_T_184 = _out_T_183; // @[RegisterRouter.scala:87:24] wire [32:0] _out_prepend_T_12 = _out_T_184; // @[RegisterRouter.scala:87:24] wire out_rimask_15 = |_out_rimask_T_15; // @[RegisterRouter.scala:87:24] wire out_wimask_15 = &_out_wimask_T_15; // @[RegisterRouter.scala:87:24] wire out_romask_15 = |_out_romask_T_15; // @[RegisterRouter.scala:87:24] wire out_womask_15 = &_out_womask_T_15; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_15 = out_rivalid_15 & out_rimask_15; // @[RegisterRouter.scala:87:24] wire _out_T_186 = out_f_rivalid_15; // @[RegisterRouter.scala:87:24] wire out_f_roready_15 = out_roready_15 & out_romask_15; // @[RegisterRouter.scala:87:24] wire _out_T_187 = out_f_roready_15; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_15 = out_wivalid_15 & out_wimask_15; // @[RegisterRouter.scala:87:24] wire out_f_woready_15 = out_woready_15 & out_womask_15; // @[RegisterRouter.scala:87:24] wire _out_T_188 = ~out_rimask_15; // @[RegisterRouter.scala:87:24] wire _out_T_189 = ~out_wimask_15; // @[RegisterRouter.scala:87:24] wire _out_T_190 = ~out_romask_15; // @[RegisterRouter.scala:87:24] wire _out_T_191 = ~out_womask_15; // @[RegisterRouter.scala:87:24] wire [33:0] out_prepend_12 = {1'h0, _out_prepend_T_12}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_192 = {30'h0, out_prepend_12}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_193 = _out_T_192; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_1 = _out_T_193; // @[MuxLiteral.scala:49:48] wire out_rimask_16 = |_out_rimask_T_16; // @[RegisterRouter.scala:87:24] wire out_wimask_16 = &_out_wimask_T_16; // @[RegisterRouter.scala:87:24] wire out_romask_16 = |_out_romask_T_16; // @[RegisterRouter.scala:87:24] wire out_womask_16 = &_out_womask_T_16; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_16 = out_rivalid_16 & out_rimask_16; // @[RegisterRouter.scala:87:24] wire _out_T_195 = out_f_rivalid_16; // @[RegisterRouter.scala:87:24] wire out_f_roready_16 = out_roready_16 & out_romask_16; // @[RegisterRouter.scala:87:24] wire _out_T_196 = out_f_roready_16; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_16 = out_wivalid_16 & out_wimask_16; // @[RegisterRouter.scala:87:24] wire _out_T_197 = out_f_wivalid_16; // @[RegisterRouter.scala:87:24] assign out_f_woready_16 = out_woready_16 & out_womask_16; // @[RegisterRouter.scala:87:24] assign valids_8_0 = out_f_woready_16; // @[RegisterRouter.scala:87:24] wire _out_T_198 = out_f_woready_16; // @[RegisterRouter.scala:87:24] assign newBytes_8_0 = out_f_woready_16 ? _out_T_194 : oldBytes_8_0; // @[RegisterRouter.scala:87:24] wire _out_T_199 = ~out_rimask_16; // @[RegisterRouter.scala:87:24] wire _out_T_200 = ~out_wimask_16; // @[RegisterRouter.scala:87:24] wire _out_T_201 = ~out_romask_16; // @[RegisterRouter.scala:87:24] wire _out_T_202 = ~out_womask_16; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_204 = _out_T_203; // @[RegisterRouter.scala:87:24] wire [7:0] _out_prepend_T_13 = _out_T_204; // @[RegisterRouter.scala:87:24] wire out_rimask_17 = |_out_rimask_T_17; // @[RegisterRouter.scala:87:24] wire out_wimask_17 = &_out_wimask_T_17; // @[RegisterRouter.scala:87:24] wire out_romask_17 = |_out_romask_T_17; // @[RegisterRouter.scala:87:24] wire out_womask_17 = &_out_womask_T_17; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_17 = out_rivalid_17 & out_rimask_17; // @[RegisterRouter.scala:87:24] wire _out_T_206 = out_f_rivalid_17; // @[RegisterRouter.scala:87:24] wire out_f_roready_17 = out_roready_17 & out_romask_17; // @[RegisterRouter.scala:87:24] wire _out_T_207 = out_f_roready_17; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_17 = out_wivalid_17 & out_wimask_17; // @[RegisterRouter.scala:87:24] wire _out_T_208 = out_f_wivalid_17; // @[RegisterRouter.scala:87:24] assign out_f_woready_17 = out_woready_17 & out_womask_17; // @[RegisterRouter.scala:87:24] assign valids_8_1 = out_f_woready_17; // @[RegisterRouter.scala:87:24] wire _out_T_209 = out_f_woready_17; // @[RegisterRouter.scala:87:24] assign newBytes_8_1 = out_f_woready_17 ? _out_T_205 : oldBytes_8_1; // @[RegisterRouter.scala:87:24] wire _out_T_210 = ~out_rimask_17; // @[RegisterRouter.scala:87:24] wire _out_T_211 = ~out_wimask_17; // @[RegisterRouter.scala:87:24] wire _out_T_212 = ~out_romask_17; // @[RegisterRouter.scala:87:24] wire _out_T_213 = ~out_womask_17; // @[RegisterRouter.scala:87:24] wire [15:0] out_prepend_13 = {oldBytes_8_1, _out_prepend_T_13}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_214 = out_prepend_13; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_215 = _out_T_214; // @[RegisterRouter.scala:87:24] wire [15:0] _out_prepend_T_14 = _out_T_215; // @[RegisterRouter.scala:87:24] wire out_rimask_18 = |_out_rimask_T_18; // @[RegisterRouter.scala:87:24] wire out_wimask_18 = &_out_wimask_T_18; // @[RegisterRouter.scala:87:24] wire out_romask_18 = |_out_romask_T_18; // @[RegisterRouter.scala:87:24] wire out_womask_18 = &_out_womask_T_18; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_18 = out_rivalid_18 & out_rimask_18; // @[RegisterRouter.scala:87:24] wire _out_T_217 = out_f_rivalid_18; // @[RegisterRouter.scala:87:24] wire out_f_roready_18 = out_roready_18 & out_romask_18; // @[RegisterRouter.scala:87:24] wire _out_T_218 = out_f_roready_18; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_18 = out_wivalid_18 & out_wimask_18; // @[RegisterRouter.scala:87:24] wire _out_T_219 = out_f_wivalid_18; // @[RegisterRouter.scala:87:24] assign out_f_woready_18 = out_woready_18 & out_womask_18; // @[RegisterRouter.scala:87:24] assign valids_8_2 = out_f_woready_18; // @[RegisterRouter.scala:87:24] wire _out_T_220 = out_f_woready_18; // @[RegisterRouter.scala:87:24] assign newBytes_8_2 = out_f_woready_18 ? _out_T_216 : oldBytes_8_2; // @[RegisterRouter.scala:87:24] wire _out_T_221 = ~out_rimask_18; // @[RegisterRouter.scala:87:24] wire _out_T_222 = ~out_wimask_18; // @[RegisterRouter.scala:87:24] wire _out_T_223 = ~out_romask_18; // @[RegisterRouter.scala:87:24] wire _out_T_224 = ~out_womask_18; // @[RegisterRouter.scala:87:24] wire [23:0] out_prepend_14 = {oldBytes_8_2, _out_prepend_T_14}; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_225 = out_prepend_14; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_226 = _out_T_225; // @[RegisterRouter.scala:87:24] wire [23:0] _out_prepend_T_15 = _out_T_226; // @[RegisterRouter.scala:87:24] wire out_rimask_19 = |_out_rimask_T_19; // @[RegisterRouter.scala:87:24] wire out_wimask_19 = &_out_wimask_T_19; // @[RegisterRouter.scala:87:24] wire out_romask_19 = |_out_romask_T_19; // @[RegisterRouter.scala:87:24] wire out_womask_19 = &_out_womask_T_19; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_19 = out_rivalid_19 & out_rimask_19; // @[RegisterRouter.scala:87:24] wire _out_T_228 = out_f_rivalid_19; // @[RegisterRouter.scala:87:24] wire out_f_roready_19 = out_roready_19 & out_romask_19; // @[RegisterRouter.scala:87:24] wire _out_T_229 = out_f_roready_19; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_19 = out_wivalid_19 & out_wimask_19; // @[RegisterRouter.scala:87:24] wire _out_T_230 = out_f_wivalid_19; // @[RegisterRouter.scala:87:24] assign out_f_woready_19 = out_woready_19 & out_womask_19; // @[RegisterRouter.scala:87:24] assign valids_8_3 = out_f_woready_19; // @[RegisterRouter.scala:87:24] wire _out_T_231 = out_f_woready_19; // @[RegisterRouter.scala:87:24] assign newBytes_8_3 = out_f_woready_19 ? _out_T_227 : oldBytes_8_3; // @[RegisterRouter.scala:87:24] wire _out_T_232 = ~out_rimask_19; // @[RegisterRouter.scala:87:24] wire _out_T_233 = ~out_wimask_19; // @[RegisterRouter.scala:87:24] wire _out_T_234 = ~out_romask_19; // @[RegisterRouter.scala:87:24] wire _out_T_235 = ~out_womask_19; // @[RegisterRouter.scala:87:24] wire [31:0] out_prepend_15 = {oldBytes_8_3, _out_prepend_T_15}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_236 = out_prepend_15; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_237 = _out_T_236; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_16 = _out_T_237; // @[RegisterRouter.scala:87:24] wire out_rimask_20 = |_out_rimask_T_20; // @[RegisterRouter.scala:87:24] wire out_wimask_20 = &_out_wimask_T_20; // @[RegisterRouter.scala:87:24] wire out_romask_20 = |_out_romask_T_20; // @[RegisterRouter.scala:87:24] wire out_womask_20 = &_out_womask_T_20; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_20 = out_rivalid_20 & out_rimask_20; // @[RegisterRouter.scala:87:24] wire _out_T_239 = out_f_rivalid_20; // @[RegisterRouter.scala:87:24] wire out_f_roready_20 = out_roready_20 & out_romask_20; // @[RegisterRouter.scala:87:24] wire _out_T_240 = out_f_roready_20; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_20 = out_wivalid_20 & out_wimask_20; // @[RegisterRouter.scala:87:24] wire _out_T_241 = out_f_wivalid_20; // @[RegisterRouter.scala:87:24] assign out_f_woready_20 = out_woready_20 & out_womask_20; // @[RegisterRouter.scala:87:24] assign valids_8_4 = out_f_woready_20; // @[RegisterRouter.scala:87:24] wire _out_T_242 = out_f_woready_20; // @[RegisterRouter.scala:87:24] assign newBytes_8_4 = out_f_woready_20 ? _out_T_238 : oldBytes_8_4; // @[RegisterRouter.scala:87:24] wire _out_T_243 = ~out_rimask_20; // @[RegisterRouter.scala:87:24] wire _out_T_244 = ~out_wimask_20; // @[RegisterRouter.scala:87:24] wire _out_T_245 = ~out_romask_20; // @[RegisterRouter.scala:87:24] wire _out_T_246 = ~out_womask_20; // @[RegisterRouter.scala:87:24] wire [39:0] out_prepend_16 = {oldBytes_8_4, _out_prepend_T_16}; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_247 = out_prepend_16; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_248 = _out_T_247; // @[RegisterRouter.scala:87:24] wire [39:0] _out_prepend_T_17 = _out_T_248; // @[RegisterRouter.scala:87:24] wire out_rimask_21 = |_out_rimask_T_21; // @[RegisterRouter.scala:87:24] wire out_wimask_21 = &_out_wimask_T_21; // @[RegisterRouter.scala:87:24] wire out_romask_21 = |_out_romask_T_21; // @[RegisterRouter.scala:87:24] wire out_womask_21 = &_out_womask_T_21; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_21 = out_rivalid_21 & out_rimask_21; // @[RegisterRouter.scala:87:24] wire _out_T_250 = out_f_rivalid_21; // @[RegisterRouter.scala:87:24] wire out_f_roready_21 = out_roready_21 & out_romask_21; // @[RegisterRouter.scala:87:24] wire _out_T_251 = out_f_roready_21; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_21 = out_wivalid_21 & out_wimask_21; // @[RegisterRouter.scala:87:24] wire _out_T_252 = out_f_wivalid_21; // @[RegisterRouter.scala:87:24] assign out_f_woready_21 = out_woready_21 & out_womask_21; // @[RegisterRouter.scala:87:24] assign valids_8_5 = out_f_woready_21; // @[RegisterRouter.scala:87:24] wire _out_T_253 = out_f_woready_21; // @[RegisterRouter.scala:87:24] assign newBytes_8_5 = out_f_woready_21 ? _out_T_249 : oldBytes_8_5; // @[RegisterRouter.scala:87:24] wire _out_T_254 = ~out_rimask_21; // @[RegisterRouter.scala:87:24] wire _out_T_255 = ~out_wimask_21; // @[RegisterRouter.scala:87:24] wire _out_T_256 = ~out_romask_21; // @[RegisterRouter.scala:87:24] wire _out_T_257 = ~out_womask_21; // @[RegisterRouter.scala:87:24] wire [47:0] out_prepend_17 = {oldBytes_8_5, _out_prepend_T_17}; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_258 = out_prepend_17; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_259 = _out_T_258; // @[RegisterRouter.scala:87:24] wire [47:0] _out_prepend_T_18 = _out_T_259; // @[RegisterRouter.scala:87:24] wire out_rimask_22 = |_out_rimask_T_22; // @[RegisterRouter.scala:87:24] wire out_wimask_22 = &_out_wimask_T_22; // @[RegisterRouter.scala:87:24] wire out_romask_22 = |_out_romask_T_22; // @[RegisterRouter.scala:87:24] wire out_womask_22 = &_out_womask_T_22; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_22 = out_rivalid_22 & out_rimask_22; // @[RegisterRouter.scala:87:24] wire _out_T_261 = out_f_rivalid_22; // @[RegisterRouter.scala:87:24] wire out_f_roready_22 = out_roready_22 & out_romask_22; // @[RegisterRouter.scala:87:24] wire _out_T_262 = out_f_roready_22; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_22 = out_wivalid_22 & out_wimask_22; // @[RegisterRouter.scala:87:24] wire _out_T_263 = out_f_wivalid_22; // @[RegisterRouter.scala:87:24] assign out_f_woready_22 = out_woready_22 & out_womask_22; // @[RegisterRouter.scala:87:24] assign valids_8_6 = out_f_woready_22; // @[RegisterRouter.scala:87:24] wire _out_T_264 = out_f_woready_22; // @[RegisterRouter.scala:87:24] assign newBytes_8_6 = out_f_woready_22 ? _out_T_260 : oldBytes_8_6; // @[RegisterRouter.scala:87:24] wire _out_T_265 = ~out_rimask_22; // @[RegisterRouter.scala:87:24] wire _out_T_266 = ~out_wimask_22; // @[RegisterRouter.scala:87:24] wire _out_T_267 = ~out_romask_22; // @[RegisterRouter.scala:87:24] wire _out_T_268 = ~out_womask_22; // @[RegisterRouter.scala:87:24] wire [55:0] out_prepend_18 = {oldBytes_8_6, _out_prepend_T_18}; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_269 = out_prepend_18; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_270 = _out_T_269; // @[RegisterRouter.scala:87:24] wire [55:0] _out_prepend_T_19 = _out_T_270; // @[RegisterRouter.scala:87:24] wire out_rimask_23 = |_out_rimask_T_23; // @[RegisterRouter.scala:87:24] wire out_wimask_23 = &_out_wimask_T_23; // @[RegisterRouter.scala:87:24] wire out_romask_23 = |_out_romask_T_23; // @[RegisterRouter.scala:87:24] wire out_womask_23 = &_out_womask_T_23; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_23 = out_rivalid_23 & out_rimask_23; // @[RegisterRouter.scala:87:24] wire _out_T_272 = out_f_rivalid_23; // @[RegisterRouter.scala:87:24] wire out_f_roready_23 = out_roready_23 & out_romask_23; // @[RegisterRouter.scala:87:24] wire _out_T_273 = out_f_roready_23; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_23 = out_wivalid_23 & out_wimask_23; // @[RegisterRouter.scala:87:24] wire _out_T_274 = out_f_wivalid_23; // @[RegisterRouter.scala:87:24] assign out_f_woready_23 = out_woready_23 & out_womask_23; // @[RegisterRouter.scala:87:24] assign valids_8_7 = out_f_woready_23; // @[RegisterRouter.scala:87:24] wire _out_T_275 = out_f_woready_23; // @[RegisterRouter.scala:87:24] assign newBytes_8_7 = out_f_woready_23 ? _out_T_271 : oldBytes_8_7; // @[RegisterRouter.scala:87:24] wire _out_T_276 = ~out_rimask_23; // @[RegisterRouter.scala:87:24] wire _out_T_277 = ~out_wimask_23; // @[RegisterRouter.scala:87:24] wire _out_T_278 = ~out_romask_23; // @[RegisterRouter.scala:87:24] wire _out_T_279 = ~out_womask_23; // @[RegisterRouter.scala:87:24] wire [63:0] out_prepend_19 = {oldBytes_8_7, _out_prepend_T_19}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_280 = out_prepend_19; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_281 = _out_T_280; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_7 = _out_T_281; // @[MuxLiteral.scala:49:48] wire out_rimask_24 = |_out_rimask_T_24; // @[RegisterRouter.scala:87:24] wire out_wimask_24 = &_out_wimask_T_24; // @[RegisterRouter.scala:87:24] wire out_romask_24 = |_out_romask_T_24; // @[RegisterRouter.scala:87:24] wire out_womask_24 = &_out_womask_T_24; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_24 = out_rivalid_24 & out_rimask_24; // @[RegisterRouter.scala:87:24] wire _out_T_283 = out_f_rivalid_24; // @[RegisterRouter.scala:87:24] wire out_f_roready_24 = out_roready_24 & out_romask_24; // @[RegisterRouter.scala:87:24] wire _out_T_284 = out_f_roready_24; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_24 = out_wivalid_24 & out_wimask_24; // @[RegisterRouter.scala:87:24] wire _out_T_285 = out_f_wivalid_24; // @[RegisterRouter.scala:87:24] assign out_f_woready_24 = out_woready_24 & out_womask_24; // @[RegisterRouter.scala:87:24] assign valids_5_0 = out_f_woready_24; // @[RegisterRouter.scala:87:24] wire _out_T_286 = out_f_woready_24; // @[RegisterRouter.scala:87:24] assign newBytes_5_0 = out_f_woready_24 ? _out_T_282 : oldBytes_5_0; // @[RegisterRouter.scala:87:24] wire _out_T_287 = ~out_rimask_24; // @[RegisterRouter.scala:87:24] wire _out_T_288 = ~out_wimask_24; // @[RegisterRouter.scala:87:24] wire _out_T_289 = ~out_romask_24; // @[RegisterRouter.scala:87:24] wire _out_T_290 = ~out_womask_24; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_292 = _out_T_291; // @[RegisterRouter.scala:87:24] wire [7:0] _out_prepend_T_20 = _out_T_292; // @[RegisterRouter.scala:87:24] wire out_rimask_25 = |_out_rimask_T_25; // @[RegisterRouter.scala:87:24] wire out_wimask_25 = &_out_wimask_T_25; // @[RegisterRouter.scala:87:24] wire out_romask_25 = |_out_romask_T_25; // @[RegisterRouter.scala:87:24] wire out_womask_25 = &_out_womask_T_25; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_25 = out_rivalid_25 & out_rimask_25; // @[RegisterRouter.scala:87:24] wire _out_T_294 = out_f_rivalid_25; // @[RegisterRouter.scala:87:24] wire out_f_roready_25 = out_roready_25 & out_romask_25; // @[RegisterRouter.scala:87:24] wire _out_T_295 = out_f_roready_25; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_25 = out_wivalid_25 & out_wimask_25; // @[RegisterRouter.scala:87:24] wire _out_T_296 = out_f_wivalid_25; // @[RegisterRouter.scala:87:24] assign out_f_woready_25 = out_woready_25 & out_womask_25; // @[RegisterRouter.scala:87:24] assign valids_5_1 = out_f_woready_25; // @[RegisterRouter.scala:87:24] wire _out_T_297 = out_f_woready_25; // @[RegisterRouter.scala:87:24] assign newBytes_5_1 = out_f_woready_25 ? _out_T_293 : oldBytes_5_1; // @[RegisterRouter.scala:87:24] wire _out_T_298 = ~out_rimask_25; // @[RegisterRouter.scala:87:24] wire _out_T_299 = ~out_wimask_25; // @[RegisterRouter.scala:87:24] wire _out_T_300 = ~out_romask_25; // @[RegisterRouter.scala:87:24] wire _out_T_301 = ~out_womask_25; // @[RegisterRouter.scala:87:24] wire [15:0] out_prepend_20 = {oldBytes_5_1, _out_prepend_T_20}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_302 = out_prepend_20; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_303 = _out_T_302; // @[RegisterRouter.scala:87:24] wire [15:0] _out_prepend_T_21 = _out_T_303; // @[RegisterRouter.scala:87:24] wire out_rimask_26 = |_out_rimask_T_26; // @[RegisterRouter.scala:87:24] wire out_wimask_26 = &_out_wimask_T_26; // @[RegisterRouter.scala:87:24] wire out_romask_26 = |_out_romask_T_26; // @[RegisterRouter.scala:87:24] wire out_womask_26 = &_out_womask_T_26; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_26 = out_rivalid_26 & out_rimask_26; // @[RegisterRouter.scala:87:24] wire _out_T_305 = out_f_rivalid_26; // @[RegisterRouter.scala:87:24] wire out_f_roready_26 = out_roready_26 & out_romask_26; // @[RegisterRouter.scala:87:24] wire _out_T_306 = out_f_roready_26; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_26 = out_wivalid_26 & out_wimask_26; // @[RegisterRouter.scala:87:24] wire _out_T_307 = out_f_wivalid_26; // @[RegisterRouter.scala:87:24] assign out_f_woready_26 = out_woready_26 & out_womask_26; // @[RegisterRouter.scala:87:24] assign valids_5_2 = out_f_woready_26; // @[RegisterRouter.scala:87:24] wire _out_T_308 = out_f_woready_26; // @[RegisterRouter.scala:87:24] assign newBytes_5_2 = out_f_woready_26 ? _out_T_304 : oldBytes_5_2; // @[RegisterRouter.scala:87:24] wire _out_T_309 = ~out_rimask_26; // @[RegisterRouter.scala:87:24] wire _out_T_310 = ~out_wimask_26; // @[RegisterRouter.scala:87:24] wire _out_T_311 = ~out_romask_26; // @[RegisterRouter.scala:87:24] wire _out_T_312 = ~out_womask_26; // @[RegisterRouter.scala:87:24] wire [23:0] out_prepend_21 = {oldBytes_5_2, _out_prepend_T_21}; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_313 = out_prepend_21; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_314 = _out_T_313; // @[RegisterRouter.scala:87:24] wire [23:0] _out_prepend_T_22 = _out_T_314; // @[RegisterRouter.scala:87:24] wire out_rimask_27 = |_out_rimask_T_27; // @[RegisterRouter.scala:87:24] wire out_wimask_27 = &_out_wimask_T_27; // @[RegisterRouter.scala:87:24] wire out_romask_27 = |_out_romask_T_27; // @[RegisterRouter.scala:87:24] wire out_womask_27 = &_out_womask_T_27; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_27 = out_rivalid_27 & out_rimask_27; // @[RegisterRouter.scala:87:24] wire _out_T_316 = out_f_rivalid_27; // @[RegisterRouter.scala:87:24] wire out_f_roready_27 = out_roready_27 & out_romask_27; // @[RegisterRouter.scala:87:24] wire _out_T_317 = out_f_roready_27; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_27 = out_wivalid_27 & out_wimask_27; // @[RegisterRouter.scala:87:24] wire _out_T_318 = out_f_wivalid_27; // @[RegisterRouter.scala:87:24] assign out_f_woready_27 = out_woready_27 & out_womask_27; // @[RegisterRouter.scala:87:24] assign valids_5_3 = out_f_woready_27; // @[RegisterRouter.scala:87:24] wire _out_T_319 = out_f_woready_27; // @[RegisterRouter.scala:87:24] assign newBytes_5_3 = out_f_woready_27 ? _out_T_315 : oldBytes_5_3; // @[RegisterRouter.scala:87:24] wire _out_T_320 = ~out_rimask_27; // @[RegisterRouter.scala:87:24] wire _out_T_321 = ~out_wimask_27; // @[RegisterRouter.scala:87:24] wire _out_T_322 = ~out_romask_27; // @[RegisterRouter.scala:87:24] wire _out_T_323 = ~out_womask_27; // @[RegisterRouter.scala:87:24] wire [31:0] out_prepend_22 = {oldBytes_5_3, _out_prepend_T_22}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_324 = out_prepend_22; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_325 = _out_T_324; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_23 = _out_T_325; // @[RegisterRouter.scala:87:24] wire out_rimask_28 = |_out_rimask_T_28; // @[RegisterRouter.scala:87:24] wire out_wimask_28 = &_out_wimask_T_28; // @[RegisterRouter.scala:87:24] wire out_romask_28 = |_out_romask_T_28; // @[RegisterRouter.scala:87:24] wire out_womask_28 = &_out_womask_T_28; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_28 = out_rivalid_28 & out_rimask_28; // @[RegisterRouter.scala:87:24] wire _out_T_327 = out_f_rivalid_28; // @[RegisterRouter.scala:87:24] wire out_f_roready_28 = out_roready_28 & out_romask_28; // @[RegisterRouter.scala:87:24] wire _out_T_328 = out_f_roready_28; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_28 = out_wivalid_28 & out_wimask_28; // @[RegisterRouter.scala:87:24] wire _out_T_329 = out_f_wivalid_28; // @[RegisterRouter.scala:87:24] assign out_f_woready_28 = out_woready_28 & out_womask_28; // @[RegisterRouter.scala:87:24] assign valids_5_4 = out_f_woready_28; // @[RegisterRouter.scala:87:24] wire _out_T_330 = out_f_woready_28; // @[RegisterRouter.scala:87:24] assign newBytes_5_4 = out_f_woready_28 ? _out_T_326 : oldBytes_5_4; // @[RegisterRouter.scala:87:24] wire _out_T_331 = ~out_rimask_28; // @[RegisterRouter.scala:87:24] wire _out_T_332 = ~out_wimask_28; // @[RegisterRouter.scala:87:24] wire _out_T_333 = ~out_romask_28; // @[RegisterRouter.scala:87:24] wire _out_T_334 = ~out_womask_28; // @[RegisterRouter.scala:87:24] wire [39:0] out_prepend_23 = {oldBytes_5_4, _out_prepend_T_23}; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_335 = out_prepend_23; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_336 = _out_T_335; // @[RegisterRouter.scala:87:24] wire [39:0] _out_prepend_T_24 = _out_T_336; // @[RegisterRouter.scala:87:24] wire out_rimask_29 = |_out_rimask_T_29; // @[RegisterRouter.scala:87:24] wire out_wimask_29 = &_out_wimask_T_29; // @[RegisterRouter.scala:87:24] wire out_romask_29 = |_out_romask_T_29; // @[RegisterRouter.scala:87:24] wire out_womask_29 = &_out_womask_T_29; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_29 = out_rivalid_29 & out_rimask_29; // @[RegisterRouter.scala:87:24] wire _out_T_338 = out_f_rivalid_29; // @[RegisterRouter.scala:87:24] wire out_f_roready_29 = out_roready_29 & out_romask_29; // @[RegisterRouter.scala:87:24] wire _out_T_339 = out_f_roready_29; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_29 = out_wivalid_29 & out_wimask_29; // @[RegisterRouter.scala:87:24] wire _out_T_340 = out_f_wivalid_29; // @[RegisterRouter.scala:87:24] assign out_f_woready_29 = out_woready_29 & out_womask_29; // @[RegisterRouter.scala:87:24] assign valids_5_5 = out_f_woready_29; // @[RegisterRouter.scala:87:24] wire _out_T_341 = out_f_woready_29; // @[RegisterRouter.scala:87:24] assign newBytes_5_5 = out_f_woready_29 ? _out_T_337 : oldBytes_5_5; // @[RegisterRouter.scala:87:24] wire _out_T_342 = ~out_rimask_29; // @[RegisterRouter.scala:87:24] wire _out_T_343 = ~out_wimask_29; // @[RegisterRouter.scala:87:24] wire _out_T_344 = ~out_romask_29; // @[RegisterRouter.scala:87:24] wire _out_T_345 = ~out_womask_29; // @[RegisterRouter.scala:87:24] wire [47:0] out_prepend_24 = {oldBytes_5_5, _out_prepend_T_24}; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_346 = out_prepend_24; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_347 = _out_T_346; // @[RegisterRouter.scala:87:24] wire [47:0] _out_prepend_T_25 = _out_T_347; // @[RegisterRouter.scala:87:24] wire out_rimask_30 = |_out_rimask_T_30; // @[RegisterRouter.scala:87:24] wire out_wimask_30 = &_out_wimask_T_30; // @[RegisterRouter.scala:87:24] wire out_romask_30 = |_out_romask_T_30; // @[RegisterRouter.scala:87:24] wire out_womask_30 = &_out_womask_T_30; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_30 = out_rivalid_30 & out_rimask_30; // @[RegisterRouter.scala:87:24] wire _out_T_349 = out_f_rivalid_30; // @[RegisterRouter.scala:87:24] wire out_f_roready_30 = out_roready_30 & out_romask_30; // @[RegisterRouter.scala:87:24] wire _out_T_350 = out_f_roready_30; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_30 = out_wivalid_30 & out_wimask_30; // @[RegisterRouter.scala:87:24] wire _out_T_351 = out_f_wivalid_30; // @[RegisterRouter.scala:87:24] assign out_f_woready_30 = out_woready_30 & out_womask_30; // @[RegisterRouter.scala:87:24] assign valids_5_6 = out_f_woready_30; // @[RegisterRouter.scala:87:24] wire _out_T_352 = out_f_woready_30; // @[RegisterRouter.scala:87:24] assign newBytes_5_6 = out_f_woready_30 ? _out_T_348 : oldBytes_5_6; // @[RegisterRouter.scala:87:24] wire _out_T_353 = ~out_rimask_30; // @[RegisterRouter.scala:87:24] wire _out_T_354 = ~out_wimask_30; // @[RegisterRouter.scala:87:24] wire _out_T_355 = ~out_romask_30; // @[RegisterRouter.scala:87:24] wire _out_T_356 = ~out_womask_30; // @[RegisterRouter.scala:87:24] wire [55:0] out_prepend_25 = {oldBytes_5_6, _out_prepend_T_25}; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_357 = out_prepend_25; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_358 = _out_T_357; // @[RegisterRouter.scala:87:24] wire [55:0] _out_prepend_T_26 = _out_T_358; // @[RegisterRouter.scala:87:24] wire out_rimask_31 = |_out_rimask_T_31; // @[RegisterRouter.scala:87:24] wire out_wimask_31 = &_out_wimask_T_31; // @[RegisterRouter.scala:87:24] wire out_romask_31 = |_out_romask_T_31; // @[RegisterRouter.scala:87:24] wire out_womask_31 = &_out_womask_T_31; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_31 = out_rivalid_31 & out_rimask_31; // @[RegisterRouter.scala:87:24] wire _out_T_360 = out_f_rivalid_31; // @[RegisterRouter.scala:87:24] wire out_f_roready_31 = out_roready_31 & out_romask_31; // @[RegisterRouter.scala:87:24] wire _out_T_361 = out_f_roready_31; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_31 = out_wivalid_31 & out_wimask_31; // @[RegisterRouter.scala:87:24] wire _out_T_362 = out_f_wivalid_31; // @[RegisterRouter.scala:87:24] assign out_f_woready_31 = out_woready_31 & out_womask_31; // @[RegisterRouter.scala:87:24] assign valids_5_7 = out_f_woready_31; // @[RegisterRouter.scala:87:24] wire _out_T_363 = out_f_woready_31; // @[RegisterRouter.scala:87:24] assign newBytes_5_7 = out_f_woready_31 ? _out_T_359 : oldBytes_5_7; // @[RegisterRouter.scala:87:24] wire _out_T_364 = ~out_rimask_31; // @[RegisterRouter.scala:87:24] wire _out_T_365 = ~out_wimask_31; // @[RegisterRouter.scala:87:24] wire _out_T_366 = ~out_romask_31; // @[RegisterRouter.scala:87:24] wire _out_T_367 = ~out_womask_31; // @[RegisterRouter.scala:87:24] wire [63:0] out_prepend_26 = {oldBytes_5_7, _out_prepend_T_26}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_368 = out_prepend_26; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_369 = _out_T_368; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_13 = _out_T_369; // @[MuxLiteral.scala:49:48] wire out_rimask_32 = |_out_rimask_T_32; // @[RegisterRouter.scala:87:24] wire out_wimask_32 = &_out_wimask_T_32; // @[RegisterRouter.scala:87:24] wire out_romask_32 = |_out_romask_T_32; // @[RegisterRouter.scala:87:24] wire out_womask_32 = &_out_womask_T_32; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_32 = out_rivalid_32 & out_rimask_32; // @[RegisterRouter.scala:87:24] wire _out_T_371 = out_f_rivalid_32; // @[RegisterRouter.scala:87:24] wire out_f_roready_32 = out_roready_32 & out_romask_32; // @[RegisterRouter.scala:87:24] wire _out_T_372 = out_f_roready_32; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_32 = out_wivalid_32 & out_wimask_32; // @[RegisterRouter.scala:87:24] wire _out_T_373 = out_f_wivalid_32; // @[RegisterRouter.scala:87:24] assign out_f_woready_32 = out_woready_32 & out_womask_32; // @[RegisterRouter.scala:87:24] assign valids_4_0 = out_f_woready_32; // @[RegisterRouter.scala:87:24] wire _out_T_374 = out_f_woready_32; // @[RegisterRouter.scala:87:24] assign newBytes_4_0 = out_f_woready_32 ? _out_T_370 : oldBytes_4_0; // @[RegisterRouter.scala:87:24] wire _out_T_375 = ~out_rimask_32; // @[RegisterRouter.scala:87:24] wire _out_T_376 = ~out_wimask_32; // @[RegisterRouter.scala:87:24] wire _out_T_377 = ~out_romask_32; // @[RegisterRouter.scala:87:24] wire _out_T_378 = ~out_womask_32; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_380 = _out_T_379; // @[RegisterRouter.scala:87:24] wire [7:0] _out_prepend_T_27 = _out_T_380; // @[RegisterRouter.scala:87:24] wire out_rimask_33 = |_out_rimask_T_33; // @[RegisterRouter.scala:87:24] wire out_wimask_33 = &_out_wimask_T_33; // @[RegisterRouter.scala:87:24] wire out_romask_33 = |_out_romask_T_33; // @[RegisterRouter.scala:87:24] wire out_womask_33 = &_out_womask_T_33; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_33 = out_rivalid_33 & out_rimask_33; // @[RegisterRouter.scala:87:24] wire _out_T_382 = out_f_rivalid_33; // @[RegisterRouter.scala:87:24] wire out_f_roready_33 = out_roready_33 & out_romask_33; // @[RegisterRouter.scala:87:24] wire _out_T_383 = out_f_roready_33; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_33 = out_wivalid_33 & out_wimask_33; // @[RegisterRouter.scala:87:24] wire _out_T_384 = out_f_wivalid_33; // @[RegisterRouter.scala:87:24] assign out_f_woready_33 = out_woready_33 & out_womask_33; // @[RegisterRouter.scala:87:24] assign valids_4_1 = out_f_woready_33; // @[RegisterRouter.scala:87:24] wire _out_T_385 = out_f_woready_33; // @[RegisterRouter.scala:87:24] assign newBytes_4_1 = out_f_woready_33 ? _out_T_381 : oldBytes_4_1; // @[RegisterRouter.scala:87:24] wire _out_T_386 = ~out_rimask_33; // @[RegisterRouter.scala:87:24] wire _out_T_387 = ~out_wimask_33; // @[RegisterRouter.scala:87:24] wire _out_T_388 = ~out_romask_33; // @[RegisterRouter.scala:87:24] wire _out_T_389 = ~out_womask_33; // @[RegisterRouter.scala:87:24] wire [15:0] out_prepend_27 = {oldBytes_4_1, _out_prepend_T_27}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_390 = out_prepend_27; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_391 = _out_T_390; // @[RegisterRouter.scala:87:24] wire [15:0] _out_prepend_T_28 = _out_T_391; // @[RegisterRouter.scala:87:24] wire out_rimask_34 = |_out_rimask_T_34; // @[RegisterRouter.scala:87:24] wire out_wimask_34 = &_out_wimask_T_34; // @[RegisterRouter.scala:87:24] wire out_romask_34 = |_out_romask_T_34; // @[RegisterRouter.scala:87:24] wire out_womask_34 = &_out_womask_T_34; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_34 = out_rivalid_34 & out_rimask_34; // @[RegisterRouter.scala:87:24] wire _out_T_393 = out_f_rivalid_34; // @[RegisterRouter.scala:87:24] wire out_f_roready_34 = out_roready_34 & out_romask_34; // @[RegisterRouter.scala:87:24] wire _out_T_394 = out_f_roready_34; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_34 = out_wivalid_34 & out_wimask_34; // @[RegisterRouter.scala:87:24] wire _out_T_395 = out_f_wivalid_34; // @[RegisterRouter.scala:87:24] assign out_f_woready_34 = out_woready_34 & out_womask_34; // @[RegisterRouter.scala:87:24] assign valids_4_2 = out_f_woready_34; // @[RegisterRouter.scala:87:24] wire _out_T_396 = out_f_woready_34; // @[RegisterRouter.scala:87:24] assign newBytes_4_2 = out_f_woready_34 ? _out_T_392 : oldBytes_4_2; // @[RegisterRouter.scala:87:24] wire _out_T_397 = ~out_rimask_34; // @[RegisterRouter.scala:87:24] wire _out_T_398 = ~out_wimask_34; // @[RegisterRouter.scala:87:24] wire _out_T_399 = ~out_romask_34; // @[RegisterRouter.scala:87:24] wire _out_T_400 = ~out_womask_34; // @[RegisterRouter.scala:87:24] wire [23:0] out_prepend_28 = {oldBytes_4_2, _out_prepend_T_28}; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_401 = out_prepend_28; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_402 = _out_T_401; // @[RegisterRouter.scala:87:24] wire [23:0] _out_prepend_T_29 = _out_T_402; // @[RegisterRouter.scala:87:24] wire out_rimask_35 = |_out_rimask_T_35; // @[RegisterRouter.scala:87:24] wire out_wimask_35 = &_out_wimask_T_35; // @[RegisterRouter.scala:87:24] wire out_romask_35 = |_out_romask_T_35; // @[RegisterRouter.scala:87:24] wire out_womask_35 = &_out_womask_T_35; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_35 = out_rivalid_35 & out_rimask_35; // @[RegisterRouter.scala:87:24] wire _out_T_404 = out_f_rivalid_35; // @[RegisterRouter.scala:87:24] wire out_f_roready_35 = out_roready_35 & out_romask_35; // @[RegisterRouter.scala:87:24] wire _out_T_405 = out_f_roready_35; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_35 = out_wivalid_35 & out_wimask_35; // @[RegisterRouter.scala:87:24] wire _out_T_406 = out_f_wivalid_35; // @[RegisterRouter.scala:87:24] assign out_f_woready_35 = out_woready_35 & out_womask_35; // @[RegisterRouter.scala:87:24] assign valids_4_3 = out_f_woready_35; // @[RegisterRouter.scala:87:24] wire _out_T_407 = out_f_woready_35; // @[RegisterRouter.scala:87:24] assign newBytes_4_3 = out_f_woready_35 ? _out_T_403 : oldBytes_4_3; // @[RegisterRouter.scala:87:24] wire _out_T_408 = ~out_rimask_35; // @[RegisterRouter.scala:87:24] wire _out_T_409 = ~out_wimask_35; // @[RegisterRouter.scala:87:24] wire _out_T_410 = ~out_romask_35; // @[RegisterRouter.scala:87:24] wire _out_T_411 = ~out_womask_35; // @[RegisterRouter.scala:87:24] wire [31:0] out_prepend_29 = {oldBytes_4_3, _out_prepend_T_29}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_412 = out_prepend_29; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_413 = _out_T_412; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_30 = _out_T_413; // @[RegisterRouter.scala:87:24] wire out_rimask_36 = |_out_rimask_T_36; // @[RegisterRouter.scala:87:24] wire out_wimask_36 = &_out_wimask_T_36; // @[RegisterRouter.scala:87:24] wire out_romask_36 = |_out_romask_T_36; // @[RegisterRouter.scala:87:24] wire out_womask_36 = &_out_womask_T_36; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_36 = out_rivalid_36 & out_rimask_36; // @[RegisterRouter.scala:87:24] wire _out_T_415 = out_f_rivalid_36; // @[RegisterRouter.scala:87:24] wire out_f_roready_36 = out_roready_36 & out_romask_36; // @[RegisterRouter.scala:87:24] wire _out_T_416 = out_f_roready_36; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_36 = out_wivalid_36 & out_wimask_36; // @[RegisterRouter.scala:87:24] wire _out_T_417 = out_f_wivalid_36; // @[RegisterRouter.scala:87:24] assign out_f_woready_36 = out_woready_36 & out_womask_36; // @[RegisterRouter.scala:87:24] assign valids_4_4 = out_f_woready_36; // @[RegisterRouter.scala:87:24] wire _out_T_418 = out_f_woready_36; // @[RegisterRouter.scala:87:24] assign newBytes_4_4 = out_f_woready_36 ? _out_T_414 : oldBytes_4_4; // @[RegisterRouter.scala:87:24] wire _out_T_419 = ~out_rimask_36; // @[RegisterRouter.scala:87:24] wire _out_T_420 = ~out_wimask_36; // @[RegisterRouter.scala:87:24] wire _out_T_421 = ~out_romask_36; // @[RegisterRouter.scala:87:24] wire _out_T_422 = ~out_womask_36; // @[RegisterRouter.scala:87:24] wire [39:0] out_prepend_30 = {oldBytes_4_4, _out_prepend_T_30}; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_423 = out_prepend_30; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_424 = _out_T_423; // @[RegisterRouter.scala:87:24] wire [39:0] _out_prepend_T_31 = _out_T_424; // @[RegisterRouter.scala:87:24] wire out_rimask_37 = |_out_rimask_T_37; // @[RegisterRouter.scala:87:24] wire out_wimask_37 = &_out_wimask_T_37; // @[RegisterRouter.scala:87:24] wire out_romask_37 = |_out_romask_T_37; // @[RegisterRouter.scala:87:24] wire out_womask_37 = &_out_womask_T_37; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_37 = out_rivalid_37 & out_rimask_37; // @[RegisterRouter.scala:87:24] wire _out_T_426 = out_f_rivalid_37; // @[RegisterRouter.scala:87:24] wire out_f_roready_37 = out_roready_37 & out_romask_37; // @[RegisterRouter.scala:87:24] wire _out_T_427 = out_f_roready_37; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_37 = out_wivalid_37 & out_wimask_37; // @[RegisterRouter.scala:87:24] wire _out_T_428 = out_f_wivalid_37; // @[RegisterRouter.scala:87:24] assign out_f_woready_37 = out_woready_37 & out_womask_37; // @[RegisterRouter.scala:87:24] assign valids_4_5 = out_f_woready_37; // @[RegisterRouter.scala:87:24] wire _out_T_429 = out_f_woready_37; // @[RegisterRouter.scala:87:24] assign newBytes_4_5 = out_f_woready_37 ? _out_T_425 : oldBytes_4_5; // @[RegisterRouter.scala:87:24] wire _out_T_430 = ~out_rimask_37; // @[RegisterRouter.scala:87:24] wire _out_T_431 = ~out_wimask_37; // @[RegisterRouter.scala:87:24] wire _out_T_432 = ~out_romask_37; // @[RegisterRouter.scala:87:24] wire _out_T_433 = ~out_womask_37; // @[RegisterRouter.scala:87:24] wire [47:0] out_prepend_31 = {oldBytes_4_5, _out_prepend_T_31}; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_434 = out_prepend_31; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_435 = _out_T_434; // @[RegisterRouter.scala:87:24] wire [47:0] _out_prepend_T_32 = _out_T_435; // @[RegisterRouter.scala:87:24] wire out_rimask_38 = |_out_rimask_T_38; // @[RegisterRouter.scala:87:24] wire out_wimask_38 = &_out_wimask_T_38; // @[RegisterRouter.scala:87:24] wire out_romask_38 = |_out_romask_T_38; // @[RegisterRouter.scala:87:24] wire out_womask_38 = &_out_womask_T_38; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_38 = out_rivalid_38 & out_rimask_38; // @[RegisterRouter.scala:87:24] wire _out_T_437 = out_f_rivalid_38; // @[RegisterRouter.scala:87:24] wire out_f_roready_38 = out_roready_38 & out_romask_38; // @[RegisterRouter.scala:87:24] wire _out_T_438 = out_f_roready_38; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_38 = out_wivalid_38 & out_wimask_38; // @[RegisterRouter.scala:87:24] wire _out_T_439 = out_f_wivalid_38; // @[RegisterRouter.scala:87:24] assign out_f_woready_38 = out_woready_38 & out_womask_38; // @[RegisterRouter.scala:87:24] assign valids_4_6 = out_f_woready_38; // @[RegisterRouter.scala:87:24] wire _out_T_440 = out_f_woready_38; // @[RegisterRouter.scala:87:24] assign newBytes_4_6 = out_f_woready_38 ? _out_T_436 : oldBytes_4_6; // @[RegisterRouter.scala:87:24] wire _out_T_441 = ~out_rimask_38; // @[RegisterRouter.scala:87:24] wire _out_T_442 = ~out_wimask_38; // @[RegisterRouter.scala:87:24] wire _out_T_443 = ~out_romask_38; // @[RegisterRouter.scala:87:24] wire _out_T_444 = ~out_womask_38; // @[RegisterRouter.scala:87:24] wire [55:0] out_prepend_32 = {oldBytes_4_6, _out_prepend_T_32}; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_445 = out_prepend_32; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_446 = _out_T_445; // @[RegisterRouter.scala:87:24] wire [55:0] _out_prepend_T_33 = _out_T_446; // @[RegisterRouter.scala:87:24] wire out_rimask_39 = |_out_rimask_T_39; // @[RegisterRouter.scala:87:24] wire out_wimask_39 = &_out_wimask_T_39; // @[RegisterRouter.scala:87:24] wire out_romask_39 = |_out_romask_T_39; // @[RegisterRouter.scala:87:24] wire out_womask_39 = &_out_womask_T_39; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_39 = out_rivalid_39 & out_rimask_39; // @[RegisterRouter.scala:87:24] wire _out_T_448 = out_f_rivalid_39; // @[RegisterRouter.scala:87:24] wire out_f_roready_39 = out_roready_39 & out_romask_39; // @[RegisterRouter.scala:87:24] wire _out_T_449 = out_f_roready_39; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_39 = out_wivalid_39 & out_wimask_39; // @[RegisterRouter.scala:87:24] wire _out_T_450 = out_f_wivalid_39; // @[RegisterRouter.scala:87:24] assign out_f_woready_39 = out_woready_39 & out_womask_39; // @[RegisterRouter.scala:87:24] assign valids_4_7 = out_f_woready_39; // @[RegisterRouter.scala:87:24] wire _out_T_451 = out_f_woready_39; // @[RegisterRouter.scala:87:24] assign newBytes_4_7 = out_f_woready_39 ? _out_T_447 : oldBytes_4_7; // @[RegisterRouter.scala:87:24] wire _out_T_452 = ~out_rimask_39; // @[RegisterRouter.scala:87:24] wire _out_T_453 = ~out_wimask_39; // @[RegisterRouter.scala:87:24] wire _out_T_454 = ~out_romask_39; // @[RegisterRouter.scala:87:24] wire _out_T_455 = ~out_womask_39; // @[RegisterRouter.scala:87:24] wire [63:0] out_prepend_33 = {oldBytes_4_7, _out_prepend_T_33}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_456 = out_prepend_33; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_457 = _out_T_456; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_12 = _out_T_457; // @[MuxLiteral.scala:49:48] wire out_rimask_40 = _out_rimask_T_40; // @[RegisterRouter.scala:87:24] wire out_wimask_40 = _out_wimask_T_40; // @[RegisterRouter.scala:87:24] wire out_romask_40 = _out_romask_T_40; // @[RegisterRouter.scala:87:24] wire out_womask_40 = _out_womask_T_40; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_40 = out_rivalid_40 & out_rimask_40; // @[RegisterRouter.scala:87:24] wire _out_T_459 = out_f_rivalid_40; // @[RegisterRouter.scala:87:24] wire out_f_roready_40 = out_roready_40 & out_romask_40; // @[RegisterRouter.scala:87:24] wire _out_T_460 = out_f_roready_40; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_40 = out_wivalid_40 & out_wimask_40; // @[RegisterRouter.scala:87:24] wire _out_T_461 = out_f_wivalid_40; // @[RegisterRouter.scala:87:24] wire out_f_woready_40 = out_woready_40 & out_womask_40; // @[RegisterRouter.scala:87:24] wire _out_T_462 = out_f_woready_40; // @[RegisterRouter.scala:87:24] wire _out_T_463 = ~out_rimask_40; // @[RegisterRouter.scala:87:24] wire _out_T_464 = ~out_wimask_40; // @[RegisterRouter.scala:87:24] wire _out_T_465 = ~out_romask_40; // @[RegisterRouter.scala:87:24] wire _out_T_466 = ~out_womask_40; // @[RegisterRouter.scala:87:24] wire _out_T_468 = _out_T_467; // @[RegisterRouter.scala:87:24] wire _out_prepend_T_34 = _out_T_468; // @[RegisterRouter.scala:87:24] wire out_rimask_41 = |_out_rimask_T_41; // @[RegisterRouter.scala:87:24] wire out_wimask_41 = &_out_wimask_T_41; // @[RegisterRouter.scala:87:24] wire out_romask_41 = |_out_romask_T_41; // @[RegisterRouter.scala:87:24] wire out_womask_41 = &_out_womask_T_41; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_41 = out_rivalid_41 & out_rimask_41; // @[RegisterRouter.scala:87:24] wire _out_T_470 = out_f_rivalid_41; // @[RegisterRouter.scala:87:24] wire out_f_roready_41 = out_roready_41 & out_romask_41; // @[RegisterRouter.scala:87:24] wire _out_T_471 = out_f_roready_41; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_41 = out_wivalid_41 & out_wimask_41; // @[RegisterRouter.scala:87:24] wire out_f_woready_41 = out_woready_41 & out_womask_41; // @[RegisterRouter.scala:87:24] wire _out_T_472 = ~out_rimask_41; // @[RegisterRouter.scala:87:24] wire _out_T_473 = ~out_wimask_41; // @[RegisterRouter.scala:87:24] wire _out_T_474 = ~out_romask_41; // @[RegisterRouter.scala:87:24] wire _out_T_475 = ~out_womask_41; // @[RegisterRouter.scala:87:24] wire [1:0] out_prepend_34 = {1'h0, _out_prepend_T_34}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_476 = {30'h0, out_prepend_34}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_477 = _out_T_476; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_35 = _out_T_477; // @[RegisterRouter.scala:87:24] wire out_rimask_42 = _out_rimask_T_42; // @[RegisterRouter.scala:87:24] wire out_wimask_42 = _out_wimask_T_42; // @[RegisterRouter.scala:87:24] wire out_romask_42 = _out_romask_T_42; // @[RegisterRouter.scala:87:24] wire out_womask_42 = _out_womask_T_42; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_42 = out_rivalid_42 & out_rimask_42; // @[RegisterRouter.scala:87:24] wire _out_T_479 = out_f_rivalid_42; // @[RegisterRouter.scala:87:24] wire out_f_roready_42 = out_roready_42 & out_romask_42; // @[RegisterRouter.scala:87:24] wire _out_T_480 = out_f_roready_42; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_42 = out_wivalid_42 & out_wimask_42; // @[RegisterRouter.scala:87:24] wire _out_T_481 = out_f_wivalid_42; // @[RegisterRouter.scala:87:24] wire out_f_woready_42 = out_woready_42 & out_womask_42; // @[RegisterRouter.scala:87:24] wire _out_T_482 = out_f_woready_42; // @[RegisterRouter.scala:87:24] wire _out_T_483 = ~out_rimask_42; // @[RegisterRouter.scala:87:24] wire _out_T_484 = ~out_wimask_42; // @[RegisterRouter.scala:87:24] wire _out_T_485 = ~out_romask_42; // @[RegisterRouter.scala:87:24] wire _out_T_486 = ~out_womask_42; // @[RegisterRouter.scala:87:24] wire [32:0] out_prepend_35 = {ipi_5, _out_prepend_T_35}; // @[RegisterRouter.scala:87:24] wire [32:0] _out_T_487 = out_prepend_35; // @[RegisterRouter.scala:87:24] wire [32:0] _out_T_488 = _out_T_487; // @[RegisterRouter.scala:87:24] wire [32:0] _out_prepend_T_36 = _out_T_488; // @[RegisterRouter.scala:87:24] wire out_rimask_43 = |_out_rimask_T_43; // @[RegisterRouter.scala:87:24] wire out_wimask_43 = &_out_wimask_T_43; // @[RegisterRouter.scala:87:24] wire out_romask_43 = |_out_romask_T_43; // @[RegisterRouter.scala:87:24] wire out_womask_43 = &_out_womask_T_43; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_43 = out_rivalid_43 & out_rimask_43; // @[RegisterRouter.scala:87:24] wire _out_T_490 = out_f_rivalid_43; // @[RegisterRouter.scala:87:24] wire out_f_roready_43 = out_roready_43 & out_romask_43; // @[RegisterRouter.scala:87:24] wire _out_T_491 = out_f_roready_43; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_43 = out_wivalid_43 & out_wimask_43; // @[RegisterRouter.scala:87:24] wire out_f_woready_43 = out_woready_43 & out_womask_43; // @[RegisterRouter.scala:87:24] wire _out_T_492 = ~out_rimask_43; // @[RegisterRouter.scala:87:24] wire _out_T_493 = ~out_wimask_43; // @[RegisterRouter.scala:87:24] wire _out_T_494 = ~out_romask_43; // @[RegisterRouter.scala:87:24] wire _out_T_495 = ~out_womask_43; // @[RegisterRouter.scala:87:24] wire [33:0] out_prepend_36 = {1'h0, _out_prepend_T_36}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_496 = {30'h0, out_prepend_36}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_497 = _out_T_496; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_2 = _out_T_497; // @[MuxLiteral.scala:49:48] wire out_rimask_44 = |_out_rimask_T_44; // @[RegisterRouter.scala:87:24] wire out_wimask_44 = &_out_wimask_T_44; // @[RegisterRouter.scala:87:24] wire out_romask_44 = |_out_romask_T_44; // @[RegisterRouter.scala:87:24] wire out_womask_44 = &_out_womask_T_44; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_44 = out_rivalid_44 & out_rimask_44; // @[RegisterRouter.scala:87:24] wire _out_T_499 = out_f_rivalid_44; // @[RegisterRouter.scala:87:24] wire out_f_roready_44 = out_roready_44 & out_romask_44; // @[RegisterRouter.scala:87:24] wire _out_T_500 = out_f_roready_44; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_44 = out_wivalid_44 & out_wimask_44; // @[RegisterRouter.scala:87:24] wire _out_T_501 = out_f_wivalid_44; // @[RegisterRouter.scala:87:24] assign out_f_woready_44 = out_woready_44 & out_womask_44; // @[RegisterRouter.scala:87:24] assign valids_0 = out_f_woready_44; // @[RegisterRouter.scala:87:24] wire _out_T_502 = out_f_woready_44; // @[RegisterRouter.scala:87:24] assign newBytes_0 = out_f_woready_44 ? _out_T_498 : oldBytes_0; // @[RegisterRouter.scala:87:24] wire _out_T_503 = ~out_rimask_44; // @[RegisterRouter.scala:87:24] wire _out_T_504 = ~out_wimask_44; // @[RegisterRouter.scala:87:24] wire _out_T_505 = ~out_romask_44; // @[RegisterRouter.scala:87:24] wire _out_T_506 = ~out_womask_44; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_508 = _out_T_507; // @[RegisterRouter.scala:87:24] wire [7:0] _out_prepend_T_37 = _out_T_508; // @[RegisterRouter.scala:87:24] wire out_rimask_45 = |_out_rimask_T_45; // @[RegisterRouter.scala:87:24] wire out_wimask_45 = &_out_wimask_T_45; // @[RegisterRouter.scala:87:24] wire out_romask_45 = |_out_romask_T_45; // @[RegisterRouter.scala:87:24] wire out_womask_45 = &_out_womask_T_45; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_45 = out_rivalid_45 & out_rimask_45; // @[RegisterRouter.scala:87:24] wire _out_T_510 = out_f_rivalid_45; // @[RegisterRouter.scala:87:24] wire out_f_roready_45 = out_roready_45 & out_romask_45; // @[RegisterRouter.scala:87:24] wire _out_T_511 = out_f_roready_45; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_45 = out_wivalid_45 & out_wimask_45; // @[RegisterRouter.scala:87:24] wire _out_T_512 = out_f_wivalid_45; // @[RegisterRouter.scala:87:24] assign out_f_woready_45 = out_woready_45 & out_womask_45; // @[RegisterRouter.scala:87:24] assign valids_1 = out_f_woready_45; // @[RegisterRouter.scala:87:24] wire _out_T_513 = out_f_woready_45; // @[RegisterRouter.scala:87:24] assign newBytes_1 = out_f_woready_45 ? _out_T_509 : oldBytes_1; // @[RegisterRouter.scala:87:24] wire _out_T_514 = ~out_rimask_45; // @[RegisterRouter.scala:87:24] wire _out_T_515 = ~out_wimask_45; // @[RegisterRouter.scala:87:24] wire _out_T_516 = ~out_romask_45; // @[RegisterRouter.scala:87:24] wire _out_T_517 = ~out_womask_45; // @[RegisterRouter.scala:87:24] wire [15:0] out_prepend_37 = {oldBytes_1, _out_prepend_T_37}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_518 = out_prepend_37; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_519 = _out_T_518; // @[RegisterRouter.scala:87:24] wire [15:0] _out_prepend_T_38 = _out_T_519; // @[RegisterRouter.scala:87:24] wire out_rimask_46 = |_out_rimask_T_46; // @[RegisterRouter.scala:87:24] wire out_wimask_46 = &_out_wimask_T_46; // @[RegisterRouter.scala:87:24] wire out_romask_46 = |_out_romask_T_46; // @[RegisterRouter.scala:87:24] wire out_womask_46 = &_out_womask_T_46; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_46 = out_rivalid_46 & out_rimask_46; // @[RegisterRouter.scala:87:24] wire _out_T_521 = out_f_rivalid_46; // @[RegisterRouter.scala:87:24] wire out_f_roready_46 = out_roready_46 & out_romask_46; // @[RegisterRouter.scala:87:24] wire _out_T_522 = out_f_roready_46; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_46 = out_wivalid_46 & out_wimask_46; // @[RegisterRouter.scala:87:24] wire _out_T_523 = out_f_wivalid_46; // @[RegisterRouter.scala:87:24] assign out_f_woready_46 = out_woready_46 & out_womask_46; // @[RegisterRouter.scala:87:24] assign valids_2 = out_f_woready_46; // @[RegisterRouter.scala:87:24] wire _out_T_524 = out_f_woready_46; // @[RegisterRouter.scala:87:24] assign newBytes_2 = out_f_woready_46 ? _out_T_520 : oldBytes_2; // @[RegisterRouter.scala:87:24] wire _out_T_525 = ~out_rimask_46; // @[RegisterRouter.scala:87:24] wire _out_T_526 = ~out_wimask_46; // @[RegisterRouter.scala:87:24] wire _out_T_527 = ~out_romask_46; // @[RegisterRouter.scala:87:24] wire _out_T_528 = ~out_womask_46; // @[RegisterRouter.scala:87:24] wire [23:0] out_prepend_38 = {oldBytes_2, _out_prepend_T_38}; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_529 = out_prepend_38; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_530 = _out_T_529; // @[RegisterRouter.scala:87:24] wire [23:0] _out_prepend_T_39 = _out_T_530; // @[RegisterRouter.scala:87:24] wire out_rimask_47 = |_out_rimask_T_47; // @[RegisterRouter.scala:87:24] wire out_wimask_47 = &_out_wimask_T_47; // @[RegisterRouter.scala:87:24] wire out_romask_47 = |_out_romask_T_47; // @[RegisterRouter.scala:87:24] wire out_womask_47 = &_out_womask_T_47; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_47 = out_rivalid_47 & out_rimask_47; // @[RegisterRouter.scala:87:24] wire _out_T_532 = out_f_rivalid_47; // @[RegisterRouter.scala:87:24] wire out_f_roready_47 = out_roready_47 & out_romask_47; // @[RegisterRouter.scala:87:24] wire _out_T_533 = out_f_roready_47; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_47 = out_wivalid_47 & out_wimask_47; // @[RegisterRouter.scala:87:24] wire _out_T_534 = out_f_wivalid_47; // @[RegisterRouter.scala:87:24] assign out_f_woready_47 = out_woready_47 & out_womask_47; // @[RegisterRouter.scala:87:24] assign valids_3 = out_f_woready_47; // @[RegisterRouter.scala:87:24] wire _out_T_535 = out_f_woready_47; // @[RegisterRouter.scala:87:24] assign newBytes_3 = out_f_woready_47 ? _out_T_531 : oldBytes_3; // @[RegisterRouter.scala:87:24] wire _out_T_536 = ~out_rimask_47; // @[RegisterRouter.scala:87:24] wire _out_T_537 = ~out_wimask_47; // @[RegisterRouter.scala:87:24] wire _out_T_538 = ~out_romask_47; // @[RegisterRouter.scala:87:24] wire _out_T_539 = ~out_womask_47; // @[RegisterRouter.scala:87:24] wire [31:0] out_prepend_39 = {oldBytes_3, _out_prepend_T_39}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_540 = out_prepend_39; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_541 = _out_T_540; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_40 = _out_T_541; // @[RegisterRouter.scala:87:24] wire out_rimask_48 = |_out_rimask_T_48; // @[RegisterRouter.scala:87:24] wire out_wimask_48 = &_out_wimask_T_48; // @[RegisterRouter.scala:87:24] wire out_romask_48 = |_out_romask_T_48; // @[RegisterRouter.scala:87:24] wire out_womask_48 = &_out_womask_T_48; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_48 = out_rivalid_48 & out_rimask_48; // @[RegisterRouter.scala:87:24] wire _out_T_543 = out_f_rivalid_48; // @[RegisterRouter.scala:87:24] wire out_f_roready_48 = out_roready_48 & out_romask_48; // @[RegisterRouter.scala:87:24] wire _out_T_544 = out_f_roready_48; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_48 = out_wivalid_48 & out_wimask_48; // @[RegisterRouter.scala:87:24] wire _out_T_545 = out_f_wivalid_48; // @[RegisterRouter.scala:87:24] assign out_f_woready_48 = out_woready_48 & out_womask_48; // @[RegisterRouter.scala:87:24] assign valids_4 = out_f_woready_48; // @[RegisterRouter.scala:87:24] wire _out_T_546 = out_f_woready_48; // @[RegisterRouter.scala:87:24] assign newBytes_4 = out_f_woready_48 ? _out_T_542 : oldBytes_4; // @[RegisterRouter.scala:87:24] wire _out_T_547 = ~out_rimask_48; // @[RegisterRouter.scala:87:24] wire _out_T_548 = ~out_wimask_48; // @[RegisterRouter.scala:87:24] wire _out_T_549 = ~out_romask_48; // @[RegisterRouter.scala:87:24] wire _out_T_550 = ~out_womask_48; // @[RegisterRouter.scala:87:24] wire [39:0] out_prepend_40 = {oldBytes_4, _out_prepend_T_40}; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_551 = out_prepend_40; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_552 = _out_T_551; // @[RegisterRouter.scala:87:24] wire [39:0] _out_prepend_T_41 = _out_T_552; // @[RegisterRouter.scala:87:24] wire out_rimask_49 = |_out_rimask_T_49; // @[RegisterRouter.scala:87:24] wire out_wimask_49 = &_out_wimask_T_49; // @[RegisterRouter.scala:87:24] wire out_romask_49 = |_out_romask_T_49; // @[RegisterRouter.scala:87:24] wire out_womask_49 = &_out_womask_T_49; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_49 = out_rivalid_49 & out_rimask_49; // @[RegisterRouter.scala:87:24] wire _out_T_554 = out_f_rivalid_49; // @[RegisterRouter.scala:87:24] wire out_f_roready_49 = out_roready_49 & out_romask_49; // @[RegisterRouter.scala:87:24] wire _out_T_555 = out_f_roready_49; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_49 = out_wivalid_49 & out_wimask_49; // @[RegisterRouter.scala:87:24] wire _out_T_556 = out_f_wivalid_49; // @[RegisterRouter.scala:87:24] assign out_f_woready_49 = out_woready_49 & out_womask_49; // @[RegisterRouter.scala:87:24] assign valids_5 = out_f_woready_49; // @[RegisterRouter.scala:87:24] wire _out_T_557 = out_f_woready_49; // @[RegisterRouter.scala:87:24] assign newBytes_5 = out_f_woready_49 ? _out_T_553 : oldBytes_5; // @[RegisterRouter.scala:87:24] wire _out_T_558 = ~out_rimask_49; // @[RegisterRouter.scala:87:24] wire _out_T_559 = ~out_wimask_49; // @[RegisterRouter.scala:87:24] wire _out_T_560 = ~out_romask_49; // @[RegisterRouter.scala:87:24] wire _out_T_561 = ~out_womask_49; // @[RegisterRouter.scala:87:24] wire [47:0] out_prepend_41 = {oldBytes_5, _out_prepend_T_41}; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_562 = out_prepend_41; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_563 = _out_T_562; // @[RegisterRouter.scala:87:24] wire [47:0] _out_prepend_T_42 = _out_T_563; // @[RegisterRouter.scala:87:24] wire out_rimask_50 = |_out_rimask_T_50; // @[RegisterRouter.scala:87:24] wire out_wimask_50 = &_out_wimask_T_50; // @[RegisterRouter.scala:87:24] wire out_romask_50 = |_out_romask_T_50; // @[RegisterRouter.scala:87:24] wire out_womask_50 = &_out_womask_T_50; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_50 = out_rivalid_50 & out_rimask_50; // @[RegisterRouter.scala:87:24] wire _out_T_565 = out_f_rivalid_50; // @[RegisterRouter.scala:87:24] wire out_f_roready_50 = out_roready_50 & out_romask_50; // @[RegisterRouter.scala:87:24] wire _out_T_566 = out_f_roready_50; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_50 = out_wivalid_50 & out_wimask_50; // @[RegisterRouter.scala:87:24] wire _out_T_567 = out_f_wivalid_50; // @[RegisterRouter.scala:87:24] assign out_f_woready_50 = out_woready_50 & out_womask_50; // @[RegisterRouter.scala:87:24] assign valids_6 = out_f_woready_50; // @[RegisterRouter.scala:87:24] wire _out_T_568 = out_f_woready_50; // @[RegisterRouter.scala:87:24] assign newBytes_6 = out_f_woready_50 ? _out_T_564 : oldBytes_6; // @[RegisterRouter.scala:87:24] wire _out_T_569 = ~out_rimask_50; // @[RegisterRouter.scala:87:24] wire _out_T_570 = ~out_wimask_50; // @[RegisterRouter.scala:87:24] wire _out_T_571 = ~out_romask_50; // @[RegisterRouter.scala:87:24] wire _out_T_572 = ~out_womask_50; // @[RegisterRouter.scala:87:24] wire [55:0] out_prepend_42 = {oldBytes_6, _out_prepend_T_42}; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_573 = out_prepend_42; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_574 = _out_T_573; // @[RegisterRouter.scala:87:24] wire [55:0] _out_prepend_T_43 = _out_T_574; // @[RegisterRouter.scala:87:24] wire out_rimask_51 = |_out_rimask_T_51; // @[RegisterRouter.scala:87:24] wire out_wimask_51 = &_out_wimask_T_51; // @[RegisterRouter.scala:87:24] wire out_romask_51 = |_out_romask_T_51; // @[RegisterRouter.scala:87:24] wire out_womask_51 = &_out_womask_T_51; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_51 = out_rivalid_51 & out_rimask_51; // @[RegisterRouter.scala:87:24] wire _out_T_576 = out_f_rivalid_51; // @[RegisterRouter.scala:87:24] wire out_f_roready_51 = out_roready_51 & out_romask_51; // @[RegisterRouter.scala:87:24] wire _out_T_577 = out_f_roready_51; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_51 = out_wivalid_51 & out_wimask_51; // @[RegisterRouter.scala:87:24] wire _out_T_578 = out_f_wivalid_51; // @[RegisterRouter.scala:87:24] assign out_f_woready_51 = out_woready_51 & out_womask_51; // @[RegisterRouter.scala:87:24] assign valids_7 = out_f_woready_51; // @[RegisterRouter.scala:87:24] wire _out_T_579 = out_f_woready_51; // @[RegisterRouter.scala:87:24] assign newBytes_7 = out_f_woready_51 ? _out_T_575 : oldBytes_7; // @[RegisterRouter.scala:87:24] wire _out_T_580 = ~out_rimask_51; // @[RegisterRouter.scala:87:24] wire _out_T_581 = ~out_wimask_51; // @[RegisterRouter.scala:87:24] wire _out_T_582 = ~out_romask_51; // @[RegisterRouter.scala:87:24] wire _out_T_583 = ~out_womask_51; // @[RegisterRouter.scala:87:24] wire [63:0] out_prepend_43 = {oldBytes_7, _out_prepend_T_43}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_584 = out_prepend_43; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_585 = _out_T_584; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_8 = _out_T_585; // @[MuxLiteral.scala:49:48] wire out_rimask_52 = |_out_rimask_T_52; // @[RegisterRouter.scala:87:24] wire out_wimask_52 = &_out_wimask_T_52; // @[RegisterRouter.scala:87:24] wire out_romask_52 = |_out_romask_T_52; // @[RegisterRouter.scala:87:24] wire out_womask_52 = &_out_womask_T_52; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_52 = out_rivalid_52 & out_rimask_52; // @[RegisterRouter.scala:87:24] wire _out_T_587 = out_f_rivalid_52; // @[RegisterRouter.scala:87:24] wire out_f_roready_52 = out_roready_52 & out_romask_52; // @[RegisterRouter.scala:87:24] wire _out_T_588 = out_f_roready_52; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_52 = out_wivalid_52 & out_wimask_52; // @[RegisterRouter.scala:87:24] wire _out_T_589 = out_f_wivalid_52; // @[RegisterRouter.scala:87:24] assign out_f_woready_52 = out_woready_52 & out_womask_52; // @[RegisterRouter.scala:87:24] assign valids_7_0 = out_f_woready_52; // @[RegisterRouter.scala:87:24] wire _out_T_590 = out_f_woready_52; // @[RegisterRouter.scala:87:24] assign newBytes_7_0 = out_f_woready_52 ? _out_T_586 : oldBytes_7_0; // @[RegisterRouter.scala:87:24] wire _out_T_591 = ~out_rimask_52; // @[RegisterRouter.scala:87:24] wire _out_T_592 = ~out_wimask_52; // @[RegisterRouter.scala:87:24] wire _out_T_593 = ~out_romask_52; // @[RegisterRouter.scala:87:24] wire _out_T_594 = ~out_womask_52; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_596 = _out_T_595; // @[RegisterRouter.scala:87:24] wire [7:0] _out_prepend_T_44 = _out_T_596; // @[RegisterRouter.scala:87:24] wire out_rimask_53 = |_out_rimask_T_53; // @[RegisterRouter.scala:87:24] wire out_wimask_53 = &_out_wimask_T_53; // @[RegisterRouter.scala:87:24] wire out_romask_53 = |_out_romask_T_53; // @[RegisterRouter.scala:87:24] wire out_womask_53 = &_out_womask_T_53; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_53 = out_rivalid_53 & out_rimask_53; // @[RegisterRouter.scala:87:24] wire _out_T_598 = out_f_rivalid_53; // @[RegisterRouter.scala:87:24] wire out_f_roready_53 = out_roready_53 & out_romask_53; // @[RegisterRouter.scala:87:24] wire _out_T_599 = out_f_roready_53; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_53 = out_wivalid_53 & out_wimask_53; // @[RegisterRouter.scala:87:24] wire _out_T_600 = out_f_wivalid_53; // @[RegisterRouter.scala:87:24] assign out_f_woready_53 = out_woready_53 & out_womask_53; // @[RegisterRouter.scala:87:24] assign valids_7_1 = out_f_woready_53; // @[RegisterRouter.scala:87:24] wire _out_T_601 = out_f_woready_53; // @[RegisterRouter.scala:87:24] assign newBytes_7_1 = out_f_woready_53 ? _out_T_597 : oldBytes_7_1; // @[RegisterRouter.scala:87:24] wire _out_T_602 = ~out_rimask_53; // @[RegisterRouter.scala:87:24] wire _out_T_603 = ~out_wimask_53; // @[RegisterRouter.scala:87:24] wire _out_T_604 = ~out_romask_53; // @[RegisterRouter.scala:87:24] wire _out_T_605 = ~out_womask_53; // @[RegisterRouter.scala:87:24] wire [15:0] out_prepend_44 = {oldBytes_7_1, _out_prepend_T_44}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_606 = out_prepend_44; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_607 = _out_T_606; // @[RegisterRouter.scala:87:24] wire [15:0] _out_prepend_T_45 = _out_T_607; // @[RegisterRouter.scala:87:24] wire out_rimask_54 = |_out_rimask_T_54; // @[RegisterRouter.scala:87:24] wire out_wimask_54 = &_out_wimask_T_54; // @[RegisterRouter.scala:87:24] wire out_romask_54 = |_out_romask_T_54; // @[RegisterRouter.scala:87:24] wire out_womask_54 = &_out_womask_T_54; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_54 = out_rivalid_54 & out_rimask_54; // @[RegisterRouter.scala:87:24] wire _out_T_609 = out_f_rivalid_54; // @[RegisterRouter.scala:87:24] wire out_f_roready_54 = out_roready_54 & out_romask_54; // @[RegisterRouter.scala:87:24] wire _out_T_610 = out_f_roready_54; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_54 = out_wivalid_54 & out_wimask_54; // @[RegisterRouter.scala:87:24] wire _out_T_611 = out_f_wivalid_54; // @[RegisterRouter.scala:87:24] assign out_f_woready_54 = out_woready_54 & out_womask_54; // @[RegisterRouter.scala:87:24] assign valids_7_2 = out_f_woready_54; // @[RegisterRouter.scala:87:24] wire _out_T_612 = out_f_woready_54; // @[RegisterRouter.scala:87:24] assign newBytes_7_2 = out_f_woready_54 ? _out_T_608 : oldBytes_7_2; // @[RegisterRouter.scala:87:24] wire _out_T_613 = ~out_rimask_54; // @[RegisterRouter.scala:87:24] wire _out_T_614 = ~out_wimask_54; // @[RegisterRouter.scala:87:24] wire _out_T_615 = ~out_romask_54; // @[RegisterRouter.scala:87:24] wire _out_T_616 = ~out_womask_54; // @[RegisterRouter.scala:87:24] wire [23:0] out_prepend_45 = {oldBytes_7_2, _out_prepend_T_45}; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_617 = out_prepend_45; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_618 = _out_T_617; // @[RegisterRouter.scala:87:24] wire [23:0] _out_prepend_T_46 = _out_T_618; // @[RegisterRouter.scala:87:24] wire out_rimask_55 = |_out_rimask_T_55; // @[RegisterRouter.scala:87:24] wire out_wimask_55 = &_out_wimask_T_55; // @[RegisterRouter.scala:87:24] wire out_romask_55 = |_out_romask_T_55; // @[RegisterRouter.scala:87:24] wire out_womask_55 = &_out_womask_T_55; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_55 = out_rivalid_55 & out_rimask_55; // @[RegisterRouter.scala:87:24] wire _out_T_620 = out_f_rivalid_55; // @[RegisterRouter.scala:87:24] wire out_f_roready_55 = out_roready_55 & out_romask_55; // @[RegisterRouter.scala:87:24] wire _out_T_621 = out_f_roready_55; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_55 = out_wivalid_55 & out_wimask_55; // @[RegisterRouter.scala:87:24] wire _out_T_622 = out_f_wivalid_55; // @[RegisterRouter.scala:87:24] assign out_f_woready_55 = out_woready_55 & out_womask_55; // @[RegisterRouter.scala:87:24] assign valids_7_3 = out_f_woready_55; // @[RegisterRouter.scala:87:24] wire _out_T_623 = out_f_woready_55; // @[RegisterRouter.scala:87:24] assign newBytes_7_3 = out_f_woready_55 ? _out_T_619 : oldBytes_7_3; // @[RegisterRouter.scala:87:24] wire _out_T_624 = ~out_rimask_55; // @[RegisterRouter.scala:87:24] wire _out_T_625 = ~out_wimask_55; // @[RegisterRouter.scala:87:24] wire _out_T_626 = ~out_romask_55; // @[RegisterRouter.scala:87:24] wire _out_T_627 = ~out_womask_55; // @[RegisterRouter.scala:87:24] wire [31:0] out_prepend_46 = {oldBytes_7_3, _out_prepend_T_46}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_628 = out_prepend_46; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_629 = _out_T_628; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_47 = _out_T_629; // @[RegisterRouter.scala:87:24] wire out_rimask_56 = |_out_rimask_T_56; // @[RegisterRouter.scala:87:24] wire out_wimask_56 = &_out_wimask_T_56; // @[RegisterRouter.scala:87:24] wire out_romask_56 = |_out_romask_T_56; // @[RegisterRouter.scala:87:24] wire out_womask_56 = &_out_womask_T_56; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_56 = out_rivalid_56 & out_rimask_56; // @[RegisterRouter.scala:87:24] wire _out_T_631 = out_f_rivalid_56; // @[RegisterRouter.scala:87:24] wire out_f_roready_56 = out_roready_56 & out_romask_56; // @[RegisterRouter.scala:87:24] wire _out_T_632 = out_f_roready_56; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_56 = out_wivalid_56 & out_wimask_56; // @[RegisterRouter.scala:87:24] wire _out_T_633 = out_f_wivalid_56; // @[RegisterRouter.scala:87:24] assign out_f_woready_56 = out_woready_56 & out_womask_56; // @[RegisterRouter.scala:87:24] assign valids_7_4 = out_f_woready_56; // @[RegisterRouter.scala:87:24] wire _out_T_634 = out_f_woready_56; // @[RegisterRouter.scala:87:24] assign newBytes_7_4 = out_f_woready_56 ? _out_T_630 : oldBytes_7_4; // @[RegisterRouter.scala:87:24] wire _out_T_635 = ~out_rimask_56; // @[RegisterRouter.scala:87:24] wire _out_T_636 = ~out_wimask_56; // @[RegisterRouter.scala:87:24] wire _out_T_637 = ~out_romask_56; // @[RegisterRouter.scala:87:24] wire _out_T_638 = ~out_womask_56; // @[RegisterRouter.scala:87:24] wire [39:0] out_prepend_47 = {oldBytes_7_4, _out_prepend_T_47}; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_639 = out_prepend_47; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_640 = _out_T_639; // @[RegisterRouter.scala:87:24] wire [39:0] _out_prepend_T_48 = _out_T_640; // @[RegisterRouter.scala:87:24] wire out_rimask_57 = |_out_rimask_T_57; // @[RegisterRouter.scala:87:24] wire out_wimask_57 = &_out_wimask_T_57; // @[RegisterRouter.scala:87:24] wire out_romask_57 = |_out_romask_T_57; // @[RegisterRouter.scala:87:24] wire out_womask_57 = &_out_womask_T_57; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_57 = out_rivalid_57 & out_rimask_57; // @[RegisterRouter.scala:87:24] wire _out_T_642 = out_f_rivalid_57; // @[RegisterRouter.scala:87:24] wire out_f_roready_57 = out_roready_57 & out_romask_57; // @[RegisterRouter.scala:87:24] wire _out_T_643 = out_f_roready_57; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_57 = out_wivalid_57 & out_wimask_57; // @[RegisterRouter.scala:87:24] wire _out_T_644 = out_f_wivalid_57; // @[RegisterRouter.scala:87:24] assign out_f_woready_57 = out_woready_57 & out_womask_57; // @[RegisterRouter.scala:87:24] assign valids_7_5 = out_f_woready_57; // @[RegisterRouter.scala:87:24] wire _out_T_645 = out_f_woready_57; // @[RegisterRouter.scala:87:24] assign newBytes_7_5 = out_f_woready_57 ? _out_T_641 : oldBytes_7_5; // @[RegisterRouter.scala:87:24] wire _out_T_646 = ~out_rimask_57; // @[RegisterRouter.scala:87:24] wire _out_T_647 = ~out_wimask_57; // @[RegisterRouter.scala:87:24] wire _out_T_648 = ~out_romask_57; // @[RegisterRouter.scala:87:24] wire _out_T_649 = ~out_womask_57; // @[RegisterRouter.scala:87:24] wire [47:0] out_prepend_48 = {oldBytes_7_5, _out_prepend_T_48}; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_650 = out_prepend_48; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_651 = _out_T_650; // @[RegisterRouter.scala:87:24] wire [47:0] _out_prepend_T_49 = _out_T_651; // @[RegisterRouter.scala:87:24] wire out_rimask_58 = |_out_rimask_T_58; // @[RegisterRouter.scala:87:24] wire out_wimask_58 = &_out_wimask_T_58; // @[RegisterRouter.scala:87:24] wire out_romask_58 = |_out_romask_T_58; // @[RegisterRouter.scala:87:24] wire out_womask_58 = &_out_womask_T_58; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_58 = out_rivalid_58 & out_rimask_58; // @[RegisterRouter.scala:87:24] wire _out_T_653 = out_f_rivalid_58; // @[RegisterRouter.scala:87:24] wire out_f_roready_58 = out_roready_58 & out_romask_58; // @[RegisterRouter.scala:87:24] wire _out_T_654 = out_f_roready_58; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_58 = out_wivalid_58 & out_wimask_58; // @[RegisterRouter.scala:87:24] wire _out_T_655 = out_f_wivalid_58; // @[RegisterRouter.scala:87:24] assign out_f_woready_58 = out_woready_58 & out_womask_58; // @[RegisterRouter.scala:87:24] assign valids_7_6 = out_f_woready_58; // @[RegisterRouter.scala:87:24] wire _out_T_656 = out_f_woready_58; // @[RegisterRouter.scala:87:24] assign newBytes_7_6 = out_f_woready_58 ? _out_T_652 : oldBytes_7_6; // @[RegisterRouter.scala:87:24] wire _out_T_657 = ~out_rimask_58; // @[RegisterRouter.scala:87:24] wire _out_T_658 = ~out_wimask_58; // @[RegisterRouter.scala:87:24] wire _out_T_659 = ~out_romask_58; // @[RegisterRouter.scala:87:24] wire _out_T_660 = ~out_womask_58; // @[RegisterRouter.scala:87:24] wire [55:0] out_prepend_49 = {oldBytes_7_6, _out_prepend_T_49}; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_661 = out_prepend_49; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_662 = _out_T_661; // @[RegisterRouter.scala:87:24] wire [55:0] _out_prepend_T_50 = _out_T_662; // @[RegisterRouter.scala:87:24] wire out_rimask_59 = |_out_rimask_T_59; // @[RegisterRouter.scala:87:24] wire out_wimask_59 = &_out_wimask_T_59; // @[RegisterRouter.scala:87:24] wire out_romask_59 = |_out_romask_T_59; // @[RegisterRouter.scala:87:24] wire out_womask_59 = &_out_womask_T_59; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_59 = out_rivalid_59 & out_rimask_59; // @[RegisterRouter.scala:87:24] wire _out_T_664 = out_f_rivalid_59; // @[RegisterRouter.scala:87:24] wire out_f_roready_59 = out_roready_59 & out_romask_59; // @[RegisterRouter.scala:87:24] wire _out_T_665 = out_f_roready_59; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_59 = out_wivalid_59 & out_wimask_59; // @[RegisterRouter.scala:87:24] wire _out_T_666 = out_f_wivalid_59; // @[RegisterRouter.scala:87:24] assign out_f_woready_59 = out_woready_59 & out_womask_59; // @[RegisterRouter.scala:87:24] assign valids_7_7 = out_f_woready_59; // @[RegisterRouter.scala:87:24] wire _out_T_667 = out_f_woready_59; // @[RegisterRouter.scala:87:24] assign newBytes_7_7 = out_f_woready_59 ? _out_T_663 : oldBytes_7_7; // @[RegisterRouter.scala:87:24] wire _out_T_668 = ~out_rimask_59; // @[RegisterRouter.scala:87:24] wire _out_T_669 = ~out_wimask_59; // @[RegisterRouter.scala:87:24] wire _out_T_670 = ~out_romask_59; // @[RegisterRouter.scala:87:24] wire _out_T_671 = ~out_womask_59; // @[RegisterRouter.scala:87:24] wire [63:0] out_prepend_50 = {oldBytes_7_7, _out_prepend_T_50}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_672 = out_prepend_50; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_673 = _out_T_672; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_15 = _out_T_673; // @[MuxLiteral.scala:49:48] wire out_rimask_60 = |_out_rimask_T_60; // @[RegisterRouter.scala:87:24] wire out_wimask_60 = &_out_wimask_T_60; // @[RegisterRouter.scala:87:24] wire out_romask_60 = |_out_romask_T_60; // @[RegisterRouter.scala:87:24] wire out_womask_60 = &_out_womask_T_60; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_60 = out_rivalid_60 & out_rimask_60; // @[RegisterRouter.scala:87:24] wire _out_T_675 = out_f_rivalid_60; // @[RegisterRouter.scala:87:24] wire out_f_roready_60 = out_roready_60 & out_romask_60; // @[RegisterRouter.scala:87:24] wire _out_T_676 = out_f_roready_60; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_60 = out_wivalid_60 & out_wimask_60; // @[RegisterRouter.scala:87:24] wire _out_T_677 = out_f_wivalid_60; // @[RegisterRouter.scala:87:24] assign out_f_woready_60 = out_woready_60 & out_womask_60; // @[RegisterRouter.scala:87:24] assign valids_6_0 = out_f_woready_60; // @[RegisterRouter.scala:87:24] wire _out_T_678 = out_f_woready_60; // @[RegisterRouter.scala:87:24] assign newBytes_6_0 = out_f_woready_60 ? _out_T_674 : oldBytes_6_0; // @[RegisterRouter.scala:87:24] wire _out_T_679 = ~out_rimask_60; // @[RegisterRouter.scala:87:24] wire _out_T_680 = ~out_wimask_60; // @[RegisterRouter.scala:87:24] wire _out_T_681 = ~out_romask_60; // @[RegisterRouter.scala:87:24] wire _out_T_682 = ~out_womask_60; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_684 = _out_T_683; // @[RegisterRouter.scala:87:24] wire [7:0] _out_prepend_T_51 = _out_T_684; // @[RegisterRouter.scala:87:24] wire out_rimask_61 = |_out_rimask_T_61; // @[RegisterRouter.scala:87:24] wire out_wimask_61 = &_out_wimask_T_61; // @[RegisterRouter.scala:87:24] wire out_romask_61 = |_out_romask_T_61; // @[RegisterRouter.scala:87:24] wire out_womask_61 = &_out_womask_T_61; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_61 = out_rivalid_61 & out_rimask_61; // @[RegisterRouter.scala:87:24] wire _out_T_686 = out_f_rivalid_61; // @[RegisterRouter.scala:87:24] wire out_f_roready_61 = out_roready_61 & out_romask_61; // @[RegisterRouter.scala:87:24] wire _out_T_687 = out_f_roready_61; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_61 = out_wivalid_61 & out_wimask_61; // @[RegisterRouter.scala:87:24] wire _out_T_688 = out_f_wivalid_61; // @[RegisterRouter.scala:87:24] assign out_f_woready_61 = out_woready_61 & out_womask_61; // @[RegisterRouter.scala:87:24] assign valids_6_1 = out_f_woready_61; // @[RegisterRouter.scala:87:24] wire _out_T_689 = out_f_woready_61; // @[RegisterRouter.scala:87:24] assign newBytes_6_1 = out_f_woready_61 ? _out_T_685 : oldBytes_6_1; // @[RegisterRouter.scala:87:24] wire _out_T_690 = ~out_rimask_61; // @[RegisterRouter.scala:87:24] wire _out_T_691 = ~out_wimask_61; // @[RegisterRouter.scala:87:24] wire _out_T_692 = ~out_romask_61; // @[RegisterRouter.scala:87:24] wire _out_T_693 = ~out_womask_61; // @[RegisterRouter.scala:87:24] wire [15:0] out_prepend_51 = {oldBytes_6_1, _out_prepend_T_51}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_694 = out_prepend_51; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_695 = _out_T_694; // @[RegisterRouter.scala:87:24] wire [15:0] _out_prepend_T_52 = _out_T_695; // @[RegisterRouter.scala:87:24] wire out_rimask_62 = |_out_rimask_T_62; // @[RegisterRouter.scala:87:24] wire out_wimask_62 = &_out_wimask_T_62; // @[RegisterRouter.scala:87:24] wire out_romask_62 = |_out_romask_T_62; // @[RegisterRouter.scala:87:24] wire out_womask_62 = &_out_womask_T_62; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_62 = out_rivalid_62 & out_rimask_62; // @[RegisterRouter.scala:87:24] wire _out_T_697 = out_f_rivalid_62; // @[RegisterRouter.scala:87:24] wire out_f_roready_62 = out_roready_62 & out_romask_62; // @[RegisterRouter.scala:87:24] wire _out_T_698 = out_f_roready_62; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_62 = out_wivalid_62 & out_wimask_62; // @[RegisterRouter.scala:87:24] wire _out_T_699 = out_f_wivalid_62; // @[RegisterRouter.scala:87:24] assign out_f_woready_62 = out_woready_62 & out_womask_62; // @[RegisterRouter.scala:87:24] assign valids_6_2 = out_f_woready_62; // @[RegisterRouter.scala:87:24] wire _out_T_700 = out_f_woready_62; // @[RegisterRouter.scala:87:24] assign newBytes_6_2 = out_f_woready_62 ? _out_T_696 : oldBytes_6_2; // @[RegisterRouter.scala:87:24] wire _out_T_701 = ~out_rimask_62; // @[RegisterRouter.scala:87:24] wire _out_T_702 = ~out_wimask_62; // @[RegisterRouter.scala:87:24] wire _out_T_703 = ~out_romask_62; // @[RegisterRouter.scala:87:24] wire _out_T_704 = ~out_womask_62; // @[RegisterRouter.scala:87:24] wire [23:0] out_prepend_52 = {oldBytes_6_2, _out_prepend_T_52}; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_705 = out_prepend_52; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_706 = _out_T_705; // @[RegisterRouter.scala:87:24] wire [23:0] _out_prepend_T_53 = _out_T_706; // @[RegisterRouter.scala:87:24] wire out_rimask_63 = |_out_rimask_T_63; // @[RegisterRouter.scala:87:24] wire out_wimask_63 = &_out_wimask_T_63; // @[RegisterRouter.scala:87:24] wire out_romask_63 = |_out_romask_T_63; // @[RegisterRouter.scala:87:24] wire out_womask_63 = &_out_womask_T_63; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_63 = out_rivalid_63 & out_rimask_63; // @[RegisterRouter.scala:87:24] wire _out_T_708 = out_f_rivalid_63; // @[RegisterRouter.scala:87:24] wire out_f_roready_63 = out_roready_63 & out_romask_63; // @[RegisterRouter.scala:87:24] wire _out_T_709 = out_f_roready_63; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_63 = out_wivalid_63 & out_wimask_63; // @[RegisterRouter.scala:87:24] wire _out_T_710 = out_f_wivalid_63; // @[RegisterRouter.scala:87:24] assign out_f_woready_63 = out_woready_63 & out_womask_63; // @[RegisterRouter.scala:87:24] assign valids_6_3 = out_f_woready_63; // @[RegisterRouter.scala:87:24] wire _out_T_711 = out_f_woready_63; // @[RegisterRouter.scala:87:24] assign newBytes_6_3 = out_f_woready_63 ? _out_T_707 : oldBytes_6_3; // @[RegisterRouter.scala:87:24] wire _out_T_712 = ~out_rimask_63; // @[RegisterRouter.scala:87:24] wire _out_T_713 = ~out_wimask_63; // @[RegisterRouter.scala:87:24] wire _out_T_714 = ~out_romask_63; // @[RegisterRouter.scala:87:24] wire _out_T_715 = ~out_womask_63; // @[RegisterRouter.scala:87:24] wire [31:0] out_prepend_53 = {oldBytes_6_3, _out_prepend_T_53}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_716 = out_prepend_53; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_717 = _out_T_716; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_54 = _out_T_717; // @[RegisterRouter.scala:87:24] wire out_rimask_64 = |_out_rimask_T_64; // @[RegisterRouter.scala:87:24] wire out_wimask_64 = &_out_wimask_T_64; // @[RegisterRouter.scala:87:24] wire out_romask_64 = |_out_romask_T_64; // @[RegisterRouter.scala:87:24] wire out_womask_64 = &_out_womask_T_64; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_64 = out_rivalid_64 & out_rimask_64; // @[RegisterRouter.scala:87:24] wire _out_T_719 = out_f_rivalid_64; // @[RegisterRouter.scala:87:24] wire out_f_roready_64 = out_roready_64 & out_romask_64; // @[RegisterRouter.scala:87:24] wire _out_T_720 = out_f_roready_64; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_64 = out_wivalid_64 & out_wimask_64; // @[RegisterRouter.scala:87:24] wire _out_T_721 = out_f_wivalid_64; // @[RegisterRouter.scala:87:24] assign out_f_woready_64 = out_woready_64 & out_womask_64; // @[RegisterRouter.scala:87:24] assign valids_6_4 = out_f_woready_64; // @[RegisterRouter.scala:87:24] wire _out_T_722 = out_f_woready_64; // @[RegisterRouter.scala:87:24] assign newBytes_6_4 = out_f_woready_64 ? _out_T_718 : oldBytes_6_4; // @[RegisterRouter.scala:87:24] wire _out_T_723 = ~out_rimask_64; // @[RegisterRouter.scala:87:24] wire _out_T_724 = ~out_wimask_64; // @[RegisterRouter.scala:87:24] wire _out_T_725 = ~out_romask_64; // @[RegisterRouter.scala:87:24] wire _out_T_726 = ~out_womask_64; // @[RegisterRouter.scala:87:24] wire [39:0] out_prepend_54 = {oldBytes_6_4, _out_prepend_T_54}; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_727 = out_prepend_54; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_728 = _out_T_727; // @[RegisterRouter.scala:87:24] wire [39:0] _out_prepend_T_55 = _out_T_728; // @[RegisterRouter.scala:87:24] wire out_rimask_65 = |_out_rimask_T_65; // @[RegisterRouter.scala:87:24] wire out_wimask_65 = &_out_wimask_T_65; // @[RegisterRouter.scala:87:24] wire out_romask_65 = |_out_romask_T_65; // @[RegisterRouter.scala:87:24] wire out_womask_65 = &_out_womask_T_65; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_65 = out_rivalid_65 & out_rimask_65; // @[RegisterRouter.scala:87:24] wire _out_T_730 = out_f_rivalid_65; // @[RegisterRouter.scala:87:24] wire out_f_roready_65 = out_roready_65 & out_romask_65; // @[RegisterRouter.scala:87:24] wire _out_T_731 = out_f_roready_65; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_65 = out_wivalid_65 & out_wimask_65; // @[RegisterRouter.scala:87:24] wire _out_T_732 = out_f_wivalid_65; // @[RegisterRouter.scala:87:24] assign out_f_woready_65 = out_woready_65 & out_womask_65; // @[RegisterRouter.scala:87:24] assign valids_6_5 = out_f_woready_65; // @[RegisterRouter.scala:87:24] wire _out_T_733 = out_f_woready_65; // @[RegisterRouter.scala:87:24] assign newBytes_6_5 = out_f_woready_65 ? _out_T_729 : oldBytes_6_5; // @[RegisterRouter.scala:87:24] wire _out_T_734 = ~out_rimask_65; // @[RegisterRouter.scala:87:24] wire _out_T_735 = ~out_wimask_65; // @[RegisterRouter.scala:87:24] wire _out_T_736 = ~out_romask_65; // @[RegisterRouter.scala:87:24] wire _out_T_737 = ~out_womask_65; // @[RegisterRouter.scala:87:24] wire [47:0] out_prepend_55 = {oldBytes_6_5, _out_prepend_T_55}; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_738 = out_prepend_55; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_739 = _out_T_738; // @[RegisterRouter.scala:87:24] wire [47:0] _out_prepend_T_56 = _out_T_739; // @[RegisterRouter.scala:87:24] wire out_rimask_66 = |_out_rimask_T_66; // @[RegisterRouter.scala:87:24] wire out_wimask_66 = &_out_wimask_T_66; // @[RegisterRouter.scala:87:24] wire out_romask_66 = |_out_romask_T_66; // @[RegisterRouter.scala:87:24] wire out_womask_66 = &_out_womask_T_66; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_66 = out_rivalid_66 & out_rimask_66; // @[RegisterRouter.scala:87:24] wire _out_T_741 = out_f_rivalid_66; // @[RegisterRouter.scala:87:24] wire out_f_roready_66 = out_roready_66 & out_romask_66; // @[RegisterRouter.scala:87:24] wire _out_T_742 = out_f_roready_66; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_66 = out_wivalid_66 & out_wimask_66; // @[RegisterRouter.scala:87:24] wire _out_T_743 = out_f_wivalid_66; // @[RegisterRouter.scala:87:24] assign out_f_woready_66 = out_woready_66 & out_womask_66; // @[RegisterRouter.scala:87:24] assign valids_6_6 = out_f_woready_66; // @[RegisterRouter.scala:87:24] wire _out_T_744 = out_f_woready_66; // @[RegisterRouter.scala:87:24] assign newBytes_6_6 = out_f_woready_66 ? _out_T_740 : oldBytes_6_6; // @[RegisterRouter.scala:87:24] wire _out_T_745 = ~out_rimask_66; // @[RegisterRouter.scala:87:24] wire _out_T_746 = ~out_wimask_66; // @[RegisterRouter.scala:87:24] wire _out_T_747 = ~out_romask_66; // @[RegisterRouter.scala:87:24] wire _out_T_748 = ~out_womask_66; // @[RegisterRouter.scala:87:24] wire [55:0] out_prepend_56 = {oldBytes_6_6, _out_prepend_T_56}; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_749 = out_prepend_56; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_750 = _out_T_749; // @[RegisterRouter.scala:87:24] wire [55:0] _out_prepend_T_57 = _out_T_750; // @[RegisterRouter.scala:87:24] wire out_rimask_67 = |_out_rimask_T_67; // @[RegisterRouter.scala:87:24] wire out_wimask_67 = &_out_wimask_T_67; // @[RegisterRouter.scala:87:24] wire out_romask_67 = |_out_romask_T_67; // @[RegisterRouter.scala:87:24] wire out_womask_67 = &_out_womask_T_67; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_67 = out_rivalid_67 & out_rimask_67; // @[RegisterRouter.scala:87:24] wire _out_T_752 = out_f_rivalid_67; // @[RegisterRouter.scala:87:24] wire out_f_roready_67 = out_roready_67 & out_romask_67; // @[RegisterRouter.scala:87:24] wire _out_T_753 = out_f_roready_67; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_67 = out_wivalid_67 & out_wimask_67; // @[RegisterRouter.scala:87:24] wire _out_T_754 = out_f_wivalid_67; // @[RegisterRouter.scala:87:24] assign out_f_woready_67 = out_woready_67 & out_womask_67; // @[RegisterRouter.scala:87:24] assign valids_6_7 = out_f_woready_67; // @[RegisterRouter.scala:87:24] wire _out_T_755 = out_f_woready_67; // @[RegisterRouter.scala:87:24] assign newBytes_6_7 = out_f_woready_67 ? _out_T_751 : oldBytes_6_7; // @[RegisterRouter.scala:87:24] wire _out_T_756 = ~out_rimask_67; // @[RegisterRouter.scala:87:24] wire _out_T_757 = ~out_wimask_67; // @[RegisterRouter.scala:87:24] wire _out_T_758 = ~out_romask_67; // @[RegisterRouter.scala:87:24] wire _out_T_759 = ~out_womask_67; // @[RegisterRouter.scala:87:24] wire [63:0] out_prepend_57 = {oldBytes_6_7, _out_prepend_T_57}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_760 = out_prepend_57; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_761 = _out_T_760; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_14 = _out_T_761; // @[MuxLiteral.scala:49:48] wire out_rimask_68 = |_out_rimask_T_68; // @[RegisterRouter.scala:87:24] wire out_wimask_68 = &_out_wimask_T_68; // @[RegisterRouter.scala:87:24] wire out_romask_68 = |_out_romask_T_68; // @[RegisterRouter.scala:87:24] wire out_womask_68 = &_out_womask_T_68; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_68 = out_rivalid_68 & out_rimask_68; // @[RegisterRouter.scala:87:24] wire _out_T_763 = out_f_rivalid_68; // @[RegisterRouter.scala:87:24] wire out_f_roready_68 = out_roready_68 & out_romask_68; // @[RegisterRouter.scala:87:24] wire _out_T_764 = out_f_roready_68; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_68 = out_wivalid_68 & out_wimask_68; // @[RegisterRouter.scala:87:24] wire _out_T_765 = out_f_wivalid_68; // @[RegisterRouter.scala:87:24] assign out_f_woready_68 = out_woready_68 & out_womask_68; // @[RegisterRouter.scala:87:24] assign valids_2_0 = out_f_woready_68; // @[RegisterRouter.scala:87:24] wire _out_T_766 = out_f_woready_68; // @[RegisterRouter.scala:87:24] assign newBytes_2_0 = out_f_woready_68 ? _out_T_762 : oldBytes_2_0; // @[RegisterRouter.scala:87:24] wire _out_T_767 = ~out_rimask_68; // @[RegisterRouter.scala:87:24] wire _out_T_768 = ~out_wimask_68; // @[RegisterRouter.scala:87:24] wire _out_T_769 = ~out_romask_68; // @[RegisterRouter.scala:87:24] wire _out_T_770 = ~out_womask_68; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_772 = _out_T_771; // @[RegisterRouter.scala:87:24] wire [7:0] _out_prepend_T_58 = _out_T_772; // @[RegisterRouter.scala:87:24] wire out_rimask_69 = |_out_rimask_T_69; // @[RegisterRouter.scala:87:24] wire out_wimask_69 = &_out_wimask_T_69; // @[RegisterRouter.scala:87:24] wire out_romask_69 = |_out_romask_T_69; // @[RegisterRouter.scala:87:24] wire out_womask_69 = &_out_womask_T_69; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_69 = out_rivalid_69 & out_rimask_69; // @[RegisterRouter.scala:87:24] wire _out_T_774 = out_f_rivalid_69; // @[RegisterRouter.scala:87:24] wire out_f_roready_69 = out_roready_69 & out_romask_69; // @[RegisterRouter.scala:87:24] wire _out_T_775 = out_f_roready_69; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_69 = out_wivalid_69 & out_wimask_69; // @[RegisterRouter.scala:87:24] wire _out_T_776 = out_f_wivalid_69; // @[RegisterRouter.scala:87:24] assign out_f_woready_69 = out_woready_69 & out_womask_69; // @[RegisterRouter.scala:87:24] assign valids_2_1 = out_f_woready_69; // @[RegisterRouter.scala:87:24] wire _out_T_777 = out_f_woready_69; // @[RegisterRouter.scala:87:24] assign newBytes_2_1 = out_f_woready_69 ? _out_T_773 : oldBytes_2_1; // @[RegisterRouter.scala:87:24] wire _out_T_778 = ~out_rimask_69; // @[RegisterRouter.scala:87:24] wire _out_T_779 = ~out_wimask_69; // @[RegisterRouter.scala:87:24] wire _out_T_780 = ~out_romask_69; // @[RegisterRouter.scala:87:24] wire _out_T_781 = ~out_womask_69; // @[RegisterRouter.scala:87:24] wire [15:0] out_prepend_58 = {oldBytes_2_1, _out_prepend_T_58}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_782 = out_prepend_58; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_783 = _out_T_782; // @[RegisterRouter.scala:87:24] wire [15:0] _out_prepend_T_59 = _out_T_783; // @[RegisterRouter.scala:87:24] wire out_rimask_70 = |_out_rimask_T_70; // @[RegisterRouter.scala:87:24] wire out_wimask_70 = &_out_wimask_T_70; // @[RegisterRouter.scala:87:24] wire out_romask_70 = |_out_romask_T_70; // @[RegisterRouter.scala:87:24] wire out_womask_70 = &_out_womask_T_70; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_70 = out_rivalid_70 & out_rimask_70; // @[RegisterRouter.scala:87:24] wire _out_T_785 = out_f_rivalid_70; // @[RegisterRouter.scala:87:24] wire out_f_roready_70 = out_roready_70 & out_romask_70; // @[RegisterRouter.scala:87:24] wire _out_T_786 = out_f_roready_70; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_70 = out_wivalid_70 & out_wimask_70; // @[RegisterRouter.scala:87:24] wire _out_T_787 = out_f_wivalid_70; // @[RegisterRouter.scala:87:24] assign out_f_woready_70 = out_woready_70 & out_womask_70; // @[RegisterRouter.scala:87:24] assign valids_2_2 = out_f_woready_70; // @[RegisterRouter.scala:87:24] wire _out_T_788 = out_f_woready_70; // @[RegisterRouter.scala:87:24] assign newBytes_2_2 = out_f_woready_70 ? _out_T_784 : oldBytes_2_2; // @[RegisterRouter.scala:87:24] wire _out_T_789 = ~out_rimask_70; // @[RegisterRouter.scala:87:24] wire _out_T_790 = ~out_wimask_70; // @[RegisterRouter.scala:87:24] wire _out_T_791 = ~out_romask_70; // @[RegisterRouter.scala:87:24] wire _out_T_792 = ~out_womask_70; // @[RegisterRouter.scala:87:24] wire [23:0] out_prepend_59 = {oldBytes_2_2, _out_prepend_T_59}; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_793 = out_prepend_59; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_794 = _out_T_793; // @[RegisterRouter.scala:87:24] wire [23:0] _out_prepend_T_60 = _out_T_794; // @[RegisterRouter.scala:87:24] wire out_rimask_71 = |_out_rimask_T_71; // @[RegisterRouter.scala:87:24] wire out_wimask_71 = &_out_wimask_T_71; // @[RegisterRouter.scala:87:24] wire out_romask_71 = |_out_romask_T_71; // @[RegisterRouter.scala:87:24] wire out_womask_71 = &_out_womask_T_71; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_71 = out_rivalid_71 & out_rimask_71; // @[RegisterRouter.scala:87:24] wire _out_T_796 = out_f_rivalid_71; // @[RegisterRouter.scala:87:24] wire out_f_roready_71 = out_roready_71 & out_romask_71; // @[RegisterRouter.scala:87:24] wire _out_T_797 = out_f_roready_71; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_71 = out_wivalid_71 & out_wimask_71; // @[RegisterRouter.scala:87:24] wire _out_T_798 = out_f_wivalid_71; // @[RegisterRouter.scala:87:24] assign out_f_woready_71 = out_woready_71 & out_womask_71; // @[RegisterRouter.scala:87:24] assign valids_2_3 = out_f_woready_71; // @[RegisterRouter.scala:87:24] wire _out_T_799 = out_f_woready_71; // @[RegisterRouter.scala:87:24] assign newBytes_2_3 = out_f_woready_71 ? _out_T_795 : oldBytes_2_3; // @[RegisterRouter.scala:87:24] wire _out_T_800 = ~out_rimask_71; // @[RegisterRouter.scala:87:24] wire _out_T_801 = ~out_wimask_71; // @[RegisterRouter.scala:87:24] wire _out_T_802 = ~out_romask_71; // @[RegisterRouter.scala:87:24] wire _out_T_803 = ~out_womask_71; // @[RegisterRouter.scala:87:24] wire [31:0] out_prepend_60 = {oldBytes_2_3, _out_prepend_T_60}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_804 = out_prepend_60; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_805 = _out_T_804; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_61 = _out_T_805; // @[RegisterRouter.scala:87:24] wire out_rimask_72 = |_out_rimask_T_72; // @[RegisterRouter.scala:87:24] wire out_wimask_72 = &_out_wimask_T_72; // @[RegisterRouter.scala:87:24] wire out_romask_72 = |_out_romask_T_72; // @[RegisterRouter.scala:87:24] wire out_womask_72 = &_out_womask_T_72; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_72 = out_rivalid_72 & out_rimask_72; // @[RegisterRouter.scala:87:24] wire _out_T_807 = out_f_rivalid_72; // @[RegisterRouter.scala:87:24] wire out_f_roready_72 = out_roready_72 & out_romask_72; // @[RegisterRouter.scala:87:24] wire _out_T_808 = out_f_roready_72; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_72 = out_wivalid_72 & out_wimask_72; // @[RegisterRouter.scala:87:24] wire _out_T_809 = out_f_wivalid_72; // @[RegisterRouter.scala:87:24] assign out_f_woready_72 = out_woready_72 & out_womask_72; // @[RegisterRouter.scala:87:24] assign valids_2_4 = out_f_woready_72; // @[RegisterRouter.scala:87:24] wire _out_T_810 = out_f_woready_72; // @[RegisterRouter.scala:87:24] assign newBytes_2_4 = out_f_woready_72 ? _out_T_806 : oldBytes_2_4; // @[RegisterRouter.scala:87:24] wire _out_T_811 = ~out_rimask_72; // @[RegisterRouter.scala:87:24] wire _out_T_812 = ~out_wimask_72; // @[RegisterRouter.scala:87:24] wire _out_T_813 = ~out_romask_72; // @[RegisterRouter.scala:87:24] wire _out_T_814 = ~out_womask_72; // @[RegisterRouter.scala:87:24] wire [39:0] out_prepend_61 = {oldBytes_2_4, _out_prepend_T_61}; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_815 = out_prepend_61; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_816 = _out_T_815; // @[RegisterRouter.scala:87:24] wire [39:0] _out_prepend_T_62 = _out_T_816; // @[RegisterRouter.scala:87:24] wire out_rimask_73 = |_out_rimask_T_73; // @[RegisterRouter.scala:87:24] wire out_wimask_73 = &_out_wimask_T_73; // @[RegisterRouter.scala:87:24] wire out_romask_73 = |_out_romask_T_73; // @[RegisterRouter.scala:87:24] wire out_womask_73 = &_out_womask_T_73; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_73 = out_rivalid_73 & out_rimask_73; // @[RegisterRouter.scala:87:24] wire _out_T_818 = out_f_rivalid_73; // @[RegisterRouter.scala:87:24] wire out_f_roready_73 = out_roready_73 & out_romask_73; // @[RegisterRouter.scala:87:24] wire _out_T_819 = out_f_roready_73; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_73 = out_wivalid_73 & out_wimask_73; // @[RegisterRouter.scala:87:24] wire _out_T_820 = out_f_wivalid_73; // @[RegisterRouter.scala:87:24] assign out_f_woready_73 = out_woready_73 & out_womask_73; // @[RegisterRouter.scala:87:24] assign valids_2_5 = out_f_woready_73; // @[RegisterRouter.scala:87:24] wire _out_T_821 = out_f_woready_73; // @[RegisterRouter.scala:87:24] assign newBytes_2_5 = out_f_woready_73 ? _out_T_817 : oldBytes_2_5; // @[RegisterRouter.scala:87:24] wire _out_T_822 = ~out_rimask_73; // @[RegisterRouter.scala:87:24] wire _out_T_823 = ~out_wimask_73; // @[RegisterRouter.scala:87:24] wire _out_T_824 = ~out_romask_73; // @[RegisterRouter.scala:87:24] wire _out_T_825 = ~out_womask_73; // @[RegisterRouter.scala:87:24] wire [47:0] out_prepend_62 = {oldBytes_2_5, _out_prepend_T_62}; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_826 = out_prepend_62; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_827 = _out_T_826; // @[RegisterRouter.scala:87:24] wire [47:0] _out_prepend_T_63 = _out_T_827; // @[RegisterRouter.scala:87:24] wire out_rimask_74 = |_out_rimask_T_74; // @[RegisterRouter.scala:87:24] wire out_wimask_74 = &_out_wimask_T_74; // @[RegisterRouter.scala:87:24] wire out_romask_74 = |_out_romask_T_74; // @[RegisterRouter.scala:87:24] wire out_womask_74 = &_out_womask_T_74; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_74 = out_rivalid_74 & out_rimask_74; // @[RegisterRouter.scala:87:24] wire _out_T_829 = out_f_rivalid_74; // @[RegisterRouter.scala:87:24] wire out_f_roready_74 = out_roready_74 & out_romask_74; // @[RegisterRouter.scala:87:24] wire _out_T_830 = out_f_roready_74; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_74 = out_wivalid_74 & out_wimask_74; // @[RegisterRouter.scala:87:24] wire _out_T_831 = out_f_wivalid_74; // @[RegisterRouter.scala:87:24] assign out_f_woready_74 = out_woready_74 & out_womask_74; // @[RegisterRouter.scala:87:24] assign valids_2_6 = out_f_woready_74; // @[RegisterRouter.scala:87:24] wire _out_T_832 = out_f_woready_74; // @[RegisterRouter.scala:87:24] assign newBytes_2_6 = out_f_woready_74 ? _out_T_828 : oldBytes_2_6; // @[RegisterRouter.scala:87:24] wire _out_T_833 = ~out_rimask_74; // @[RegisterRouter.scala:87:24] wire _out_T_834 = ~out_wimask_74; // @[RegisterRouter.scala:87:24] wire _out_T_835 = ~out_romask_74; // @[RegisterRouter.scala:87:24] wire _out_T_836 = ~out_womask_74; // @[RegisterRouter.scala:87:24] wire [55:0] out_prepend_63 = {oldBytes_2_6, _out_prepend_T_63}; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_837 = out_prepend_63; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_838 = _out_T_837; // @[RegisterRouter.scala:87:24] wire [55:0] _out_prepend_T_64 = _out_T_838; // @[RegisterRouter.scala:87:24] wire out_rimask_75 = |_out_rimask_T_75; // @[RegisterRouter.scala:87:24] wire out_wimask_75 = &_out_wimask_T_75; // @[RegisterRouter.scala:87:24] wire out_romask_75 = |_out_romask_T_75; // @[RegisterRouter.scala:87:24] wire out_womask_75 = &_out_womask_T_75; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_75 = out_rivalid_75 & out_rimask_75; // @[RegisterRouter.scala:87:24] wire _out_T_840 = out_f_rivalid_75; // @[RegisterRouter.scala:87:24] wire out_f_roready_75 = out_roready_75 & out_romask_75; // @[RegisterRouter.scala:87:24] wire _out_T_841 = out_f_roready_75; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_75 = out_wivalid_75 & out_wimask_75; // @[RegisterRouter.scala:87:24] wire _out_T_842 = out_f_wivalid_75; // @[RegisterRouter.scala:87:24] assign out_f_woready_75 = out_woready_75 & out_womask_75; // @[RegisterRouter.scala:87:24] assign valids_2_7 = out_f_woready_75; // @[RegisterRouter.scala:87:24] wire _out_T_843 = out_f_woready_75; // @[RegisterRouter.scala:87:24] assign newBytes_2_7 = out_f_woready_75 ? _out_T_839 : oldBytes_2_7; // @[RegisterRouter.scala:87:24] wire _out_T_844 = ~out_rimask_75; // @[RegisterRouter.scala:87:24] wire _out_T_845 = ~out_wimask_75; // @[RegisterRouter.scala:87:24] wire _out_T_846 = ~out_romask_75; // @[RegisterRouter.scala:87:24] wire _out_T_847 = ~out_womask_75; // @[RegisterRouter.scala:87:24] wire [63:0] out_prepend_64 = {oldBytes_2_7, _out_prepend_T_64}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_848 = out_prepend_64; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_849 = _out_T_848; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_10 = _out_T_849; // @[MuxLiteral.scala:49:48] wire out_rimask_76 = |_out_rimask_T_76; // @[RegisterRouter.scala:87:24] wire out_wimask_76 = &_out_wimask_T_76; // @[RegisterRouter.scala:87:24] wire out_romask_76 = |_out_romask_T_76; // @[RegisterRouter.scala:87:24] wire out_womask_76 = &_out_womask_T_76; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_76 = out_rivalid_76 & out_rimask_76; // @[RegisterRouter.scala:87:24] wire _out_T_851 = out_f_rivalid_76; // @[RegisterRouter.scala:87:24] wire out_f_roready_76 = out_roready_76 & out_romask_76; // @[RegisterRouter.scala:87:24] wire _out_T_852 = out_f_roready_76; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_76 = out_wivalid_76 & out_wimask_76; // @[RegisterRouter.scala:87:24] wire _out_T_853 = out_f_wivalid_76; // @[RegisterRouter.scala:87:24] assign out_f_woready_76 = out_woready_76 & out_womask_76; // @[RegisterRouter.scala:87:24] assign valids_3_0 = out_f_woready_76; // @[RegisterRouter.scala:87:24] wire _out_T_854 = out_f_woready_76; // @[RegisterRouter.scala:87:24] assign newBytes_3_0 = out_f_woready_76 ? _out_T_850 : oldBytes_3_0; // @[RegisterRouter.scala:87:24] wire _out_T_855 = ~out_rimask_76; // @[RegisterRouter.scala:87:24] wire _out_T_856 = ~out_wimask_76; // @[RegisterRouter.scala:87:24] wire _out_T_857 = ~out_romask_76; // @[RegisterRouter.scala:87:24] wire _out_T_858 = ~out_womask_76; // @[RegisterRouter.scala:87:24] wire [7:0] _out_T_860 = _out_T_859; // @[RegisterRouter.scala:87:24] wire [7:0] _out_prepend_T_65 = _out_T_860; // @[RegisterRouter.scala:87:24] wire out_rimask_77 = |_out_rimask_T_77; // @[RegisterRouter.scala:87:24] wire out_wimask_77 = &_out_wimask_T_77; // @[RegisterRouter.scala:87:24] wire out_romask_77 = |_out_romask_T_77; // @[RegisterRouter.scala:87:24] wire out_womask_77 = &_out_womask_T_77; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_77 = out_rivalid_77 & out_rimask_77; // @[RegisterRouter.scala:87:24] wire _out_T_862 = out_f_rivalid_77; // @[RegisterRouter.scala:87:24] wire out_f_roready_77 = out_roready_77 & out_romask_77; // @[RegisterRouter.scala:87:24] wire _out_T_863 = out_f_roready_77; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_77 = out_wivalid_77 & out_wimask_77; // @[RegisterRouter.scala:87:24] wire _out_T_864 = out_f_wivalid_77; // @[RegisterRouter.scala:87:24] assign out_f_woready_77 = out_woready_77 & out_womask_77; // @[RegisterRouter.scala:87:24] assign valids_3_1 = out_f_woready_77; // @[RegisterRouter.scala:87:24] wire _out_T_865 = out_f_woready_77; // @[RegisterRouter.scala:87:24] assign newBytes_3_1 = out_f_woready_77 ? _out_T_861 : oldBytes_3_1; // @[RegisterRouter.scala:87:24] wire _out_T_866 = ~out_rimask_77; // @[RegisterRouter.scala:87:24] wire _out_T_867 = ~out_wimask_77; // @[RegisterRouter.scala:87:24] wire _out_T_868 = ~out_romask_77; // @[RegisterRouter.scala:87:24] wire _out_T_869 = ~out_womask_77; // @[RegisterRouter.scala:87:24] wire [15:0] out_prepend_65 = {oldBytes_3_1, _out_prepend_T_65}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_870 = out_prepend_65; // @[RegisterRouter.scala:87:24] wire [15:0] _out_T_871 = _out_T_870; // @[RegisterRouter.scala:87:24] wire [15:0] _out_prepend_T_66 = _out_T_871; // @[RegisterRouter.scala:87:24] wire out_rimask_78 = |_out_rimask_T_78; // @[RegisterRouter.scala:87:24] wire out_wimask_78 = &_out_wimask_T_78; // @[RegisterRouter.scala:87:24] wire out_romask_78 = |_out_romask_T_78; // @[RegisterRouter.scala:87:24] wire out_womask_78 = &_out_womask_T_78; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_78 = out_rivalid_78 & out_rimask_78; // @[RegisterRouter.scala:87:24] wire _out_T_873 = out_f_rivalid_78; // @[RegisterRouter.scala:87:24] wire out_f_roready_78 = out_roready_78 & out_romask_78; // @[RegisterRouter.scala:87:24] wire _out_T_874 = out_f_roready_78; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_78 = out_wivalid_78 & out_wimask_78; // @[RegisterRouter.scala:87:24] wire _out_T_875 = out_f_wivalid_78; // @[RegisterRouter.scala:87:24] assign out_f_woready_78 = out_woready_78 & out_womask_78; // @[RegisterRouter.scala:87:24] assign valids_3_2 = out_f_woready_78; // @[RegisterRouter.scala:87:24] wire _out_T_876 = out_f_woready_78; // @[RegisterRouter.scala:87:24] assign newBytes_3_2 = out_f_woready_78 ? _out_T_872 : oldBytes_3_2; // @[RegisterRouter.scala:87:24] wire _out_T_877 = ~out_rimask_78; // @[RegisterRouter.scala:87:24] wire _out_T_878 = ~out_wimask_78; // @[RegisterRouter.scala:87:24] wire _out_T_879 = ~out_romask_78; // @[RegisterRouter.scala:87:24] wire _out_T_880 = ~out_womask_78; // @[RegisterRouter.scala:87:24] wire [23:0] out_prepend_66 = {oldBytes_3_2, _out_prepend_T_66}; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_881 = out_prepend_66; // @[RegisterRouter.scala:87:24] wire [23:0] _out_T_882 = _out_T_881; // @[RegisterRouter.scala:87:24] wire [23:0] _out_prepend_T_67 = _out_T_882; // @[RegisterRouter.scala:87:24] wire out_rimask_79 = |_out_rimask_T_79; // @[RegisterRouter.scala:87:24] wire out_wimask_79 = &_out_wimask_T_79; // @[RegisterRouter.scala:87:24] wire out_romask_79 = |_out_romask_T_79; // @[RegisterRouter.scala:87:24] wire out_womask_79 = &_out_womask_T_79; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_79 = out_rivalid_79 & out_rimask_79; // @[RegisterRouter.scala:87:24] wire _out_T_884 = out_f_rivalid_79; // @[RegisterRouter.scala:87:24] wire out_f_roready_79 = out_roready_79 & out_romask_79; // @[RegisterRouter.scala:87:24] wire _out_T_885 = out_f_roready_79; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_79 = out_wivalid_79 & out_wimask_79; // @[RegisterRouter.scala:87:24] wire _out_T_886 = out_f_wivalid_79; // @[RegisterRouter.scala:87:24] assign out_f_woready_79 = out_woready_79 & out_womask_79; // @[RegisterRouter.scala:87:24] assign valids_3_3 = out_f_woready_79; // @[RegisterRouter.scala:87:24] wire _out_T_887 = out_f_woready_79; // @[RegisterRouter.scala:87:24] assign newBytes_3_3 = out_f_woready_79 ? _out_T_883 : oldBytes_3_3; // @[RegisterRouter.scala:87:24] wire _out_T_888 = ~out_rimask_79; // @[RegisterRouter.scala:87:24] wire _out_T_889 = ~out_wimask_79; // @[RegisterRouter.scala:87:24] wire _out_T_890 = ~out_romask_79; // @[RegisterRouter.scala:87:24] wire _out_T_891 = ~out_womask_79; // @[RegisterRouter.scala:87:24] wire [31:0] out_prepend_67 = {oldBytes_3_3, _out_prepend_T_67}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_892 = out_prepend_67; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_893 = _out_T_892; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_68 = _out_T_893; // @[RegisterRouter.scala:87:24] wire out_rimask_80 = |_out_rimask_T_80; // @[RegisterRouter.scala:87:24] wire out_wimask_80 = &_out_wimask_T_80; // @[RegisterRouter.scala:87:24] wire out_romask_80 = |_out_romask_T_80; // @[RegisterRouter.scala:87:24] wire out_womask_80 = &_out_womask_T_80; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_80 = out_rivalid_80 & out_rimask_80; // @[RegisterRouter.scala:87:24] wire _out_T_895 = out_f_rivalid_80; // @[RegisterRouter.scala:87:24] wire out_f_roready_80 = out_roready_80 & out_romask_80; // @[RegisterRouter.scala:87:24] wire _out_T_896 = out_f_roready_80; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_80 = out_wivalid_80 & out_wimask_80; // @[RegisterRouter.scala:87:24] wire _out_T_897 = out_f_wivalid_80; // @[RegisterRouter.scala:87:24] assign out_f_woready_80 = out_woready_80 & out_womask_80; // @[RegisterRouter.scala:87:24] assign valids_3_4 = out_f_woready_80; // @[RegisterRouter.scala:87:24] wire _out_T_898 = out_f_woready_80; // @[RegisterRouter.scala:87:24] assign newBytes_3_4 = out_f_woready_80 ? _out_T_894 : oldBytes_3_4; // @[RegisterRouter.scala:87:24] wire _out_T_899 = ~out_rimask_80; // @[RegisterRouter.scala:87:24] wire _out_T_900 = ~out_wimask_80; // @[RegisterRouter.scala:87:24] wire _out_T_901 = ~out_romask_80; // @[RegisterRouter.scala:87:24] wire _out_T_902 = ~out_womask_80; // @[RegisterRouter.scala:87:24] wire [39:0] out_prepend_68 = {oldBytes_3_4, _out_prepend_T_68}; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_903 = out_prepend_68; // @[RegisterRouter.scala:87:24] wire [39:0] _out_T_904 = _out_T_903; // @[RegisterRouter.scala:87:24] wire [39:0] _out_prepend_T_69 = _out_T_904; // @[RegisterRouter.scala:87:24] wire out_rimask_81 = |_out_rimask_T_81; // @[RegisterRouter.scala:87:24] wire out_wimask_81 = &_out_wimask_T_81; // @[RegisterRouter.scala:87:24] wire out_romask_81 = |_out_romask_T_81; // @[RegisterRouter.scala:87:24] wire out_womask_81 = &_out_womask_T_81; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_81 = out_rivalid_81 & out_rimask_81; // @[RegisterRouter.scala:87:24] wire _out_T_906 = out_f_rivalid_81; // @[RegisterRouter.scala:87:24] wire out_f_roready_81 = out_roready_81 & out_romask_81; // @[RegisterRouter.scala:87:24] wire _out_T_907 = out_f_roready_81; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_81 = out_wivalid_81 & out_wimask_81; // @[RegisterRouter.scala:87:24] wire _out_T_908 = out_f_wivalid_81; // @[RegisterRouter.scala:87:24] assign out_f_woready_81 = out_woready_81 & out_womask_81; // @[RegisterRouter.scala:87:24] assign valids_3_5 = out_f_woready_81; // @[RegisterRouter.scala:87:24] wire _out_T_909 = out_f_woready_81; // @[RegisterRouter.scala:87:24] assign newBytes_3_5 = out_f_woready_81 ? _out_T_905 : oldBytes_3_5; // @[RegisterRouter.scala:87:24] wire _out_T_910 = ~out_rimask_81; // @[RegisterRouter.scala:87:24] wire _out_T_911 = ~out_wimask_81; // @[RegisterRouter.scala:87:24] wire _out_T_912 = ~out_romask_81; // @[RegisterRouter.scala:87:24] wire _out_T_913 = ~out_womask_81; // @[RegisterRouter.scala:87:24] wire [47:0] out_prepend_69 = {oldBytes_3_5, _out_prepend_T_69}; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_914 = out_prepend_69; // @[RegisterRouter.scala:87:24] wire [47:0] _out_T_915 = _out_T_914; // @[RegisterRouter.scala:87:24] wire [47:0] _out_prepend_T_70 = _out_T_915; // @[RegisterRouter.scala:87:24] wire out_rimask_82 = |_out_rimask_T_82; // @[RegisterRouter.scala:87:24] wire out_wimask_82 = &_out_wimask_T_82; // @[RegisterRouter.scala:87:24] wire out_romask_82 = |_out_romask_T_82; // @[RegisterRouter.scala:87:24] wire out_womask_82 = &_out_womask_T_82; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_82 = out_rivalid_82 & out_rimask_82; // @[RegisterRouter.scala:87:24] wire _out_T_917 = out_f_rivalid_82; // @[RegisterRouter.scala:87:24] wire out_f_roready_82 = out_roready_82 & out_romask_82; // @[RegisterRouter.scala:87:24] wire _out_T_918 = out_f_roready_82; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_82 = out_wivalid_82 & out_wimask_82; // @[RegisterRouter.scala:87:24] wire _out_T_919 = out_f_wivalid_82; // @[RegisterRouter.scala:87:24] assign out_f_woready_82 = out_woready_82 & out_womask_82; // @[RegisterRouter.scala:87:24] assign valids_3_6 = out_f_woready_82; // @[RegisterRouter.scala:87:24] wire _out_T_920 = out_f_woready_82; // @[RegisterRouter.scala:87:24] assign newBytes_3_6 = out_f_woready_82 ? _out_T_916 : oldBytes_3_6; // @[RegisterRouter.scala:87:24] wire _out_T_921 = ~out_rimask_82; // @[RegisterRouter.scala:87:24] wire _out_T_922 = ~out_wimask_82; // @[RegisterRouter.scala:87:24] wire _out_T_923 = ~out_romask_82; // @[RegisterRouter.scala:87:24] wire _out_T_924 = ~out_womask_82; // @[RegisterRouter.scala:87:24] wire [55:0] out_prepend_70 = {oldBytes_3_6, _out_prepend_T_70}; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_925 = out_prepend_70; // @[RegisterRouter.scala:87:24] wire [55:0] _out_T_926 = _out_T_925; // @[RegisterRouter.scala:87:24] wire [55:0] _out_prepend_T_71 = _out_T_926; // @[RegisterRouter.scala:87:24] wire out_rimask_83 = |_out_rimask_T_83; // @[RegisterRouter.scala:87:24] wire out_wimask_83 = &_out_wimask_T_83; // @[RegisterRouter.scala:87:24] wire out_romask_83 = |_out_romask_T_83; // @[RegisterRouter.scala:87:24] wire out_womask_83 = &_out_womask_T_83; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_83 = out_rivalid_83 & out_rimask_83; // @[RegisterRouter.scala:87:24] wire _out_T_928 = out_f_rivalid_83; // @[RegisterRouter.scala:87:24] wire out_f_roready_83 = out_roready_83 & out_romask_83; // @[RegisterRouter.scala:87:24] wire _out_T_929 = out_f_roready_83; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_83 = out_wivalid_83 & out_wimask_83; // @[RegisterRouter.scala:87:24] wire _out_T_930 = out_f_wivalid_83; // @[RegisterRouter.scala:87:24] assign out_f_woready_83 = out_woready_83 & out_womask_83; // @[RegisterRouter.scala:87:24] assign valids_3_7 = out_f_woready_83; // @[RegisterRouter.scala:87:24] wire _out_T_931 = out_f_woready_83; // @[RegisterRouter.scala:87:24] assign newBytes_3_7 = out_f_woready_83 ? _out_T_927 : oldBytes_3_7; // @[RegisterRouter.scala:87:24] wire _out_T_932 = ~out_rimask_83; // @[RegisterRouter.scala:87:24] wire _out_T_933 = ~out_wimask_83; // @[RegisterRouter.scala:87:24] wire _out_T_934 = ~out_romask_83; // @[RegisterRouter.scala:87:24] wire _out_T_935 = ~out_womask_83; // @[RegisterRouter.scala:87:24] wire [63:0] out_prepend_71 = {oldBytes_3_7, _out_prepend_T_71}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_936 = out_prepend_71; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_937 = _out_T_936; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_11 = _out_T_937; // @[MuxLiteral.scala:49:48] wire out_rimask_84 = _out_rimask_T_84; // @[RegisterRouter.scala:87:24] wire out_wimask_84 = _out_wimask_T_84; // @[RegisterRouter.scala:87:24] wire out_romask_84 = _out_romask_T_84; // @[RegisterRouter.scala:87:24] wire out_womask_84 = _out_womask_T_84; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_84 = out_rivalid_84 & out_rimask_84; // @[RegisterRouter.scala:87:24] wire _out_T_939 = out_f_rivalid_84; // @[RegisterRouter.scala:87:24] wire out_f_roready_84 = out_roready_84 & out_romask_84; // @[RegisterRouter.scala:87:24] wire _out_T_940 = out_f_roready_84; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_84 = out_wivalid_84 & out_wimask_84; // @[RegisterRouter.scala:87:24] wire _out_T_941 = out_f_wivalid_84; // @[RegisterRouter.scala:87:24] wire out_f_woready_84 = out_woready_84 & out_womask_84; // @[RegisterRouter.scala:87:24] wire _out_T_942 = out_f_woready_84; // @[RegisterRouter.scala:87:24] wire _out_T_943 = ~out_rimask_84; // @[RegisterRouter.scala:87:24] wire _out_T_944 = ~out_wimask_84; // @[RegisterRouter.scala:87:24] wire _out_T_945 = ~out_romask_84; // @[RegisterRouter.scala:87:24] wire _out_T_946 = ~out_womask_84; // @[RegisterRouter.scala:87:24] wire _out_T_948 = _out_T_947; // @[RegisterRouter.scala:87:24] wire _out_prepend_T_72 = _out_T_948; // @[RegisterRouter.scala:87:24] wire out_rimask_85 = |_out_rimask_T_85; // @[RegisterRouter.scala:87:24] wire out_wimask_85 = &_out_wimask_T_85; // @[RegisterRouter.scala:87:24] wire out_romask_85 = |_out_romask_T_85; // @[RegisterRouter.scala:87:24] wire out_womask_85 = &_out_womask_T_85; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_85 = out_rivalid_85 & out_rimask_85; // @[RegisterRouter.scala:87:24] wire _out_T_950 = out_f_rivalid_85; // @[RegisterRouter.scala:87:24] wire out_f_roready_85 = out_roready_85 & out_romask_85; // @[RegisterRouter.scala:87:24] wire _out_T_951 = out_f_roready_85; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_85 = out_wivalid_85 & out_wimask_85; // @[RegisterRouter.scala:87:24] wire out_f_woready_85 = out_woready_85 & out_womask_85; // @[RegisterRouter.scala:87:24] wire _out_T_952 = ~out_rimask_85; // @[RegisterRouter.scala:87:24] wire _out_T_953 = ~out_wimask_85; // @[RegisterRouter.scala:87:24] wire _out_T_954 = ~out_romask_85; // @[RegisterRouter.scala:87:24] wire _out_T_955 = ~out_womask_85; // @[RegisterRouter.scala:87:24] wire [1:0] out_prepend_72 = {1'h0, _out_prepend_T_72}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_956 = {30'h0, out_prepend_72}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_957 = _out_T_956; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_73 = _out_T_957; // @[RegisterRouter.scala:87:24] wire out_rimask_86 = _out_rimask_T_86; // @[RegisterRouter.scala:87:24] wire out_wimask_86 = _out_wimask_T_86; // @[RegisterRouter.scala:87:24] wire out_romask_86 = _out_romask_T_86; // @[RegisterRouter.scala:87:24] wire out_womask_86 = _out_womask_T_86; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_86 = out_rivalid_86 & out_rimask_86; // @[RegisterRouter.scala:87:24] wire _out_T_959 = out_f_rivalid_86; // @[RegisterRouter.scala:87:24] wire out_f_roready_86 = out_roready_86 & out_romask_86; // @[RegisterRouter.scala:87:24] wire _out_T_960 = out_f_roready_86; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_86 = out_wivalid_86 & out_wimask_86; // @[RegisterRouter.scala:87:24] wire _out_T_961 = out_f_wivalid_86; // @[RegisterRouter.scala:87:24] wire out_f_woready_86 = out_woready_86 & out_womask_86; // @[RegisterRouter.scala:87:24] wire _out_T_962 = out_f_woready_86; // @[RegisterRouter.scala:87:24] wire _out_T_963 = ~out_rimask_86; // @[RegisterRouter.scala:87:24] wire _out_T_964 = ~out_wimask_86; // @[RegisterRouter.scala:87:24] wire _out_T_965 = ~out_romask_86; // @[RegisterRouter.scala:87:24] wire _out_T_966 = ~out_womask_86; // @[RegisterRouter.scala:87:24] wire [32:0] out_prepend_73 = {ipi_7, _out_prepend_T_73}; // @[RegisterRouter.scala:87:24] wire [32:0] _out_T_967 = out_prepend_73; // @[RegisterRouter.scala:87:24] wire [32:0] _out_T_968 = _out_T_967; // @[RegisterRouter.scala:87:24] wire [32:0] _out_prepend_T_74 = _out_T_968; // @[RegisterRouter.scala:87:24] wire out_rimask_87 = |_out_rimask_T_87; // @[RegisterRouter.scala:87:24] wire out_wimask_87 = &_out_wimask_T_87; // @[RegisterRouter.scala:87:24] wire out_romask_87 = |_out_romask_T_87; // @[RegisterRouter.scala:87:24] wire out_womask_87 = &_out_womask_T_87; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_87 = out_rivalid_87 & out_rimask_87; // @[RegisterRouter.scala:87:24] wire _out_T_970 = out_f_rivalid_87; // @[RegisterRouter.scala:87:24] wire out_f_roready_87 = out_roready_87 & out_romask_87; // @[RegisterRouter.scala:87:24] wire _out_T_971 = out_f_roready_87; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_87 = out_wivalid_87 & out_wimask_87; // @[RegisterRouter.scala:87:24] wire out_f_woready_87 = out_woready_87 & out_womask_87; // @[RegisterRouter.scala:87:24] wire _out_T_972 = ~out_rimask_87; // @[RegisterRouter.scala:87:24] wire _out_T_973 = ~out_wimask_87; // @[RegisterRouter.scala:87:24] wire _out_T_974 = ~out_romask_87; // @[RegisterRouter.scala:87:24] wire _out_T_975 = ~out_womask_87; // @[RegisterRouter.scala:87:24] wire [33:0] out_prepend_74 = {1'h0, _out_prepend_T_74}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_976 = {30'h0, out_prepend_74}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_977 = _out_T_976; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_WIRE_1_3 = _out_T_977; // @[MuxLiteral.scala:49:48] wire _out_iindex_T = out_front_bits_index[0]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T = out_front_bits_index[0]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_1 = out_front_bits_index[1]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_1 = out_front_bits_index[1]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_2 = out_front_bits_index[2]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_2 = out_front_bits_index[2]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_3 = out_front_bits_index[3]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_3 = out_front_bits_index[3]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_4 = out_front_bits_index[4]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_4 = out_front_bits_index[4]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_5 = out_front_bits_index[5]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_5 = out_front_bits_index[5]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_6 = out_front_bits_index[6]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_6 = out_front_bits_index[6]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_7 = out_front_bits_index[7]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_7 = out_front_bits_index[7]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_8 = out_front_bits_index[8]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_8 = out_front_bits_index[8]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_9 = out_front_bits_index[9]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_9 = out_front_bits_index[9]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_10 = out_front_bits_index[10]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_10 = out_front_bits_index[10]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_11 = out_front_bits_index[11]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_11 = out_front_bits_index[11]; // @[RegisterRouter.scala:87:24] wire _out_iindex_T_12 = out_front_bits_index[12]; // @[RegisterRouter.scala:87:24] wire _out_oindex_T_12 = out_front_bits_index[12]; // @[RegisterRouter.scala:87:24] wire [1:0] out_iindex_lo = {_out_iindex_T_1, _out_iindex_T}; // @[RegisterRouter.scala:87:24] wire [1:0] out_iindex_hi = {_out_iindex_T_11, _out_iindex_T_2}; // @[RegisterRouter.scala:87:24] wire [3:0] out_iindex = {out_iindex_hi, out_iindex_lo}; // @[RegisterRouter.scala:87:24] wire [1:0] out_oindex_lo = {_out_oindex_T_1, _out_oindex_T}; // @[RegisterRouter.scala:87:24] wire [1:0] out_oindex_hi = {_out_oindex_T_11, _out_oindex_T_2}; // @[RegisterRouter.scala:87:24] wire [3:0] out_oindex = {out_oindex_hi, out_oindex_lo}; // @[RegisterRouter.scala:87:24] wire [15:0] _out_frontSel_T = 16'h1 << out_iindex; // @[OneHot.scala:58:35] wire out_frontSel_0 = _out_frontSel_T[0]; // @[OneHot.scala:58:35] wire out_frontSel_1 = _out_frontSel_T[1]; // @[OneHot.scala:58:35] wire out_frontSel_2 = _out_frontSel_T[2]; // @[OneHot.scala:58:35] wire out_frontSel_3 = _out_frontSel_T[3]; // @[OneHot.scala:58:35] wire out_frontSel_4 = _out_frontSel_T[4]; // @[OneHot.scala:58:35] wire out_frontSel_5 = _out_frontSel_T[5]; // @[OneHot.scala:58:35] wire out_frontSel_6 = _out_frontSel_T[6]; // @[OneHot.scala:58:35] wire out_frontSel_7 = _out_frontSel_T[7]; // @[OneHot.scala:58:35] wire out_frontSel_8 = _out_frontSel_T[8]; // @[OneHot.scala:58:35] wire out_frontSel_9 = _out_frontSel_T[9]; // @[OneHot.scala:58:35] wire out_frontSel_10 = _out_frontSel_T[10]; // @[OneHot.scala:58:35] wire out_frontSel_11 = _out_frontSel_T[11]; // @[OneHot.scala:58:35] wire out_frontSel_12 = _out_frontSel_T[12]; // @[OneHot.scala:58:35] wire out_frontSel_13 = _out_frontSel_T[13]; // @[OneHot.scala:58:35] wire out_frontSel_14 = _out_frontSel_T[14]; // @[OneHot.scala:58:35] wire out_frontSel_15 = _out_frontSel_T[15]; // @[OneHot.scala:58:35] wire [15:0] _out_backSel_T = 16'h1 << out_oindex; // @[OneHot.scala:58:35] wire out_backSel_0 = _out_backSel_T[0]; // @[OneHot.scala:58:35] wire out_backSel_1 = _out_backSel_T[1]; // @[OneHot.scala:58:35] wire out_backSel_2 = _out_backSel_T[2]; // @[OneHot.scala:58:35] wire out_backSel_3 = _out_backSel_T[3]; // @[OneHot.scala:58:35] wire out_backSel_4 = _out_backSel_T[4]; // @[OneHot.scala:58:35] wire out_backSel_5 = _out_backSel_T[5]; // @[OneHot.scala:58:35] wire out_backSel_6 = _out_backSel_T[6]; // @[OneHot.scala:58:35] wire out_backSel_7 = _out_backSel_T[7]; // @[OneHot.scala:58:35] wire out_backSel_8 = _out_backSel_T[8]; // @[OneHot.scala:58:35] wire out_backSel_9 = _out_backSel_T[9]; // @[OneHot.scala:58:35] wire out_backSel_10 = _out_backSel_T[10]; // @[OneHot.scala:58:35] wire out_backSel_11 = _out_backSel_T[11]; // @[OneHot.scala:58:35] wire out_backSel_12 = _out_backSel_T[12]; // @[OneHot.scala:58:35] wire out_backSel_13 = _out_backSel_T[13]; // @[OneHot.scala:58:35] wire out_backSel_14 = _out_backSel_T[14]; // @[OneHot.scala:58:35] wire out_backSel_15 = _out_backSel_T[15]; // @[OneHot.scala:58:35] wire _GEN_2 = in_valid & out_front_ready; // @[RegisterRouter.scala:73:18, :87:24] wire _out_rifireMux_T; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T = _GEN_2; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T = _GEN_2; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_1 = _out_rifireMux_T & out_front_bits_read; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_2 = _out_rifireMux_T_1 & out_frontSel_0; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_3 = _out_rifireMux_T_2 & _out_T; // @[RegisterRouter.scala:87:24] assign out_rivalid_0 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24] assign out_rivalid_1 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24] assign out_rivalid_2 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24] assign out_rivalid_3 = _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_4 = ~_out_T; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_6 = _out_rifireMux_T_1 & out_frontSel_1; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_7 = _out_rifireMux_T_6 & _out_T_4; // @[RegisterRouter.scala:87:24] assign out_rivalid_12 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24] assign out_rivalid_13 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24] assign out_rivalid_14 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24] assign out_rivalid_15 = _out_rifireMux_T_7; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_8 = ~_out_T_4; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_10 = _out_rifireMux_T_1 & out_frontSel_2; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_11 = _out_rifireMux_T_10 & _out_T_12; // @[RegisterRouter.scala:87:24] assign out_rivalid_40 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24] assign out_rivalid_41 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24] assign out_rivalid_42 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24] assign out_rivalid_43 = _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_12 = ~_out_T_12; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_14 = _out_rifireMux_T_1 & out_frontSel_3; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_15 = _out_rifireMux_T_14 & _out_T_24; // @[RegisterRouter.scala:87:24] assign out_rivalid_84 = _out_rifireMux_T_15; // @[RegisterRouter.scala:87:24] assign out_rivalid_85 = _out_rifireMux_T_15; // @[RegisterRouter.scala:87:24] assign out_rivalid_86 = _out_rifireMux_T_15; // @[RegisterRouter.scala:87:24] assign out_rivalid_87 = _out_rifireMux_T_15; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_16 = ~_out_T_24; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_18 = _out_rifireMux_T_1 & out_frontSel_4; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_19 = _out_rifireMux_T_18; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_22 = _out_rifireMux_T_1 & out_frontSel_5; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_23 = _out_rifireMux_T_22; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_26 = _out_rifireMux_T_1 & out_frontSel_6; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_27 = _out_rifireMux_T_26; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_30 = _out_rifireMux_T_1 & out_frontSel_7; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_31 = _out_rifireMux_T_30 & _out_T_6; // @[RegisterRouter.scala:87:24] assign out_rivalid_16 = _out_rifireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_rivalid_17 = _out_rifireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_rivalid_18 = _out_rifireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_rivalid_19 = _out_rifireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_rivalid_20 = _out_rifireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_rivalid_21 = _out_rifireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_rivalid_22 = _out_rifireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_rivalid_23 = _out_rifireMux_T_31; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_32 = ~_out_T_6; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_34 = _out_rifireMux_T_1 & out_frontSel_8; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_35 = _out_rifireMux_T_34 & _out_T_14; // @[RegisterRouter.scala:87:24] assign out_rivalid_44 = _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_rivalid_45 = _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_rivalid_46 = _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_rivalid_47 = _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_rivalid_48 = _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_rivalid_49 = _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_rivalid_50 = _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_rivalid_51 = _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_36 = ~_out_T_14; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_38 = _out_rifireMux_T_1 & out_frontSel_9; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_39 = _out_rifireMux_T_38 & _out_T_2; // @[RegisterRouter.scala:87:24] assign out_rivalid_4 = _out_rifireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_rivalid_5 = _out_rifireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_rivalid_6 = _out_rifireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_rivalid_7 = _out_rifireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_rivalid_8 = _out_rifireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_rivalid_9 = _out_rifireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_rivalid_10 = _out_rifireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_rivalid_11 = _out_rifireMux_T_39; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_40 = ~_out_T_2; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_42 = _out_rifireMux_T_1 & out_frontSel_10; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_43 = _out_rifireMux_T_42 & _out_T_20; // @[RegisterRouter.scala:87:24] assign out_rivalid_68 = _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_rivalid_69 = _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_rivalid_70 = _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_rivalid_71 = _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_rivalid_72 = _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_rivalid_73 = _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_rivalid_74 = _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_rivalid_75 = _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_44 = ~_out_T_20; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_46 = _out_rifireMux_T_1 & out_frontSel_11; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_47 = _out_rifireMux_T_46 & _out_T_22; // @[RegisterRouter.scala:87:24] assign out_rivalid_76 = _out_rifireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_rivalid_77 = _out_rifireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_rivalid_78 = _out_rifireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_rivalid_79 = _out_rifireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_rivalid_80 = _out_rifireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_rivalid_81 = _out_rifireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_rivalid_82 = _out_rifireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_rivalid_83 = _out_rifireMux_T_47; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_48 = ~_out_T_22; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_50 = _out_rifireMux_T_1 & out_frontSel_12; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_51 = _out_rifireMux_T_50 & _out_T_10; // @[RegisterRouter.scala:87:24] assign out_rivalid_32 = _out_rifireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_rivalid_33 = _out_rifireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_rivalid_34 = _out_rifireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_rivalid_35 = _out_rifireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_rivalid_36 = _out_rifireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_rivalid_37 = _out_rifireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_rivalid_38 = _out_rifireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_rivalid_39 = _out_rifireMux_T_51; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_52 = ~_out_T_10; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_54 = _out_rifireMux_T_1 & out_frontSel_13; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_55 = _out_rifireMux_T_54 & _out_T_8; // @[RegisterRouter.scala:87:24] assign out_rivalid_24 = _out_rifireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_rivalid_25 = _out_rifireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_rivalid_26 = _out_rifireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_rivalid_27 = _out_rifireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_rivalid_28 = _out_rifireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_rivalid_29 = _out_rifireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_rivalid_30 = _out_rifireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_rivalid_31 = _out_rifireMux_T_55; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_56 = ~_out_T_8; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_58 = _out_rifireMux_T_1 & out_frontSel_14; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_59 = _out_rifireMux_T_58 & _out_T_18; // @[RegisterRouter.scala:87:24] assign out_rivalid_60 = _out_rifireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_rivalid_61 = _out_rifireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_rivalid_62 = _out_rifireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_rivalid_63 = _out_rifireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_rivalid_64 = _out_rifireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_rivalid_65 = _out_rifireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_rivalid_66 = _out_rifireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_rivalid_67 = _out_rifireMux_T_59; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_60 = ~_out_T_18; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_62 = _out_rifireMux_T_1 & out_frontSel_15; // @[RegisterRouter.scala:87:24] assign _out_rifireMux_T_63 = _out_rifireMux_T_62 & _out_T_16; // @[RegisterRouter.scala:87:24] assign out_rivalid_52 = _out_rifireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_rivalid_53 = _out_rifireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_rivalid_54 = _out_rifireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_rivalid_55 = _out_rifireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_rivalid_56 = _out_rifireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_rivalid_57 = _out_rifireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_rivalid_58 = _out_rifireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_rivalid_59 = _out_rifireMux_T_63; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_64 = ~_out_T_16; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_1 = ~out_front_bits_read; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_2 = _out_wifireMux_T & _out_wifireMux_T_1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_3 = _out_wifireMux_T_2 & out_frontSel_0; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_4 = _out_wifireMux_T_3 & _out_T; // @[RegisterRouter.scala:87:24] assign out_wivalid_0 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24] assign out_wivalid_1 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24] assign out_wivalid_2 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24] assign out_wivalid_3 = _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_5 = ~_out_T; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_7 = _out_wifireMux_T_2 & out_frontSel_1; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_8 = _out_wifireMux_T_7 & _out_T_4; // @[RegisterRouter.scala:87:24] assign out_wivalid_12 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24] assign out_wivalid_13 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24] assign out_wivalid_14 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24] assign out_wivalid_15 = _out_wifireMux_T_8; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_9 = ~_out_T_4; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_11 = _out_wifireMux_T_2 & out_frontSel_2; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_12 = _out_wifireMux_T_11 & _out_T_12; // @[RegisterRouter.scala:87:24] assign out_wivalid_40 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24] assign out_wivalid_41 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24] assign out_wivalid_42 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24] assign out_wivalid_43 = _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_13 = ~_out_T_12; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_15 = _out_wifireMux_T_2 & out_frontSel_3; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_16 = _out_wifireMux_T_15 & _out_T_24; // @[RegisterRouter.scala:87:24] assign out_wivalid_84 = _out_wifireMux_T_16; // @[RegisterRouter.scala:87:24] assign out_wivalid_85 = _out_wifireMux_T_16; // @[RegisterRouter.scala:87:24] assign out_wivalid_86 = _out_wifireMux_T_16; // @[RegisterRouter.scala:87:24] assign out_wivalid_87 = _out_wifireMux_T_16; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_17 = ~_out_T_24; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_19 = _out_wifireMux_T_2 & out_frontSel_4; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_20 = _out_wifireMux_T_19; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_23 = _out_wifireMux_T_2 & out_frontSel_5; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_24 = _out_wifireMux_T_23; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_27 = _out_wifireMux_T_2 & out_frontSel_6; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_28 = _out_wifireMux_T_27; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_31 = _out_wifireMux_T_2 & out_frontSel_7; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_32 = _out_wifireMux_T_31 & _out_T_6; // @[RegisterRouter.scala:87:24] assign out_wivalid_16 = _out_wifireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_wivalid_17 = _out_wifireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_wivalid_18 = _out_wifireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_wivalid_19 = _out_wifireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_wivalid_20 = _out_wifireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_wivalid_21 = _out_wifireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_wivalid_22 = _out_wifireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_wivalid_23 = _out_wifireMux_T_32; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_33 = ~_out_T_6; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_35 = _out_wifireMux_T_2 & out_frontSel_8; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_36 = _out_wifireMux_T_35 & _out_T_14; // @[RegisterRouter.scala:87:24] assign out_wivalid_44 = _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_wivalid_45 = _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_wivalid_46 = _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_wivalid_47 = _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_wivalid_48 = _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_wivalid_49 = _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_wivalid_50 = _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_wivalid_51 = _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_37 = ~_out_T_14; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_39 = _out_wifireMux_T_2 & out_frontSel_9; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_40 = _out_wifireMux_T_39 & _out_T_2; // @[RegisterRouter.scala:87:24] assign out_wivalid_4 = _out_wifireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_wivalid_5 = _out_wifireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_wivalid_6 = _out_wifireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_wivalid_7 = _out_wifireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_wivalid_8 = _out_wifireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_wivalid_9 = _out_wifireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_wivalid_10 = _out_wifireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_wivalid_11 = _out_wifireMux_T_40; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_41 = ~_out_T_2; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_43 = _out_wifireMux_T_2 & out_frontSel_10; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_44 = _out_wifireMux_T_43 & _out_T_20; // @[RegisterRouter.scala:87:24] assign out_wivalid_68 = _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_wivalid_69 = _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_wivalid_70 = _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_wivalid_71 = _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_wivalid_72 = _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_wivalid_73 = _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_wivalid_74 = _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_wivalid_75 = _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_45 = ~_out_T_20; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_47 = _out_wifireMux_T_2 & out_frontSel_11; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_48 = _out_wifireMux_T_47 & _out_T_22; // @[RegisterRouter.scala:87:24] assign out_wivalid_76 = _out_wifireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_wivalid_77 = _out_wifireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_wivalid_78 = _out_wifireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_wivalid_79 = _out_wifireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_wivalid_80 = _out_wifireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_wivalid_81 = _out_wifireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_wivalid_82 = _out_wifireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_wivalid_83 = _out_wifireMux_T_48; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_49 = ~_out_T_22; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_51 = _out_wifireMux_T_2 & out_frontSel_12; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_52 = _out_wifireMux_T_51 & _out_T_10; // @[RegisterRouter.scala:87:24] assign out_wivalid_32 = _out_wifireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_wivalid_33 = _out_wifireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_wivalid_34 = _out_wifireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_wivalid_35 = _out_wifireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_wivalid_36 = _out_wifireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_wivalid_37 = _out_wifireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_wivalid_38 = _out_wifireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_wivalid_39 = _out_wifireMux_T_52; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_53 = ~_out_T_10; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_55 = _out_wifireMux_T_2 & out_frontSel_13; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_56 = _out_wifireMux_T_55 & _out_T_8; // @[RegisterRouter.scala:87:24] assign out_wivalid_24 = _out_wifireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_wivalid_25 = _out_wifireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_wivalid_26 = _out_wifireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_wivalid_27 = _out_wifireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_wivalid_28 = _out_wifireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_wivalid_29 = _out_wifireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_wivalid_30 = _out_wifireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_wivalid_31 = _out_wifireMux_T_56; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_57 = ~_out_T_8; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_59 = _out_wifireMux_T_2 & out_frontSel_14; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_60 = _out_wifireMux_T_59 & _out_T_18; // @[RegisterRouter.scala:87:24] assign out_wivalid_60 = _out_wifireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_wivalid_61 = _out_wifireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_wivalid_62 = _out_wifireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_wivalid_63 = _out_wifireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_wivalid_64 = _out_wifireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_wivalid_65 = _out_wifireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_wivalid_66 = _out_wifireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_wivalid_67 = _out_wifireMux_T_60; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_61 = ~_out_T_18; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_63 = _out_wifireMux_T_2 & out_frontSel_15; // @[RegisterRouter.scala:87:24] assign _out_wifireMux_T_64 = _out_wifireMux_T_63 & _out_T_16; // @[RegisterRouter.scala:87:24] assign out_wivalid_52 = _out_wifireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_wivalid_53 = _out_wifireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_wivalid_54 = _out_wifireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_wivalid_55 = _out_wifireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_wivalid_56 = _out_wifireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_wivalid_57 = _out_wifireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_wivalid_58 = _out_wifireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_wivalid_59 = _out_wifireMux_T_64; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_65 = ~_out_T_16; // @[RegisterRouter.scala:87:24] wire _GEN_3 = out_front_valid & out_ready; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T = _GEN_3; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T = _GEN_3; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_1 = _out_rofireMux_T & out_front_bits_read; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_2 = _out_rofireMux_T_1 & out_backSel_0; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_3 = _out_rofireMux_T_2 & _out_T_1; // @[RegisterRouter.scala:87:24] assign out_roready_0 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24] assign out_roready_1 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24] assign out_roready_2 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24] assign out_roready_3 = _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_4 = ~_out_T_1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_6 = _out_rofireMux_T_1 & out_backSel_1; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_7 = _out_rofireMux_T_6 & _out_T_5; // @[RegisterRouter.scala:87:24] assign out_roready_12 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24] assign out_roready_13 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24] assign out_roready_14 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24] assign out_roready_15 = _out_rofireMux_T_7; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_8 = ~_out_T_5; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_10 = _out_rofireMux_T_1 & out_backSel_2; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_11 = _out_rofireMux_T_10 & _out_T_13; // @[RegisterRouter.scala:87:24] assign out_roready_40 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24] assign out_roready_41 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24] assign out_roready_42 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24] assign out_roready_43 = _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_12 = ~_out_T_13; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_14 = _out_rofireMux_T_1 & out_backSel_3; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_15 = _out_rofireMux_T_14 & _out_T_25; // @[RegisterRouter.scala:87:24] assign out_roready_84 = _out_rofireMux_T_15; // @[RegisterRouter.scala:87:24] assign out_roready_85 = _out_rofireMux_T_15; // @[RegisterRouter.scala:87:24] assign out_roready_86 = _out_rofireMux_T_15; // @[RegisterRouter.scala:87:24] assign out_roready_87 = _out_rofireMux_T_15; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_16 = ~_out_T_25; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_18 = _out_rofireMux_T_1 & out_backSel_4; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_19 = _out_rofireMux_T_18; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_22 = _out_rofireMux_T_1 & out_backSel_5; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_23 = _out_rofireMux_T_22; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_26 = _out_rofireMux_T_1 & out_backSel_6; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_27 = _out_rofireMux_T_26; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_30 = _out_rofireMux_T_1 & out_backSel_7; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_31 = _out_rofireMux_T_30 & _out_T_7; // @[RegisterRouter.scala:87:24] assign out_roready_16 = _out_rofireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_roready_17 = _out_rofireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_roready_18 = _out_rofireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_roready_19 = _out_rofireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_roready_20 = _out_rofireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_roready_21 = _out_rofireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_roready_22 = _out_rofireMux_T_31; // @[RegisterRouter.scala:87:24] assign out_roready_23 = _out_rofireMux_T_31; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_32 = ~_out_T_7; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_34 = _out_rofireMux_T_1 & out_backSel_8; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_35 = _out_rofireMux_T_34 & _out_T_15; // @[RegisterRouter.scala:87:24] assign out_roready_44 = _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_roready_45 = _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_roready_46 = _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_roready_47 = _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_roready_48 = _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_roready_49 = _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_roready_50 = _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] assign out_roready_51 = _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_36 = ~_out_T_15; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_38 = _out_rofireMux_T_1 & out_backSel_9; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_39 = _out_rofireMux_T_38 & _out_T_3; // @[RegisterRouter.scala:87:24] assign out_roready_4 = _out_rofireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_roready_5 = _out_rofireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_roready_6 = _out_rofireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_roready_7 = _out_rofireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_roready_8 = _out_rofireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_roready_9 = _out_rofireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_roready_10 = _out_rofireMux_T_39; // @[RegisterRouter.scala:87:24] assign out_roready_11 = _out_rofireMux_T_39; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_40 = ~_out_T_3; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_42 = _out_rofireMux_T_1 & out_backSel_10; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_43 = _out_rofireMux_T_42 & _out_T_21; // @[RegisterRouter.scala:87:24] assign out_roready_68 = _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_roready_69 = _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_roready_70 = _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_roready_71 = _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_roready_72 = _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_roready_73 = _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_roready_74 = _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] assign out_roready_75 = _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_44 = ~_out_T_21; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_46 = _out_rofireMux_T_1 & out_backSel_11; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_47 = _out_rofireMux_T_46 & _out_T_23; // @[RegisterRouter.scala:87:24] assign out_roready_76 = _out_rofireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_roready_77 = _out_rofireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_roready_78 = _out_rofireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_roready_79 = _out_rofireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_roready_80 = _out_rofireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_roready_81 = _out_rofireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_roready_82 = _out_rofireMux_T_47; // @[RegisterRouter.scala:87:24] assign out_roready_83 = _out_rofireMux_T_47; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_48 = ~_out_T_23; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_50 = _out_rofireMux_T_1 & out_backSel_12; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_51 = _out_rofireMux_T_50 & _out_T_11; // @[RegisterRouter.scala:87:24] assign out_roready_32 = _out_rofireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_roready_33 = _out_rofireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_roready_34 = _out_rofireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_roready_35 = _out_rofireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_roready_36 = _out_rofireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_roready_37 = _out_rofireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_roready_38 = _out_rofireMux_T_51; // @[RegisterRouter.scala:87:24] assign out_roready_39 = _out_rofireMux_T_51; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_52 = ~_out_T_11; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_54 = _out_rofireMux_T_1 & out_backSel_13; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_55 = _out_rofireMux_T_54 & _out_T_9; // @[RegisterRouter.scala:87:24] assign out_roready_24 = _out_rofireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_roready_25 = _out_rofireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_roready_26 = _out_rofireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_roready_27 = _out_rofireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_roready_28 = _out_rofireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_roready_29 = _out_rofireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_roready_30 = _out_rofireMux_T_55; // @[RegisterRouter.scala:87:24] assign out_roready_31 = _out_rofireMux_T_55; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_56 = ~_out_T_9; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_58 = _out_rofireMux_T_1 & out_backSel_14; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_59 = _out_rofireMux_T_58 & _out_T_19; // @[RegisterRouter.scala:87:24] assign out_roready_60 = _out_rofireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_roready_61 = _out_rofireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_roready_62 = _out_rofireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_roready_63 = _out_rofireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_roready_64 = _out_rofireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_roready_65 = _out_rofireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_roready_66 = _out_rofireMux_T_59; // @[RegisterRouter.scala:87:24] assign out_roready_67 = _out_rofireMux_T_59; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_60 = ~_out_T_19; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_62 = _out_rofireMux_T_1 & out_backSel_15; // @[RegisterRouter.scala:87:24] assign _out_rofireMux_T_63 = _out_rofireMux_T_62 & _out_T_17; // @[RegisterRouter.scala:87:24] assign out_roready_52 = _out_rofireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_roready_53 = _out_rofireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_roready_54 = _out_rofireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_roready_55 = _out_rofireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_roready_56 = _out_rofireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_roready_57 = _out_rofireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_roready_58 = _out_rofireMux_T_63; // @[RegisterRouter.scala:87:24] assign out_roready_59 = _out_rofireMux_T_63; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_64 = ~_out_T_17; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_1 = ~out_front_bits_read; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_2 = _out_wofireMux_T & _out_wofireMux_T_1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_3 = _out_wofireMux_T_2 & out_backSel_0; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_4 = _out_wofireMux_T_3 & _out_T_1; // @[RegisterRouter.scala:87:24] assign out_woready_0 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24] assign out_woready_1 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24] assign out_woready_2 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24] assign out_woready_3 = _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_5 = ~_out_T_1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_7 = _out_wofireMux_T_2 & out_backSel_1; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_8 = _out_wofireMux_T_7 & _out_T_5; // @[RegisterRouter.scala:87:24] assign out_woready_12 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24] assign out_woready_13 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24] assign out_woready_14 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24] assign out_woready_15 = _out_wofireMux_T_8; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_9 = ~_out_T_5; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_11 = _out_wofireMux_T_2 & out_backSel_2; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_12 = _out_wofireMux_T_11 & _out_T_13; // @[RegisterRouter.scala:87:24] assign out_woready_40 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24] assign out_woready_41 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24] assign out_woready_42 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24] assign out_woready_43 = _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_13 = ~_out_T_13; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_15 = _out_wofireMux_T_2 & out_backSel_3; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_16 = _out_wofireMux_T_15 & _out_T_25; // @[RegisterRouter.scala:87:24] assign out_woready_84 = _out_wofireMux_T_16; // @[RegisterRouter.scala:87:24] assign out_woready_85 = _out_wofireMux_T_16; // @[RegisterRouter.scala:87:24] assign out_woready_86 = _out_wofireMux_T_16; // @[RegisterRouter.scala:87:24] assign out_woready_87 = _out_wofireMux_T_16; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_17 = ~_out_T_25; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_19 = _out_wofireMux_T_2 & out_backSel_4; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_20 = _out_wofireMux_T_19; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_23 = _out_wofireMux_T_2 & out_backSel_5; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_24 = _out_wofireMux_T_23; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_27 = _out_wofireMux_T_2 & out_backSel_6; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_28 = _out_wofireMux_T_27; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_31 = _out_wofireMux_T_2 & out_backSel_7; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_32 = _out_wofireMux_T_31 & _out_T_7; // @[RegisterRouter.scala:87:24] assign out_woready_16 = _out_wofireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_woready_17 = _out_wofireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_woready_18 = _out_wofireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_woready_19 = _out_wofireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_woready_20 = _out_wofireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_woready_21 = _out_wofireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_woready_22 = _out_wofireMux_T_32; // @[RegisterRouter.scala:87:24] assign out_woready_23 = _out_wofireMux_T_32; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_33 = ~_out_T_7; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_35 = _out_wofireMux_T_2 & out_backSel_8; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_36 = _out_wofireMux_T_35 & _out_T_15; // @[RegisterRouter.scala:87:24] assign out_woready_44 = _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_woready_45 = _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_woready_46 = _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_woready_47 = _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_woready_48 = _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_woready_49 = _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_woready_50 = _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] assign out_woready_51 = _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_37 = ~_out_T_15; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_39 = _out_wofireMux_T_2 & out_backSel_9; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_40 = _out_wofireMux_T_39 & _out_T_3; // @[RegisterRouter.scala:87:24] assign out_woready_4 = _out_wofireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_woready_5 = _out_wofireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_woready_6 = _out_wofireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_woready_7 = _out_wofireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_woready_8 = _out_wofireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_woready_9 = _out_wofireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_woready_10 = _out_wofireMux_T_40; // @[RegisterRouter.scala:87:24] assign out_woready_11 = _out_wofireMux_T_40; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_41 = ~_out_T_3; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_43 = _out_wofireMux_T_2 & out_backSel_10; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_44 = _out_wofireMux_T_43 & _out_T_21; // @[RegisterRouter.scala:87:24] assign out_woready_68 = _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_woready_69 = _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_woready_70 = _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_woready_71 = _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_woready_72 = _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_woready_73 = _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_woready_74 = _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] assign out_woready_75 = _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_45 = ~_out_T_21; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_47 = _out_wofireMux_T_2 & out_backSel_11; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_48 = _out_wofireMux_T_47 & _out_T_23; // @[RegisterRouter.scala:87:24] assign out_woready_76 = _out_wofireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_woready_77 = _out_wofireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_woready_78 = _out_wofireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_woready_79 = _out_wofireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_woready_80 = _out_wofireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_woready_81 = _out_wofireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_woready_82 = _out_wofireMux_T_48; // @[RegisterRouter.scala:87:24] assign out_woready_83 = _out_wofireMux_T_48; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_49 = ~_out_T_23; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_51 = _out_wofireMux_T_2 & out_backSel_12; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_52 = _out_wofireMux_T_51 & _out_T_11; // @[RegisterRouter.scala:87:24] assign out_woready_32 = _out_wofireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_woready_33 = _out_wofireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_woready_34 = _out_wofireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_woready_35 = _out_wofireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_woready_36 = _out_wofireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_woready_37 = _out_wofireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_woready_38 = _out_wofireMux_T_52; // @[RegisterRouter.scala:87:24] assign out_woready_39 = _out_wofireMux_T_52; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_53 = ~_out_T_11; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_55 = _out_wofireMux_T_2 & out_backSel_13; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_56 = _out_wofireMux_T_55 & _out_T_9; // @[RegisterRouter.scala:87:24] assign out_woready_24 = _out_wofireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_woready_25 = _out_wofireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_woready_26 = _out_wofireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_woready_27 = _out_wofireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_woready_28 = _out_wofireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_woready_29 = _out_wofireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_woready_30 = _out_wofireMux_T_56; // @[RegisterRouter.scala:87:24] assign out_woready_31 = _out_wofireMux_T_56; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_57 = ~_out_T_9; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_59 = _out_wofireMux_T_2 & out_backSel_14; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_60 = _out_wofireMux_T_59 & _out_T_19; // @[RegisterRouter.scala:87:24] assign out_woready_60 = _out_wofireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_woready_61 = _out_wofireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_woready_62 = _out_wofireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_woready_63 = _out_wofireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_woready_64 = _out_wofireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_woready_65 = _out_wofireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_woready_66 = _out_wofireMux_T_60; // @[RegisterRouter.scala:87:24] assign out_woready_67 = _out_wofireMux_T_60; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_61 = ~_out_T_19; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_63 = _out_wofireMux_T_2 & out_backSel_15; // @[RegisterRouter.scala:87:24] assign _out_wofireMux_T_64 = _out_wofireMux_T_63 & _out_T_17; // @[RegisterRouter.scala:87:24] assign out_woready_52 = _out_wofireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_woready_53 = _out_wofireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_woready_54 = _out_wofireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_woready_55 = _out_wofireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_woready_56 = _out_wofireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_woready_57 = _out_wofireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_woready_58 = _out_wofireMux_T_64; // @[RegisterRouter.scala:87:24] assign out_woready_59 = _out_wofireMux_T_64; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_65 = ~_out_T_17; // @[RegisterRouter.scala:87:24] assign in_ready = _out_in_ready_T; // @[RegisterRouter.scala:73:18, :87:24] assign out_front_valid = _out_front_valid_T; // @[RegisterRouter.scala:87:24] assign out_front_ready = _out_front_ready_T; // @[RegisterRouter.scala:87:24] assign out_valid = _out_out_valid_T; // @[RegisterRouter.scala:87:24] wire [15:0] _GEN_4 = {{_out_out_bits_data_WIRE_15}, {_out_out_bits_data_WIRE_14}, {_out_out_bits_data_WIRE_13}, {_out_out_bits_data_WIRE_12}, {_out_out_bits_data_WIRE_11}, {_out_out_bits_data_WIRE_10}, {_out_out_bits_data_WIRE_9}, {_out_out_bits_data_WIRE_8}, {_out_out_bits_data_WIRE_7}, {1'h1}, {1'h1}, {1'h1}, {_out_out_bits_data_WIRE_3}, {_out_out_bits_data_WIRE_2}, {_out_out_bits_data_WIRE_1}, {_out_out_bits_data_WIRE_0}}; // @[MuxLiteral.scala:49:{10,48}] wire _out_out_bits_data_T_1 = _GEN_4[out_oindex]; // @[MuxLiteral.scala:49:10] wire [15:0][63:0] _GEN_5 = {{_out_out_bits_data_WIRE_1_15}, {_out_out_bits_data_WIRE_1_14}, {_out_out_bits_data_WIRE_1_13}, {_out_out_bits_data_WIRE_1_12}, {_out_out_bits_data_WIRE_1_11}, {_out_out_bits_data_WIRE_1_10}, {_out_out_bits_data_WIRE_1_9}, {_out_out_bits_data_WIRE_1_8}, {_out_out_bits_data_WIRE_1_7}, {64'h0}, {64'h0}, {64'h0}, {_out_out_bits_data_WIRE_1_3}, {_out_out_bits_data_WIRE_1_2}, {_out_out_bits_data_WIRE_1_1}, {_out_out_bits_data_WIRE_1_0}}; // @[MuxLiteral.scala:49:{10,48}] wire [63:0] _out_out_bits_data_T_3 = _GEN_5[out_oindex]; // @[MuxLiteral.scala:49:10] assign _out_out_bits_data_T_4 = _out_out_bits_data_T_1 ? _out_out_bits_data_T_3 : 64'h0; // @[MuxLiteral.scala:49:10] assign out_bits_data = _out_out_bits_data_T_4; // @[RegisterRouter.scala:87:24] assign nodeIn_d_bits_size = nodeIn_d_bits_d_size; // @[Edges.scala:792:17] assign nodeIn_d_bits_source = nodeIn_d_bits_d_source; // @[Edges.scala:792:17] assign nodeIn_d_bits_opcode = {2'h0, _nodeIn_d_bits_opcode_T}; // @[RegisterRouter.scala:105:{19,25}] always @(posedge clock) begin // @[CLINT.scala:65:9] if (reset) begin // @[CLINT.scala:65:9] time_0 <= 64'h0; // @[CLINT.scala:73:23] ipi_0 <= 1'h0; // @[CLINT.scala:78:41] ipi_1 <= 1'h0; // @[CLINT.scala:78:41] ipi_2 <= 1'h0; // @[CLINT.scala:78:41] ipi_3 <= 1'h0; // @[CLINT.scala:78:41] ipi_4 <= 1'h0; // @[CLINT.scala:78:41] ipi_5 <= 1'h0; // @[CLINT.scala:78:41] ipi_6 <= 1'h0; // @[CLINT.scala:78:41] ipi_7 <= 1'h0; // @[CLINT.scala:78:41] end else begin // @[CLINT.scala:65:9] if (valids_8_0 | valids_8_1 | valids_8_2 | valids_8_3 | valids_8_4 | valids_8_5 | valids_8_6 | valids_8_7) // @[RegField.scala:153:29, :154:27] time_0 <= _time_T_2; // @[RegField.scala:154:52] else if (io_rtcTick_0) // @[CLINT.scala:65:9] time_0 <= _time_T_1; // @[CLINT.scala:73:23, :74:38] if (out_f_woready) // @[RegisterRouter.scala:87:24] ipi_0 <= _out_T_26; // @[RegisterRouter.scala:87:24] if (out_f_woready_2) // @[RegisterRouter.scala:87:24] ipi_1 <= _out_T_46; // @[RegisterRouter.scala:87:24] if (out_f_woready_12) // @[RegisterRouter.scala:87:24] ipi_2 <= _out_T_154; // @[RegisterRouter.scala:87:24] if (out_f_woready_14) // @[RegisterRouter.scala:87:24] ipi_3 <= _out_T_174; // @[RegisterRouter.scala:87:24] if (out_f_woready_40) // @[RegisterRouter.scala:87:24] ipi_4 <= _out_T_458; // @[RegisterRouter.scala:87:24] if (out_f_woready_42) // @[RegisterRouter.scala:87:24] ipi_5 <= _out_T_478; // @[RegisterRouter.scala:87:24] if (out_f_woready_84) // @[RegisterRouter.scala:87:24] ipi_6 <= _out_T_938; // @[RegisterRouter.scala:87:24] if (out_f_woready_86) // @[RegisterRouter.scala:87:24] ipi_7 <= _out_T_958; // @[RegisterRouter.scala:87:24] end if (valids_0 | valids_1 | valids_2 | valids_3 | valids_4 | valids_5 | valids_6 | valids_7) // @[RegField.scala:153:29, :154:27] timecmp_0 <= _timecmp_0_T; // @[RegField.scala:154:52] if (valids_1_0 | valids_1_1 | valids_1_2 | valids_1_3 | valids_1_4 | valids_1_5 | valids_1_6 | valids_1_7) // @[RegField.scala:153:29, :154:27] timecmp_1 <= _timecmp_1_T; // @[RegField.scala:154:52] if (valids_2_0 | valids_2_1 | valids_2_2 | valids_2_3 | valids_2_4 | valids_2_5 | valids_2_6 | valids_2_7) // @[RegField.scala:153:29, :154:27] timecmp_2 <= _timecmp_2_T; // @[RegField.scala:154:52] if (valids_3_0 | valids_3_1 | valids_3_2 | valids_3_3 | valids_3_4 | valids_3_5 | valids_3_6 | valids_3_7) // @[RegField.scala:153:29, :154:27] timecmp_3 <= _timecmp_3_T; // @[RegField.scala:154:52] if (valids_4_0 | valids_4_1 | valids_4_2 | valids_4_3 | valids_4_4 | valids_4_5 | valids_4_6 | valids_4_7) // @[RegField.scala:153:29, :154:27] timecmp_4 <= _timecmp_4_T; // @[RegField.scala:154:52] if (valids_5_0 | valids_5_1 | valids_5_2 | valids_5_3 | valids_5_4 | valids_5_5 | valids_5_6 | valids_5_7) // @[RegField.scala:153:29, :154:27] timecmp_5 <= _timecmp_5_T; // @[RegField.scala:154:52] if (valids_6_0 | valids_6_1 | valids_6_2 | valids_6_3 | valids_6_4 | valids_6_5 | valids_6_6 | valids_6_7) // @[RegField.scala:153:29, :154:27] timecmp_6 <= _timecmp_6_T; // @[RegField.scala:154:52] if (valids_7_0 | valids_7_1 | valids_7_2 | valids_7_3 | valids_7_4 | valids_7_5 | valids_7_6 | valids_7_7) // @[RegField.scala:153:29, :154:27] timecmp_7 <= _timecmp_7_T; // @[RegField.scala:154:52] always @(posedge) TLMonitor_73 monitor ( // @[Nodes.scala:27:25] .clock (clock), .reset (reset), .io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17] .io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17] .io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17] .io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17] .io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17] .io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17] .io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17] .io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17] .io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17] .io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17] .io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17] .io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17] .io_in_d_bits_data (nodeIn_d_bits_data) // @[MixedNode.scala:551:17] ); // @[Nodes.scala:27:25] assign auto_int_out_7_0 = auto_int_out_7_0_0; // @[CLINT.scala:65:9] assign auto_int_out_7_1 = auto_int_out_7_1_0; // @[CLINT.scala:65:9] assign auto_int_out_6_0 = auto_int_out_6_0_0; // @[CLINT.scala:65:9] assign auto_int_out_6_1 = auto_int_out_6_1_0; // @[CLINT.scala:65:9] assign auto_int_out_5_0 = auto_int_out_5_0_0; // @[CLINT.scala:65:9] assign auto_int_out_5_1 = auto_int_out_5_1_0; // @[CLINT.scala:65:9] assign auto_int_out_4_0 = auto_int_out_4_0_0; // @[CLINT.scala:65:9] assign auto_int_out_4_1 = auto_int_out_4_1_0; // @[CLINT.scala:65:9] assign auto_int_out_3_0 = auto_int_out_3_0_0; // @[CLINT.scala:65:9] assign auto_int_out_3_1 = auto_int_out_3_1_0; // @[CLINT.scala:65:9] assign auto_int_out_2_0 = auto_int_out_2_0_0; // @[CLINT.scala:65:9] assign auto_int_out_2_1 = auto_int_out_2_1_0; // @[CLINT.scala:65:9] assign auto_int_out_1_0 = auto_int_out_1_0_0; // @[CLINT.scala:65:9] assign auto_int_out_1_1 = auto_int_out_1_1_0; // @[CLINT.scala:65:9] assign auto_int_out_0_0 = auto_int_out_0_0_0; // @[CLINT.scala:65:9] assign auto_int_out_0_1 = auto_int_out_0_1_0; // @[CLINT.scala:65:9] assign auto_in_a_ready = auto_in_a_ready_0; // @[CLINT.scala:65:9] assign auto_in_d_valid = auto_in_d_valid_0; // @[CLINT.scala:65:9] assign auto_in_d_bits_opcode = auto_in_d_bits_opcode_0; // @[CLINT.scala:65:9] assign auto_in_d_bits_size = auto_in_d_bits_size_0; // @[CLINT.scala:65:9] assign auto_in_d_bits_source = auto_in_d_bits_source_0; // @[CLINT.scala:65:9] assign auto_in_d_bits_data = auto_in_d_bits_data_0; // @[CLINT.scala:65:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Tile.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ import Util._ /** * A Tile is a purely combinational 2D array of passThrough PEs. * a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs * @param width The data width of each PE in bits * @param rows Number of PEs on each row * @param columns Number of PEs on each column */ class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module { val io = IO(new Bundle { val in_a = Input(Vec(rows, inputType)) val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it val in_d = Input(Vec(columns, outputType)) val in_control = Input(Vec(columns, new PEControl(accType))) val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val in_last = Input(Vec(columns, Bool())) val out_a = Output(Vec(rows, inputType)) val out_c = Output(Vec(columns, outputType)) val out_b = Output(Vec(columns, outputType)) val out_control = Output(Vec(columns, new PEControl(accType))) val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val out_last = Output(Vec(columns, Bool())) val in_valid = Input(Vec(columns, Bool())) val out_valid = Output(Vec(columns, Bool())) val bad_dataflow = Output(Bool()) }) import ev._ val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls))) val tileT = tile.transpose // TODO: abstract hori/vert broadcast, all these connections look the same // Broadcast 'a' horizontally across the Tile for (r <- 0 until rows) { tile(r).foldLeft(io.in_a(r)) { case (in_a, pe) => pe.io.in_a := in_a pe.io.out_a } } // Broadcast 'b' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_b(c)) { case (in_b, pe) => pe.io.in_b := (if (tree_reduction) in_b.zero else in_b) pe.io.out_b } } // Broadcast 'd' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_d(c)) { case (in_d, pe) => pe.io.in_d := in_d pe.io.out_c } } // Broadcast 'control' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_control(c)) { case (in_ctrl, pe) => pe.io.in_control := in_ctrl pe.io.out_control } } // Broadcast 'garbage' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_valid(c)) { case (v, pe) => pe.io.in_valid := v pe.io.out_valid } } // Broadcast 'id' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_id(c)) { case (id, pe) => pe.io.in_id := id pe.io.out_id } } // Broadcast 'last' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_last(c)) { case (last, pe) => pe.io.in_last := last pe.io.out_last } } // Drive the Tile's bottom IO for (c <- 0 until columns) { io.out_c(c) := tile(rows-1)(c).io.out_c io.out_control(c) := tile(rows-1)(c).io.out_control io.out_id(c) := tile(rows-1)(c).io.out_id io.out_last(c) := tile(rows-1)(c).io.out_last io.out_valid(c) := tile(rows-1)(c).io.out_valid io.out_b(c) := { if (tree_reduction) { val prods = tileT(c).map(_.io.out_b) accumulateTree(prods :+ io.in_b(c)) } else { tile(rows - 1)(c).io.out_b } } } io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_) // Drive the Tile's right IO for (r <- 0 until rows) { io.out_a(r) := tile(r)(columns-1).io.out_a } }
module Tile_222( // @[Tile.scala:16:7] input clock, // @[Tile.scala:16:7] input reset, // @[Tile.scala:16:7] input [7:0] io_in_a_0, // @[Tile.scala:17:14] input [19:0] io_in_b_0, // @[Tile.scala:17:14] input [19:0] io_in_d_0, // @[Tile.scala:17:14] input io_in_control_0_dataflow, // @[Tile.scala:17:14] input io_in_control_0_propagate, // @[Tile.scala:17:14] input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14] input [2:0] io_in_id_0, // @[Tile.scala:17:14] input io_in_last_0, // @[Tile.scala:17:14] output [7:0] io_out_a_0, // @[Tile.scala:17:14] output [19:0] io_out_c_0, // @[Tile.scala:17:14] output [19:0] io_out_b_0, // @[Tile.scala:17:14] output io_out_control_0_dataflow, // @[Tile.scala:17:14] output io_out_control_0_propagate, // @[Tile.scala:17:14] output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14] output [2:0] io_out_id_0, // @[Tile.scala:17:14] output io_out_last_0, // @[Tile.scala:17:14] input io_in_valid_0, // @[Tile.scala:17:14] output io_out_valid_0 // @[Tile.scala:17:14] ); wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7] wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7] wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7] wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7] wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7] wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7] wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7] wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7] wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7] wire io_bad_dataflow = 1'h0; // @[Tile.scala:16:7, :17:14, :42:44] wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7] wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7] wire io_out_control_0_propagate_0; // @[Tile.scala:16:7] wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7] wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7] wire io_out_last_0_0; // @[Tile.scala:16:7] wire io_out_valid_0_0; // @[Tile.scala:16:7] PE_478 tile_0_0 ( // @[Tile.scala:42:44] .clock (clock), .reset (reset), .io_in_a (io_in_a_0_0), // @[Tile.scala:16:7] .io_in_b (io_in_b_0_0), // @[Tile.scala:16:7] .io_in_d (io_in_d_0_0), // @[Tile.scala:16:7] .io_out_a (io_out_a_0_0), .io_out_b (io_out_b_0_0), .io_out_c (io_out_c_0_0), .io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7] .io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7] .io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7] .io_out_control_dataflow (io_out_control_0_dataflow_0), .io_out_control_propagate (io_out_control_0_propagate_0), .io_out_control_shift (io_out_control_0_shift_0), .io_in_id (io_in_id_0_0), // @[Tile.scala:16:7] .io_out_id (io_out_id_0_0), .io_in_last (io_in_last_0_0), // @[Tile.scala:16:7] .io_out_last (io_out_last_0_0), .io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7] .io_out_valid (io_out_valid_0_0) ); // @[Tile.scala:42:44] assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7] assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7] assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7] assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7] assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7] assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7] assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7] assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7] assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Tile.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ import Util._ /** * A Tile is a purely combinational 2D array of passThrough PEs. * a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs * @param width The data width of each PE in bits * @param rows Number of PEs on each row * @param columns Number of PEs on each column */ class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module { val io = IO(new Bundle { val in_a = Input(Vec(rows, inputType)) val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it val in_d = Input(Vec(columns, outputType)) val in_control = Input(Vec(columns, new PEControl(accType))) val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val in_last = Input(Vec(columns, Bool())) val out_a = Output(Vec(rows, inputType)) val out_c = Output(Vec(columns, outputType)) val out_b = Output(Vec(columns, outputType)) val out_control = Output(Vec(columns, new PEControl(accType))) val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val out_last = Output(Vec(columns, Bool())) val in_valid = Input(Vec(columns, Bool())) val out_valid = Output(Vec(columns, Bool())) val bad_dataflow = Output(Bool()) }) import ev._ val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls))) val tileT = tile.transpose // TODO: abstract hori/vert broadcast, all these connections look the same // Broadcast 'a' horizontally across the Tile for (r <- 0 until rows) { tile(r).foldLeft(io.in_a(r)) { case (in_a, pe) => pe.io.in_a := in_a pe.io.out_a } } // Broadcast 'b' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_b(c)) { case (in_b, pe) => pe.io.in_b := (if (tree_reduction) in_b.zero else in_b) pe.io.out_b } } // Broadcast 'd' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_d(c)) { case (in_d, pe) => pe.io.in_d := in_d pe.io.out_c } } // Broadcast 'control' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_control(c)) { case (in_ctrl, pe) => pe.io.in_control := in_ctrl pe.io.out_control } } // Broadcast 'garbage' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_valid(c)) { case (v, pe) => pe.io.in_valid := v pe.io.out_valid } } // Broadcast 'id' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_id(c)) { case (id, pe) => pe.io.in_id := id pe.io.out_id } } // Broadcast 'last' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_last(c)) { case (last, pe) => pe.io.in_last := last pe.io.out_last } } // Drive the Tile's bottom IO for (c <- 0 until columns) { io.out_c(c) := tile(rows-1)(c).io.out_c io.out_control(c) := tile(rows-1)(c).io.out_control io.out_id(c) := tile(rows-1)(c).io.out_id io.out_last(c) := tile(rows-1)(c).io.out_last io.out_valid(c) := tile(rows-1)(c).io.out_valid io.out_b(c) := { if (tree_reduction) { val prods = tileT(c).map(_.io.out_b) accumulateTree(prods :+ io.in_b(c)) } else { tile(rows - 1)(c).io.out_b } } } io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_) // Drive the Tile's right IO for (r <- 0 until rows) { io.out_a(r) := tile(r)(columns-1).io.out_a } }
module Tile_225( // @[Tile.scala:16:7] input clock, // @[Tile.scala:16:7] input reset, // @[Tile.scala:16:7] input [7:0] io_in_a_0, // @[Tile.scala:17:14] input [19:0] io_in_b_0, // @[Tile.scala:17:14] input [19:0] io_in_d_0, // @[Tile.scala:17:14] input io_in_control_0_dataflow, // @[Tile.scala:17:14] input io_in_control_0_propagate, // @[Tile.scala:17:14] input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14] input [2:0] io_in_id_0, // @[Tile.scala:17:14] input io_in_last_0, // @[Tile.scala:17:14] output [7:0] io_out_a_0, // @[Tile.scala:17:14] output [19:0] io_out_c_0, // @[Tile.scala:17:14] output [19:0] io_out_b_0, // @[Tile.scala:17:14] output io_out_control_0_dataflow, // @[Tile.scala:17:14] output io_out_control_0_propagate, // @[Tile.scala:17:14] output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14] output [2:0] io_out_id_0, // @[Tile.scala:17:14] output io_out_last_0, // @[Tile.scala:17:14] input io_in_valid_0, // @[Tile.scala:17:14] output io_out_valid_0, // @[Tile.scala:17:14] output io_bad_dataflow // @[Tile.scala:17:14] ); wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7] wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7] wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7] wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7] wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7] wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7] wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7] wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7] wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7] wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7] wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7] wire io_out_control_0_propagate_0; // @[Tile.scala:16:7] wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7] wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7] wire io_out_last_0_0; // @[Tile.scala:16:7] wire io_out_valid_0_0; // @[Tile.scala:16:7] wire io_bad_dataflow_0; // @[Tile.scala:16:7] PE_481 tile_0_0 ( // @[Tile.scala:42:44] .clock (clock), .reset (reset), .io_in_a (io_in_a_0_0), // @[Tile.scala:16:7] .io_in_b (io_in_b_0_0), // @[Tile.scala:16:7] .io_in_d (io_in_d_0_0), // @[Tile.scala:16:7] .io_out_a (io_out_a_0_0), .io_out_b (io_out_b_0_0), .io_out_c (io_out_c_0_0), .io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7] .io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7] .io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7] .io_out_control_dataflow (io_out_control_0_dataflow_0), .io_out_control_propagate (io_out_control_0_propagate_0), .io_out_control_shift (io_out_control_0_shift_0), .io_in_id (io_in_id_0_0), // @[Tile.scala:16:7] .io_out_id (io_out_id_0_0), .io_in_last (io_in_last_0_0), // @[Tile.scala:16:7] .io_out_last (io_out_last_0_0), .io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7] .io_out_valid (io_out_valid_0_0), .io_bad_dataflow (io_bad_dataflow_0) ); // @[Tile.scala:42:44] assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7] assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7] assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7] assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7] assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7] assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7] assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7] assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7] assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7] assign io_bad_dataflow = io_bad_dataflow_0; // @[Tile.scala:16:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module MacUnit_49( // @[PE.scala:14:7] input clock, // @[PE.scala:14:7] input reset, // @[PE.scala:14:7] input [7:0] io_in_a, // @[PE.scala:16:14] input [7:0] io_in_b, // @[PE.scala:16:14] input [19:0] io_in_c, // @[PE.scala:16:14] output [19:0] io_out_d // @[PE.scala:16:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7] wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7] wire [19:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_3; // @[Arithmetic.scala:93:54] wire [19:0] io_out_d_0; // @[PE.scala:14:7] wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7] wire [20:0] _io_out_d_T_1 = {{5{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[19], io_in_c_0}; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_2 = _io_out_d_T_1[19:0]; // @[Arithmetic.scala:93:54] assign _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54] assign io_out_d_0 = _io_out_d_T_3; // @[PE.scala:14:7] assign io_out_d = io_out_d_0; // @[PE.scala:14:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Arbiter.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ object TLArbiter { // (valids, select) => readys type Policy = (Integer, UInt, Bool) => UInt val lowestIndexFirst: Policy = (width, valids, select) => ~(leftOR(valids) << 1)(width-1, 0) val highestIndexFirst: Policy = (width, valids, select) => ~((rightOR(valids) >> 1).pad(width)) val roundRobin: Policy = (width, valids, select) => if (width == 1) 1.U(1.W) else { val valid = valids(width-1, 0) assert (valid === valids) val mask = RegInit(((BigInt(1) << width)-1).U(width-1,0)) val filter = Cat(valid & ~mask, valid) val unready = (rightOR(filter, width*2, width) >> 1) | (mask << width) val readys = ~((unready >> width) & unready(width-1, 0)) when (select && valid.orR) { mask := leftOR(readys & valid, width) } readys(width-1, 0) } def lowestFromSeq[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: Seq[DecoupledIO[T]]): Unit = { apply(lowestIndexFirst)(sink, sources.map(s => (edge.numBeats1(s.bits), s)):_*) } def lowest[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = { apply(lowestIndexFirst)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*) } def highest[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = { apply(highestIndexFirst)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*) } def robin[T <: TLChannel](edge: TLEdge, sink: DecoupledIO[T], sources: DecoupledIO[T]*): Unit = { apply(roundRobin)(sink, sources.toList.map(s => (edge.numBeats1(s.bits), s)):_*) } def apply[T <: Data](policy: Policy)(sink: DecoupledIO[T], sources: (UInt, DecoupledIO[T])*): Unit = { if (sources.isEmpty) { sink.bits := DontCare } else if (sources.size == 1) { sink :<>= sources.head._2 } else { val pairs = sources.toList val beatsIn = pairs.map(_._1) val sourcesIn = pairs.map(_._2) // The number of beats which remain to be sent val beatsLeft = RegInit(0.U) val idle = beatsLeft === 0.U val latch = idle && sink.ready // winner (if any) claims sink // Who wants access to the sink? val valids = sourcesIn.map(_.valid) // Arbitrate amongst the requests val readys = VecInit(policy(valids.size, Cat(valids.reverse), latch).asBools) // Which request wins arbitration? val winner = VecInit((readys zip valids) map { case (r,v) => r&&v }) // Confirm the policy works properly require (readys.size == valids.size) // Never two winners val prefixOR = winner.scanLeft(false.B)(_||_).init assert((prefixOR zip winner) map { case (p,w) => !p || !w } reduce {_ && _}) // If there was any request, there is a winner assert (!valids.reduce(_||_) || winner.reduce(_||_)) // Track remaining beats val maskedBeats = (winner zip beatsIn) map { case (w,b) => Mux(w, b, 0.U) } val initBeats = maskedBeats.reduce(_ | _) // no winner => 0 beats beatsLeft := Mux(latch, initBeats, beatsLeft - sink.fire) // The one-hot source granted access in the previous cycle val state = RegInit(VecInit(Seq.fill(sources.size)(false.B))) val muxState = Mux(idle, winner, state) state := muxState val allowed = Mux(idle, readys, state) (sourcesIn zip allowed) foreach { case (s, r) => s.ready := sink.ready && r } sink.valid := Mux(idle, valids.reduce(_||_), Mux1H(state, valids)) sink.bits :<= Mux1H(muxState, sourcesIn.map(_.bits)) } } } // Synthesizable unit tests import freechips.rocketchip.unittest._ abstract class DecoupledArbiterTest( policy: TLArbiter.Policy, txns: Int, timeout: Int, val numSources: Int, beatsLeftFromIdx: Int => UInt) (implicit p: Parameters) extends UnitTest(timeout) { val sources = Wire(Vec(numSources, DecoupledIO(UInt(log2Ceil(numSources).W)))) dontTouch(sources.suggestName("sources")) val sink = Wire(DecoupledIO(UInt(log2Ceil(numSources).W))) dontTouch(sink.suggestName("sink")) val count = RegInit(0.U(log2Ceil(txns).W)) val lfsr = LFSR(16, true.B) sources.zipWithIndex.map { case (z, i) => z.bits := i.U } TLArbiter(policy)(sink, sources.zipWithIndex.map { case (z, i) => (beatsLeftFromIdx(i), z) }:_*) count := count + 1.U io.finished := count >= txns.U } /** This tests that when a specific pattern of source valids are driven, * a new index from amongst that pattern is always selected, * unless one of those sources takes multiple beats, * in which case the same index should be selected until the arbiter goes idle. */ class TLDecoupledArbiterRobinTest(txns: Int = 128, timeout: Int = 500000, print: Boolean = false) (implicit p: Parameters) extends DecoupledArbiterTest(TLArbiter.roundRobin, txns, timeout, 6, i => i.U) { val lastWinner = RegInit((numSources+1).U) val beatsLeft = RegInit(0.U(log2Ceil(numSources).W)) val first = lastWinner > numSources.U val valid = lfsr(0) val ready = lfsr(15) sink.ready := ready sources.zipWithIndex.map { // pattern: every even-indexed valid is driven the same random way case (s, i) => s.valid := (if (i % 2 == 1) false.B else valid) } when (sink.fire) { if (print) { printf("TestRobin: %d\n", sink.bits) } when (beatsLeft === 0.U) { assert(lastWinner =/= sink.bits, "Round robin did not pick a new idx despite one being valid.") lastWinner := sink.bits beatsLeft := sink.bits } .otherwise { assert(lastWinner === sink.bits, "Round robin did not pick the same index over multiple beats") beatsLeft := beatsLeft - 1.U } } if (print) { when (!sink.fire) { printf("TestRobin: idle (%d %d)\n", valid, ready) } } } /** This tests that the lowest index is always selected across random single cycle transactions. */ class TLDecoupledArbiterLowestTest(txns: Int = 128, timeout: Int = 500000)(implicit p: Parameters) extends DecoupledArbiterTest(TLArbiter.lowestIndexFirst, txns, timeout, 15, _ => 0.U) { def assertLowest(id: Int): Unit = { when (sources(id).valid) { assert((numSources-1 until id by -1).map(!sources(_).fire).foldLeft(true.B)(_&&_), s"$id was valid but a higher valid source was granted ready.") } } sources.zipWithIndex.map { case (s, i) => s.valid := lfsr(i) } sink.ready := lfsr(15) when (sink.fire) { (0 until numSources).foreach(assertLowest(_)) } } /** This tests that the highest index is always selected across random single cycle transactions. */ class TLDecoupledArbiterHighestTest(txns: Int = 128, timeout: Int = 500000)(implicit p: Parameters) extends DecoupledArbiterTest(TLArbiter.highestIndexFirst, txns, timeout, 15, _ => 0.U) { def assertHighest(id: Int): Unit = { when (sources(id).valid) { assert((0 until id).map(!sources(_).fire).foldLeft(true.B)(_&&_), s"$id was valid but a lower valid source was granted ready.") } } sources.zipWithIndex.map { case (s, i) => s.valid := lfsr(i) } sink.ready := lfsr(15) when (sink.fire) { (0 until numSources).foreach(assertHighest(_)) } } File Xbar.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.{AddressDecoder, AddressSet, RegionType, IdRange, TriStateValue} import freechips.rocketchip.util.BundleField // Trades off slave port proximity against routing resource cost object ForceFanout { def apply[T]( a: TriStateValue = TriStateValue.unset, b: TriStateValue = TriStateValue.unset, c: TriStateValue = TriStateValue.unset, d: TriStateValue = TriStateValue.unset, e: TriStateValue = TriStateValue.unset)(body: Parameters => T)(implicit p: Parameters) = { body(p.alterPartial { case ForceFanoutKey => p(ForceFanoutKey) match { case ForceFanoutParams(pa, pb, pc, pd, pe) => ForceFanoutParams(a.update(pa), b.update(pb), c.update(pc), d.update(pd), e.update(pe)) } }) } } private case class ForceFanoutParams(a: Boolean, b: Boolean, c: Boolean, d: Boolean, e: Boolean) private case object ForceFanoutKey extends Field(ForceFanoutParams(false, false, false, false, false)) class TLXbar(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule { val node = new TLNexusNode( clientFn = { seq => seq(0).v1copy( echoFields = BundleField.union(seq.flatMap(_.echoFields)), requestFields = BundleField.union(seq.flatMap(_.requestFields)), responseKeys = seq.flatMap(_.responseKeys).distinct, minLatency = seq.map(_.minLatency).min, clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) => port.clients map { client => client.v1copy( sourceId = client.sourceId.shift(range.start) )} } ) }, managerFn = { seq => val fifoIdFactory = TLXbar.relabeler() seq(0).v1copy( responseFields = BundleField.union(seq.flatMap(_.responseFields)), requestKeys = seq.flatMap(_.requestKeys).distinct, minLatency = seq.map(_.minLatency).min, endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max, managers = seq.flatMap { port => require (port.beatBytes == seq(0).beatBytes, s"Xbar ($name with parent $parent) data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B") val fifoIdMapper = fifoIdFactory() port.managers map { manager => manager.v1copy( fifoId = manager.fifoId.map(fifoIdMapper(_)) )} } ) } ){ override def circuitIdentity = outputs.size == 1 && inputs.size == 1 } lazy val module = new Impl class Impl extends LazyModuleImp(this) { if ((node.in.size * node.out.size) > (8*32)) { println (s"!!! WARNING !!!") println (s" Your TLXbar ($name with parent $parent) is very large, with ${node.in.size} Masters and ${node.out.size} Slaves.") println (s"!!! WARNING !!!") } val wide_bundle = TLBundleParameters.union((node.in ++ node.out).map(_._2.bundle)) override def desiredName = (Seq("TLXbar") ++ nameSuffix ++ Seq(s"i${node.in.size}_o${node.out.size}_${wide_bundle.shortName}")).mkString("_") TLXbar.circuit(policy, node.in, node.out) } } object TLXbar { def mapInputIds(ports: Seq[TLMasterPortParameters]) = assignRanges(ports.map(_.endSourceId)) def mapOutputIds(ports: Seq[TLSlavePortParameters]) = assignRanges(ports.map(_.endSinkId)) def assignRanges(sizes: Seq[Int]) = { val pow2Sizes = sizes.map { z => if (z == 0) 0 else 1 << log2Ceil(z) } val tuples = pow2Sizes.zipWithIndex.sortBy(_._1) // record old index, then sort by increasing size val starts = tuples.scanRight(0)(_._1 + _).tail // suffix-sum of the sizes = the start positions val ranges = (tuples zip starts) map { case ((sz, i), st) => (if (sz == 0) IdRange(0, 0) else IdRange(st, st + sz), i) } ranges.sortBy(_._2).map(_._1) // Restore orignal order } def relabeler() = { var idFactory = 0 () => { val fifoMap = scala.collection.mutable.HashMap.empty[Int, Int] (x: Int) => { if (fifoMap.contains(x)) fifoMap(x) else { val out = idFactory idFactory = idFactory + 1 fifoMap += (x -> out) out } } } } def circuit(policy: TLArbiter.Policy, seqIn: Seq[(TLBundle, TLEdge)], seqOut: Seq[(TLBundle, TLEdge)]) { val (io_in, edgesIn) = seqIn.unzip val (io_out, edgesOut) = seqOut.unzip // Not every master need connect to every slave on every channel; determine which connections are necessary val reachableIO = edgesIn.map { cp => edgesOut.map { mp => cp.client.clients.exists { c => mp.manager.managers.exists { m => c.visibility.exists { ca => m.address.exists { ma => ca.overlaps(ma)}}}} }.toVector}.toVector val probeIO = (edgesIn zip reachableIO).map { case (cp, reachableO) => (edgesOut zip reachableO).map { case (mp, reachable) => reachable && cp.client.anySupportProbe && mp.manager.managers.exists(_.regionType >= RegionType.TRACKED) }.toVector}.toVector val releaseIO = (edgesIn zip reachableIO).map { case (cp, reachableO) => (edgesOut zip reachableO).map { case (mp, reachable) => reachable && cp.client.anySupportProbe && mp.manager.anySupportAcquireB }.toVector}.toVector val connectAIO = reachableIO val connectBIO = probeIO val connectCIO = releaseIO val connectDIO = reachableIO val connectEIO = releaseIO def transpose[T](x: Seq[Seq[T]]) = if (x.isEmpty) Nil else Vector.tabulate(x(0).size) { i => Vector.tabulate(x.size) { j => x(j)(i) } } val connectAOI = transpose(connectAIO) val connectBOI = transpose(connectBIO) val connectCOI = transpose(connectCIO) val connectDOI = transpose(connectDIO) val connectEOI = transpose(connectEIO) // Grab the port ID mapping val inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client)) val outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager)) // We need an intermediate size of bundle with the widest possible identifiers val wide_bundle = TLBundleParameters.union(io_in.map(_.params) ++ io_out.map(_.params)) // Handle size = 1 gracefully (Chisel3 empty range is broken) def trim(id: UInt, size: Int): UInt = if (size <= 1) 0.U else id(log2Ceil(size)-1, 0) // Transform input bundle sources (sinks use global namespace on both sides) val in = Wire(Vec(io_in.size, TLBundle(wide_bundle))) for (i <- 0 until in.size) { val r = inputIdRanges(i) if (connectAIO(i).exists(x=>x)) { in(i).a.bits.user := DontCare in(i).a.squeezeAll.waiveAll :<>= io_in(i).a.squeezeAll.waiveAll in(i).a.bits.source := io_in(i).a.bits.source | r.start.U } else { in(i).a := DontCare io_in(i).a := DontCare in(i).a.valid := false.B io_in(i).a.ready := true.B } if (connectBIO(i).exists(x=>x)) { io_in(i).b.squeezeAll :<>= in(i).b.squeezeAll io_in(i).b.bits.source := trim(in(i).b.bits.source, r.size) } else { in(i).b := DontCare io_in(i).b := DontCare in(i).b.ready := true.B io_in(i).b.valid := false.B } if (connectCIO(i).exists(x=>x)) { in(i).c.bits.user := DontCare in(i).c.squeezeAll.waiveAll :<>= io_in(i).c.squeezeAll.waiveAll in(i).c.bits.source := io_in(i).c.bits.source | r.start.U } else { in(i).c := DontCare io_in(i).c := DontCare in(i).c.valid := false.B io_in(i).c.ready := true.B } if (connectDIO(i).exists(x=>x)) { io_in(i).d.squeezeAll.waiveAll :<>= in(i).d.squeezeAll.waiveAll io_in(i).d.bits.source := trim(in(i).d.bits.source, r.size) } else { in(i).d := DontCare io_in(i).d := DontCare in(i).d.ready := true.B io_in(i).d.valid := false.B } if (connectEIO(i).exists(x=>x)) { in(i).e.squeezeAll :<>= io_in(i).e.squeezeAll } else { in(i).e := DontCare io_in(i).e := DontCare in(i).e.valid := false.B io_in(i).e.ready := true.B } } // Transform output bundle sinks (sources use global namespace on both sides) val out = Wire(Vec(io_out.size, TLBundle(wide_bundle))) for (o <- 0 until out.size) { val r = outputIdRanges(o) if (connectAOI(o).exists(x=>x)) { out(o).a.bits.user := DontCare io_out(o).a.squeezeAll.waiveAll :<>= out(o).a.squeezeAll.waiveAll } else { out(o).a := DontCare io_out(o).a := DontCare out(o).a.ready := true.B io_out(o).a.valid := false.B } if (connectBOI(o).exists(x=>x)) { out(o).b.squeezeAll :<>= io_out(o).b.squeezeAll } else { out(o).b := DontCare io_out(o).b := DontCare out(o).b.valid := false.B io_out(o).b.ready := true.B } if (connectCOI(o).exists(x=>x)) { out(o).c.bits.user := DontCare io_out(o).c.squeezeAll.waiveAll :<>= out(o).c.squeezeAll.waiveAll } else { out(o).c := DontCare io_out(o).c := DontCare out(o).c.ready := true.B io_out(o).c.valid := false.B } if (connectDOI(o).exists(x=>x)) { out(o).d.squeezeAll :<>= io_out(o).d.squeezeAll out(o).d.bits.sink := io_out(o).d.bits.sink | r.start.U } else { out(o).d := DontCare io_out(o).d := DontCare out(o).d.valid := false.B io_out(o).d.ready := true.B } if (connectEOI(o).exists(x=>x)) { io_out(o).e.squeezeAll :<>= out(o).e.squeezeAll io_out(o).e.bits.sink := trim(out(o).e.bits.sink, r.size) } else { out(o).e := DontCare io_out(o).e := DontCare out(o).e.ready := true.B io_out(o).e.valid := false.B } } // Filter a list to only those elements selected def filter[T](data: Seq[T], mask: Seq[Boolean]) = (data zip mask).filter(_._2).map(_._1) // Based on input=>output connectivity, create per-input minimal address decode circuits val requiredAC = (connectAIO ++ connectCIO).distinct val outputPortFns: Map[Vector[Boolean], Seq[UInt => Bool]] = requiredAC.map { connectO => val port_addrs = edgesOut.map(_.manager.managers.flatMap(_.address)) val routingMask = AddressDecoder(filter(port_addrs, connectO)) val route_addrs = port_addrs.map(seq => AddressSet.unify(seq.map(_.widen(~routingMask)).distinct)) // Print the address mapping if (false) { println("Xbar mapping:") route_addrs.foreach { p => print(" ") p.foreach { a => print(s" ${a}") } println("") } println("--") } (connectO, route_addrs.map(seq => (addr: UInt) => seq.map(_.contains(addr)).reduce(_ || _))) }.toMap // Print the ID mapping if (false) { println(s"XBar mapping:") (edgesIn zip inputIdRanges).zipWithIndex.foreach { case ((edge, id), i) => println(s"\t$i assigned ${id} for ${edge.client.clients.map(_.name).mkString(", ")}") } println("") } val addressA = (in zip edgesIn) map { case (i, e) => e.address(i.a.bits) } val addressC = (in zip edgesIn) map { case (i, e) => e.address(i.c.bits) } def unique(x: Vector[Boolean]): Bool = (x.filter(x=>x).size <= 1).B val requestAIO = (connectAIO zip addressA) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } } val requestCIO = (connectCIO zip addressC) map { case (c, i) => outputPortFns(c).map { o => unique(c) || o(i) } } val requestBOI = out.map { o => inputIdRanges.map { i => i.contains(o.b.bits.source) } } val requestDOI = out.map { o => inputIdRanges.map { i => i.contains(o.d.bits.source) } } val requestEIO = in.map { i => outputIdRanges.map { o => o.contains(i.e.bits.sink) } } val beatsAI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.a.bits) } val beatsBO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.b.bits) } val beatsCI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.c.bits) } val beatsDO = (out zip edgesOut) map { case (o, e) => e.numBeats1(o.d.bits) } val beatsEI = (in zip edgesIn) map { case (i, e) => e.numBeats1(i.e.bits) } // Fanout the input sources to the output sinks val portsAOI = transpose((in zip requestAIO) map { case (i, r) => TLXbar.fanout(i.a, r, edgesOut.map(_.params(ForceFanoutKey).a)) }) val portsBIO = transpose((out zip requestBOI) map { case (o, r) => TLXbar.fanout(o.b, r, edgesIn .map(_.params(ForceFanoutKey).b)) }) val portsCOI = transpose((in zip requestCIO) map { case (i, r) => TLXbar.fanout(i.c, r, edgesOut.map(_.params(ForceFanoutKey).c)) }) val portsDIO = transpose((out zip requestDOI) map { case (o, r) => TLXbar.fanout(o.d, r, edgesIn .map(_.params(ForceFanoutKey).d)) }) val portsEOI = transpose((in zip requestEIO) map { case (i, r) => TLXbar.fanout(i.e, r, edgesOut.map(_.params(ForceFanoutKey).e)) }) // Arbitrate amongst the sources for (o <- 0 until out.size) { TLArbiter(policy)(out(o).a, filter(beatsAI zip portsAOI(o), connectAOI(o)):_*) TLArbiter(policy)(out(o).c, filter(beatsCI zip portsCOI(o), connectCOI(o)):_*) TLArbiter(policy)(out(o).e, filter(beatsEI zip portsEOI(o), connectEOI(o)):_*) filter(portsAOI(o), connectAOI(o).map(!_)) foreach { r => r.ready := false.B } filter(portsCOI(o), connectCOI(o).map(!_)) foreach { r => r.ready := false.B } filter(portsEOI(o), connectEOI(o).map(!_)) foreach { r => r.ready := false.B } } for (i <- 0 until in.size) { TLArbiter(policy)(in(i).b, filter(beatsBO zip portsBIO(i), connectBIO(i)):_*) TLArbiter(policy)(in(i).d, filter(beatsDO zip portsDIO(i), connectDIO(i)):_*) filter(portsBIO(i), connectBIO(i).map(!_)) foreach { r => r.ready := false.B } filter(portsDIO(i), connectDIO(i).map(!_)) foreach { r => r.ready := false.B } } } def apply(policy: TLArbiter.Policy = TLArbiter.roundRobin, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode = { val xbar = LazyModule(new TLXbar(policy, nameSuffix)) xbar.node } // Replicate an input port to each output port def fanout[T <: TLChannel](input: DecoupledIO[T], select: Seq[Bool], force: Seq[Boolean] = Nil): Seq[DecoupledIO[T]] = { val filtered = Wire(Vec(select.size, chiselTypeOf(input))) for (i <- 0 until select.size) { filtered(i).bits := (if (force.lift(i).getOrElse(false)) IdentityModule(input.bits) else input.bits) filtered(i).valid := input.valid && (select(i) || (select.size == 1).B) } input.ready := Mux1H(select, filtered.map(_.ready)) filtered } } // Synthesizable unit tests import freechips.rocketchip.unittest._ class TLRAMXbar(nManagers: Int, txns: Int)(implicit p: Parameters) extends LazyModule { val fuzz = LazyModule(new TLFuzzer(txns)) val model = LazyModule(new TLRAMModel("Xbar")) val xbar = LazyModule(new TLXbar) xbar.node := TLDelayer(0.1) := model.node := fuzz.node (0 until nManagers) foreach { n => val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff))) ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node } lazy val module = new Impl class Impl extends LazyModuleImp(this) with UnitTestModule { io.finished := fuzz.module.io.finished } } class TLRAMXbarTest(nManagers: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { val dut = Module(LazyModule(new TLRAMXbar(nManagers,txns)).module) dut.io.start := io.start io.finished := dut.io.finished } class TLMulticlientXbar(nManagers: Int, nClients: Int, txns: Int)(implicit p: Parameters) extends LazyModule { val xbar = LazyModule(new TLXbar) val fuzzers = (0 until nClients) map { n => val fuzz = LazyModule(new TLFuzzer(txns)) xbar.node := TLDelayer(0.1) := fuzz.node fuzz } (0 until nManagers) foreach { n => val ram = LazyModule(new TLRAM(AddressSet(0x0+0x400*n, 0x3ff))) ram.node := TLFragmenter(4, 256) := TLDelayer(0.1) := xbar.node } lazy val module = new Impl class Impl extends LazyModuleImp(this) with UnitTestModule { io.finished := fuzzers.last.module.io.finished } } class TLMulticlientXbarTest(nManagers: Int, nClients: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { val dut = Module(LazyModule(new TLMulticlientXbar(nManagers, nClients, txns)).module) dut.io.start := io.start io.finished := dut.io.finished }
module TLXbar_fbus_i2_o1_a32d64s5k3z4u( // @[Xbar.scala:74:9] input clock, // @[Xbar.scala:74:9] input reset, // @[Xbar.scala:74:9] output auto_anon_in_1_a_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_in_1_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_1_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_1_a_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_anon_in_1_a_bits_size, // @[LazyModuleImp.scala:107:25] input [3:0] auto_anon_in_1_a_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_anon_in_1_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_anon_in_1_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_anon_in_1_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_in_1_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_anon_in_1_d_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_in_1_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_in_1_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_anon_in_1_d_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_anon_in_1_d_bits_size, // @[LazyModuleImp.scala:107:25] output [3:0] auto_anon_in_1_d_bits_source, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_in_1_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_anon_in_1_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_anon_in_1_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_in_1_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_anon_in_0_a_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_in_0_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_0_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [3:0] auto_anon_in_0_a_bits_size, // @[LazyModuleImp.scala:107:25] input [31:0] auto_anon_in_0_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_anon_in_0_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_anon_in_0_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_in_0_d_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_in_0_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_in_0_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_anon_in_0_d_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_anon_in_0_d_bits_size, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_in_0_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_anon_in_0_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_anon_in_0_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_in_0_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_anon_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [4:0] auto_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_anon_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_anon_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [4:0] auto_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [63:0] auto_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25] ); wire requestDOI_0_0 = auto_anon_out_d_bits_source == 5'h10; // @[Parameters.scala:46:9] wire portsDIO_filtered_0_valid = auto_anon_out_d_valid & requestDOI_0_0; // @[Xbar.scala:355:40] wire portsDIO_filtered_1_valid = auto_anon_out_d_valid & ~(auto_anon_out_d_bits_source[4]); // @[Xbar.scala:355:40] reg [8:0] beatsLeft; // @[Arbiter.scala:60:30] wire idle = beatsLeft == 9'h0; // @[Arbiter.scala:60:30, :61:28] wire [1:0] readys_valid = {auto_anon_in_1_a_valid, auto_anon_in_0_a_valid}; // @[Arbiter.scala:68:51] reg [1:0] readys_mask; // @[Arbiter.scala:23:23] wire [1:0] _readys_filter_T_1 = readys_valid & ~readys_mask; // @[Arbiter.scala:23:23, :24:{28,30}, :68:51] wire [1:0] readys_readys = ~({readys_mask[1], _readys_filter_T_1[1] | readys_mask[0]} & ({_readys_filter_T_1[0], auto_anon_in_1_a_valid} | _readys_filter_T_1)); // @[package.scala:262:43] wire winner_0 = readys_readys[0] & auto_anon_in_0_a_valid; // @[Arbiter.scala:26:18, :68:76, :71:69] wire winner_1 = readys_readys[1] & auto_anon_in_1_a_valid; // @[Arbiter.scala:26:18, :68:76, :71:69] wire _out_0_a_valid_T = auto_anon_in_0_a_valid | auto_anon_in_1_a_valid; // @[Arbiter.scala:79:31]
Generate the Verilog code corresponding to the following Chisel files. File OutputUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import constellation.channel._ import constellation.routing.{FlowRoutingBundle} import constellation.noc.{HasNoCParams} class OutputCreditAlloc extends Bundle { val alloc = Bool() val tail = Bool() } class OutputChannelStatus(implicit val p: Parameters) extends Bundle with HasNoCParams { val occupied = Bool() def available = !occupied val flow = new FlowRoutingBundle } class OutputChannelAlloc(implicit val p: Parameters) extends Bundle with HasNoCParams { val alloc = Bool() val flow = new FlowRoutingBundle } class AbstractOutputUnitIO( val inParams: Seq[ChannelParams], val ingressParams: Seq[IngressChannelParams], val cParam: BaseChannelParams )(implicit val p: Parameters) extends Bundle with HasRouterInputParams { val nodeId = cParam.srcId val nVirtualChannels = cParam.nVirtualChannels val in = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits)))) val credit_available = Output(Vec(nVirtualChannels, Bool())) val channel_status = Output(Vec(nVirtualChannels, new OutputChannelStatus)) val allocs = Input(Vec(nVirtualChannels, new OutputChannelAlloc)) val credit_alloc = Input(Vec(nVirtualChannels, new OutputCreditAlloc)) } abstract class AbstractOutputUnit( val inParams: Seq[ChannelParams], val ingressParams: Seq[IngressChannelParams], val cParam: BaseChannelParams )(implicit val p: Parameters) extends Module with HasRouterInputParams with HasNoCParams { val nodeId = cParam.srcId def io: AbstractOutputUnitIO } class OutputUnit(inParams: Seq[ChannelParams], ingressParams: Seq[IngressChannelParams], cParam: ChannelParams) (implicit p: Parameters) extends AbstractOutputUnit(inParams, ingressParams, cParam)(p) { class OutputUnitIO extends AbstractOutputUnitIO(inParams, ingressParams, cParam) { val out = new Channel(cParam.asInstanceOf[ChannelParams]) } val io = IO(new OutputUnitIO) class OutputState(val bufferSize: Int) extends Bundle { val occupied = Bool() val c = UInt(log2Up(1+bufferSize).W) val flow = new FlowRoutingBundle } val states = Reg(MixedVec(cParam.virtualChannelParams.map { u => new OutputState(u.bufferSize) })) (states zip io.channel_status).map { case (s,a) => a.occupied := s.occupied a.flow := s.flow } io.out.flit := io.in states.zipWithIndex.map { case (s,i) => if (cParam.virtualChannelParams(i).traversable) { when (io.out.vc_free(i)) { assert(s.occupied) s.occupied := false.B } } } (states zip io.allocs).zipWithIndex.map { case ((s,a),i) => if (cParam.virtualChannelParams(i).traversable) { when (a.alloc) { s.occupied := true.B s.flow := a.flow } } } (io.credit_available zip states).zipWithIndex.map { case ((c,s),i) => c := s.c =/= 0.U //|| (io.out.credit_return.valid && io.out.credit_return.bits === i.U) } states.zipWithIndex.map { case (s,i) => val free = io.out.credit_return(i) val alloc = io.credit_alloc(i).alloc if (cParam.virtualChannelParams(i).traversable) { s.c := s.c +& free - alloc } } when (reset.asBool) { states.foreach(_.occupied := false.B) states.foreach(s => s.c := s.bufferSize.U) } }
module OutputUnit_62( // @[OutputUnit.scala:52:7] input clock, // @[OutputUnit.scala:52:7] input reset, // @[OutputUnit.scala:52:7] input io_in_0_valid, // @[OutputUnit.scala:58:14] input io_in_0_bits_head, // @[OutputUnit.scala:58:14] input io_in_0_bits_tail, // @[OutputUnit.scala:58:14] input [72:0] io_in_0_bits_payload, // @[OutputUnit.scala:58:14] input [2:0] io_in_0_bits_flow_vnet_id, // @[OutputUnit.scala:58:14] input [4:0] io_in_0_bits_flow_ingress_node, // @[OutputUnit.scala:58:14] input [1:0] io_in_0_bits_flow_ingress_node_id, // @[OutputUnit.scala:58:14] input [4:0] io_in_0_bits_flow_egress_node, // @[OutputUnit.scala:58:14] input [1:0] io_in_0_bits_flow_egress_node_id, // @[OutputUnit.scala:58:14] input [2:0] io_in_0_bits_virt_channel_id, // @[OutputUnit.scala:58:14] output io_credit_available_2, // @[OutputUnit.scala:58:14] output io_credit_available_3, // @[OutputUnit.scala:58:14] output io_credit_available_4, // @[OutputUnit.scala:58:14] output io_credit_available_5, // @[OutputUnit.scala:58:14] output io_credit_available_6, // @[OutputUnit.scala:58:14] output io_credit_available_7, // @[OutputUnit.scala:58:14] output io_channel_status_2_occupied, // @[OutputUnit.scala:58:14] output io_channel_status_3_occupied, // @[OutputUnit.scala:58:14] output io_channel_status_4_occupied, // @[OutputUnit.scala:58:14] output io_channel_status_5_occupied, // @[OutputUnit.scala:58:14] output io_channel_status_6_occupied, // @[OutputUnit.scala:58:14] output io_channel_status_7_occupied, // @[OutputUnit.scala:58:14] input io_allocs_2_alloc, // @[OutputUnit.scala:58:14] input io_allocs_3_alloc, // @[OutputUnit.scala:58:14] input io_allocs_4_alloc, // @[OutputUnit.scala:58:14] input io_allocs_5_alloc, // @[OutputUnit.scala:58:14] input io_allocs_6_alloc, // @[OutputUnit.scala:58:14] input io_allocs_7_alloc, // @[OutputUnit.scala:58:14] input io_credit_alloc_2_alloc, // @[OutputUnit.scala:58:14] input io_credit_alloc_3_alloc, // @[OutputUnit.scala:58:14] input io_credit_alloc_4_alloc, // @[OutputUnit.scala:58:14] input io_credit_alloc_5_alloc, // @[OutputUnit.scala:58:14] input io_credit_alloc_6_alloc, // @[OutputUnit.scala:58:14] input io_credit_alloc_7_alloc, // @[OutputUnit.scala:58:14] output io_out_flit_0_valid, // @[OutputUnit.scala:58:14] output io_out_flit_0_bits_head, // @[OutputUnit.scala:58:14] output io_out_flit_0_bits_tail, // @[OutputUnit.scala:58:14] output [72:0] io_out_flit_0_bits_payload, // @[OutputUnit.scala:58:14] output [2:0] io_out_flit_0_bits_flow_vnet_id, // @[OutputUnit.scala:58:14] output [4:0] io_out_flit_0_bits_flow_ingress_node, // @[OutputUnit.scala:58:14] output [1:0] io_out_flit_0_bits_flow_ingress_node_id, // @[OutputUnit.scala:58:14] output [4:0] io_out_flit_0_bits_flow_egress_node, // @[OutputUnit.scala:58:14] output [1:0] io_out_flit_0_bits_flow_egress_node_id, // @[OutputUnit.scala:58:14] output [2:0] io_out_flit_0_bits_virt_channel_id, // @[OutputUnit.scala:58:14] input [7:0] io_out_credit_return, // @[OutputUnit.scala:58:14] input [7:0] io_out_vc_free // @[OutputUnit.scala:58:14] ); reg states_7_occupied; // @[OutputUnit.scala:66:19] reg [2:0] states_7_c; // @[OutputUnit.scala:66:19] reg states_6_occupied; // @[OutputUnit.scala:66:19] reg [2:0] states_6_c; // @[OutputUnit.scala:66:19] reg states_5_occupied; // @[OutputUnit.scala:66:19] reg [2:0] states_5_c; // @[OutputUnit.scala:66:19] reg states_4_occupied; // @[OutputUnit.scala:66:19] reg [2:0] states_4_c; // @[OutputUnit.scala:66:19] reg states_3_occupied; // @[OutputUnit.scala:66:19] reg [2:0] states_3_c; // @[OutputUnit.scala:66:19] reg states_2_occupied; // @[OutputUnit.scala:66:19] reg [2:0] states_2_c; // @[OutputUnit.scala:66:19]
Generate the Verilog code corresponding to the following Chisel files. File RouteComputer.scala: package constellation.router import chisel3._ import chisel3.util._ import chisel3.util.experimental.decode.{TruthTable, decoder} import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import freechips.rocketchip.rocket.DecodeLogic import constellation.channel._ import constellation.routing.{FlowRoutingBundle, FlowRoutingInfo} import constellation.noc.{HasNoCParams} class RouteComputerReq(implicit val p: Parameters) extends Bundle with HasNoCParams { val src_virt_id = UInt(virtualChannelBits.W) val flow = new FlowRoutingBundle } class RouteComputerResp( val outParams: Seq[ChannelParams], val egressParams: Seq[EgressChannelParams])(implicit val p: Parameters) extends Bundle with HasRouterOutputParams { val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }) } class RouteComputer( val routerParams: RouterParams, val inParams: Seq[ChannelParams], val outParams: Seq[ChannelParams], val ingressParams: Seq[IngressChannelParams], val egressParams: Seq[EgressChannelParams] )(implicit val p: Parameters) extends Module with HasRouterParams with HasRouterInputParams with HasRouterOutputParams with HasNoCParams { val io = IO(new Bundle { val req = MixedVec(allInParams.map { u => Flipped(Decoupled(new RouteComputerReq)) }) val resp = MixedVec(allInParams.map { u => Output(new RouteComputerResp(outParams, egressParams)) }) }) (io.req zip io.resp).zipWithIndex.map { case ((req, resp), i) => req.ready := true.B if (outParams.size == 0) { assert(!req.valid) resp.vc_sel := DontCare } else { def toUInt(t: (Int, FlowRoutingInfo)): UInt = { val l2 = (BigInt(t._1) << req.bits.flow.vnet_id .getWidth) | t._2.vNetId val l3 = ( l2 << req.bits.flow.ingress_node .getWidth) | t._2.ingressNode val l4 = ( l3 << req.bits.flow.ingress_node_id.getWidth) | t._2.ingressNodeId val l5 = ( l4 << req.bits.flow.egress_node .getWidth) | t._2.egressNode val l6 = ( l5 << req.bits.flow.egress_node_id .getWidth) | t._2.egressNodeId l6.U(req.bits.getWidth.W) } val flow = req.bits.flow val table = allInParams(i).possibleFlows.toSeq.distinct.map { pI => allInParams(i).channelRoutingInfos.map { cI => var row: String = "b" (0 until nOutputs).foreach { o => (0 until outParams(o).nVirtualChannels).foreach { outVId => row = row + (if (routingRelation(cI, outParams(o).channelRoutingInfos(outVId), pI)) "1" else "0") } } ((cI.vc, pI), row) } }.flatten val addr = req.bits.asUInt val width = outParams.map(_.nVirtualChannels).reduce(_+_) val decoded = if (table.size > 0) { val truthTable = TruthTable( table.map { e => (BitPat(toUInt(e._1)), BitPat(e._2)) }, BitPat("b" + "?" * width) ) Reverse(decoder(addr, truthTable)) } else { 0.U(width.W) } var idx = 0 (0 until nAllOutputs).foreach { o => if (o < nOutputs) { (0 until outParams(o).nVirtualChannels).foreach { outVId => resp.vc_sel(o)(outVId) := decoded(idx) idx += 1 } } else { resp.vc_sel(o)(0) := false.B } } } } }
module RouteComputer_42( // @[RouteComputer.scala:29:7] input [2:0] io_req_2_bits_src_virt_id, // @[RouteComputer.scala:40:14] input [2:0] io_req_2_bits_flow_vnet_id, // @[RouteComputer.scala:40:14] input [4:0] io_req_2_bits_flow_ingress_node, // @[RouteComputer.scala:40:14] input [1:0] io_req_2_bits_flow_ingress_node_id, // @[RouteComputer.scala:40:14] input [4:0] io_req_2_bits_flow_egress_node, // @[RouteComputer.scala:40:14] input [1:0] io_req_2_bits_flow_egress_node_id, // @[RouteComputer.scala:40:14] input [2:0] io_req_1_bits_src_virt_id, // @[RouteComputer.scala:40:14] input [2:0] io_req_1_bits_flow_vnet_id, // @[RouteComputer.scala:40:14] input [4:0] io_req_1_bits_flow_ingress_node, // @[RouteComputer.scala:40:14] input [1:0] io_req_1_bits_flow_ingress_node_id, // @[RouteComputer.scala:40:14] input [4:0] io_req_1_bits_flow_egress_node, // @[RouteComputer.scala:40:14] input [1:0] io_req_1_bits_flow_egress_node_id, // @[RouteComputer.scala:40:14] input [2:0] io_req_0_bits_src_virt_id, // @[RouteComputer.scala:40:14] input [2:0] io_req_0_bits_flow_vnet_id, // @[RouteComputer.scala:40:14] input [4:0] io_req_0_bits_flow_ingress_node, // @[RouteComputer.scala:40:14] input [1:0] io_req_0_bits_flow_ingress_node_id, // @[RouteComputer.scala:40:14] input [4:0] io_req_0_bits_flow_egress_node, // @[RouteComputer.scala:40:14] input [1:0] io_req_0_bits_flow_egress_node_id, // @[RouteComputer.scala:40:14] output io_resp_2_vc_sel_1_1, // @[RouteComputer.scala:40:14] output io_resp_1_vc_sel_2_4, // @[RouteComputer.scala:40:14] output io_resp_1_vc_sel_0_4, // @[RouteComputer.scala:40:14] output io_resp_0_vc_sel_1_1 // @[RouteComputer.scala:40:14] ); wire [19:0] decoded_invInputs_1 = ~{io_req_1_bits_src_virt_id, io_req_1_bits_flow_vnet_id, io_req_1_bits_flow_ingress_node, io_req_1_bits_flow_ingress_node_id, io_req_1_bits_flow_egress_node, io_req_1_bits_flow_egress_node_id}; // @[pla.scala:78:21] assign io_resp_2_vc_sel_1_1 = io_req_2_bits_flow_egress_node_id[0]; // @[pla.scala:90:45] assign io_resp_1_vc_sel_2_4 = |{&{decoded_invInputs_1[0], decoded_invInputs_1[1], io_req_1_bits_flow_egress_node[0], io_req_1_bits_flow_egress_node[2], decoded_invInputs_1[5], decoded_invInputs_1[6], decoded_invInputs_1[7], decoded_invInputs_1[8], decoded_invInputs_1[9], decoded_invInputs_1[10], decoded_invInputs_1[11], decoded_invInputs_1[12], decoded_invInputs_1[13], decoded_invInputs_1[14], decoded_invInputs_1[15], io_req_1_bits_flow_vnet_id[2], decoded_invInputs_1[17], decoded_invInputs_1[18]}, &{decoded_invInputs_1[0], decoded_invInputs_1[1], io_req_1_bits_flow_egress_node[0], io_req_1_bits_flow_egress_node[2], decoded_invInputs_1[5], decoded_invInputs_1[6], decoded_invInputs_1[7], decoded_invInputs_1[8], decoded_invInputs_1[9], decoded_invInputs_1[10], decoded_invInputs_1[11], decoded_invInputs_1[12], decoded_invInputs_1[13], decoded_invInputs_1[14], decoded_invInputs_1[15], io_req_1_bits_flow_vnet_id[2], decoded_invInputs_1[19]}, &{decoded_invInputs_1[0], decoded_invInputs_1[1], io_req_1_bits_flow_egress_node[1], io_req_1_bits_flow_egress_node[2], decoded_invInputs_1[5], decoded_invInputs_1[6], decoded_invInputs_1[7], decoded_invInputs_1[8], decoded_invInputs_1[9], decoded_invInputs_1[10], decoded_invInputs_1[11], decoded_invInputs_1[12], decoded_invInputs_1[13], decoded_invInputs_1[14], decoded_invInputs_1[15], io_req_1_bits_flow_vnet_id[2], decoded_invInputs_1[17], decoded_invInputs_1[18]}, &{decoded_invInputs_1[0], decoded_invInputs_1[1], io_req_1_bits_flow_egress_node[1], io_req_1_bits_flow_egress_node[2], decoded_invInputs_1[5], decoded_invInputs_1[6], decoded_invInputs_1[7], decoded_invInputs_1[8], decoded_invInputs_1[9], decoded_invInputs_1[10], decoded_invInputs_1[11], decoded_invInputs_1[12], decoded_invInputs_1[13], decoded_invInputs_1[14], decoded_invInputs_1[15], io_req_1_bits_flow_vnet_id[2], decoded_invInputs_1[19]}, &{decoded_invInputs_1[0], io_req_1_bits_flow_egress_node[3], decoded_invInputs_1[6], decoded_invInputs_1[7], decoded_invInputs_1[8], decoded_invInputs_1[9], decoded_invInputs_1[10], decoded_invInputs_1[11], decoded_invInputs_1[12], decoded_invInputs_1[13], decoded_invInputs_1[14], decoded_invInputs_1[15], io_req_1_bits_flow_vnet_id[2], decoded_invInputs_1[17], decoded_invInputs_1[18]}, &{decoded_invInputs_1[0], decoded_invInputs_1[1], io_req_1_bits_flow_egress_node[3], decoded_invInputs_1[6], decoded_invInputs_1[7], decoded_invInputs_1[8], decoded_invInputs_1[9], decoded_invInputs_1[10], decoded_invInputs_1[11], decoded_invInputs_1[12], decoded_invInputs_1[13], decoded_invInputs_1[14], decoded_invInputs_1[15], io_req_1_bits_flow_vnet_id[2], decoded_invInputs_1[19]}}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}, :114:{19,36}] assign io_resp_1_vc_sel_0_4 = |{&{decoded_invInputs_1[0], decoded_invInputs_1[2], decoded_invInputs_1[3], io_req_1_bits_flow_egress_node[2], decoded_invInputs_1[5], decoded_invInputs_1[6], decoded_invInputs_1[7], decoded_invInputs_1[8], decoded_invInputs_1[9], decoded_invInputs_1[10], decoded_invInputs_1[11], decoded_invInputs_1[12], decoded_invInputs_1[13], decoded_invInputs_1[14], decoded_invInputs_1[15], io_req_1_bits_flow_vnet_id[2], decoded_invInputs_1[17], decoded_invInputs_1[18]}, &{decoded_invInputs_1[0], decoded_invInputs_1[1], decoded_invInputs_1[2], decoded_invInputs_1[3], io_req_1_bits_flow_egress_node[2], decoded_invInputs_1[5], decoded_invInputs_1[6], decoded_invInputs_1[7], decoded_invInputs_1[8], decoded_invInputs_1[9], decoded_invInputs_1[10], decoded_invInputs_1[11], decoded_invInputs_1[12], decoded_invInputs_1[13], decoded_invInputs_1[14], decoded_invInputs_1[15], io_req_1_bits_flow_vnet_id[2], decoded_invInputs_1[19]}}; // @[pla.scala:78:21, :90:45, :91:29, :98:{53,70}, :114:{19,36}] assign io_resp_0_vc_sel_1_1 = io_req_0_bits_flow_egress_node_id[0]; // @[pla.scala:90:45] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File AsyncQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ case class AsyncQueueParams( depth: Int = 8, sync: Int = 3, safe: Boolean = true, // If safe is true, then effort is made to resynchronize the crossing indices when either side is reset. // This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty. narrow: Boolean = false) // If narrow is true then the read mux is moved to the source side of the crossing. // This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing, // at the expense of a combinational path from the sink to the source and back to the sink. { require (depth > 0 && isPow2(depth)) require (sync >= 2) val bits = log2Ceil(depth) val wires = if (narrow) 1 else depth } object AsyncQueueParams { // When there is only one entry, we don't need narrow. def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false) } class AsyncBundleSafety extends Bundle { val ridx_valid = Input (Bool()) val widx_valid = Output(Bool()) val source_reset_n = Output(Bool()) val sink_reset_n = Input (Bool()) } class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle { // Data-path synchronization val mem = Output(Vec(params.wires, gen)) val ridx = Input (UInt((params.bits+1).W)) val widx = Output(UInt((params.bits+1).W)) val index = params.narrow.option(Input(UInt(params.bits.W))) // Signals used to self-stabilize a safe AsyncQueue val safe = params.safe.option(new AsyncBundleSafety) } object GrayCounter { def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = { val incremented = Wire(UInt(bits.W)) val binary = RegNext(next=incremented, init=0.U).suggestName(name) incremented := Mux(clear, 0.U, binary + increment.asUInt) incremented ^ (incremented >> 1) } } class AsyncValidSync(sync: Int, desc: String) extends RawModule { val io = IO(new Bundle { val in = Input(Bool()) val out = Output(Bool()) }) val clock = IO(Input(Clock())) val reset = IO(Input(AsyncReset())) withClockAndReset(clock, reset){ io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc)) } } class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSource_${gen.typeName}" val io = IO(new Bundle { // These come from the source domain val enq = Flipped(Decoupled(gen)) // These cross to the sink clock domain val async = new AsyncBundle(gen, params) }) val bits = params.bits val sink_ready = WireInit(true.B) val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all. val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin")) val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray")) val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U) val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1)) when (io.enq.fire) { mem(index) := io.enq.bits } val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg")) io.enq.ready := ready_reg && sink_ready val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray")) io.async.widx := widx_reg io.async.index match { case Some(index) => io.async.mem(0) := mem(index) case None => io.async.mem := mem } io.async.safe.foreach { sio => val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0")) val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1")) val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend")) val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid")) source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_valid .reset := reset.asAsyncReset source_valid_0.clock := clock source_valid_1.clock := clock sink_extend .clock := clock sink_valid .clock := clock source_valid_0.io.in := true.B source_valid_1.io.in := source_valid_0.io.out sio.widx_valid := source_valid_1.io.out sink_extend.io.in := sio.ridx_valid sink_valid.io.in := sink_extend.io.out sink_ready := sink_valid.io.out sio.source_reset_n := !reset.asBool // Assert that if there is stuff in the queue, then reset cannot happen // Impossible to write because dequeue can occur on the receiving side, // then reset allowed to happen, but write side cannot know that dequeue // occurred. // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected") // assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty") } } class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSink_${gen.typeName}" val io = IO(new Bundle { // These come from the sink domain val deq = Decoupled(gen) // These cross to the source clock domain val async = Flipped(new AsyncBundle(gen, params)) }) val bits = params.bits val source_ready = WireInit(true.B) val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin")) val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray")) val valid = source_ready && ridx =/= widx // The mux is safe because timing analysis ensures ridx has reached the register // On an ASIC, changes to the unread location cannot affect the selected value // On an FPGA, only one input changes at a time => mem updates don't cause glitches // The register only latches when the selected valued is not being written val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1)) io.async.index.foreach { _ := index } // This register does not NEED to be reset, as its contents will not // be considered unless the asynchronously reset deq valid register is set. // It is possible that bits latches when the source domain is reset / has power cut // This is safe, because isolation gates brought mem low before the zeroed widx reached us val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index) io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg")) val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg")) io.deq.valid := valid_reg && source_ready val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray")) io.async.ridx := ridx_reg io.async.safe.foreach { sio => val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0")) val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1")) val source_extend = Module(new AsyncValidSync(params.sync, "source_extend")) val source_valid = Module(new AsyncValidSync(params.sync, "source_valid")) sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_valid .reset := reset.asAsyncReset sink_valid_0 .clock := clock sink_valid_1 .clock := clock source_extend.clock := clock source_valid .clock := clock sink_valid_0.io.in := true.B sink_valid_1.io.in := sink_valid_0.io.out sio.ridx_valid := sink_valid_1.io.out source_extend.io.in := sio.widx_valid source_valid.io.in := source_extend.io.out source_ready := source_valid.io.out sio.sink_reset_n := !reset.asBool // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // // val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool // val reset_and_extend_prev = RegNext(reset_and_extend, true.B) // val reset_rise = !reset_and_extend_prev && reset_and_extend // val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0) // assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty") } } object FromAsyncBundle { // Sometimes it makes sense for the sink to have different sync than the source def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync) def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = { val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync))) sink.io.async <> x sink.io.deq } } object ToAsyncBundle { def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = { val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params)) source.io.enq <> x source.io.async } } class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] { val io = IO(new CrossingIO(gen)) val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) } val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) } source.io.enq <> io.enq io.deq <> sink.io.deq sink.io.async <> source.io.async }
module AsyncValidSync_120( // @[AsyncQueue.scala:58:7] output io_out, // @[AsyncQueue.scala:59:14] input clock, // @[AsyncQueue.scala:63:17] input reset // @[AsyncQueue.scala:64:17] ); wire io_in = 1'h1; // @[ShiftReg.scala:45:23] wire _io_out_WIRE; // @[ShiftReg.scala:48:24] wire io_out_0; // @[AsyncQueue.scala:58:7] assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24] AsyncResetSynchronizerShiftReg_w1_d3_i0_130 io_out_source_valid_0 ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (reset), .io_q (_io_out_WIRE) ); // @[ShiftReg.scala:45:23] assign io_out = io_out_0; // @[AsyncQueue.scala:58:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftRegisterPriorityQueue.scala: package compressacc import chisel3._ import chisel3.util._ import chisel3.util._ // TODO : support enq & deq at the same cycle class PriorityQueueStageIO(keyWidth: Int, value: ValueInfo) extends Bundle { val output_prev = KeyValue(keyWidth, value) val output_nxt = KeyValue(keyWidth, value) val input_prev = Flipped(KeyValue(keyWidth, value)) val input_nxt = Flipped(KeyValue(keyWidth, value)) val cmd = Flipped(Valid(UInt(1.W))) val insert_here = Input(Bool()) val cur_input_keyval = Flipped(KeyValue(keyWidth, value)) val cur_output_keyval = KeyValue(keyWidth, value) } class PriorityQueueStage(keyWidth: Int, value: ValueInfo) extends Module { val io = IO(new PriorityQueueStageIO(keyWidth, value)) dontTouch(io) val CMD_DEQ = 0.U val CMD_ENQ = 1.U val MAX_VALUE = (1 << keyWidth) - 1 val key_reg = RegInit(MAX_VALUE.U(keyWidth.W)) val value_reg = Reg(value) io.output_prev.key := key_reg io.output_prev.value := value_reg io.output_nxt.key := key_reg io.output_nxt.value := value_reg io.cur_output_keyval.key := key_reg io.cur_output_keyval.value := value_reg when (io.cmd.valid) { switch (io.cmd.bits) { is (CMD_DEQ) { key_reg := io.input_nxt.key value_reg := io.input_nxt.value } is (CMD_ENQ) { when (io.insert_here) { key_reg := io.cur_input_keyval.key value_reg := io.cur_input_keyval.value } .elsewhen (key_reg >= io.cur_input_keyval.key) { key_reg := io.input_prev.key value_reg := io.input_prev.value } .otherwise { // do nothing } } } } } object PriorityQueueStage { def apply(keyWidth: Int, v: ValueInfo): PriorityQueueStage = new PriorityQueueStage(keyWidth, v) } // TODO // - This design is not scalable as the enqued_keyval is broadcasted to all the stages // - Add pipeline registers later class PriorityQueueIO(queSize: Int, keyWidth: Int, value: ValueInfo) extends Bundle { val cnt_bits = log2Ceil(queSize+1) val counter = Output(UInt(cnt_bits.W)) val enq = Flipped(Decoupled(KeyValue(keyWidth, value))) val deq = Decoupled(KeyValue(keyWidth, value)) } class PriorityQueue(queSize: Int, keyWidth: Int, value: ValueInfo) extends Module { val keyWidthInternal = keyWidth + 1 val CMD_DEQ = 0.U val CMD_ENQ = 1.U val io = IO(new PriorityQueueIO(queSize, keyWidthInternal, value)) dontTouch(io) val MAX_VALUE = ((1 << keyWidthInternal) - 1).U val cnt_bits = log2Ceil(queSize+1) // do not consider cases where we are inserting more entries then the queSize val counter = RegInit(0.U(cnt_bits.W)) io.counter := counter val full = (counter === queSize.U) val empty = (counter === 0.U) io.deq.valid := !empty io.enq.ready := !full when (io.enq.fire) { counter := counter + 1.U } when (io.deq.fire) { counter := counter - 1.U } val cmd_valid = io.enq.valid || io.deq.ready val cmd = Mux(io.enq.valid, CMD_ENQ, CMD_DEQ) assert(!(io.enq.valid && io.deq.ready)) val stages = Seq.fill(queSize)(Module(new PriorityQueueStage(keyWidthInternal, value))) for (i <- 0 until (queSize - 1)) { stages(i+1).io.input_prev <> stages(i).io.output_nxt stages(i).io.input_nxt <> stages(i+1).io.output_prev } stages(queSize-1).io.input_nxt.key := MAX_VALUE // stages(queSize-1).io.input_nxt.value := stages(queSize-1).io.input_nxt.value.symbol := 0.U // stages(queSize-1).io.input_nxt.value.child(0) := 0.U // stages(queSize-1).io.input_nxt.value.child(1) := 0.U stages(0).io.input_prev.key := io.enq.bits.key stages(0).io.input_prev.value <> io.enq.bits.value for (i <- 0 until queSize) { stages(i).io.cmd.valid := cmd_valid stages(i).io.cmd.bits := cmd stages(i).io.cur_input_keyval <> io.enq.bits } val is_large_or_equal = WireInit(VecInit(Seq.fill(queSize)(false.B))) for (i <- 0 until queSize) { is_large_or_equal(i) := (stages(i).io.cur_output_keyval.key >= io.enq.bits.key) } val is_large_or_equal_cat = Wire(UInt(queSize.W)) is_large_or_equal_cat := Cat(is_large_or_equal.reverse) val insert_here_idx = PriorityEncoder(is_large_or_equal_cat) for (i <- 0 until queSize) { when (i.U === insert_here_idx) { stages(i).io.insert_here := true.B } .otherwise { stages(i).io.insert_here := false.B } } io.deq.bits <> stages(0).io.output_prev }
module PriorityQueueStage_70( // @[ShiftRegisterPriorityQueue.scala:21:7] input clock, // @[ShiftRegisterPriorityQueue.scala:21:7] input reset, // @[ShiftRegisterPriorityQueue.scala:21:7] output [30:0] io_output_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14] output [9:0] io_output_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] output [30:0] io_output_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14] output [9:0] io_output_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] input [30:0] io_input_prev_key, // @[ShiftRegisterPriorityQueue.scala:22:14] input [9:0] io_input_prev_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] input [30:0] io_input_nxt_key, // @[ShiftRegisterPriorityQueue.scala:22:14] input [9:0] io_input_nxt_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] input io_cmd_valid, // @[ShiftRegisterPriorityQueue.scala:22:14] input io_cmd_bits, // @[ShiftRegisterPriorityQueue.scala:22:14] input io_insert_here, // @[ShiftRegisterPriorityQueue.scala:22:14] input [30:0] io_cur_input_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14] input [9:0] io_cur_input_keyval_value_symbol, // @[ShiftRegisterPriorityQueue.scala:22:14] output [30:0] io_cur_output_keyval_key, // @[ShiftRegisterPriorityQueue.scala:22:14] output [9:0] io_cur_output_keyval_value_symbol // @[ShiftRegisterPriorityQueue.scala:22:14] ); wire [30:0] io_input_prev_key_0 = io_input_prev_key; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_input_prev_value_symbol_0 = io_input_prev_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_input_nxt_key_0 = io_input_nxt_key; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_input_nxt_value_symbol_0 = io_input_nxt_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7] wire io_cmd_valid_0 = io_cmd_valid; // @[ShiftRegisterPriorityQueue.scala:21:7] wire io_cmd_bits_0 = io_cmd_bits; // @[ShiftRegisterPriorityQueue.scala:21:7] wire io_insert_here_0 = io_insert_here; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_cur_input_keyval_key_0 = io_cur_input_keyval_key; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_cur_input_keyval_value_symbol_0 = io_cur_input_keyval_value_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [9:0] io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] wire [30:0] io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] reg [30:0] key_reg; // @[ShiftRegisterPriorityQueue.scala:30:24] assign io_output_prev_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] assign io_output_nxt_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] assign io_cur_output_keyval_key_0 = key_reg; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] reg [9:0] value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:31:22] assign io_output_prev_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] assign io_output_nxt_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] assign io_cur_output_keyval_value_symbol_0 = value_reg_symbol; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] wire _T_2 = key_reg >= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24, :52:30] always @(posedge clock) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (reset) // @[ShiftRegisterPriorityQueue.scala:21:7] key_reg <= 31'h7FFFFFFF; // @[ShiftRegisterPriorityQueue.scala:30:24] else if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7] key_reg <= io_cur_input_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30] key_reg <= io_input_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] end else // @[ShiftRegisterPriorityQueue.scala:21:7] key_reg <= io_input_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :30:24] end if (io_cmd_valid_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_cmd_bits_0) begin // @[ShiftRegisterPriorityQueue.scala:21:7] if (io_insert_here_0) // @[ShiftRegisterPriorityQueue.scala:21:7] value_reg_symbol <= io_cur_input_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] else if (_T_2) // @[ShiftRegisterPriorityQueue.scala:52:30] value_reg_symbol <= io_input_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] end else // @[ShiftRegisterPriorityQueue.scala:21:7] value_reg_symbol <= io_input_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7, :31:22] end always @(posedge) assign io_output_prev_key = io_output_prev_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_output_prev_value_symbol = io_output_prev_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_output_nxt_key = io_output_nxt_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_output_nxt_value_symbol = io_output_nxt_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_cur_output_keyval_key = io_cur_output_keyval_key_0; // @[ShiftRegisterPriorityQueue.scala:21:7] assign io_cur_output_keyval_value_symbol = io_cur_output_keyval_value_symbol_0; // @[ShiftRegisterPriorityQueue.scala:21:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Metadata.scala: // See LICENSE.SiFive for license details. // See LICENSE.Berkeley for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import freechips.rocketchip.rocket.constants.MemoryOpConstants import freechips.rocketchip.util._ object ClientStates { val width = 2 def Nothing = 0.U(width.W) def Branch = 1.U(width.W) def Trunk = 2.U(width.W) def Dirty = 3.U(width.W) def hasReadPermission(state: UInt): Bool = state > Nothing def hasWritePermission(state: UInt): Bool = state > Branch } object MemoryOpCategories extends MemoryOpConstants { def wr = Cat(true.B, true.B) // Op actually writes def wi = Cat(false.B, true.B) // Future op will write def rd = Cat(false.B, false.B) // Op only reads def categorize(cmd: UInt): UInt = { val cat = Cat(isWrite(cmd), isWriteIntent(cmd)) //assert(cat.isOneOf(wr,wi,rd), "Could not categorize command.") cat } } /** Stores the client-side coherence information, * such as permissions on the data and whether the data is dirty. * Its API can be used to make TileLink messages in response to * memory operations, cache control oeprations, or Probe messages. */ class ClientMetadata extends Bundle { /** Actual state information stored in this bundle */ val state = UInt(ClientStates.width.W) /** Metadata equality */ def ===(rhs: UInt): Bool = state === rhs def ===(rhs: ClientMetadata): Bool = state === rhs.state def =/=(rhs: ClientMetadata): Bool = !this.===(rhs) /** Is the block's data present in this cache */ def isValid(dummy: Int = 0): Bool = state > ClientStates.Nothing /** Determine whether this cmd misses, and the new state (on hit) or param to be sent (on miss) */ private def growStarter(cmd: UInt): (Bool, UInt) = { import MemoryOpCategories._ import TLPermissions._ import ClientStates._ val c = categorize(cmd) MuxTLookup(Cat(c, state), (false.B, 0.U), Seq( //(effect, am now) -> (was a hit, next) Cat(rd, Dirty) -> (true.B, Dirty), Cat(rd, Trunk) -> (true.B, Trunk), Cat(rd, Branch) -> (true.B, Branch), Cat(wi, Dirty) -> (true.B, Dirty), Cat(wi, Trunk) -> (true.B, Trunk), Cat(wr, Dirty) -> (true.B, Dirty), Cat(wr, Trunk) -> (true.B, Dirty), //(effect, am now) -> (was a miss, param) Cat(rd, Nothing) -> (false.B, NtoB), Cat(wi, Branch) -> (false.B, BtoT), Cat(wi, Nothing) -> (false.B, NtoT), Cat(wr, Branch) -> (false.B, BtoT), Cat(wr, Nothing) -> (false.B, NtoT))) } /** Determine what state to go to after miss based on Grant param * For now, doesn't depend on state (which may have been Probed). */ private def growFinisher(cmd: UInt, param: UInt): UInt = { import MemoryOpCategories._ import TLPermissions._ import ClientStates._ val c = categorize(cmd) //assert(c === rd || param === toT, "Client was expecting trunk permissions.") MuxLookup(Cat(c, param), Nothing)(Seq( //(effect param) -> (next) Cat(rd, toB) -> Branch, Cat(rd, toT) -> Trunk, Cat(wi, toT) -> Trunk, Cat(wr, toT) -> Dirty)) } /** Does this cache have permissions on this block sufficient to perform op, * and what to do next (Acquire message param or updated metadata). */ def onAccess(cmd: UInt): (Bool, UInt, ClientMetadata) = { val r = growStarter(cmd) (r._1, r._2, ClientMetadata(r._2)) } /** Does a secondary miss on the block require another Acquire message */ def onSecondaryAccess(first_cmd: UInt, second_cmd: UInt): (Bool, Bool, UInt, ClientMetadata, UInt) = { import MemoryOpCategories._ val r1 = growStarter(first_cmd) val r2 = growStarter(second_cmd) val needs_second_acq = isWriteIntent(second_cmd) && !isWriteIntent(first_cmd) val hit_again = r1._1 && r2._1 val dirties = categorize(second_cmd) === wr val biggest_grow_param = Mux(dirties, r2._2, r1._2) val dirtiest_state = ClientMetadata(biggest_grow_param) val dirtiest_cmd = Mux(dirties, second_cmd, first_cmd) (needs_second_acq, hit_again, biggest_grow_param, dirtiest_state, dirtiest_cmd) } /** Metadata change on a returned Grant */ def onGrant(cmd: UInt, param: UInt): ClientMetadata = ClientMetadata(growFinisher(cmd, param)) /** Determine what state to go to based on Probe param */ private def shrinkHelper(param: UInt): (Bool, UInt, UInt) = { import ClientStates._ import TLPermissions._ MuxTLookup(Cat(param, state), (false.B, 0.U, 0.U), Seq( //(wanted, am now) -> (hasDirtyData resp, next) Cat(toT, Dirty) -> (true.B, TtoT, Trunk), Cat(toT, Trunk) -> (false.B, TtoT, Trunk), Cat(toT, Branch) -> (false.B, BtoB, Branch), Cat(toT, Nothing) -> (false.B, NtoN, Nothing), Cat(toB, Dirty) -> (true.B, TtoB, Branch), Cat(toB, Trunk) -> (false.B, TtoB, Branch), // Policy: Don't notify on clean downgrade Cat(toB, Branch) -> (false.B, BtoB, Branch), Cat(toB, Nothing) -> (false.B, NtoN, Nothing), Cat(toN, Dirty) -> (true.B, TtoN, Nothing), Cat(toN, Trunk) -> (false.B, TtoN, Nothing), // Policy: Don't notify on clean downgrade Cat(toN, Branch) -> (false.B, BtoN, Nothing), // Policy: Don't notify on clean downgrade Cat(toN, Nothing) -> (false.B, NtoN, Nothing))) } /** Translate cache control cmds into Probe param */ private def cmdToPermCap(cmd: UInt): UInt = { import MemoryOpCategories._ import TLPermissions._ MuxLookup(cmd, toN)(Seq( M_FLUSH -> toN, M_PRODUCE -> toB, M_CLEAN -> toT)) } def onCacheControl(cmd: UInt): (Bool, UInt, ClientMetadata) = { val r = shrinkHelper(cmdToPermCap(cmd)) (r._1, r._2, ClientMetadata(r._3)) } def onProbe(param: UInt): (Bool, UInt, ClientMetadata) = { val r = shrinkHelper(param) (r._1, r._2, ClientMetadata(r._3)) } } /** Factories for ClientMetadata, including on reset */ object ClientMetadata { def apply(perm: UInt) = { val meta = Wire(new ClientMetadata) meta.state := perm meta } def onReset = ClientMetadata(ClientStates.Nothing) def maximum = ClientMetadata(ClientStates.Dirty) } File Replacement.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import freechips.rocketchip.util.property.cover abstract class ReplacementPolicy { def nBits: Int def perSet: Boolean def way: UInt def miss: Unit def hit: Unit def access(touch_way: UInt): Unit def access(touch_ways: Seq[Valid[UInt]]): Unit def state_read: UInt def get_next_state(state: UInt, touch_way: UInt): UInt def get_next_state(state: UInt, touch_ways: Seq[Valid[UInt]]): UInt = { touch_ways.foldLeft(state)((prev, touch_way) => Mux(touch_way.valid, get_next_state(prev, touch_way.bits), prev)) } def get_replace_way(state: UInt): UInt } object ReplacementPolicy { def fromString(s: String, n_ways: Int): ReplacementPolicy = s.toLowerCase match { case "random" => new RandomReplacement(n_ways) case "lru" => new TrueLRU(n_ways) case "plru" => new PseudoLRU(n_ways) case t => throw new IllegalArgumentException(s"unknown Replacement Policy type $t") } } class RandomReplacement(n_ways: Int) extends ReplacementPolicy { private val replace = Wire(Bool()) replace := false.B def nBits = 16 def perSet = false private val lfsr = LFSR(nBits, replace) def state_read = WireDefault(lfsr) def way = Random(n_ways, lfsr) def miss = replace := true.B def hit = {} def access(touch_way: UInt) = {} def access(touch_ways: Seq[Valid[UInt]]) = {} def get_next_state(state: UInt, touch_way: UInt) = 0.U //DontCare def get_replace_way(state: UInt) = way } abstract class SeqReplacementPolicy { def access(set: UInt): Unit def update(valid: Bool, hit: Bool, set: UInt, way: UInt): Unit def way: UInt } abstract class SetAssocReplacementPolicy { def access(set: UInt, touch_way: UInt): Unit def access(sets: Seq[UInt], touch_ways: Seq[Valid[UInt]]): Unit def way(set: UInt): UInt } class SeqRandom(n_ways: Int) extends SeqReplacementPolicy { val logic = new RandomReplacement(n_ways) def access(set: UInt) = { } def update(valid: Bool, hit: Bool, set: UInt, way: UInt) = { when (valid && !hit) { logic.miss } } def way = logic.way } class TrueLRU(n_ways: Int) extends ReplacementPolicy { // True LRU replacement policy, using a triangular matrix to track which sets are more recently used than others. // The matrix is packed into a single UInt (or Bits). Example 4-way (6-bits): // [5] - 3 more recent than 2 // [4] - 3 more recent than 1 // [3] - 2 more recent than 1 // [2] - 3 more recent than 0 // [1] - 2 more recent than 0 // [0] - 1 more recent than 0 def nBits = (n_ways * (n_ways-1)) / 2 def perSet = true private val state_reg = RegInit(0.U(nBits.W)) def state_read = WireDefault(state_reg) private def extractMRUVec(state: UInt): Seq[UInt] = { // Extract per-way information about which higher-indexed ways are more recently used val moreRecentVec = Wire(Vec(n_ways-1, UInt(n_ways.W))) var lsb = 0 for (i <- 0 until n_ways-1) { moreRecentVec(i) := Cat(state(lsb+n_ways-i-2,lsb), 0.U((i+1).W)) lsb = lsb + (n_ways - i - 1) } moreRecentVec } def get_next_state(state: UInt, touch_way: UInt): UInt = { val nextState = Wire(Vec(n_ways-1, UInt(n_ways.W))) val moreRecentVec = extractMRUVec(state) // reconstruct lower triangular matrix val wayDec = UIntToOH(touch_way, n_ways) // Compute next value of triangular matrix // set the touched way as more recent than every other way nextState.zipWithIndex.map { case (e, i) => e := Mux(i.U === touch_way, 0.U(n_ways.W), moreRecentVec(i) | wayDec) } nextState.zipWithIndex.tail.foldLeft((nextState.head.apply(n_ways-1,1),0)) { case ((pe,pi),(ce,ci)) => (Cat(ce.apply(n_ways-1,ci+1), pe), ci) }._1 } def access(touch_way: UInt): Unit = { state_reg := get_next_state(state_reg, touch_way) } def access(touch_ways: Seq[Valid[UInt]]): Unit = { when (touch_ways.map(_.valid).orR) { state_reg := get_next_state(state_reg, touch_ways) } for (i <- 1 until touch_ways.size) { cover(PopCount(touch_ways.map(_.valid)) === i.U, s"LRU_UpdateCount$i", s"LRU Update $i simultaneous") } } def get_replace_way(state: UInt): UInt = { val moreRecentVec = extractMRUVec(state) // reconstruct lower triangular matrix // For each way, determine if all other ways are more recent val mruWayDec = (0 until n_ways).map { i => val upperMoreRecent = (if (i == n_ways-1) true.B else moreRecentVec(i).apply(n_ways-1,i+1).andR) val lowerMoreRecent = (if (i == 0) true.B else moreRecentVec.map(e => !e(i)).reduce(_ && _)) upperMoreRecent && lowerMoreRecent } OHToUInt(mruWayDec) } def way = get_replace_way(state_reg) def miss = access(way) def hit = {} @deprecated("replace 'replace' with 'way' from abstract class ReplacementPolicy","Rocket Chip 2020.05") def replace: UInt = way } class PseudoLRU(n_ways: Int) extends ReplacementPolicy { // Pseudo-LRU tree algorithm: https://en.wikipedia.org/wiki/Pseudo-LRU#Tree-PLRU // // // - bits storage example for 4-way PLRU binary tree: // bit[2]: ways 3+2 older than ways 1+0 // / \ // bit[1]: way 3 older than way 2 bit[0]: way 1 older than way 0 // // // - bits storage example for 3-way PLRU binary tree: // bit[1]: way 2 older than ways 1+0 // \ // bit[0]: way 1 older than way 0 // // // - bits storage example for 8-way PLRU binary tree: // bit[6]: ways 7-4 older than ways 3-0 // / \ // bit[5]: ways 7+6 > 5+4 bit[2]: ways 3+2 > 1+0 // / \ / \ // bit[4]: way 7>6 bit[3]: way 5>4 bit[1]: way 3>2 bit[0]: way 1>0 def nBits = n_ways - 1 def perSet = true private val state_reg = if (nBits == 0) Reg(UInt(0.W)) else RegInit(0.U(nBits.W)) def state_read = WireDefault(state_reg) def access(touch_way: UInt): Unit = { state_reg := get_next_state(state_reg, touch_way) } def access(touch_ways: Seq[Valid[UInt]]): Unit = { when (touch_ways.map(_.valid).orR) { state_reg := get_next_state(state_reg, touch_ways) } for (i <- 1 until touch_ways.size) { cover(PopCount(touch_ways.map(_.valid)) === i.U, s"PLRU_UpdateCount$i", s"PLRU Update $i simultaneous") } } /** @param state state_reg bits for this sub-tree * @param touch_way touched way encoded value bits for this sub-tree * @param tree_nways number of ways in this sub-tree */ def get_next_state(state: UInt, touch_way: UInt, tree_nways: Int): UInt = { require(state.getWidth == (tree_nways-1), s"wrong state bits width ${state.getWidth} for $tree_nways ways") require(touch_way.getWidth == (log2Ceil(tree_nways) max 1), s"wrong encoded way width ${touch_way.getWidth} for $tree_nways ways") if (tree_nways > 2) { // we are at a branching node in the tree, so recurse val right_nways: Int = 1 << (log2Ceil(tree_nways) - 1) // number of ways in the right sub-tree val left_nways: Int = tree_nways - right_nways // number of ways in the left sub-tree val set_left_older = !touch_way(log2Ceil(tree_nways)-1) val left_subtree_state = state.extract(tree_nways-3, right_nways-1) val right_subtree_state = state(right_nways-2, 0) if (left_nways > 1) { // we are at a branching node in the tree with both left and right sub-trees, so recurse both sub-trees Cat(set_left_older, Mux(set_left_older, left_subtree_state, // if setting left sub-tree as older, do NOT recurse into left sub-tree get_next_state(left_subtree_state, touch_way.extract(log2Ceil(left_nways)-1,0), left_nways)), // recurse left if newer Mux(set_left_older, get_next_state(right_subtree_state, touch_way(log2Ceil(right_nways)-1,0), right_nways), // recurse right if newer right_subtree_state)) // if setting right sub-tree as older, do NOT recurse into right sub-tree } else { // we are at a branching node in the tree with only a right sub-tree, so recurse only right sub-tree Cat(set_left_older, Mux(set_left_older, get_next_state(right_subtree_state, touch_way(log2Ceil(right_nways)-1,0), right_nways), // recurse right if newer right_subtree_state)) // if setting right sub-tree as older, do NOT recurse into right sub-tree } } else if (tree_nways == 2) { // we are at a leaf node at the end of the tree, so set the single state bit opposite of the lsb of the touched way encoded value !touch_way(0) } else { // tree_nways <= 1 // we are at an empty node in an empty tree for 1 way, so return single zero bit for Chisel (no zero-width wires) 0.U(1.W) } } def get_next_state(state: UInt, touch_way: UInt): UInt = { val touch_way_sized = if (touch_way.getWidth < log2Ceil(n_ways)) touch_way.padTo (log2Ceil(n_ways)) else touch_way.extract(log2Ceil(n_ways)-1,0) get_next_state(state, touch_way_sized, n_ways) } /** @param state state_reg bits for this sub-tree * @param tree_nways number of ways in this sub-tree */ def get_replace_way(state: UInt, tree_nways: Int): UInt = { require(state.getWidth == (tree_nways-1), s"wrong state bits width ${state.getWidth} for $tree_nways ways") // this algorithm recursively descends the binary tree, filling in the way-to-replace encoded value from msb to lsb if (tree_nways > 2) { // we are at a branching node in the tree, so recurse val right_nways: Int = 1 << (log2Ceil(tree_nways) - 1) // number of ways in the right sub-tree val left_nways: Int = tree_nways - right_nways // number of ways in the left sub-tree val left_subtree_older = state(tree_nways-2) val left_subtree_state = state.extract(tree_nways-3, right_nways-1) val right_subtree_state = state(right_nways-2, 0) if (left_nways > 1) { // we are at a branching node in the tree with both left and right sub-trees, so recurse both sub-trees Cat(left_subtree_older, // return the top state bit (current tree node) as msb of the way-to-replace encoded value Mux(left_subtree_older, // if left sub-tree is older, recurse left, else recurse right get_replace_way(left_subtree_state, left_nways), // recurse left get_replace_way(right_subtree_state, right_nways))) // recurse right } else { // we are at a branching node in the tree with only a right sub-tree, so recurse only right sub-tree Cat(left_subtree_older, // return the top state bit (current tree node) as msb of the way-to-replace encoded value Mux(left_subtree_older, // if left sub-tree is older, return and do not recurse right 0.U(1.W), get_replace_way(right_subtree_state, right_nways))) // recurse right } } else if (tree_nways == 2) { // we are at a leaf node at the end of the tree, so just return the single state bit as lsb of the way-to-replace encoded value state(0) } else { // tree_nways <= 1 // we are at an empty node in an unbalanced tree for non-power-of-2 ways, so return single zero bit as lsb of the way-to-replace encoded value 0.U(1.W) } } def get_replace_way(state: UInt): UInt = get_replace_way(state, n_ways) def way = get_replace_way(state_reg) def miss = access(way) def hit = {} } class SeqPLRU(n_sets: Int, n_ways: Int) extends SeqReplacementPolicy { val logic = new PseudoLRU(n_ways) val state = SyncReadMem(n_sets, UInt(logic.nBits.W)) val current_state = Wire(UInt(logic.nBits.W)) val next_state = Wire(UInt(logic.nBits.W)) val plru_way = logic.get_replace_way(current_state) def access(set: UInt) = { current_state := state.read(set) } def update(valid: Bool, hit: Bool, set: UInt, way: UInt) = { val update_way = Mux(hit, way, plru_way) next_state := logic.get_next_state(current_state, update_way) when (valid) { state.write(set, next_state) } } def way = plru_way } class SetAssocLRU(n_sets: Int, n_ways: Int, policy: String) extends SetAssocReplacementPolicy { val logic = policy.toLowerCase match { case "plru" => new PseudoLRU(n_ways) case "lru" => new TrueLRU(n_ways) case t => throw new IllegalArgumentException(s"unknown Replacement Policy type $t") } val state_vec = if (logic.nBits == 0) Reg(Vec(n_sets, UInt(logic.nBits.W))) // Work around elaboration error on following line else RegInit(VecInit(Seq.fill(n_sets)(0.U(logic.nBits.W)))) def access(set: UInt, touch_way: UInt) = { state_vec(set) := logic.get_next_state(state_vec(set), touch_way) } def access(sets: Seq[UInt], touch_ways: Seq[Valid[UInt]]) = { require(sets.size == touch_ways.size, "internal consistency check: should be same number of simultaneous updates for sets and touch_ways") for (set <- 0 until n_sets) { val set_touch_ways = (sets zip touch_ways).map { case (touch_set, touch_way) => Pipe(touch_way.valid && (touch_set === set.U), touch_way.bits, 0)} when (set_touch_ways.map(_.valid).orR) { state_vec(set) := logic.get_next_state(state_vec(set), set_touch_ways) } } } def way(set: UInt) = logic.get_replace_way(state_vec(set)) } // Synthesizable unit tests import freechips.rocketchip.unittest._ class PLRUTest(n_ways: Int, timeout: Int = 500) extends UnitTest(timeout) { val plru = new PseudoLRU(n_ways) // step io.finished := RegNext(true.B, false.B) val get_replace_ways = (0 until (1 << (n_ways-1))).map(state => plru.get_replace_way(state = state.U((n_ways-1).W))) val get_next_states = (0 until (1 << (n_ways-1))).map(state => (0 until n_ways).map(way => plru.get_next_state (state = state.U((n_ways-1).W), touch_way = way.U(log2Ceil(n_ways).W)))) n_ways match { case 2 => { assert(get_replace_ways(0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=0: expected=0 actual=%d", get_replace_ways(0)) assert(get_replace_ways(1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=1: expected=1 actual=%d", get_replace_ways(1)) assert(get_next_states(0)(0) === 1.U(plru.nBits.W), s"get_next_state state=0 way=0: expected=1 actual=%d", get_next_states(0)(0)) assert(get_next_states(0)(1) === 0.U(plru.nBits.W), s"get_next_state state=0 way=1: expected=0 actual=%d", get_next_states(0)(1)) assert(get_next_states(1)(0) === 1.U(plru.nBits.W), s"get_next_state state=1 way=0: expected=1 actual=%d", get_next_states(1)(0)) assert(get_next_states(1)(1) === 0.U(plru.nBits.W), s"get_next_state state=1 way=1: expected=0 actual=%d", get_next_states(1)(1)) } case 3 => { assert(get_replace_ways(0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=0: expected=0 actual=%d", get_replace_ways(0)) assert(get_replace_ways(1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=1: expected=1 actual=%d", get_replace_ways(1)) assert(get_replace_ways(2) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=2: expected=2 actual=%d", get_replace_ways(2)) assert(get_replace_ways(3) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=3: expected=2 actual=%d", get_replace_ways(3)) assert(get_next_states(0)(0) === 3.U(plru.nBits.W), s"get_next_state state=0 way=0: expected=3 actual=%d", get_next_states(0)(0)) assert(get_next_states(0)(1) === 2.U(plru.nBits.W), s"get_next_state state=0 way=1: expected=2 actual=%d", get_next_states(0)(1)) assert(get_next_states(0)(2) === 0.U(plru.nBits.W), s"get_next_state state=0 way=2: expected=0 actual=%d", get_next_states(0)(2)) assert(get_next_states(1)(0) === 3.U(plru.nBits.W), s"get_next_state state=1 way=0: expected=3 actual=%d", get_next_states(1)(0)) assert(get_next_states(1)(1) === 2.U(plru.nBits.W), s"get_next_state state=1 way=1: expected=2 actual=%d", get_next_states(1)(1)) assert(get_next_states(1)(2) === 1.U(plru.nBits.W), s"get_next_state state=1 way=2: expected=1 actual=%d", get_next_states(1)(2)) assert(get_next_states(2)(0) === 3.U(plru.nBits.W), s"get_next_state state=2 way=0: expected=3 actual=%d", get_next_states(2)(0)) assert(get_next_states(2)(1) === 2.U(plru.nBits.W), s"get_next_state state=2 way=1: expected=2 actual=%d", get_next_states(2)(1)) assert(get_next_states(2)(2) === 0.U(plru.nBits.W), s"get_next_state state=2 way=2: expected=0 actual=%d", get_next_states(2)(2)) assert(get_next_states(3)(0) === 3.U(plru.nBits.W), s"get_next_state state=3 way=0: expected=3 actual=%d", get_next_states(3)(0)) assert(get_next_states(3)(1) === 2.U(plru.nBits.W), s"get_next_state state=3 way=1: expected=2 actual=%d", get_next_states(3)(1)) assert(get_next_states(3)(2) === 1.U(plru.nBits.W), s"get_next_state state=3 way=2: expected=1 actual=%d", get_next_states(3)(2)) } case 4 => { assert(get_replace_ways(0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=0: expected=0 actual=%d", get_replace_ways(0)) assert(get_replace_ways(1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=1: expected=1 actual=%d", get_replace_ways(1)) assert(get_replace_ways(2) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=2: expected=0 actual=%d", get_replace_ways(2)) assert(get_replace_ways(3) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=3: expected=1 actual=%d", get_replace_ways(3)) assert(get_replace_ways(4) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=4: expected=2 actual=%d", get_replace_ways(4)) assert(get_replace_ways(5) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=5: expected=2 actual=%d", get_replace_ways(5)) assert(get_replace_ways(6) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=6: expected=3 actual=%d", get_replace_ways(6)) assert(get_replace_ways(7) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=7: expected=3 actual=%d", get_replace_ways(7)) assert(get_next_states(0)(0) === 5.U(plru.nBits.W), s"get_next_state state=0 way=0: expected=5 actual=%d", get_next_states(0)(0)) assert(get_next_states(0)(1) === 4.U(plru.nBits.W), s"get_next_state state=0 way=1: expected=4 actual=%d", get_next_states(0)(1)) assert(get_next_states(0)(2) === 2.U(plru.nBits.W), s"get_next_state state=0 way=2: expected=2 actual=%d", get_next_states(0)(2)) assert(get_next_states(0)(3) === 0.U(plru.nBits.W), s"get_next_state state=0 way=3: expected=0 actual=%d", get_next_states(0)(3)) assert(get_next_states(1)(0) === 5.U(plru.nBits.W), s"get_next_state state=1 way=0: expected=5 actual=%d", get_next_states(1)(0)) assert(get_next_states(1)(1) === 4.U(plru.nBits.W), s"get_next_state state=1 way=1: expected=4 actual=%d", get_next_states(1)(1)) assert(get_next_states(1)(2) === 3.U(plru.nBits.W), s"get_next_state state=1 way=2: expected=3 actual=%d", get_next_states(1)(2)) assert(get_next_states(1)(3) === 1.U(plru.nBits.W), s"get_next_state state=1 way=3: expected=1 actual=%d", get_next_states(1)(3)) assert(get_next_states(2)(0) === 7.U(plru.nBits.W), s"get_next_state state=2 way=0: expected=7 actual=%d", get_next_states(2)(0)) assert(get_next_states(2)(1) === 6.U(plru.nBits.W), s"get_next_state state=2 way=1: expected=6 actual=%d", get_next_states(2)(1)) assert(get_next_states(2)(2) === 2.U(plru.nBits.W), s"get_next_state state=2 way=2: expected=2 actual=%d", get_next_states(2)(2)) assert(get_next_states(2)(3) === 0.U(plru.nBits.W), s"get_next_state state=2 way=3: expected=0 actual=%d", get_next_states(2)(3)) assert(get_next_states(3)(0) === 7.U(plru.nBits.W), s"get_next_state state=3 way=0: expected=7 actual=%d", get_next_states(3)(0)) assert(get_next_states(3)(1) === 6.U(plru.nBits.W), s"get_next_state state=3 way=1: expected=6 actual=%d", get_next_states(3)(1)) assert(get_next_states(3)(2) === 3.U(plru.nBits.W), s"get_next_state state=3 way=2: expected=3 actual=%d", get_next_states(3)(2)) assert(get_next_states(3)(3) === 1.U(plru.nBits.W), s"get_next_state state=3 way=3: expected=1 actual=%d", get_next_states(3)(3)) assert(get_next_states(4)(0) === 5.U(plru.nBits.W), s"get_next_state state=4 way=0: expected=5 actual=%d", get_next_states(4)(0)) assert(get_next_states(4)(1) === 4.U(plru.nBits.W), s"get_next_state state=4 way=1: expected=4 actual=%d", get_next_states(4)(1)) assert(get_next_states(4)(2) === 2.U(plru.nBits.W), s"get_next_state state=4 way=2: expected=2 actual=%d", get_next_states(4)(2)) assert(get_next_states(4)(3) === 0.U(plru.nBits.W), s"get_next_state state=4 way=3: expected=0 actual=%d", get_next_states(4)(3)) assert(get_next_states(5)(0) === 5.U(plru.nBits.W), s"get_next_state state=5 way=0: expected=5 actual=%d", get_next_states(5)(0)) assert(get_next_states(5)(1) === 4.U(plru.nBits.W), s"get_next_state state=5 way=1: expected=4 actual=%d", get_next_states(5)(1)) assert(get_next_states(5)(2) === 3.U(plru.nBits.W), s"get_next_state state=5 way=2: expected=3 actual=%d", get_next_states(5)(2)) assert(get_next_states(5)(3) === 1.U(plru.nBits.W), s"get_next_state state=5 way=3: expected=1 actual=%d", get_next_states(5)(3)) assert(get_next_states(6)(0) === 7.U(plru.nBits.W), s"get_next_state state=6 way=0: expected=7 actual=%d", get_next_states(6)(0)) assert(get_next_states(6)(1) === 6.U(plru.nBits.W), s"get_next_state state=6 way=1: expected=6 actual=%d", get_next_states(6)(1)) assert(get_next_states(6)(2) === 2.U(plru.nBits.W), s"get_next_state state=6 way=2: expected=2 actual=%d", get_next_states(6)(2)) assert(get_next_states(6)(3) === 0.U(plru.nBits.W), s"get_next_state state=6 way=3: expected=0 actual=%d", get_next_states(6)(3)) assert(get_next_states(7)(0) === 7.U(plru.nBits.W), s"get_next_state state=7 way=0: expected=7 actual=%d", get_next_states(7)(0)) assert(get_next_states(7)(1) === 6.U(plru.nBits.W), s"get_next_state state=7 way=5: expected=6 actual=%d", get_next_states(7)(1)) assert(get_next_states(7)(2) === 3.U(plru.nBits.W), s"get_next_state state=7 way=2: expected=3 actual=%d", get_next_states(7)(2)) assert(get_next_states(7)(3) === 1.U(plru.nBits.W), s"get_next_state state=7 way=3: expected=1 actual=%d", get_next_states(7)(3)) } case 5 => { assert(get_replace_ways( 0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=00: expected=0 actual=%d", get_replace_ways( 0)) assert(get_replace_ways( 1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=01: expected=1 actual=%d", get_replace_ways( 1)) assert(get_replace_ways( 2) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=02: expected=0 actual=%d", get_replace_ways( 2)) assert(get_replace_ways( 3) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=03: expected=1 actual=%d", get_replace_ways( 3)) assert(get_replace_ways( 4) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=04: expected=2 actual=%d", get_replace_ways( 4)) assert(get_replace_ways( 5) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=05: expected=2 actual=%d", get_replace_ways( 5)) assert(get_replace_ways( 6) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=06: expected=3 actual=%d", get_replace_ways( 6)) assert(get_replace_ways( 7) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=07: expected=3 actual=%d", get_replace_ways( 7)) assert(get_replace_ways( 8) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=08: expected=4 actual=%d", get_replace_ways( 8)) assert(get_replace_ways( 9) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=09: expected=4 actual=%d", get_replace_ways( 9)) assert(get_replace_ways(10) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=10: expected=4 actual=%d", get_replace_ways(10)) assert(get_replace_ways(11) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=11: expected=4 actual=%d", get_replace_ways(11)) assert(get_replace_ways(12) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=12: expected=4 actual=%d", get_replace_ways(12)) assert(get_replace_ways(13) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=13: expected=4 actual=%d", get_replace_ways(13)) assert(get_replace_ways(14) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=14: expected=4 actual=%d", get_replace_ways(14)) assert(get_replace_ways(15) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=15: expected=4 actual=%d", get_replace_ways(15)) assert(get_next_states( 0)(0) === 13.U(plru.nBits.W), s"get_next_state state=00 way=0: expected=13 actual=%d", get_next_states( 0)(0)) assert(get_next_states( 0)(1) === 12.U(plru.nBits.W), s"get_next_state state=00 way=1: expected=12 actual=%d", get_next_states( 0)(1)) assert(get_next_states( 0)(2) === 10.U(plru.nBits.W), s"get_next_state state=00 way=2: expected=10 actual=%d", get_next_states( 0)(2)) assert(get_next_states( 0)(3) === 8.U(plru.nBits.W), s"get_next_state state=00 way=3: expected=08 actual=%d", get_next_states( 0)(3)) assert(get_next_states( 0)(4) === 0.U(plru.nBits.W), s"get_next_state state=00 way=4: expected=00 actual=%d", get_next_states( 0)(4)) assert(get_next_states( 1)(0) === 13.U(plru.nBits.W), s"get_next_state state=01 way=0: expected=13 actual=%d", get_next_states( 1)(0)) assert(get_next_states( 1)(1) === 12.U(plru.nBits.W), s"get_next_state state=01 way=1: expected=12 actual=%d", get_next_states( 1)(1)) assert(get_next_states( 1)(2) === 11.U(plru.nBits.W), s"get_next_state state=01 way=2: expected=11 actual=%d", get_next_states( 1)(2)) assert(get_next_states( 1)(3) === 9.U(plru.nBits.W), s"get_next_state state=01 way=3: expected=09 actual=%d", get_next_states( 1)(3)) assert(get_next_states( 1)(4) === 1.U(plru.nBits.W), s"get_next_state state=01 way=4: expected=01 actual=%d", get_next_states( 1)(4)) assert(get_next_states( 2)(0) === 15.U(plru.nBits.W), s"get_next_state state=02 way=0: expected=15 actual=%d", get_next_states( 2)(0)) assert(get_next_states( 2)(1) === 14.U(plru.nBits.W), s"get_next_state state=02 way=1: expected=14 actual=%d", get_next_states( 2)(1)) assert(get_next_states( 2)(2) === 10.U(plru.nBits.W), s"get_next_state state=02 way=2: expected=10 actual=%d", get_next_states( 2)(2)) assert(get_next_states( 2)(3) === 8.U(plru.nBits.W), s"get_next_state state=02 way=3: expected=08 actual=%d", get_next_states( 2)(3)) assert(get_next_states( 2)(4) === 2.U(plru.nBits.W), s"get_next_state state=02 way=4: expected=02 actual=%d", get_next_states( 2)(4)) assert(get_next_states( 3)(0) === 15.U(plru.nBits.W), s"get_next_state state=03 way=0: expected=15 actual=%d", get_next_states( 3)(0)) assert(get_next_states( 3)(1) === 14.U(plru.nBits.W), s"get_next_state state=03 way=1: expected=14 actual=%d", get_next_states( 3)(1)) assert(get_next_states( 3)(2) === 11.U(plru.nBits.W), s"get_next_state state=03 way=2: expected=11 actual=%d", get_next_states( 3)(2)) assert(get_next_states( 3)(3) === 9.U(plru.nBits.W), s"get_next_state state=03 way=3: expected=09 actual=%d", get_next_states( 3)(3)) assert(get_next_states( 3)(4) === 3.U(plru.nBits.W), s"get_next_state state=03 way=4: expected=03 actual=%d", get_next_states( 3)(4)) assert(get_next_states( 4)(0) === 13.U(plru.nBits.W), s"get_next_state state=04 way=0: expected=13 actual=%d", get_next_states( 4)(0)) assert(get_next_states( 4)(1) === 12.U(plru.nBits.W), s"get_next_state state=04 way=1: expected=12 actual=%d", get_next_states( 4)(1)) assert(get_next_states( 4)(2) === 10.U(plru.nBits.W), s"get_next_state state=04 way=2: expected=10 actual=%d", get_next_states( 4)(2)) assert(get_next_states( 4)(3) === 8.U(plru.nBits.W), s"get_next_state state=04 way=3: expected=08 actual=%d", get_next_states( 4)(3)) assert(get_next_states( 4)(4) === 4.U(plru.nBits.W), s"get_next_state state=04 way=4: expected=04 actual=%d", get_next_states( 4)(4)) assert(get_next_states( 5)(0) === 13.U(plru.nBits.W), s"get_next_state state=05 way=0: expected=13 actual=%d", get_next_states( 5)(0)) assert(get_next_states( 5)(1) === 12.U(plru.nBits.W), s"get_next_state state=05 way=1: expected=12 actual=%d", get_next_states( 5)(1)) assert(get_next_states( 5)(2) === 11.U(plru.nBits.W), s"get_next_state state=05 way=2: expected=11 actual=%d", get_next_states( 5)(2)) assert(get_next_states( 5)(3) === 9.U(plru.nBits.W), s"get_next_state state=05 way=3: expected=09 actual=%d", get_next_states( 5)(3)) assert(get_next_states( 5)(4) === 5.U(plru.nBits.W), s"get_next_state state=05 way=4: expected=05 actual=%d", get_next_states( 5)(4)) assert(get_next_states( 6)(0) === 15.U(plru.nBits.W), s"get_next_state state=06 way=0: expected=15 actual=%d", get_next_states( 6)(0)) assert(get_next_states( 6)(1) === 14.U(plru.nBits.W), s"get_next_state state=06 way=1: expected=14 actual=%d", get_next_states( 6)(1)) assert(get_next_states( 6)(2) === 10.U(plru.nBits.W), s"get_next_state state=06 way=2: expected=10 actual=%d", get_next_states( 6)(2)) assert(get_next_states( 6)(3) === 8.U(plru.nBits.W), s"get_next_state state=06 way=3: expected=08 actual=%d", get_next_states( 6)(3)) assert(get_next_states( 6)(4) === 6.U(plru.nBits.W), s"get_next_state state=06 way=4: expected=06 actual=%d", get_next_states( 6)(4)) assert(get_next_states( 7)(0) === 15.U(plru.nBits.W), s"get_next_state state=07 way=0: expected=15 actual=%d", get_next_states( 7)(0)) assert(get_next_states( 7)(1) === 14.U(plru.nBits.W), s"get_next_state state=07 way=5: expected=14 actual=%d", get_next_states( 7)(1)) assert(get_next_states( 7)(2) === 11.U(plru.nBits.W), s"get_next_state state=07 way=2: expected=11 actual=%d", get_next_states( 7)(2)) assert(get_next_states( 7)(3) === 9.U(plru.nBits.W), s"get_next_state state=07 way=3: expected=09 actual=%d", get_next_states( 7)(3)) assert(get_next_states( 7)(4) === 7.U(plru.nBits.W), s"get_next_state state=07 way=4: expected=07 actual=%d", get_next_states( 7)(4)) assert(get_next_states( 8)(0) === 13.U(plru.nBits.W), s"get_next_state state=08 way=0: expected=13 actual=%d", get_next_states( 8)(0)) assert(get_next_states( 8)(1) === 12.U(plru.nBits.W), s"get_next_state state=08 way=1: expected=12 actual=%d", get_next_states( 8)(1)) assert(get_next_states( 8)(2) === 10.U(plru.nBits.W), s"get_next_state state=08 way=2: expected=10 actual=%d", get_next_states( 8)(2)) assert(get_next_states( 8)(3) === 8.U(plru.nBits.W), s"get_next_state state=08 way=3: expected=08 actual=%d", get_next_states( 8)(3)) assert(get_next_states( 8)(4) === 0.U(plru.nBits.W), s"get_next_state state=08 way=4: expected=00 actual=%d", get_next_states( 8)(4)) assert(get_next_states( 9)(0) === 13.U(plru.nBits.W), s"get_next_state state=09 way=0: expected=13 actual=%d", get_next_states( 9)(0)) assert(get_next_states( 9)(1) === 12.U(plru.nBits.W), s"get_next_state state=09 way=1: expected=12 actual=%d", get_next_states( 9)(1)) assert(get_next_states( 9)(2) === 11.U(plru.nBits.W), s"get_next_state state=09 way=2: expected=11 actual=%d", get_next_states( 9)(2)) assert(get_next_states( 9)(3) === 9.U(plru.nBits.W), s"get_next_state state=09 way=3: expected=09 actual=%d", get_next_states( 9)(3)) assert(get_next_states( 9)(4) === 1.U(plru.nBits.W), s"get_next_state state=09 way=4: expected=01 actual=%d", get_next_states( 9)(4)) assert(get_next_states(10)(0) === 15.U(plru.nBits.W), s"get_next_state state=10 way=0: expected=15 actual=%d", get_next_states(10)(0)) assert(get_next_states(10)(1) === 14.U(plru.nBits.W), s"get_next_state state=10 way=1: expected=14 actual=%d", get_next_states(10)(1)) assert(get_next_states(10)(2) === 10.U(plru.nBits.W), s"get_next_state state=10 way=2: expected=10 actual=%d", get_next_states(10)(2)) assert(get_next_states(10)(3) === 8.U(plru.nBits.W), s"get_next_state state=10 way=3: expected=08 actual=%d", get_next_states(10)(3)) assert(get_next_states(10)(4) === 2.U(plru.nBits.W), s"get_next_state state=10 way=4: expected=02 actual=%d", get_next_states(10)(4)) assert(get_next_states(11)(0) === 15.U(plru.nBits.W), s"get_next_state state=11 way=0: expected=15 actual=%d", get_next_states(11)(0)) assert(get_next_states(11)(1) === 14.U(plru.nBits.W), s"get_next_state state=11 way=1: expected=14 actual=%d", get_next_states(11)(1)) assert(get_next_states(11)(2) === 11.U(plru.nBits.W), s"get_next_state state=11 way=2: expected=11 actual=%d", get_next_states(11)(2)) assert(get_next_states(11)(3) === 9.U(plru.nBits.W), s"get_next_state state=11 way=3: expected=09 actual=%d", get_next_states(11)(3)) assert(get_next_states(11)(4) === 3.U(plru.nBits.W), s"get_next_state state=11 way=4: expected=03 actual=%d", get_next_states(11)(4)) assert(get_next_states(12)(0) === 13.U(plru.nBits.W), s"get_next_state state=12 way=0: expected=13 actual=%d", get_next_states(12)(0)) assert(get_next_states(12)(1) === 12.U(plru.nBits.W), s"get_next_state state=12 way=1: expected=12 actual=%d", get_next_states(12)(1)) assert(get_next_states(12)(2) === 10.U(plru.nBits.W), s"get_next_state state=12 way=2: expected=10 actual=%d", get_next_states(12)(2)) assert(get_next_states(12)(3) === 8.U(plru.nBits.W), s"get_next_state state=12 way=3: expected=08 actual=%d", get_next_states(12)(3)) assert(get_next_states(12)(4) === 4.U(plru.nBits.W), s"get_next_state state=12 way=4: expected=04 actual=%d", get_next_states(12)(4)) assert(get_next_states(13)(0) === 13.U(plru.nBits.W), s"get_next_state state=13 way=0: expected=13 actual=%d", get_next_states(13)(0)) assert(get_next_states(13)(1) === 12.U(plru.nBits.W), s"get_next_state state=13 way=1: expected=12 actual=%d", get_next_states(13)(1)) assert(get_next_states(13)(2) === 11.U(plru.nBits.W), s"get_next_state state=13 way=2: expected=11 actual=%d", get_next_states(13)(2)) assert(get_next_states(13)(3) === 9.U(plru.nBits.W), s"get_next_state state=13 way=3: expected=09 actual=%d", get_next_states(13)(3)) assert(get_next_states(13)(4) === 5.U(plru.nBits.W), s"get_next_state state=13 way=4: expected=05 actual=%d", get_next_states(13)(4)) assert(get_next_states(14)(0) === 15.U(plru.nBits.W), s"get_next_state state=14 way=0: expected=15 actual=%d", get_next_states(14)(0)) assert(get_next_states(14)(1) === 14.U(plru.nBits.W), s"get_next_state state=14 way=1: expected=14 actual=%d", get_next_states(14)(1)) assert(get_next_states(14)(2) === 10.U(plru.nBits.W), s"get_next_state state=14 way=2: expected=10 actual=%d", get_next_states(14)(2)) assert(get_next_states(14)(3) === 8.U(plru.nBits.W), s"get_next_state state=14 way=3: expected=08 actual=%d", get_next_states(14)(3)) assert(get_next_states(14)(4) === 6.U(plru.nBits.W), s"get_next_state state=14 way=4: expected=06 actual=%d", get_next_states(14)(4)) assert(get_next_states(15)(0) === 15.U(plru.nBits.W), s"get_next_state state=15 way=0: expected=15 actual=%d", get_next_states(15)(0)) assert(get_next_states(15)(1) === 14.U(plru.nBits.W), s"get_next_state state=15 way=5: expected=14 actual=%d", get_next_states(15)(1)) assert(get_next_states(15)(2) === 11.U(plru.nBits.W), s"get_next_state state=15 way=2: expected=11 actual=%d", get_next_states(15)(2)) assert(get_next_states(15)(3) === 9.U(plru.nBits.W), s"get_next_state state=15 way=3: expected=09 actual=%d", get_next_states(15)(3)) assert(get_next_states(15)(4) === 7.U(plru.nBits.W), s"get_next_state state=15 way=4: expected=07 actual=%d", get_next_states(15)(4)) } case 6 => { assert(get_replace_ways( 0) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=00: expected=0 actual=%d", get_replace_ways( 0)) assert(get_replace_ways( 1) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=01: expected=1 actual=%d", get_replace_ways( 1)) assert(get_replace_ways( 2) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=02: expected=0 actual=%d", get_replace_ways( 2)) assert(get_replace_ways( 3) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=03: expected=1 actual=%d", get_replace_ways( 3)) assert(get_replace_ways( 4) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=04: expected=2 actual=%d", get_replace_ways( 4)) assert(get_replace_ways( 5) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=05: expected=2 actual=%d", get_replace_ways( 5)) assert(get_replace_ways( 6) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=06: expected=3 actual=%d", get_replace_ways( 6)) assert(get_replace_ways( 7) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=07: expected=3 actual=%d", get_replace_ways( 7)) assert(get_replace_ways( 8) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=08: expected=0 actual=%d", get_replace_ways( 8)) assert(get_replace_ways( 9) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=09: expected=1 actual=%d", get_replace_ways( 9)) assert(get_replace_ways(10) === 0.U(log2Ceil(n_ways).W), s"get_replace_way state=10: expected=0 actual=%d", get_replace_ways(10)) assert(get_replace_ways(11) === 1.U(log2Ceil(n_ways).W), s"get_replace_way state=11: expected=1 actual=%d", get_replace_ways(11)) assert(get_replace_ways(12) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=12: expected=2 actual=%d", get_replace_ways(12)) assert(get_replace_ways(13) === 2.U(log2Ceil(n_ways).W), s"get_replace_way state=13: expected=2 actual=%d", get_replace_ways(13)) assert(get_replace_ways(14) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=14: expected=3 actual=%d", get_replace_ways(14)) assert(get_replace_ways(15) === 3.U(log2Ceil(n_ways).W), s"get_replace_way state=15: expected=3 actual=%d", get_replace_ways(15)) assert(get_replace_ways(16) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=16: expected=4 actual=%d", get_replace_ways(16)) assert(get_replace_ways(17) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=17: expected=4 actual=%d", get_replace_ways(17)) assert(get_replace_ways(18) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=18: expected=4 actual=%d", get_replace_ways(18)) assert(get_replace_ways(19) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=19: expected=4 actual=%d", get_replace_ways(19)) assert(get_replace_ways(20) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=20: expected=4 actual=%d", get_replace_ways(20)) assert(get_replace_ways(21) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=21: expected=4 actual=%d", get_replace_ways(21)) assert(get_replace_ways(22) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=22: expected=4 actual=%d", get_replace_ways(22)) assert(get_replace_ways(23) === 4.U(log2Ceil(n_ways).W), s"get_replace_way state=23: expected=4 actual=%d", get_replace_ways(23)) assert(get_replace_ways(24) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=24: expected=5 actual=%d", get_replace_ways(24)) assert(get_replace_ways(25) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=25: expected=5 actual=%d", get_replace_ways(25)) assert(get_replace_ways(26) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=26: expected=5 actual=%d", get_replace_ways(26)) assert(get_replace_ways(27) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=27: expected=5 actual=%d", get_replace_ways(27)) assert(get_replace_ways(28) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=28: expected=5 actual=%d", get_replace_ways(28)) assert(get_replace_ways(29) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=29: expected=5 actual=%d", get_replace_ways(29)) assert(get_replace_ways(30) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=30: expected=5 actual=%d", get_replace_ways(30)) assert(get_replace_ways(31) === 5.U(log2Ceil(n_ways).W), s"get_replace_way state=31: expected=5 actual=%d", get_replace_ways(31)) } case _ => throw new IllegalArgumentException(s"no test pattern found for n_ways=$n_ways") } } File HellaCache.scala: // See LICENSE.SiFive for license details. // See LICENSE.Berkeley for license details. package freechips.rocketchip.rocket import chisel3.{dontTouch, _} import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.bundlebridge._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.amba.AMBAProtField import freechips.rocketchip.diplomacy.{IdRange, TransferSizes, RegionType} import freechips.rocketchip.tile.{L1CacheParams, HasL1CacheParameters, HasCoreParameters, CoreBundle, HasNonDiplomaticTileParameters, BaseTile, HasTileParameters} import freechips.rocketchip.tilelink.{TLMasterParameters, TLClientNode, TLMasterPortParameters, TLEdgeOut, TLWidthWidget, TLFIFOFixer, ClientMetadata} import freechips.rocketchip.util.{Code, RandomReplacement, ParameterizedBundle} import freechips.rocketchip.util.{BooleanToAugmentedBoolean, IntToAugmentedInt} import scala.collection.mutable.ListBuffer case class DCacheParams( nSets: Int = 64, nWays: Int = 4, rowBits: Int = 64, subWordBits: Option[Int] = None, replacementPolicy: String = "random", nTLBSets: Int = 1, nTLBWays: Int = 32, nTLBBasePageSectors: Int = 4, nTLBSuperpages: Int = 4, tagECC: Option[String] = None, dataECC: Option[String] = None, dataECCBytes: Int = 1, nMSHRs: Int = 1, nSDQ: Int = 17, nRPQ: Int = 16, nMMIOs: Int = 1, blockBytes: Int = 64, separateUncachedResp: Boolean = false, acquireBeforeRelease: Boolean = false, pipelineWayMux: Boolean = false, clockGate: Boolean = false, scratch: Option[BigInt] = None) extends L1CacheParams { def tagCode: Code = Code.fromString(tagECC) def dataCode: Code = Code.fromString(dataECC) def dataScratchpadBytes: Int = scratch.map(_ => nSets*blockBytes).getOrElse(0) def replacement = new RandomReplacement(nWays) def silentDrop: Boolean = !acquireBeforeRelease require((!scratch.isDefined || nWays == 1), "Scratchpad only allowed in direct-mapped cache.") require((!scratch.isDefined || nMSHRs == 0), "Scratchpad only allowed in blocking cache.") if (scratch.isEmpty) require(isPow2(nSets), s"nSets($nSets) must be pow2") } trait HasL1HellaCacheParameters extends HasL1CacheParameters with HasCoreParameters { val cacheParams = tileParams.dcache.get val cfg = cacheParams def wordBits = coreDataBits def wordBytes = coreDataBytes def subWordBits = cacheParams.subWordBits.getOrElse(wordBits) def subWordBytes = subWordBits / 8 def wordOffBits = log2Up(wordBytes) def beatBytes = cacheBlockBytes / cacheDataBeats def beatWords = beatBytes / wordBytes def beatOffBits = log2Up(beatBytes) def idxMSB = untagBits-1 def idxLSB = blockOffBits def offsetmsb = idxLSB-1 def offsetlsb = wordOffBits def rowWords = rowBits/wordBits def doNarrowRead = coreDataBits * nWays % rowBits == 0 def eccBytes = cacheParams.dataECCBytes val eccBits = cacheParams.dataECCBytes * 8 val encBits = cacheParams.dataCode.width(eccBits) val encWordBits = encBits * (wordBits / eccBits) def encDataBits = cacheParams.dataCode.width(coreDataBits) // NBDCache only def encRowBits = encDataBits*rowWords def lrscCycles = coreParams.lrscCycles // ISA requires 16-insn LRSC sequences to succeed def lrscBackoff = 3 // disallow LRSC reacquisition briefly def blockProbeAfterGrantCycles = 8 // give the processor some time to issue a request after a grant def nIOMSHRs = cacheParams.nMMIOs def maxUncachedInFlight = cacheParams.nMMIOs def dataScratchpadSize = cacheParams.dataScratchpadBytes require(rowBits >= coreDataBits, s"rowBits($rowBits) < coreDataBits($coreDataBits)") if (!usingDataScratchpad) require(rowBits == cacheDataBits, s"rowBits($rowBits) != cacheDataBits($cacheDataBits)") // would need offset addr for puts if data width < xlen require(xLen <= cacheDataBits, s"xLen($xLen) > cacheDataBits($cacheDataBits)") } abstract class L1HellaCacheModule(implicit val p: Parameters) extends Module with HasL1HellaCacheParameters abstract class L1HellaCacheBundle(implicit val p: Parameters) extends ParameterizedBundle()(p) with HasL1HellaCacheParameters /** Bundle definitions for HellaCache interfaces */ trait HasCoreMemOp extends HasL1HellaCacheParameters { val addr = UInt(coreMaxAddrBits.W) val idx = (usingVM && untagBits > pgIdxBits).option(UInt(coreMaxAddrBits.W)) val tag = UInt((coreParams.dcacheReqTagBits + log2Ceil(dcacheArbPorts)).W) val cmd = UInt(M_SZ.W) val size = UInt(log2Ceil(coreDataBytes.log2 + 1).W) val signed = Bool() val dprv = UInt(PRV.SZ.W) val dv = Bool() } trait HasCoreData extends HasCoreParameters { val data = UInt(coreDataBits.W) val mask = UInt(coreDataBytes.W) } class HellaCacheReqInternal(implicit p: Parameters) extends CoreBundle()(p) with HasCoreMemOp { val phys = Bool() val no_resp = Bool() // The dcache may omit generating a response for this request val no_alloc = Bool() val no_xcpt = Bool() } class HellaCacheReq(implicit p: Parameters) extends HellaCacheReqInternal()(p) with HasCoreData class HellaCacheResp(implicit p: Parameters) extends CoreBundle()(p) with HasCoreMemOp with HasCoreData { val replay = Bool() val has_data = Bool() val data_word_bypass = UInt(coreDataBits.W) val data_raw = UInt(coreDataBits.W) val store_data = UInt(coreDataBits.W) } class AlignmentExceptions extends Bundle { val ld = Bool() val st = Bool() } class HellaCacheExceptions extends Bundle { val ma = new AlignmentExceptions val pf = new AlignmentExceptions val gf = new AlignmentExceptions val ae = new AlignmentExceptions } class HellaCacheWriteData(implicit p: Parameters) extends CoreBundle()(p) with HasCoreData class HellaCachePerfEvents extends Bundle { val acquire = Bool() val release = Bool() val grant = Bool() val tlbMiss = Bool() val blocked = Bool() val canAcceptStoreThenLoad = Bool() val canAcceptStoreThenRMW = Bool() val canAcceptLoadThenLoad = Bool() val storeBufferEmptyAfterLoad = Bool() val storeBufferEmptyAfterStore = Bool() } // interface between D$ and processor/DTLB class HellaCacheIO(implicit p: Parameters) extends CoreBundle()(p) { val req = Decoupled(new HellaCacheReq) val s1_kill = Output(Bool()) // kill previous cycle's req val s1_data = Output(new HellaCacheWriteData()) // data for previous cycle's req val s2_nack = Input(Bool()) // req from two cycles ago is rejected val s2_nack_cause_raw = Input(Bool()) // reason for nack is store-load RAW hazard (performance hint) val s2_kill = Output(Bool()) // kill req from two cycles ago val s2_uncached = Input(Bool()) // advisory signal that the access is MMIO val s2_paddr = Input(UInt(paddrBits.W)) // translated address val resp = Flipped(Valid(new HellaCacheResp)) val replay_next = Input(Bool()) val s2_xcpt = Input(new HellaCacheExceptions) val s2_gpa = Input(UInt(vaddrBitsExtended.W)) val s2_gpa_is_pte = Input(Bool()) val uncached_resp = tileParams.dcache.get.separateUncachedResp.option(Flipped(Decoupled(new HellaCacheResp))) val ordered = Input(Bool()) val store_pending = Input(Bool()) // there is a store in a store buffer somewhere val perf = Input(new HellaCachePerfEvents()) val keep_clock_enabled = Output(Bool()) // should D$ avoid clock-gating itself? val clock_enabled = Input(Bool()) // is D$ currently being clocked? } /** Base classes for Diplomatic TL2 HellaCaches */ abstract class HellaCache(tileId: Int)(implicit p: Parameters) extends LazyModule with HasNonDiplomaticTileParameters { protected val cfg = tileParams.dcache.get protected def cacheClientParameters = cfg.scratch.map(x => Seq()).getOrElse(Seq(TLMasterParameters.v1( name = s"Core ${tileId} DCache", sourceId = IdRange(0, 1 max cfg.nMSHRs), supportsProbe = TransferSizes(cfg.blockBytes, cfg.blockBytes)))) protected def mmioClientParameters = Seq(TLMasterParameters.v1( name = s"Core ${tileId} DCache MMIO", sourceId = IdRange(firstMMIO, firstMMIO + cfg.nMMIOs), requestFifo = true)) def firstMMIO = (cacheClientParameters.map(_.sourceId.end) :+ 0).max val node = TLClientNode(Seq(TLMasterPortParameters.v1( clients = cacheClientParameters ++ mmioClientParameters, minLatency = 1, requestFields = tileParams.core.useVM.option(Seq()).getOrElse(Seq(AMBAProtField()))))) val hartIdSinkNodeOpt = cfg.scratch.map(_ => BundleBridgeSink[UInt]()) val mmioAddressPrefixSinkNodeOpt = cfg.scratch.map(_ => BundleBridgeSink[UInt]()) val module: HellaCacheModule def flushOnFenceI = cfg.scratch.isEmpty && !node.edges.out(0).manager.managers.forall(m => !m.supportsAcquireB || !m.executable || m.regionType >= RegionType.TRACKED || m.regionType <= RegionType.IDEMPOTENT) def canSupportCFlushLine = !usingVM || cfg.blockBytes * cfg.nSets <= (1 << pgIdxBits) require(!tileParams.core.haveCFlush || cfg.scratch.isEmpty, "CFLUSH_D_L1 instruction requires a D$") } class HellaCacheBundle(implicit p: Parameters) extends CoreBundle()(p) { val cpu = Flipped(new HellaCacheIO) val ptw = new TLBPTWIO() val errors = new DCacheErrors val tlb_port = new DCacheTLBPort } class HellaCacheModule(outer: HellaCache) extends LazyModuleImp(outer) with HasL1HellaCacheParameters { implicit val edge: TLEdgeOut = outer.node.edges.out(0) val (tl_out, _) = outer.node.out(0) val io = IO(new HellaCacheBundle) val io_hartid = outer.hartIdSinkNodeOpt.map(_.bundle) val io_mmio_address_prefix = outer.mmioAddressPrefixSinkNodeOpt.map(_.bundle) dontTouch(io.cpu.resp) // Users like to monitor these fields even if the core ignores some signals dontTouch(io.cpu.s1_data) require(rowBits == edge.bundle.dataBits) private val fifoManagers = edge.manager.managers.filter(TLFIFOFixer.allVolatile) fifoManagers.foreach { m => require (m.fifoId == fifoManagers.head.fifoId, s"IOMSHRs must be FIFO for all regions with effects, but HellaCache sees\n"+ s"${m.nodePath.map(_.name)}\nversus\n${fifoManagers.head.nodePath.map(_.name)}") } } /** Support overriding which HellaCache is instantiated */ case object BuildHellaCache extends Field[BaseTile => Parameters => HellaCache](HellaCacheFactory.apply) object HellaCacheFactory { def apply(tile: BaseTile)(p: Parameters): HellaCache = { if (tile.tileParams.dcache.get.nMSHRs == 0) new DCache(tile.tileId, tile.crossing)(p) else new NonBlockingDCache(tile.tileId)(p) } } /** Mix-ins for constructing tiles that have a HellaCache */ trait HasHellaCache { this: BaseTile => val module: HasHellaCacheModule implicit val p: Parameters var nDCachePorts = 0 lazy val dcache: HellaCache = LazyModule(p(BuildHellaCache)(this)(p)) tlMasterXbar.node := TLWidthWidget(tileParams.dcache.get.rowBits/8) := dcache.node dcache.hartIdSinkNodeOpt.map { _ := hartIdNexusNode } dcache.mmioAddressPrefixSinkNodeOpt.map { _ := mmioAddressPrefixNexusNode } InModuleBody { dcache.module.io.tlb_port := DontCare } } trait HasHellaCacheModule { val outer: HasHellaCache with HasTileParameters implicit val p: Parameters val dcachePorts = ListBuffer[HellaCacheIO]() val dcacheArb = Module(new HellaCacheArbiter(outer.nDCachePorts)(outer.p)) outer.dcache.module.io.cpu <> dcacheArb.io.mem } /** Metadata array used for all HellaCaches */ class L1Metadata(implicit p: Parameters) extends L1HellaCacheBundle()(p) { val coh = new ClientMetadata val tag = UInt(tagBits.W) } object L1Metadata { def apply(tag: Bits, coh: ClientMetadata)(implicit p: Parameters) = { val meta = Wire(new L1Metadata) meta.tag := tag meta.coh := coh meta } } class L1MetaReadReq(implicit p: Parameters) extends L1HellaCacheBundle()(p) { val idx = UInt(idxBits.W) val way_en = UInt(nWays.W) val tag = UInt(tagBits.W) } class L1MetaWriteReq(implicit p: Parameters) extends L1MetaReadReq()(p) { val data = new L1Metadata } class L1MetadataArray[T <: L1Metadata](onReset: () => T)(implicit p: Parameters) extends L1HellaCacheModule()(p) { val rstVal = onReset() val io = IO(new Bundle { val read = Flipped(Decoupled(new L1MetaReadReq)) val write = Flipped(Decoupled(new L1MetaWriteReq)) val resp = Output(Vec(nWays, rstVal.cloneType)) }) val rst_cnt = RegInit(0.U(log2Up(nSets+1).W)) val rst = rst_cnt < nSets.U val waddr = Mux(rst, rst_cnt, io.write.bits.idx) val wdata = Mux(rst, rstVal, io.write.bits.data).asUInt val wmask = Mux(rst || (nWays == 1).B, (-1).S, io.write.bits.way_en.asSInt).asBools val rmask = Mux(rst || (nWays == 1).B, (-1).S, io.read.bits.way_en.asSInt).asBools when (rst) { rst_cnt := rst_cnt+1.U } val metabits = rstVal.getWidth val tag_array = SyncReadMem(nSets, Vec(nWays, UInt(metabits.W))) val wen = rst || io.write.valid when (wen) { tag_array.write(waddr, VecInit.fill(nWays)(wdata), wmask) } io.resp := tag_array.read(io.read.bits.idx, io.read.fire).map(_.asTypeOf(chiselTypeOf(rstVal))) io.read.ready := !wen // so really this could be a 6T RAM io.write.ready := !rst } File ECC.scala: // See LICENSE.Berkeley for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR abstract class Decoding { def uncorrected: UInt def corrected: UInt def correctable: Bool def uncorrectable: Bool // If true, correctable should be ignored def error = correctable || uncorrectable } abstract class Code { def canDetect: Boolean def canCorrect: Boolean def width(w0: Int): Int /** Takes the unencoded width and returns a list of indices indicating which * bits of the encoded value will be used for ecc */ def eccIndices(width: Int): Seq[Int] /** Encode x to a codeword suitable for decode. * If poison is true, the decoded value will report uncorrectable * error despite uncorrected == corrected == x. */ def encode(x: UInt, poison: Bool = false.B): UInt def decode(x: UInt): Decoding /** Copy the bits in x to the right bit positions in an encoded word, * so that x === decode(swizzle(x)).uncorrected; but don't generate * the other code bits, so decode(swizzle(x)).error might be true. * For codes for which this operation is not trivial, throw an * UnsupportedOperationException. */ def swizzle(x: UInt): UInt } class IdentityCode extends Code { def canDetect = false def canCorrect = false def width(w0: Int) = w0 def eccIndices(width: Int) = Seq.empty[Int] def encode(x: UInt, poison: Bool = false.B) = { require (poison.isLit && poison.litValue == 0, "IdentityCode can not be poisoned") x } def swizzle(x: UInt) = x def decode(y: UInt) = new Decoding { def uncorrected = y def corrected = y def correctable = false.B def uncorrectable = false.B } } class ParityCode extends Code { def canDetect = true def canCorrect = false def width(w0: Int) = w0+1 def eccIndices(w0: Int) = Seq(w0) def encode(x: UInt, poison: Bool = false.B) = Cat(x.xorR ^ poison, x) def swizzle(x: UInt) = Cat(false.B, x) def decode(y: UInt) = new Decoding { val uncorrected = y(y.getWidth-2,0) val corrected = uncorrected val correctable = false.B val uncorrectable = y.xorR } } class SECCode extends Code { def canDetect = true def canCorrect = true // SEC codes may or may not be poisonous depending on the length // If the code is perfect, every non-codeword is correctable def poisonous(n: Int) = !isPow2(n+1) def width(k: Int) = { val m = log2Floor(k) + 1 k + m + (if((1 << m) < m+k+1) 1 else 0) } def eccIndices(w0: Int) = { (0 until width(w0)).collect { case i if i >= w0 => i } } def swizzle(x: UInt) = { val k = x.getWidth val n = width(k) Cat(0.U((n-k).W), x) } // An (n=16, k=11) Hamming code is naturally encoded as: // PPxPxxxPxxxxxxxP where P are parity bits and x are data // Indexes typically start at 1, because then the P are on powers of two // In systematic coding, you put all the data in the front: // xxxxxxxxxxxPPPPP // Indexes typically start at 0, because Computer Science // For sanity when reading SRAMs, you want systematic form. private def impl(n: Int, k: Int) = { require (n >= 3 && k >= 1 && !isPow2(n)) val hamm2sys = IndexedSeq.tabulate(n+1) { i => if (i == 0) { n /* undefined */ } else if (isPow2(i)) { k + log2Ceil(i) } else { i - 1 - log2Ceil(i) } } val sys2hamm = hamm2sys.zipWithIndex.sortBy(_._1).map(_._2).toIndexedSeq def syndrome(j: Int) = { val bit = 1 << j ("b" + Seq.tabulate(n) { i => if ((sys2hamm(i) & bit) != 0) "1" else "0" }.reverse.mkString).U } (hamm2sys, sys2hamm, syndrome _) } def encode(x: UInt, poison: Bool = false.B) = { val k = x.getWidth val n = width(k) val (_, _, syndrome) = impl(n, k) require ((poison.isLit && poison.litValue == 0) || poisonous(n), s"SEC code of length ${n} cannot be poisoned") /* By setting the entire syndrome on poison, the corrected bit falls off the end of the code */ val syndromeUInt = VecInit.tabulate(n-k) { j => (syndrome(j)(k-1, 0) & x).xorR ^ poison }.asUInt Cat(syndromeUInt, x) } def decode(y: UInt) = new Decoding { val n = y.getWidth val k = n - log2Ceil(n) val (_, sys2hamm, syndrome) = impl(n, k) val syndromeUInt = VecInit.tabulate(n-k) { j => (syndrome(j) & y).xorR }.asUInt val hammBadBitOH = UIntToOH(syndromeUInt, n+1) val sysBadBitOH = VecInit.tabulate(k) { i => hammBadBitOH(sys2hamm(i)) }.asUInt val uncorrected = y(k-1, 0) val corrected = uncorrected ^ sysBadBitOH val correctable = syndromeUInt.orR val uncorrectable = if (poisonous(n)) { syndromeUInt > n.U } else { false.B } } } class SECDEDCode extends Code { def canDetect = true def canCorrect = true private val sec = new SECCode private val par = new ParityCode def width(k: Int) = sec.width(k)+1 def eccIndices(w0: Int) = { (0 until width(w0)).collect { case i if i >= w0 => i } } def encode(x: UInt, poison: Bool = false.B) = { // toggling two bits ensures the error is uncorrectable // to ensure corrected == uncorrected, we pick one redundant // bit from SEC (the highest); correcting it does not affect // corrected == uncorrected. the second toggled bit is the // parity bit, which also does not appear in the decoding val toggle_lo = Cat(poison.asUInt, poison.asUInt) val toggle_hi = toggle_lo << (sec.width(x.getWidth)-1) par.encode(sec.encode(x)) ^ toggle_hi } def swizzle(x: UInt) = par.swizzle(sec.swizzle(x)) def decode(x: UInt) = new Decoding { val secdec = sec.decode(x(x.getWidth-2,0)) val pardec = par.decode(x) val uncorrected = secdec.uncorrected val corrected = secdec.corrected val correctable = pardec.uncorrectable val uncorrectable = !pardec.uncorrectable && secdec.correctable } } object ErrGen { // generate a 1-bit error with approximate probability 2^-f def apply(width: Int, f: Int): UInt = { require(width > 0 && f >= 0 && log2Up(width) + f <= 16) UIntToOH(LFSR(16)(log2Up(width)+f-1,0))(width-1,0) } def apply(x: UInt, f: Int): UInt = x ^ apply(x.getWidth, f) } trait CanHaveErrors extends Bundle { val correctable: Option[ValidIO[UInt]] val uncorrectable: Option[ValidIO[UInt]] } case class ECCParams( bytes: Int = 1, code: Code = new IdentityCode, notifyErrors: Boolean = false, ) object Code { def fromString(s: Option[String]): Code = fromString(s.getOrElse("none")) def fromString(s: String): Code = s.toLowerCase match { case "none" => new IdentityCode case "identity" => new IdentityCode case "parity" => new ParityCode case "sec" => new SECCode case "secded" => new SECDEDCode case _ => throw new IllegalArgumentException("Unknown ECC type") } } // Synthesizable unit tests import freechips.rocketchip.unittest._ class ECCTest(k: Int, timeout: Int = 500000) extends UnitTest(timeout) { val code = new SECDEDCode val n = code.width(k) // Brute force the decode space val test = RegInit(0.U((n+1).W)) val last = test(n) test := test + !last io.finished := RegNext(last, false.B) // Confirm the decoding matches the encoding val decoded = code.decode(test(n-1, 0)) val recoded = code.encode(decoded.corrected) val distance = PopCount(recoded ^ test) // Count the cases val correct = RegInit(0.U(n.W)) val correctable = RegInit(0.U(n.W)) val uncorrectable = RegInit(0.U(n.W)) when (!last) { when (decoded.uncorrectable) { assert (distance >= 2.U) // uncorrectable uncorrectable := uncorrectable + 1.U } .elsewhen (decoded.correctable) { assert (distance(0)) // correctable => odd bit errors correctable := correctable + 1.U } .otherwise { assert (distance === 0.U) // correct assert (decoded.uncorrected === decoded.corrected) correct := correct + 1.U } } // Expected number of each case val nCodes = BigInt(1) << n val nCorrect = BigInt(1) << k val nCorrectable = nCodes / 2 val nUncorrectable = nCodes - nCorrectable - nCorrect when (last) { assert (correct === nCorrect.U) assert (correctable === nCorrectable.U) assert (uncorrectable === nUncorrectable.U) } } File Consts.scala: // See LICENSE.Berkeley for license details. package freechips.rocketchip.rocket.constants import chisel3._ import chisel3.util._ import freechips.rocketchip.util._ trait ScalarOpConstants { val SZ_BR = 3 def BR_X = BitPat("b???") def BR_EQ = 0.U(3.W) def BR_NE = 1.U(3.W) def BR_J = 2.U(3.W) def BR_N = 3.U(3.W) def BR_LT = 4.U(3.W) def BR_GE = 5.U(3.W) def BR_LTU = 6.U(3.W) def BR_GEU = 7.U(3.W) def A1_X = BitPat("b??") def A1_ZERO = 0.U(2.W) def A1_RS1 = 1.U(2.W) def A1_PC = 2.U(2.W) def A1_RS1SHL = 3.U(2.W) def IMM_X = BitPat("b???") def IMM_S = 0.U(3.W) def IMM_SB = 1.U(3.W) def IMM_U = 2.U(3.W) def IMM_UJ = 3.U(3.W) def IMM_I = 4.U(3.W) def IMM_Z = 5.U(3.W) def A2_X = BitPat("b???") def A2_ZERO = 0.U(3.W) def A2_SIZE = 1.U(3.W) def A2_RS2 = 2.U(3.W) def A2_IMM = 3.U(3.W) def A2_RS2OH = 4.U(3.W) def A2_IMMOH = 5.U(3.W) def X = BitPat("b?") def N = BitPat("b0") def Y = BitPat("b1") val SZ_DW = 1 def DW_X = X def DW_32 = false.B def DW_64 = true.B def DW_XPR = DW_64 } trait MemoryOpConstants { val NUM_XA_OPS = 9 val M_SZ = 5 def M_X = BitPat("b?????"); def M_XRD = "b00000".U; // int load def M_XWR = "b00001".U; // int store def M_PFR = "b00010".U; // prefetch with intent to read def M_PFW = "b00011".U; // prefetch with intent to write def M_XA_SWAP = "b00100".U def M_FLUSH_ALL = "b00101".U // flush all lines def M_XLR = "b00110".U def M_XSC = "b00111".U def M_XA_ADD = "b01000".U def M_XA_XOR = "b01001".U def M_XA_OR = "b01010".U def M_XA_AND = "b01011".U def M_XA_MIN = "b01100".U def M_XA_MAX = "b01101".U def M_XA_MINU = "b01110".U def M_XA_MAXU = "b01111".U def M_FLUSH = "b10000".U // write back dirty data and cede R/W permissions def M_PWR = "b10001".U // partial (masked) store def M_PRODUCE = "b10010".U // write back dirty data and cede W permissions def M_CLEAN = "b10011".U // write back dirty data and retain R/W permissions def M_SFENCE = "b10100".U // SFENCE.VMA def M_HFENCEV = "b10101".U // HFENCE.VVMA def M_HFENCEG = "b10110".U // HFENCE.GVMA def M_WOK = "b10111".U // check write permissions but don't perform a write def M_HLVX = "b10000".U // HLVX instruction def isAMOLogical(cmd: UInt) = cmd.isOneOf(M_XA_SWAP, M_XA_XOR, M_XA_OR, M_XA_AND) def isAMOArithmetic(cmd: UInt) = cmd.isOneOf(M_XA_ADD, M_XA_MIN, M_XA_MAX, M_XA_MINU, M_XA_MAXU) def isAMO(cmd: UInt) = isAMOLogical(cmd) || isAMOArithmetic(cmd) def isPrefetch(cmd: UInt) = cmd === M_PFR || cmd === M_PFW def isRead(cmd: UInt) = cmd.isOneOf(M_XRD, M_HLVX, M_XLR, M_XSC) || isAMO(cmd) def isWrite(cmd: UInt) = cmd === M_XWR || cmd === M_PWR || cmd === M_XSC || isAMO(cmd) def isWriteIntent(cmd: UInt) = isWrite(cmd) || cmd === M_PFW || cmd === M_XLR } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File TLB.scala: // See LICENSE.SiFive for license details. // See LICENSE.Berkeley for license details. package freechips.rocketchip.rocket import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import freechips.rocketchip.devices.debug.DebugModuleKey import freechips.rocketchip.diplomacy.RegionType import freechips.rocketchip.subsystem.CacheBlockBytes import freechips.rocketchip.tile.{CoreModule, CoreBundle} import freechips.rocketchip.tilelink._ import freechips.rocketchip.util.{OptimizationBarrier, SetAssocLRU, PseudoLRU, PopCountAtLeast, property} import freechips.rocketchip.util.BooleanToAugmentedBoolean import freechips.rocketchip.util.IntToAugmentedInt import freechips.rocketchip.util.UIntToAugmentedUInt import freechips.rocketchip.util.UIntIsOneOf import freechips.rocketchip.util.SeqToAugmentedSeq import freechips.rocketchip.util.SeqBoolBitwiseOps case object ASIdBits extends Field[Int](0) case object VMIdBits extends Field[Int](0) /** =SFENCE= * rs1 rs2 * {{{ * 0 0 -> flush All * 0 1 -> flush by ASID * 1 1 -> flush by ADDR * 1 0 -> flush by ADDR and ASID * }}} * {{{ * If rs1=x0 and rs2=x0, the fence orders all reads and writes made to any level of the page tables, for all address spaces. * If rs1=x0 and rs2!=x0, the fence orders all reads and writes made to any level of the page tables, but only for the address space identified by integer register rs2. Accesses to global mappings (see Section 4.3.1) are not ordered. * If rs1!=x0 and rs2=x0, the fence orders only reads and writes made to the leaf page table entry corresponding to the virtual address in rs1, for all address spaces. * If rs1!=x0 and rs2!=x0, the fence orders only reads and writes made to the leaf page table entry corresponding to the virtual address in rs1, for the address space identified by integer register rs2. Accesses to global mappings are not ordered. * }}} */ class SFenceReq(implicit p: Parameters) extends CoreBundle()(p) { val rs1 = Bool() val rs2 = Bool() val addr = UInt(vaddrBits.W) val asid = UInt((asIdBits max 1).W) // TODO zero-width val hv = Bool() val hg = Bool() } class TLBReq(lgMaxSize: Int)(implicit p: Parameters) extends CoreBundle()(p) { /** request address from CPU. */ val vaddr = UInt(vaddrBitsExtended.W) /** don't lookup TLB, bypass vaddr as paddr */ val passthrough = Bool() /** granularity */ val size = UInt(log2Ceil(lgMaxSize + 1).W) /** memory command. */ val cmd = Bits(M_SZ.W) val prv = UInt(PRV.SZ.W) /** virtualization mode */ val v = Bool() } class TLBExceptions extends Bundle { val ld = Bool() val st = Bool() val inst = Bool() } class TLBResp(lgMaxSize: Int = 3)(implicit p: Parameters) extends CoreBundle()(p) { // lookup responses val miss = Bool() /** physical address */ val paddr = UInt(paddrBits.W) val gpa = UInt(vaddrBitsExtended.W) val gpa_is_pte = Bool() /** page fault exception */ val pf = new TLBExceptions /** guest page fault exception */ val gf = new TLBExceptions /** access exception */ val ae = new TLBExceptions /** misaligned access exception */ val ma = new TLBExceptions /** if this address is cacheable */ val cacheable = Bool() /** if caches must allocate this address */ val must_alloc = Bool() /** if this address is prefetchable for caches*/ val prefetchable = Bool() /** size/cmd of request that generated this response*/ val size = UInt(log2Ceil(lgMaxSize + 1).W) val cmd = UInt(M_SZ.W) } class TLBEntryData(implicit p: Parameters) extends CoreBundle()(p) { val ppn = UInt(ppnBits.W) /** pte.u user */ val u = Bool() /** pte.g global */ val g = Bool() /** access exception. * D$ -> PTW -> TLB AE * Alignment failed. */ val ae_ptw = Bool() val ae_final = Bool() val ae_stage2 = Bool() /** page fault */ val pf = Bool() /** guest page fault */ val gf = Bool() /** supervisor write */ val sw = Bool() /** supervisor execute */ val sx = Bool() /** supervisor read */ val sr = Bool() /** hypervisor write */ val hw = Bool() /** hypervisor excute */ val hx = Bool() /** hypervisor read */ val hr = Bool() /** prot_w */ val pw = Bool() /** prot_x */ val px = Bool() /** prot_r */ val pr = Bool() /** PutPartial */ val ppp = Bool() /** AMO logical */ val pal = Bool() /** AMO arithmetic */ val paa = Bool() /** get/put effects */ val eff = Bool() /** cacheable */ val c = Bool() /** fragmented_superpage support */ val fragmented_superpage = Bool() } /** basic cell for TLB data */ class TLBEntry(val nSectors: Int, val superpage: Boolean, val superpageOnly: Boolean)(implicit p: Parameters) extends CoreBundle()(p) { require(nSectors == 1 || !superpage) require(!superpageOnly || superpage) val level = UInt(log2Ceil(pgLevels).W) /** use vpn as tag */ val tag_vpn = UInt(vpnBits.W) /** tag in vitualization mode */ val tag_v = Bool() /** entry data */ val data = Vec(nSectors, UInt(new TLBEntryData().getWidth.W)) /** valid bit */ val valid = Vec(nSectors, Bool()) /** returns all entry data in this entry */ def entry_data = data.map(_.asTypeOf(new TLBEntryData)) /** returns the index of sector */ private def sectorIdx(vpn: UInt) = vpn.extract(nSectors.log2-1, 0) /** returns the entry data matched with this vpn*/ def getData(vpn: UInt) = OptimizationBarrier(data(sectorIdx(vpn)).asTypeOf(new TLBEntryData)) /** returns whether a sector hits */ def sectorHit(vpn: UInt, virtual: Bool) = valid.orR && sectorTagMatch(vpn, virtual) /** returns whether tag matches vpn */ def sectorTagMatch(vpn: UInt, virtual: Bool) = (((tag_vpn ^ vpn) >> nSectors.log2) === 0.U) && (tag_v === virtual) /** returns hit signal */ def hit(vpn: UInt, virtual: Bool): Bool = { if (superpage && usingVM) { var tagMatch = valid.head && (tag_v === virtual) for (j <- 0 until pgLevels) { val base = (pgLevels - 1 - j) * pgLevelBits val n = pgLevelBits + (if (j == 0) hypervisorExtraAddrBits else 0) val ignore = level < j.U || (superpageOnly && j == pgLevels - 1).B tagMatch = tagMatch && (ignore || (tag_vpn ^ vpn)(base + n - 1, base) === 0.U) } tagMatch } else { val idx = sectorIdx(vpn) valid(idx) && sectorTagMatch(vpn, virtual) } } /** returns the ppn of the input TLBEntryData */ def ppn(vpn: UInt, data: TLBEntryData) = { val supervisorVPNBits = pgLevels * pgLevelBits if (superpage && usingVM) { var res = data.ppn >> pgLevelBits*(pgLevels - 1) for (j <- 1 until pgLevels) { val ignore = level < j.U || (superpageOnly && j == pgLevels - 1).B res = Cat(res, (Mux(ignore, vpn, 0.U) | data.ppn)(supervisorVPNBits - j*pgLevelBits - 1, supervisorVPNBits - (j + 1)*pgLevelBits)) } res } else { data.ppn } } /** does the refill * * find the target entry with vpn tag * and replace the target entry with the input entry data */ def insert(vpn: UInt, virtual: Bool, level: UInt, entry: TLBEntryData): Unit = { this.tag_vpn := vpn this.tag_v := virtual this.level := level.extract(log2Ceil(pgLevels - superpageOnly.toInt)-1, 0) val idx = sectorIdx(vpn) valid(idx) := true.B data(idx) := entry.asUInt } def invalidate(): Unit = { valid.foreach(_ := false.B) } def invalidate(virtual: Bool): Unit = { for ((v, e) <- valid zip entry_data) when (tag_v === virtual) { v := false.B } } def invalidateVPN(vpn: UInt, virtual: Bool): Unit = { if (superpage) { when (hit(vpn, virtual)) { invalidate() } } else { when (sectorTagMatch(vpn, virtual)) { for (((v, e), i) <- (valid zip entry_data).zipWithIndex) when (tag_v === virtual && i.U === sectorIdx(vpn)) { v := false.B } } } // For fragmented superpage mappings, we assume the worst (largest) // case, and zap entries whose most-significant VPNs match when (((tag_vpn ^ vpn) >> (pgLevelBits * (pgLevels - 1))) === 0.U) { for ((v, e) <- valid zip entry_data) when (tag_v === virtual && e.fragmented_superpage) { v := false.B } } } def invalidateNonGlobal(virtual: Bool): Unit = { for ((v, e) <- valid zip entry_data) when (tag_v === virtual && !e.g) { v := false.B } } } /** TLB config * * @param nSets the number of sets of PTE, follow [[ICacheParams.nSets]] * @param nWays the total number of wayss of PTE, follow [[ICacheParams.nWays]] * @param nSectors the number of ways in a single PTE TLBEntry * @param nSuperpageEntries the number of SuperpageEntries */ case class TLBConfig( nSets: Int, nWays: Int, nSectors: Int = 4, nSuperpageEntries: Int = 4) /** =Overview= * [[TLB]] is a TLB template which contains PMA logic and PMP checker. * * TLB caches PTE and accelerates the address translation process. * When tlb miss happens, ask PTW(L2TLB) for Page Table Walk. * Perform PMP and PMA check during the translation and throw exception if there were any. * * ==Cache Structure== * - Sectored Entry (PTE) * - set-associative or direct-mapped * - nsets = [[TLBConfig.nSets]] * - nways = [[TLBConfig.nWays]] / [[TLBConfig.nSectors]] * - PTEEntry( sectors = [[TLBConfig.nSectors]] ) * - LRU(if set-associative) * * - Superpage Entry(superpage PTE) * - fully associative * - nsets = [[TLBConfig.nSuperpageEntries]] * - PTEEntry(sectors = 1) * - PseudoLRU * * - Special Entry(PTE across PMP) * - nsets = 1 * - PTEEntry(sectors = 1) * * ==Address structure== * {{{ * |vaddr | * |ppn/vpn | pgIndex | * | | | * | |nSets |nSector | |}}} * * ==State Machine== * {{{ * s_ready: ready to accept request from CPU. * s_request: when L1TLB(this) miss, send request to PTW(L2TLB), . * s_wait: wait for PTW to refill L1TLB. * s_wait_invalidate: L1TLB is waiting for respond from PTW, but L1TLB will invalidate respond from PTW.}}} * * ==PMP== * pmp check * - special_entry: always check * - other entry: check on refill * * ==Note== * PMA consume diplomacy parameter generate physical memory address checking logic * * Boom use Rocket ITLB, and its own DTLB. * * Accelerators:{{{ * sha3: DTLB * gemmini: DTLB * hwacha: DTLB*2+ITLB}}} * @param instruction true for ITLB, false for DTLB * @param lgMaxSize @todo seems granularity * @param cfg [[TLBConfig]] * @param edge collect SoC metadata. */ class TLB(instruction: Boolean, lgMaxSize: Int, cfg: TLBConfig)(implicit edge: TLEdgeOut, p: Parameters) extends CoreModule()(p) { override def desiredName = if (instruction) "ITLB" else "DTLB" val io = IO(new Bundle { /** request from Core */ val req = Flipped(Decoupled(new TLBReq(lgMaxSize))) /** response to Core */ val resp = Output(new TLBResp(lgMaxSize)) /** SFence Input */ val sfence = Flipped(Valid(new SFenceReq)) /** IO to PTW */ val ptw = new TLBPTWIO /** suppress a TLB refill, one cycle after a miss */ val kill = Input(Bool()) }) io.ptw.customCSRs := DontCare val pageGranularityPMPs = pmpGranularity >= (1 << pgIdxBits) val vpn = io.req.bits.vaddr(vaddrBits-1, pgIdxBits) /** index for sectored_Entry */ val memIdx = vpn.extract(cfg.nSectors.log2 + cfg.nSets.log2 - 1, cfg.nSectors.log2) /** TLB Entry */ val sectored_entries = Reg(Vec(cfg.nSets, Vec(cfg.nWays / cfg.nSectors, new TLBEntry(cfg.nSectors, false, false)))) /** Superpage Entry */ val superpage_entries = Reg(Vec(cfg.nSuperpageEntries, new TLBEntry(1, true, true))) /** Special Entry * * If PMP granularity is less than page size, thus need additional "special" entry manage PMP. */ val special_entry = (!pageGranularityPMPs).option(Reg(new TLBEntry(1, true, false))) def ordinary_entries = sectored_entries(memIdx) ++ superpage_entries def all_entries = ordinary_entries ++ special_entry def all_real_entries = sectored_entries.flatten ++ superpage_entries ++ special_entry val s_ready :: s_request :: s_wait :: s_wait_invalidate :: Nil = Enum(4) val state = RegInit(s_ready) // use vpn as refill_tag val r_refill_tag = Reg(UInt(vpnBits.W)) val r_superpage_repl_addr = Reg(UInt(log2Ceil(superpage_entries.size).W)) val r_sectored_repl_addr = Reg(UInt(log2Ceil(sectored_entries.head.size).W)) val r_sectored_hit = Reg(Valid(UInt(log2Ceil(sectored_entries.head.size).W))) val r_superpage_hit = Reg(Valid(UInt(log2Ceil(superpage_entries.size).W))) val r_vstage1_en = Reg(Bool()) val r_stage2_en = Reg(Bool()) val r_need_gpa = Reg(Bool()) val r_gpa_valid = Reg(Bool()) val r_gpa = Reg(UInt(vaddrBits.W)) val r_gpa_vpn = Reg(UInt(vpnBits.W)) val r_gpa_is_pte = Reg(Bool()) /** privilege mode */ val priv = io.req.bits.prv val priv_v = usingHypervisor.B && io.req.bits.v val priv_s = priv(0) // user mode and supervisor mode val priv_uses_vm = priv <= PRV.S.U val satp = Mux(priv_v, io.ptw.vsatp, io.ptw.ptbr) val stage1_en = usingVM.B && satp.mode(satp.mode.getWidth-1) /** VS-stage translation enable */ val vstage1_en = usingHypervisor.B && priv_v && io.ptw.vsatp.mode(io.ptw.vsatp.mode.getWidth-1) /** G-stage translation enable */ val stage2_en = usingHypervisor.B && priv_v && io.ptw.hgatp.mode(io.ptw.hgatp.mode.getWidth-1) /** Enable Virtual Memory when: * 1. statically configured * 1. satp highest bits enabled * i. RV32: * - 0 -> Bare * - 1 -> SV32 * i. RV64: * - 0000 -> Bare * - 1000 -> SV39 * - 1001 -> SV48 * - 1010 -> SV57 * - 1011 -> SV64 * 1. In virtualization mode, vsatp highest bits enabled * 1. priv mode in U and S. * 1. in H & M mode, disable VM. * 1. no passthrough(micro-arch defined.) * * @see RV-priv spec 4.1.11 Supervisor Address Translation and Protection (satp) Register * @see RV-priv spec 8.2.18 Virtual Supervisor Address Translation and Protection Register (vsatp) */ val vm_enabled = (stage1_en || stage2_en) && priv_uses_vm && !io.req.bits.passthrough // flush guest entries on vsatp.MODE Bare <-> SvXX transitions val v_entries_use_stage1 = RegInit(false.B) val vsatp_mode_mismatch = priv_v && (vstage1_en =/= v_entries_use_stage1) && !io.req.bits.passthrough // share a single physical memory attribute checker (unshare if critical path) val refill_ppn = io.ptw.resp.bits.pte.ppn(ppnBits-1, 0) /** refill signal */ val do_refill = usingVM.B && io.ptw.resp.valid /** sfence invalidate refill */ val invalidate_refill = state.isOneOf(s_request /* don't care */, s_wait_invalidate) || io.sfence.valid // PMP val mpu_ppn = Mux(do_refill, refill_ppn, Mux(vm_enabled && special_entry.nonEmpty.B, special_entry.map(e => e.ppn(vpn, e.getData(vpn))).getOrElse(0.U), io.req.bits.vaddr >> pgIdxBits)) val mpu_physaddr = Cat(mpu_ppn, io.req.bits.vaddr(pgIdxBits-1, 0)) val mpu_priv = Mux[UInt](usingVM.B && (do_refill || io.req.bits.passthrough /* PTW */), PRV.S.U, Cat(io.ptw.status.debug, priv)) val pmp = Module(new PMPChecker(lgMaxSize)) pmp.io.addr := mpu_physaddr pmp.io.size := io.req.bits.size pmp.io.pmp := (io.ptw.pmp: Seq[PMP]) pmp.io.prv := mpu_priv val pma = Module(new PMAChecker(edge.manager)(p)) pma.io.paddr := mpu_physaddr // todo: using DataScratchpad doesn't support cacheable. val cacheable = pma.io.resp.cacheable && (instruction || !usingDataScratchpad).B val homogeneous = TLBPageLookup(edge.manager.managers, xLen, p(CacheBlockBytes), BigInt(1) << pgIdxBits, 1 << lgMaxSize)(mpu_physaddr).homogeneous // In M mode, if access DM address(debug module program buffer) val deny_access_to_debug = mpu_priv <= PRV.M.U && p(DebugModuleKey).map(dmp => dmp.address.contains(mpu_physaddr)).getOrElse(false.B) val prot_r = pma.io.resp.r && !deny_access_to_debug && pmp.io.r val prot_w = pma.io.resp.w && !deny_access_to_debug && pmp.io.w val prot_pp = pma.io.resp.pp val prot_al = pma.io.resp.al val prot_aa = pma.io.resp.aa val prot_x = pma.io.resp.x && !deny_access_to_debug && pmp.io.x val prot_eff = pma.io.resp.eff // hit check val sector_hits = sectored_entries(memIdx).map(_.sectorHit(vpn, priv_v)) val superpage_hits = superpage_entries.map(_.hit(vpn, priv_v)) val hitsVec = all_entries.map(vm_enabled && _.hit(vpn, priv_v)) val real_hits = hitsVec.asUInt val hits = Cat(!vm_enabled, real_hits) // use ptw response to refill // permission bit arrays when (do_refill) { val pte = io.ptw.resp.bits.pte val refill_v = r_vstage1_en || r_stage2_en val newEntry = Wire(new TLBEntryData) newEntry.ppn := pte.ppn newEntry.c := cacheable newEntry.u := pte.u newEntry.g := pte.g && pte.v newEntry.ae_ptw := io.ptw.resp.bits.ae_ptw newEntry.ae_final := io.ptw.resp.bits.ae_final newEntry.ae_stage2 := io.ptw.resp.bits.ae_final && io.ptw.resp.bits.gpa_is_pte && r_stage2_en newEntry.pf := io.ptw.resp.bits.pf newEntry.gf := io.ptw.resp.bits.gf newEntry.hr := io.ptw.resp.bits.hr newEntry.hw := io.ptw.resp.bits.hw newEntry.hx := io.ptw.resp.bits.hx newEntry.sr := pte.sr() newEntry.sw := pte.sw() newEntry.sx := pte.sx() newEntry.pr := prot_r newEntry.pw := prot_w newEntry.px := prot_x newEntry.ppp := prot_pp newEntry.pal := prot_al newEntry.paa := prot_aa newEntry.eff := prot_eff newEntry.fragmented_superpage := io.ptw.resp.bits.fragmented_superpage // refill special_entry when (special_entry.nonEmpty.B && !io.ptw.resp.bits.homogeneous) { special_entry.foreach(_.insert(r_refill_tag, refill_v, io.ptw.resp.bits.level, newEntry)) }.elsewhen (io.ptw.resp.bits.level < (pgLevels-1).U) { val waddr = Mux(r_superpage_hit.valid && usingHypervisor.B, r_superpage_hit.bits, r_superpage_repl_addr) for ((e, i) <- superpage_entries.zipWithIndex) when (r_superpage_repl_addr === i.U) { e.insert(r_refill_tag, refill_v, io.ptw.resp.bits.level, newEntry) when (invalidate_refill) { e.invalidate() } } // refill sectored_hit }.otherwise { val r_memIdx = r_refill_tag.extract(cfg.nSectors.log2 + cfg.nSets.log2 - 1, cfg.nSectors.log2) val waddr = Mux(r_sectored_hit.valid, r_sectored_hit.bits, r_sectored_repl_addr) for ((e, i) <- sectored_entries(r_memIdx).zipWithIndex) when (waddr === i.U) { when (!r_sectored_hit.valid) { e.invalidate() } e.insert(r_refill_tag, refill_v, 0.U, newEntry) when (invalidate_refill) { e.invalidate() } } } r_gpa_valid := io.ptw.resp.bits.gpa.valid r_gpa := io.ptw.resp.bits.gpa.bits r_gpa_is_pte := io.ptw.resp.bits.gpa_is_pte } // get all entries data. val entries = all_entries.map(_.getData(vpn)) val normal_entries = entries.take(ordinary_entries.size) // parallel query PPN from [[all_entries]], if VM not enabled return VPN instead val ppn = Mux1H(hitsVec :+ !vm_enabled, (all_entries zip entries).map{ case (entry, data) => entry.ppn(vpn, data) } :+ vpn(ppnBits-1, 0)) val nPhysicalEntries = 1 + special_entry.size // generally PTW misaligned load exception. val ptw_ae_array = Cat(false.B, entries.map(_.ae_ptw).asUInt) val final_ae_array = Cat(false.B, entries.map(_.ae_final).asUInt) val ptw_pf_array = Cat(false.B, entries.map(_.pf).asUInt) val ptw_gf_array = Cat(false.B, entries.map(_.gf).asUInt) val sum = Mux(priv_v, io.ptw.gstatus.sum, io.ptw.status.sum) // if in hypervisor/machine mode, cannot read/write user entries. // if in superviosr/user mode, "If the SUM bit in the sstatus register is set, supervisor mode software may also access pages with U=1.(from spec)" val priv_rw_ok = Mux(!priv_s || sum, entries.map(_.u).asUInt, 0.U) | Mux(priv_s, ~entries.map(_.u).asUInt, 0.U) // if in hypervisor/machine mode, other than user pages, all pages are executable. // if in superviosr/user mode, only user page can execute. val priv_x_ok = Mux(priv_s, ~entries.map(_.u).asUInt, entries.map(_.u).asUInt) val stage1_bypass = Fill(entries.size, usingHypervisor.B) & (Fill(entries.size, !stage1_en) | entries.map(_.ae_stage2).asUInt) val mxr = io.ptw.status.mxr | Mux(priv_v, io.ptw.gstatus.mxr, false.B) // "The vsstatus field MXR, which makes execute-only pages readable, only overrides VS-stage page protection.(from spec)" val r_array = Cat(true.B, (priv_rw_ok & (entries.map(_.sr).asUInt | Mux(mxr, entries.map(_.sx).asUInt, 0.U))) | stage1_bypass) val w_array = Cat(true.B, (priv_rw_ok & entries.map(_.sw).asUInt) | stage1_bypass) val x_array = Cat(true.B, (priv_x_ok & entries.map(_.sx).asUInt) | stage1_bypass) val stage2_bypass = Fill(entries.size, !stage2_en) val hr_array = Cat(true.B, entries.map(_.hr).asUInt | Mux(io.ptw.status.mxr, entries.map(_.hx).asUInt, 0.U) | stage2_bypass) val hw_array = Cat(true.B, entries.map(_.hw).asUInt | stage2_bypass) val hx_array = Cat(true.B, entries.map(_.hx).asUInt | stage2_bypass) // These array is for each TLB entries. // user mode can read: PMA OK, TLB OK, AE OK val pr_array = Cat(Fill(nPhysicalEntries, prot_r), normal_entries.map(_.pr).asUInt) & ~(ptw_ae_array | final_ae_array) // user mode can write: PMA OK, TLB OK, AE OK val pw_array = Cat(Fill(nPhysicalEntries, prot_w), normal_entries.map(_.pw).asUInt) & ~(ptw_ae_array | final_ae_array) // user mode can write: PMA OK, TLB OK, AE OK val px_array = Cat(Fill(nPhysicalEntries, prot_x), normal_entries.map(_.px).asUInt) & ~(ptw_ae_array | final_ae_array) // put effect val eff_array = Cat(Fill(nPhysicalEntries, prot_eff), normal_entries.map(_.eff).asUInt) // cacheable val c_array = Cat(Fill(nPhysicalEntries, cacheable), normal_entries.map(_.c).asUInt) // put partial val ppp_array = Cat(Fill(nPhysicalEntries, prot_pp), normal_entries.map(_.ppp).asUInt) // atomic arithmetic val paa_array = Cat(Fill(nPhysicalEntries, prot_aa), normal_entries.map(_.paa).asUInt) // atomic logic val pal_array = Cat(Fill(nPhysicalEntries, prot_al), normal_entries.map(_.pal).asUInt) val ppp_array_if_cached = ppp_array | c_array val paa_array_if_cached = paa_array | (if(usingAtomicsInCache) c_array else 0.U) val pal_array_if_cached = pal_array | (if(usingAtomicsInCache) c_array else 0.U) val prefetchable_array = Cat((cacheable && homogeneous) << (nPhysicalEntries-1), normal_entries.map(_.c).asUInt) // vaddr misaligned: vaddr[1:0]=b00 val misaligned = (io.req.bits.vaddr & (UIntToOH(io.req.bits.size) - 1.U)).orR def badVA(guestPA: Boolean): Bool = { val additionalPgLevels = (if (guestPA) io.ptw.hgatp else satp).additionalPgLevels val extraBits = if (guestPA) hypervisorExtraAddrBits else 0 val signed = !guestPA val nPgLevelChoices = pgLevels - minPgLevels + 1 val minVAddrBits = pgIdxBits + minPgLevels * pgLevelBits + extraBits (for (i <- 0 until nPgLevelChoices) yield { val mask = ((BigInt(1) << vaddrBitsExtended) - (BigInt(1) << (minVAddrBits + i * pgLevelBits - signed.toInt))).U val maskedVAddr = io.req.bits.vaddr & mask additionalPgLevels === i.U && !(maskedVAddr === 0.U || signed.B && maskedVAddr === mask) }).orR } val bad_gpa = if (!usingHypervisor) false.B else vm_enabled && !stage1_en && badVA(true) val bad_va = if (!usingVM || (minPgLevels == pgLevels && vaddrBits == vaddrBitsExtended)) false.B else vm_enabled && stage1_en && badVA(false) val cmd_lrsc = usingAtomics.B && io.req.bits.cmd.isOneOf(M_XLR, M_XSC) val cmd_amo_logical = usingAtomics.B && isAMOLogical(io.req.bits.cmd) val cmd_amo_arithmetic = usingAtomics.B && isAMOArithmetic(io.req.bits.cmd) val cmd_put_partial = io.req.bits.cmd === M_PWR val cmd_read = isRead(io.req.bits.cmd) val cmd_readx = usingHypervisor.B && io.req.bits.cmd === M_HLVX val cmd_write = isWrite(io.req.bits.cmd) val cmd_write_perms = cmd_write || io.req.bits.cmd.isOneOf(M_FLUSH_ALL, M_WOK) // not a write, but needs write permissions val lrscAllowed = Mux((usingDataScratchpad || usingAtomicsOnlyForIO).B, 0.U, c_array) val ae_array = Mux(misaligned, eff_array, 0.U) | Mux(cmd_lrsc, ~lrscAllowed, 0.U) // access exception needs SoC information from PMA val ae_ld_array = Mux(cmd_read, ae_array | ~pr_array, 0.U) val ae_st_array = Mux(cmd_write_perms, ae_array | ~pw_array, 0.U) | Mux(cmd_put_partial, ~ppp_array_if_cached, 0.U) | Mux(cmd_amo_logical, ~pal_array_if_cached, 0.U) | Mux(cmd_amo_arithmetic, ~paa_array_if_cached, 0.U) val must_alloc_array = Mux(cmd_put_partial, ~ppp_array, 0.U) | Mux(cmd_amo_logical, ~pal_array, 0.U) | Mux(cmd_amo_arithmetic, ~paa_array, 0.U) | Mux(cmd_lrsc, ~0.U(pal_array.getWidth.W), 0.U) val pf_ld_array = Mux(cmd_read, ((~Mux(cmd_readx, x_array, r_array) & ~ptw_ae_array) | ptw_pf_array) & ~ptw_gf_array, 0.U) val pf_st_array = Mux(cmd_write_perms, ((~w_array & ~ptw_ae_array) | ptw_pf_array) & ~ptw_gf_array, 0.U) val pf_inst_array = ((~x_array & ~ptw_ae_array) | ptw_pf_array) & ~ptw_gf_array val gf_ld_array = Mux(priv_v && cmd_read, (~Mux(cmd_readx, hx_array, hr_array) | ptw_gf_array) & ~ptw_ae_array, 0.U) val gf_st_array = Mux(priv_v && cmd_write_perms, (~hw_array | ptw_gf_array) & ~ptw_ae_array, 0.U) val gf_inst_array = Mux(priv_v, (~hx_array | ptw_gf_array) & ~ptw_ae_array, 0.U) val gpa_hits = { val need_gpa_mask = if (instruction) gf_inst_array else gf_ld_array | gf_st_array val hit_mask = Fill(ordinary_entries.size, r_gpa_valid && r_gpa_vpn === vpn) | Fill(all_entries.size, !vstage1_en) hit_mask | ~need_gpa_mask(all_entries.size-1, 0) } val tlb_hit_if_not_gpa_miss = real_hits.orR val tlb_hit = (real_hits & gpa_hits).orR // leads to s_request val tlb_miss = vm_enabled && !vsatp_mode_mismatch && !bad_va && !tlb_hit val sectored_plru = new SetAssocLRU(cfg.nSets, sectored_entries.head.size, "plru") val superpage_plru = new PseudoLRU(superpage_entries.size) when (io.req.valid && vm_enabled) { // replace when (sector_hits.orR) { sectored_plru.access(memIdx, OHToUInt(sector_hits)) } when (superpage_hits.orR) { superpage_plru.access(OHToUInt(superpage_hits)) } } // Superpages create the possibility that two entries in the TLB may match. // This corresponds to a software bug, but we can't return complete garbage; // we must return either the old translation or the new translation. This // isn't compatible with the Mux1H approach. So, flush the TLB and report // a miss on duplicate entries. val multipleHits = PopCountAtLeast(real_hits, 2) // only pull up req.ready when this is s_ready state. io.req.ready := state === s_ready // page fault io.resp.pf.ld := (bad_va && cmd_read) || (pf_ld_array & hits).orR io.resp.pf.st := (bad_va && cmd_write_perms) || (pf_st_array & hits).orR io.resp.pf.inst := bad_va || (pf_inst_array & hits).orR // guest page fault io.resp.gf.ld := (bad_gpa && cmd_read) || (gf_ld_array & hits).orR io.resp.gf.st := (bad_gpa && cmd_write_perms) || (gf_st_array & hits).orR io.resp.gf.inst := bad_gpa || (gf_inst_array & hits).orR // access exception io.resp.ae.ld := (ae_ld_array & hits).orR io.resp.ae.st := (ae_st_array & hits).orR io.resp.ae.inst := (~px_array & hits).orR // misaligned io.resp.ma.ld := misaligned && cmd_read io.resp.ma.st := misaligned && cmd_write io.resp.ma.inst := false.B // this is up to the pipeline to figure out io.resp.cacheable := (c_array & hits).orR io.resp.must_alloc := (must_alloc_array & hits).orR io.resp.prefetchable := (prefetchable_array & hits).orR && edge.manager.managers.forall(m => !m.supportsAcquireB || m.supportsHint).B io.resp.miss := do_refill || vsatp_mode_mismatch || tlb_miss || multipleHits io.resp.paddr := Cat(ppn, io.req.bits.vaddr(pgIdxBits-1, 0)) io.resp.size := io.req.bits.size io.resp.cmd := io.req.bits.cmd io.resp.gpa_is_pte := vstage1_en && r_gpa_is_pte io.resp.gpa := { val page = Mux(!vstage1_en, Cat(bad_gpa, vpn), r_gpa >> pgIdxBits) val offset = Mux(io.resp.gpa_is_pte, r_gpa(pgIdxBits-1, 0), io.req.bits.vaddr(pgIdxBits-1, 0)) Cat(page, offset) } io.ptw.req.valid := state === s_request io.ptw.req.bits.valid := !io.kill io.ptw.req.bits.bits.addr := r_refill_tag io.ptw.req.bits.bits.vstage1 := r_vstage1_en io.ptw.req.bits.bits.stage2 := r_stage2_en io.ptw.req.bits.bits.need_gpa := r_need_gpa if (usingVM) { when(io.ptw.req.fire && io.ptw.req.bits.valid) { r_gpa_valid := false.B r_gpa_vpn := r_refill_tag } val sfence = io.sfence.valid // this is [[s_ready]] // handle miss/hit at the first cycle. // if miss, request PTW(L2TLB). when (io.req.fire && tlb_miss) { state := s_request r_refill_tag := vpn r_need_gpa := tlb_hit_if_not_gpa_miss r_vstage1_en := vstage1_en r_stage2_en := stage2_en r_superpage_repl_addr := replacementEntry(superpage_entries, superpage_plru.way) r_sectored_repl_addr := replacementEntry(sectored_entries(memIdx), sectored_plru.way(memIdx)) r_sectored_hit.valid := sector_hits.orR r_sectored_hit.bits := OHToUInt(sector_hits) r_superpage_hit.valid := superpage_hits.orR r_superpage_hit.bits := OHToUInt(superpage_hits) } // Handle SFENCE.VMA when send request to PTW. // SFENCE.VMA io.ptw.req.ready kill // ? ? 1 // 0 0 0 // 0 1 0 -> s_wait // 1 0 0 -> s_wait_invalidate // 1 0 0 -> s_ready when (state === s_request) { // SFENCE.VMA will kill TLB entries based on rs1 and rs2. It will take 1 cycle. when (sfence) { state := s_ready } // here should be io.ptw.req.fire, but assert(io.ptw.req.ready === true.B) // fire -> s_wait when (io.ptw.req.ready) { state := Mux(sfence, s_wait_invalidate, s_wait) } // If CPU kills request(frontend.s2_redirect) when (io.kill) { state := s_ready } } // sfence in refill will results in invalidate when (state === s_wait && sfence) { state := s_wait_invalidate } // after CPU acquire response, go back to s_ready. when (io.ptw.resp.valid) { state := s_ready } // SFENCE processing logic. when (sfence) { assert(!io.sfence.bits.rs1 || (io.sfence.bits.addr >> pgIdxBits) === vpn) for (e <- all_real_entries) { val hv = usingHypervisor.B && io.sfence.bits.hv val hg = usingHypervisor.B && io.sfence.bits.hg when (!hg && io.sfence.bits.rs1) { e.invalidateVPN(vpn, hv) } .elsewhen (!hg && io.sfence.bits.rs2) { e.invalidateNonGlobal(hv) } .otherwise { e.invalidate(hv || hg) } } } when(io.req.fire && vsatp_mode_mismatch) { all_real_entries.foreach(_.invalidate(true.B)) v_entries_use_stage1 := vstage1_en } when (multipleHits || reset.asBool) { all_real_entries.foreach(_.invalidate()) } ccover(io.ptw.req.fire, "MISS", "TLB miss") ccover(io.ptw.req.valid && !io.ptw.req.ready, "PTW_STALL", "TLB miss, but PTW busy") ccover(state === s_wait_invalidate, "SFENCE_DURING_REFILL", "flush TLB during TLB refill") ccover(sfence && !io.sfence.bits.rs1 && !io.sfence.bits.rs2, "SFENCE_ALL", "flush TLB") ccover(sfence && !io.sfence.bits.rs1 && io.sfence.bits.rs2, "SFENCE_ASID", "flush TLB ASID") ccover(sfence && io.sfence.bits.rs1 && !io.sfence.bits.rs2, "SFENCE_LINE", "flush TLB line") ccover(sfence && io.sfence.bits.rs1 && io.sfence.bits.rs2, "SFENCE_LINE_ASID", "flush TLB line/ASID") ccover(multipleHits, "MULTIPLE_HITS", "Two matching translations in TLB") } def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = property.cover(cond, s"${if (instruction) "I" else "D"}TLB_$label", "MemorySystem;;" + desc) /** Decides which entry to be replaced * * If there is a invalid entry, replace it with priorityencoder; * if not, replace the alt entry * * @return mask for TLBEntry replacement */ def replacementEntry(set: Seq[TLBEntry], alt: UInt) = { val valids = set.map(_.valid.orR).asUInt Mux(valids.andR, alt, PriorityEncoder(~valids)) } } File TLBPermissions.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.rocket import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes, RegionType, AddressDecoder} import freechips.rocketchip.tilelink.TLManagerParameters case class TLBPermissions( homogeneous: Bool, // if false, the below are undefined r: Bool, // readable w: Bool, // writeable x: Bool, // executable c: Bool, // cacheable a: Bool, // arithmetic ops l: Bool) // logical ops object TLBPageLookup { private case class TLBFixedPermissions( e: Boolean, // get-/put-effects r: Boolean, // readable w: Boolean, // writeable x: Boolean, // executable c: Boolean, // cacheable a: Boolean, // arithmetic ops l: Boolean) { // logical ops val useful = r || w || x || c || a || l } private def groupRegions(managers: Seq[TLManagerParameters]): Map[TLBFixedPermissions, Seq[AddressSet]] = { val permissions = managers.map { m => (m.address, TLBFixedPermissions( e = Seq(RegionType.PUT_EFFECTS, RegionType.GET_EFFECTS) contains m.regionType, r = m.supportsGet || m.supportsAcquireB, // if cached, never uses Get w = m.supportsPutFull || m.supportsAcquireT, // if cached, never uses Put x = m.executable, c = m.supportsAcquireB, a = m.supportsArithmetic, l = m.supportsLogical)) } permissions .filter(_._2.useful) // get rid of no-permission devices .groupBy(_._2) // group by permission type .mapValues(seq => AddressSet.unify(seq.flatMap(_._1))) // coalesce same-permission regions .toMap } // Unmapped memory is considered to be inhomogeneous def apply(managers: Seq[TLManagerParameters], xLen: Int, cacheBlockBytes: Int, pageSize: BigInt, maxRequestBytes: Int): UInt => TLBPermissions = { require (isPow2(xLen) && xLen >= 8) require (isPow2(cacheBlockBytes) && cacheBlockBytes >= xLen/8) require (isPow2(pageSize) && pageSize >= cacheBlockBytes) val xferSizes = TransferSizes(cacheBlockBytes, cacheBlockBytes) val allSizes = TransferSizes(1, maxRequestBytes) val amoSizes = TransferSizes(4, xLen/8) val permissions = managers.foreach { m => require (!m.supportsGet || m.supportsGet .contains(allSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsGet} Get, but must support ${allSizes}") require (!m.supportsPutFull || m.supportsPutFull .contains(allSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsPutFull} PutFull, but must support ${allSizes}") require (!m.supportsPutPartial || m.supportsPutPartial.contains(allSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsPutPartial} PutPartial, but must support ${allSizes}") require (!m.supportsAcquireB || m.supportsAcquireB .contains(xferSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsAcquireB} AcquireB, but must support ${xferSizes}") require (!m.supportsAcquireT || m.supportsAcquireT .contains(xferSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsAcquireT} AcquireT, but must support ${xferSizes}") require (!m.supportsLogical || m.supportsLogical .contains(amoSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsLogical} Logical, but must support ${amoSizes}") require (!m.supportsArithmetic || m.supportsArithmetic.contains(amoSizes), s"Memory region '${m.name}' at ${m.address} only supports ${m.supportsArithmetic} Arithmetic, but must support ${amoSizes}") require (!(m.supportsAcquireB && m.supportsPutFull && !m.supportsAcquireT), s"Memory region '${m.name}' supports AcquireB (cached read) and PutFull (un-cached write) but not AcquireT (cached write)") } val grouped = groupRegions(managers) .mapValues(_.filter(_.alignment >= pageSize)) // discard any region that's not big enough def lowCostProperty(prop: TLBFixedPermissions => Boolean): UInt => Bool = { val (yesm, nom) = grouped.partition { case (k, eq) => prop(k) } val (yes, no) = (yesm.values.flatten.toList, nom.values.flatten.toList) // Find the minimal bits needed to distinguish between yes and no val decisionMask = AddressDecoder(Seq(yes, no)) def simplify(x: Seq[AddressSet]) = AddressSet.unify(x.map(_.widen(~decisionMask)).distinct) val (yesf, nof) = (simplify(yes), simplify(no)) if (yesf.size < no.size) { (x: UInt) => yesf.map(_.contains(x)).foldLeft(false.B)(_ || _) } else { (x: UInt) => !nof.map(_.contains(x)).foldLeft(false.B)(_ || _) } } // Derive simplified property circuits (don't care when !homo) val rfn = lowCostProperty(_.r) val wfn = lowCostProperty(_.w) val xfn = lowCostProperty(_.x) val cfn = lowCostProperty(_.c) val afn = lowCostProperty(_.a) val lfn = lowCostProperty(_.l) val homo = AddressSet.unify(grouped.values.flatten.toList) (x: UInt) => TLBPermissions( homogeneous = homo.map(_.contains(x)).foldLeft(false.B)(_ || _), r = rfn(x), w = wfn(x), x = xfn(x), c = cfn(x), a = afn(x), l = lfn(x)) } // Are all pageSize intervals of mapped regions homogeneous? def homogeneous(managers: Seq[TLManagerParameters], pageSize: BigInt): Boolean = { groupRegions(managers).values.forall(_.forall(_.alignment >= pageSize)) } } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File PTW.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.rocket import chisel3._ import chisel3.util.{Arbiter, Cat, Decoupled, Enum, Mux1H, OHToUInt, PopCount, PriorityEncoder, PriorityEncoderOH, RegEnable, UIntToOH, Valid, is, isPow2, log2Ceil, switch} import chisel3.withClock import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.subsystem.CacheBlockBytes import freechips.rocketchip.tile._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ import freechips.rocketchip.util.property import scala.collection.mutable.ListBuffer /** PTE request from TLB to PTW * * TLB send a PTE request to PTW when L1TLB miss */ class PTWReq(implicit p: Parameters) extends CoreBundle()(p) { val addr = UInt(vpnBits.W) val need_gpa = Bool() val vstage1 = Bool() val stage2 = Bool() } /** PTE info from L2TLB to TLB * * containing: target PTE, exceptions, two-satge tanslation info */ class PTWResp(implicit p: Parameters) extends CoreBundle()(p) { /** ptw access exception */ val ae_ptw = Bool() /** final access exception */ val ae_final = Bool() /** page fault */ val pf = Bool() /** guest page fault */ val gf = Bool() /** hypervisor read */ val hr = Bool() /** hypervisor write */ val hw = Bool() /** hypervisor execute */ val hx = Bool() /** PTE to refill L1TLB * * source: L2TLB */ val pte = new PTE /** pte pglevel */ val level = UInt(log2Ceil(pgLevels).W) /** fragmented_superpage support */ val fragmented_superpage = Bool() /** homogeneous for both pma and pmp */ val homogeneous = Bool() val gpa = Valid(UInt(vaddrBits.W)) val gpa_is_pte = Bool() } /** IO between TLB and PTW * * PTW receives : * - PTE request * - CSRs info * - pmp results from PMP(in TLB) */ class TLBPTWIO(implicit p: Parameters) extends CoreBundle()(p) with HasCoreParameters { val req = Decoupled(Valid(new PTWReq)) val resp = Flipped(Valid(new PTWResp)) val ptbr = Input(new PTBR()) val hgatp = Input(new PTBR()) val vsatp = Input(new PTBR()) val status = Input(new MStatus()) val hstatus = Input(new HStatus()) val gstatus = Input(new MStatus()) val pmp = Input(Vec(nPMPs, new PMP)) val customCSRs = Flipped(coreParams.customCSRs) } /** PTW performance statistics */ class PTWPerfEvents extends Bundle { val l2miss = Bool() val l2hit = Bool() val pte_miss = Bool() val pte_hit = Bool() } /** Datapath IO between PTW and Core * * PTW receives CSRs info, pmp checks, sfence instruction info * * PTW sends its performance statistics to core */ class DatapathPTWIO(implicit p: Parameters) extends CoreBundle()(p) with HasCoreParameters { val ptbr = Input(new PTBR()) val hgatp = Input(new PTBR()) val vsatp = Input(new PTBR()) val sfence = Flipped(Valid(new SFenceReq)) val status = Input(new MStatus()) val hstatus = Input(new HStatus()) val gstatus = Input(new MStatus()) val pmp = Input(Vec(nPMPs, new PMP)) val perf = Output(new PTWPerfEvents()) val customCSRs = Flipped(coreParams.customCSRs) /** enable clock generated by ptw */ val clock_enabled = Output(Bool()) } /** PTE template for transmission * * contains useful methods to check PTE attributes * @see RV-priv spec 4.3.1 for pgae table entry format */ class PTE(implicit p: Parameters) extends CoreBundle()(p) { val reserved_for_future = UInt(10.W) val ppn = UInt(44.W) val reserved_for_software = Bits(2.W) /** dirty bit */ val d = Bool() /** access bit */ val a = Bool() /** global mapping */ val g = Bool() /** user mode accessible */ val u = Bool() /** whether the page is executable */ val x = Bool() /** whether the page is writable */ val w = Bool() /** whether the page is readable */ val r = Bool() /** valid bit */ val v = Bool() /** return true if find a pointer to next level page table */ def table(dummy: Int = 0) = v && !r && !w && !x && !d && !a && !u && reserved_for_future === 0.U /** return true if find a leaf PTE */ def leaf(dummy: Int = 0) = v && (r || (x && !w)) && a /** user read */ def ur(dummy: Int = 0) = sr() && u /** user write*/ def uw(dummy: Int = 0) = sw() && u /** user execute */ def ux(dummy: Int = 0) = sx() && u /** supervisor read */ def sr(dummy: Int = 0) = leaf() && r /** supervisor write */ def sw(dummy: Int = 0) = leaf() && w && d /** supervisor execute */ def sx(dummy: Int = 0) = leaf() && x /** full permission: writable and executable in user mode */ def isFullPerm(dummy: Int = 0) = uw() && ux() } /** L2TLB PTE template * * contains tag bits * @param nSets number of sets in L2TLB * @see RV-priv spec 4.3.1 for page table entry format */ class L2TLBEntry(nSets: Int)(implicit p: Parameters) extends CoreBundle()(p) with HasCoreParameters { val idxBits = log2Ceil(nSets) val tagBits = maxSVAddrBits - pgIdxBits - idxBits + (if (usingHypervisor) 1 else 0) val tag = UInt(tagBits.W) val ppn = UInt(ppnBits.W) /** dirty bit */ val d = Bool() /** access bit */ val a = Bool() /** user mode accessible */ val u = Bool() /** whether the page is executable */ val x = Bool() /** whether the page is writable */ val w = Bool() /** whether the page is readable */ val r = Bool() } /** PTW contains L2TLB, and performs page table walk for high level TLB, and cache queries from L1 TLBs(I$, D$, RoCC) * * It performs hierarchy page table query to mem for the desired leaf PTE and cache them in l2tlb. * Besides leaf PTEs, it also caches non-leaf PTEs in pte_cache to accerlerate the process. * * ==Structure== * - l2tlb : for leaf PTEs * - set-associative (configurable with [[CoreParams.nL2TLBEntries]]and [[CoreParams.nL2TLBWays]])) * - PLRU * - pte_cache: for non-leaf PTEs * - set-associative * - LRU * - s2_pte_cache: for non-leaf PTEs in 2-stage translation * - set-associative * - PLRU * * l2tlb Pipeline: 3 stage * {{{ * stage 0 : read * stage 1 : decode * stage 2 : hit check * }}} * ==State Machine== * s_ready: ready to reveive request from TLB * s_req: request mem; pte_cache hit judge * s_wait1: deal with l2tlb error * s_wait2: final hit judge * s_wait3: receive mem response * s_fragment_superpage: for superpage PTE * * @note l2tlb hit happens in s_req or s_wait1 * @see RV-priv spec 4.3-4.6 for Virtual-Memory System * @see RV-priv spec 8.5 for Two-Stage Address Translation * @todo details in two-stage translation */ class PTW(n: Int)(implicit edge: TLEdgeOut, p: Parameters) extends CoreModule()(p) { val io = IO(new Bundle { /** to n TLB */ val requestor = Flipped(Vec(n, new TLBPTWIO)) /** to HellaCache */ val mem = new HellaCacheIO /** to Core * * contains CSRs info and performance statistics */ val dpath = new DatapathPTWIO }) val s_ready :: s_req :: s_wait1 :: s_dummy1 :: s_wait2 :: s_wait3 :: s_dummy2 :: s_fragment_superpage :: Nil = Enum(8) val state = RegInit(s_ready) val l2_refill_wire = Wire(Bool()) /** Arbiter to arbite request from n TLB */ val arb = Module(new Arbiter(Valid(new PTWReq), n)) // use TLB req as arbitor's input arb.io.in <> io.requestor.map(_.req) // receive req only when s_ready and not in refill arb.io.out.ready := (state === s_ready) && !l2_refill_wire val resp_valid = RegNext(VecInit(Seq.fill(io.requestor.size)(false.B))) val clock_en = state =/= s_ready || l2_refill_wire || arb.io.out.valid || io.dpath.sfence.valid || io.dpath.customCSRs.disableDCacheClockGate io.dpath.clock_enabled := usingVM.B && clock_en val gated_clock = if (!usingVM || !tileParams.dcache.get.clockGate) clock else ClockGate(clock, clock_en, "ptw_clock_gate") withClock (gated_clock) { // entering gated-clock domain val invalidated = Reg(Bool()) /** current PTE level * {{{ * 0 <= count <= pgLevel-1 * count = pgLevel - 1 : leaf PTE * count < pgLevel - 1 : non-leaf PTE * }}} */ val count = Reg(UInt(log2Ceil(pgLevels).W)) val resp_ae_ptw = Reg(Bool()) val resp_ae_final = Reg(Bool()) val resp_pf = Reg(Bool()) val resp_gf = Reg(Bool()) val resp_hr = Reg(Bool()) val resp_hw = Reg(Bool()) val resp_hx = Reg(Bool()) val resp_fragmented_superpage = Reg(Bool()) /** tlb request */ val r_req = Reg(new PTWReq) /** current selected way in arbitor */ val r_req_dest = Reg(Bits()) // to respond to L1TLB : l2_hit // to construct mem.req.addr val r_pte = Reg(new PTE) val r_hgatp = Reg(new PTBR) // 2-stage pageLevel val aux_count = Reg(UInt(log2Ceil(pgLevels).W)) /** pte for 2-stage translation */ val aux_pte = Reg(new PTE) val gpa_pgoff = Reg(UInt(pgIdxBits.W)) // only valid in resp_gf case val stage2 = Reg(Bool()) val stage2_final = Reg(Bool()) val satp = Mux(arb.io.out.bits.bits.vstage1, io.dpath.vsatp, io.dpath.ptbr) val r_hgatp_initial_count = pgLevels.U - minPgLevels.U - r_hgatp.additionalPgLevels /** 2-stage translation both enable */ val do_both_stages = r_req.vstage1 && r_req.stage2 val max_count = count max aux_count val vpn = Mux(r_req.vstage1 && stage2, aux_pte.ppn, r_req.addr) val mem_resp_valid = RegNext(io.mem.resp.valid) val mem_resp_data = RegNext(io.mem.resp.bits.data) io.mem.uncached_resp.map { resp => assert(!(resp.valid && io.mem.resp.valid)) resp.ready := true.B when (resp.valid) { mem_resp_valid := true.B mem_resp_data := resp.bits.data } } // construct pte from mem.resp val (pte, invalid_paddr, invalid_gpa) = { val tmp = mem_resp_data.asTypeOf(new PTE()) val res = WireDefault(tmp) res.ppn := Mux(do_both_stages && !stage2, tmp.ppn(vpnBits.min(tmp.ppn.getWidth)-1, 0), tmp.ppn(ppnBits-1, 0)) when (tmp.r || tmp.w || tmp.x) { // for superpage mappings, make sure PPN LSBs are zero for (i <- 0 until pgLevels-1) when (count <= i.U && tmp.ppn((pgLevels-1-i)*pgLevelBits-1, (pgLevels-2-i)*pgLevelBits) =/= 0.U) { res.v := false.B } } (res, Mux(do_both_stages && !stage2, (tmp.ppn >> vpnBits) =/= 0.U, (tmp.ppn >> ppnBits) =/= 0.U), do_both_stages && !stage2 && checkInvalidHypervisorGPA(r_hgatp, tmp.ppn)) } // find non-leaf PTE, need traverse val traverse = pte.table() && !invalid_paddr && !invalid_gpa && count < (pgLevels-1).U /** address send to mem for enquerry */ val pte_addr = if (!usingVM) 0.U else { val vpn_idxs = (0 until pgLevels).map { i => val width = pgLevelBits + (if (i <= pgLevels - minPgLevels) hypervisorExtraAddrBits else 0) (vpn >> (pgLevels - i - 1) * pgLevelBits)(width - 1, 0) } val mask = Mux(stage2 && count === r_hgatp_initial_count, ((1 << (hypervisorExtraAddrBits + pgLevelBits)) - 1).U, ((1 << pgLevelBits) - 1).U) val vpn_idx = vpn_idxs(count) & mask val raw_pte_addr = ((r_pte.ppn << pgLevelBits) | vpn_idx) << log2Ceil(xLen / 8) val size = if (usingHypervisor) vaddrBits else paddrBits //use r_pte.ppn as page table base address //use vpn slice as offset raw_pte_addr.apply(size.min(raw_pte_addr.getWidth) - 1, 0) } /** stage2_pte_cache input addr */ val stage2_pte_cache_addr = if (!usingHypervisor) 0.U else { val vpn_idxs = (0 until pgLevels - 1).map { i => (r_req.addr >> (pgLevels - i - 1) * pgLevelBits)(pgLevelBits - 1, 0) } val vpn_idx = vpn_idxs(aux_count) val raw_s2_pte_cache_addr = Cat(aux_pte.ppn, vpn_idx) << log2Ceil(xLen / 8) raw_s2_pte_cache_addr(vaddrBits.min(raw_s2_pte_cache_addr.getWidth) - 1, 0) } def makeFragmentedSuperpagePPN(ppn: UInt): Seq[UInt] = { (pgLevels-1 until 0 by -1).map(i => Cat(ppn >> (pgLevelBits*i), r_req.addr(((pgLevelBits*i) min vpnBits)-1, 0).padTo(pgLevelBits*i))) } /** PTECache caches non-leaf PTE * @param s2 true: 2-stage address translation */ def makePTECache(s2: Boolean): (Bool, UInt) = if (coreParams.nPTECacheEntries == 0) { (false.B, 0.U) } else { val plru = new PseudoLRU(coreParams.nPTECacheEntries) val valid = RegInit(0.U(coreParams.nPTECacheEntries.W)) val tags = Reg(Vec(coreParams.nPTECacheEntries, UInt((if (usingHypervisor) 1 + vaddrBits else paddrBits).W))) // not include full pte, only ppn val data = Reg(Vec(coreParams.nPTECacheEntries, UInt((if (usingHypervisor && s2) vpnBits else ppnBits).W))) val can_hit = if (s2) count === r_hgatp_initial_count && aux_count < (pgLevels-1).U && r_req.vstage1 && stage2 && !stage2_final else count < (pgLevels-1).U && Mux(r_req.vstage1, stage2, !r_req.stage2) val can_refill = if (s2) do_both_stages && !stage2 && !stage2_final else can_hit val tag = if (s2) Cat(true.B, stage2_pte_cache_addr.padTo(vaddrBits)) else Cat(r_req.vstage1, pte_addr.padTo(if (usingHypervisor) vaddrBits else paddrBits)) val hits = tags.map(_ === tag).asUInt & valid val hit = hits.orR && can_hit // refill with mem response when (mem_resp_valid && traverse && can_refill && !hits.orR && !invalidated) { val r = Mux(valid.andR, plru.way, PriorityEncoder(~valid)) valid := valid | UIntToOH(r) tags(r) := tag data(r) := pte.ppn plru.access(r) } // replace when (hit && state === s_req) { plru.access(OHToUInt(hits)) } when (io.dpath.sfence.valid && (!io.dpath.sfence.bits.rs1 || usingHypervisor.B && io.dpath.sfence.bits.hg)) { valid := 0.U } val lcount = if (s2) aux_count else count for (i <- 0 until pgLevels-1) { ccover(hit && state === s_req && lcount === i.U, s"PTE_CACHE_HIT_L$i", s"PTE cache hit, level $i") } (hit, Mux1H(hits, data)) } // generate pte_cache val (pte_cache_hit, pte_cache_data) = makePTECache(false) // generate pte_cache with 2-stage translation val (stage2_pte_cache_hit, stage2_pte_cache_data) = makePTECache(true) // pte_cache hit or 2-stage pte_cache hit val pte_hit = RegNext(false.B) io.dpath.perf.pte_miss := false.B io.dpath.perf.pte_hit := pte_hit && (state === s_req) && !io.dpath.perf.l2hit assert(!(io.dpath.perf.l2hit && (io.dpath.perf.pte_miss || io.dpath.perf.pte_hit)), "PTE Cache Hit/Miss Performance Monitor Events are lower priority than L2TLB Hit event") // l2_refill happens when find the leaf pte val l2_refill = RegNext(false.B) l2_refill_wire := l2_refill io.dpath.perf.l2miss := false.B io.dpath.perf.l2hit := false.B // l2tlb val (l2_hit, l2_error, l2_pte, l2_tlb_ram) = if (coreParams.nL2TLBEntries == 0) (false.B, false.B, WireDefault(0.U.asTypeOf(new PTE)), None) else { val code = new ParityCode require(isPow2(coreParams.nL2TLBEntries)) require(isPow2(coreParams.nL2TLBWays)) require(coreParams.nL2TLBEntries >= coreParams.nL2TLBWays) val nL2TLBSets = coreParams.nL2TLBEntries / coreParams.nL2TLBWays require(isPow2(nL2TLBSets)) val idxBits = log2Ceil(nL2TLBSets) val l2_plru = new SetAssocLRU(nL2TLBSets, coreParams.nL2TLBWays, "plru") val ram = DescribedSRAM( name = "l2_tlb_ram", desc = "L2 TLB", size = nL2TLBSets, data = Vec(coreParams.nL2TLBWays, UInt(code.width(new L2TLBEntry(nL2TLBSets).getWidth).W)) ) val g = Reg(Vec(coreParams.nL2TLBWays, UInt(nL2TLBSets.W))) val valid = RegInit(VecInit(Seq.fill(coreParams.nL2TLBWays)(0.U(nL2TLBSets.W)))) // use r_req to construct tag val (r_tag, r_idx) = Split(Cat(r_req.vstage1, r_req.addr(maxSVAddrBits-pgIdxBits-1, 0)), idxBits) /** the valid vec for the selected set(including n ways) */ val r_valid_vec = valid.map(_(r_idx)).asUInt val r_valid_vec_q = Reg(UInt(coreParams.nL2TLBWays.W)) val r_l2_plru_way = Reg(UInt(log2Ceil(coreParams.nL2TLBWays max 1).W)) r_valid_vec_q := r_valid_vec // replacement way r_l2_plru_way := (if (coreParams.nL2TLBWays > 1) l2_plru.way(r_idx) else 0.U) // refill with r_pte(leaf pte) when (l2_refill && !invalidated) { val entry = Wire(new L2TLBEntry(nL2TLBSets)) entry.ppn := r_pte.ppn entry.d := r_pte.d entry.a := r_pte.a entry.u := r_pte.u entry.x := r_pte.x entry.w := r_pte.w entry.r := r_pte.r entry.tag := r_tag // if all the way are valid, use plru to select one way to be replaced, // otherwise use PriorityEncoderOH to select one val wmask = if (coreParams.nL2TLBWays > 1) Mux(r_valid_vec_q.andR, UIntToOH(r_l2_plru_way, coreParams.nL2TLBWays), PriorityEncoderOH(~r_valid_vec_q)) else 1.U(1.W) ram.write(r_idx, VecInit(Seq.fill(coreParams.nL2TLBWays)(code.encode(entry.asUInt))), wmask.asBools) val mask = UIntToOH(r_idx) for (way <- 0 until coreParams.nL2TLBWays) { when (wmask(way)) { valid(way) := valid(way) | mask g(way) := Mux(r_pte.g, g(way) | mask, g(way) & ~mask) } } } // sfence happens when (io.dpath.sfence.valid) { val hg = usingHypervisor.B && io.dpath.sfence.bits.hg for (way <- 0 until coreParams.nL2TLBWays) { valid(way) := Mux(!hg && io.dpath.sfence.bits.rs1, valid(way) & ~UIntToOH(io.dpath.sfence.bits.addr(idxBits+pgIdxBits-1, pgIdxBits)), Mux(!hg && io.dpath.sfence.bits.rs2, valid(way) & g(way), 0.U)) } } val s0_valid = !l2_refill && arb.io.out.fire val s0_suitable = arb.io.out.bits.bits.vstage1 === arb.io.out.bits.bits.stage2 && !arb.io.out.bits.bits.need_gpa val s1_valid = RegNext(s0_valid && s0_suitable && arb.io.out.bits.valid) val s2_valid = RegNext(s1_valid) // read from tlb idx val s1_rdata = ram.read(arb.io.out.bits.bits.addr(idxBits-1, 0), s0_valid) val s2_rdata = s1_rdata.map(s1_rdway => code.decode(RegEnable(s1_rdway, s1_valid))) val s2_valid_vec = RegEnable(r_valid_vec, s1_valid) val s2_g_vec = RegEnable(VecInit(g.map(_(r_idx))), s1_valid) val s2_error = (0 until coreParams.nL2TLBWays).map(way => s2_valid_vec(way) && s2_rdata(way).error).orR when (s2_valid && s2_error) { valid.foreach { _ := 0.U }} // decode val s2_entry_vec = s2_rdata.map(_.uncorrected.asTypeOf(new L2TLBEntry(nL2TLBSets))) val s2_hit_vec = (0 until coreParams.nL2TLBWays).map(way => s2_valid_vec(way) && (r_tag === s2_entry_vec(way).tag)) val s2_hit = s2_valid && s2_hit_vec.orR io.dpath.perf.l2miss := s2_valid && !(s2_hit_vec.orR) io.dpath.perf.l2hit := s2_hit when (s2_hit) { l2_plru.access(r_idx, OHToUInt(s2_hit_vec)) assert((PopCount(s2_hit_vec) === 1.U) || s2_error, "L2 TLB multi-hit") } val s2_pte = Wire(new PTE) val s2_hit_entry = Mux1H(s2_hit_vec, s2_entry_vec) s2_pte.ppn := s2_hit_entry.ppn s2_pte.d := s2_hit_entry.d s2_pte.a := s2_hit_entry.a s2_pte.g := Mux1H(s2_hit_vec, s2_g_vec) s2_pte.u := s2_hit_entry.u s2_pte.x := s2_hit_entry.x s2_pte.w := s2_hit_entry.w s2_pte.r := s2_hit_entry.r s2_pte.v := true.B s2_pte.reserved_for_future := 0.U s2_pte.reserved_for_software := 0.U for (way <- 0 until coreParams.nL2TLBWays) { ccover(s2_hit && s2_hit_vec(way), s"L2_TLB_HIT_WAY$way", s"L2 TLB hit way$way") } (s2_hit, s2_error, s2_pte, Some(ram)) } // if SFENCE occurs during walk, don't refill PTE cache or L2 TLB until next walk invalidated := io.dpath.sfence.valid || (invalidated && state =/= s_ready) // mem request io.mem.keep_clock_enabled := false.B io.mem.req.valid := state === s_req || state === s_dummy1 io.mem.req.bits.phys := true.B io.mem.req.bits.cmd := M_XRD io.mem.req.bits.size := log2Ceil(xLen/8).U io.mem.req.bits.signed := false.B io.mem.req.bits.addr := pte_addr io.mem.req.bits.idx.foreach(_ := pte_addr) io.mem.req.bits.dprv := PRV.S.U // PTW accesses are S-mode by definition io.mem.req.bits.dv := do_both_stages && !stage2 io.mem.req.bits.tag := DontCare io.mem.req.bits.no_resp := false.B io.mem.req.bits.no_alloc := DontCare io.mem.req.bits.no_xcpt := DontCare io.mem.req.bits.data := DontCare io.mem.req.bits.mask := DontCare io.mem.s1_kill := l2_hit || (state =/= s_wait1) || resp_gf io.mem.s1_data := DontCare io.mem.s2_kill := false.B val pageGranularityPMPs = pmpGranularity >= (1 << pgIdxBits) require(!usingHypervisor || pageGranularityPMPs, s"hypervisor requires pmpGranularity >= ${1<<pgIdxBits}") val pmaPgLevelHomogeneous = (0 until pgLevels) map { i => val pgSize = BigInt(1) << (pgIdxBits + ((pgLevels - 1 - i) * pgLevelBits)) if (pageGranularityPMPs && i == pgLevels - 1) { require(TLBPageLookup.homogeneous(edge.manager.managers, pgSize), s"All memory regions must be $pgSize-byte aligned") true.B } else { TLBPageLookup(edge.manager.managers, xLen, p(CacheBlockBytes), pgSize, xLen/8)(r_pte.ppn << pgIdxBits).homogeneous } } val pmaHomogeneous = pmaPgLevelHomogeneous(count) val pmpHomogeneous = new PMPHomogeneityChecker(io.dpath.pmp).apply(r_pte.ppn << pgIdxBits, count) val homogeneous = pmaHomogeneous && pmpHomogeneous // response to tlb for (i <- 0 until io.requestor.size) { io.requestor(i).resp.valid := resp_valid(i) io.requestor(i).resp.bits.ae_ptw := resp_ae_ptw io.requestor(i).resp.bits.ae_final := resp_ae_final io.requestor(i).resp.bits.pf := resp_pf io.requestor(i).resp.bits.gf := resp_gf io.requestor(i).resp.bits.hr := resp_hr io.requestor(i).resp.bits.hw := resp_hw io.requestor(i).resp.bits.hx := resp_hx io.requestor(i).resp.bits.pte := r_pte io.requestor(i).resp.bits.level := max_count io.requestor(i).resp.bits.homogeneous := homogeneous || pageGranularityPMPs.B io.requestor(i).resp.bits.fragmented_superpage := resp_fragmented_superpage && pageGranularityPMPs.B io.requestor(i).resp.bits.gpa.valid := r_req.need_gpa io.requestor(i).resp.bits.gpa.bits := Cat(Mux(!stage2_final || !r_req.vstage1 || aux_count === (pgLevels - 1).U, aux_pte.ppn, makeFragmentedSuperpagePPN(aux_pte.ppn)(aux_count)), gpa_pgoff) io.requestor(i).resp.bits.gpa_is_pte := !stage2_final io.requestor(i).ptbr := io.dpath.ptbr io.requestor(i).hgatp := io.dpath.hgatp io.requestor(i).vsatp := io.dpath.vsatp io.requestor(i).customCSRs <> io.dpath.customCSRs io.requestor(i).status := io.dpath.status io.requestor(i).hstatus := io.dpath.hstatus io.requestor(i).gstatus := io.dpath.gstatus io.requestor(i).pmp := io.dpath.pmp } // control state machine val next_state = WireDefault(state) state := OptimizationBarrier(next_state) val do_switch = WireDefault(false.B) switch (state) { is (s_ready) { when (arb.io.out.fire) { val satp_initial_count = pgLevels.U - minPgLevels.U - satp.additionalPgLevels val vsatp_initial_count = pgLevels.U - minPgLevels.U - io.dpath.vsatp.additionalPgLevels val hgatp_initial_count = pgLevels.U - minPgLevels.U - io.dpath.hgatp.additionalPgLevels val aux_ppn = Mux(arb.io.out.bits.bits.vstage1, io.dpath.vsatp.ppn, arb.io.out.bits.bits.addr) r_req := arb.io.out.bits.bits r_req_dest := arb.io.chosen next_state := Mux(arb.io.out.bits.valid, s_req, s_ready) stage2 := arb.io.out.bits.bits.stage2 stage2_final := arb.io.out.bits.bits.stage2 && !arb.io.out.bits.bits.vstage1 count := Mux(arb.io.out.bits.bits.stage2, hgatp_initial_count, satp_initial_count) aux_count := Mux(arb.io.out.bits.bits.vstage1, vsatp_initial_count, 0.U) aux_pte.ppn := aux_ppn aux_pte.reserved_for_future := 0.U resp_ae_ptw := false.B resp_ae_final := false.B resp_pf := false.B resp_gf := checkInvalidHypervisorGPA(io.dpath.hgatp, aux_ppn) && arb.io.out.bits.bits.stage2 resp_hr := true.B resp_hw := true.B resp_hx := true.B resp_fragmented_superpage := false.B r_hgatp := io.dpath.hgatp assert(!arb.io.out.bits.bits.need_gpa || arb.io.out.bits.bits.stage2) } } is (s_req) { when(stage2 && count === r_hgatp_initial_count) { gpa_pgoff := Mux(aux_count === (pgLevels-1).U, r_req.addr << (xLen/8).log2, stage2_pte_cache_addr) } // pte_cache hit when (stage2_pte_cache_hit) { aux_count := aux_count + 1.U aux_pte.ppn := stage2_pte_cache_data aux_pte.reserved_for_future := 0.U pte_hit := true.B }.elsewhen (pte_cache_hit) { count := count + 1.U pte_hit := true.B }.otherwise { next_state := Mux(io.mem.req.ready, s_wait1, s_req) } when(resp_gf) { next_state := s_ready resp_valid(r_req_dest) := true.B } } is (s_wait1) { // This Mux is for the l2_error case; the l2_hit && !l2_error case is overriden below next_state := Mux(l2_hit, s_req, s_wait2) } is (s_wait2) { next_state := s_wait3 io.dpath.perf.pte_miss := count < (pgLevels-1).U when (io.mem.s2_xcpt.ae.ld) { resp_ae_ptw := true.B next_state := s_ready resp_valid(r_req_dest) := true.B } } is (s_fragment_superpage) { next_state := s_ready resp_valid(r_req_dest) := true.B when (!homogeneous) { count := (pgLevels-1).U resp_fragmented_superpage := true.B } when (do_both_stages) { resp_fragmented_superpage := true.B } } } val merged_pte = { val superpage_masks = (0 until pgLevels).map(i => ((BigInt(1) << pte.ppn.getWidth) - (BigInt(1) << (pgLevels-1-i)*pgLevelBits)).U) val superpage_mask = superpage_masks(Mux(stage2_final, max_count, (pgLevels-1).U)) val stage1_ppns = (0 until pgLevels-1).map(i => Cat(pte.ppn(pte.ppn.getWidth-1, (pgLevels-i-1)*pgLevelBits), aux_pte.ppn((pgLevels-i-1)*pgLevelBits-1,0))) :+ pte.ppn val stage1_ppn = stage1_ppns(count) makePTE(stage1_ppn & superpage_mask, aux_pte) } r_pte := OptimizationBarrier( // l2tlb hit->find a leaf PTE(l2_pte), respond to L1TLB Mux(l2_hit && !l2_error && !resp_gf, l2_pte, // S2 PTE cache hit -> proceed to the next level of walking, update the r_pte with hgatp Mux(state === s_req && stage2_pte_cache_hit, makeHypervisorRootPTE(r_hgatp, stage2_pte_cache_data, l2_pte), // pte cache hit->find a non-leaf PTE(pte_cache),continue to request mem Mux(state === s_req && pte_cache_hit, makePTE(pte_cache_data, l2_pte), // 2-stage translation Mux(do_switch, makeHypervisorRootPTE(r_hgatp, pte.ppn, r_pte), // when mem respond, store mem.resp.pte Mux(mem_resp_valid, Mux(!traverse && r_req.vstage1 && stage2, merged_pte, pte), // fragment_superpage Mux(state === s_fragment_superpage && !homogeneous && count =/= (pgLevels - 1).U, makePTE(makeFragmentedSuperpagePPN(r_pte.ppn)(count), r_pte), // when tlb request come->request mem, use root address in satp(or vsatp,hgatp) Mux(arb.io.out.fire, Mux(arb.io.out.bits.bits.stage2, makeHypervisorRootPTE(io.dpath.hgatp, io.dpath.vsatp.ppn, r_pte), makePTE(satp.ppn, r_pte)), r_pte)))))))) when (l2_hit && !l2_error && !resp_gf) { assert(state === s_req || state === s_wait1) next_state := s_ready resp_valid(r_req_dest) := true.B count := (pgLevels-1).U } when (mem_resp_valid) { assert(state === s_wait3) next_state := s_req when (traverse) { when (do_both_stages && !stage2) { do_switch := true.B } count := count + 1.U }.otherwise { val gf = (stage2 && !stage2_final && !pte.ur()) || (pte.leaf() && pte.reserved_for_future === 0.U && invalid_gpa) val ae = pte.v && invalid_paddr val pf = pte.v && pte.reserved_for_future =/= 0.U val success = pte.v && !ae && !pf && !gf when (do_both_stages && !stage2_final && success) { when (stage2) { stage2 := false.B count := aux_count }.otherwise { stage2_final := true.B do_switch := true.B } }.otherwise { // find a leaf pte, start l2 refill l2_refill := success && count === (pgLevels-1).U && !r_req.need_gpa && (!r_req.vstage1 && !r_req.stage2 || do_both_stages && aux_count === (pgLevels-1).U && pte.isFullPerm()) count := max_count when (pageGranularityPMPs.B && !(count === (pgLevels-1).U && (!do_both_stages || aux_count === (pgLevels-1).U))) { next_state := s_fragment_superpage }.otherwise { next_state := s_ready resp_valid(r_req_dest) := true.B } resp_ae_ptw := ae && count < (pgLevels-1).U && pte.table() resp_ae_final := ae && pte.leaf() resp_pf := pf && !stage2 resp_gf := gf || (pf && stage2) resp_hr := !stage2 || (!pf && !gf && pte.ur()) resp_hw := !stage2 || (!pf && !gf && pte.uw()) resp_hx := !stage2 || (!pf && !gf && pte.ux()) } } } when (io.mem.s2_nack) { assert(state === s_wait2) next_state := s_req } when (do_switch) { aux_count := Mux(traverse, count + 1.U, count) count := r_hgatp_initial_count aux_pte := Mux(traverse, pte, { val s1_ppns = (0 until pgLevels-1).map(i => Cat(pte.ppn(pte.ppn.getWidth-1, (pgLevels-i-1)*pgLevelBits), r_req.addr(((pgLevels-i-1)*pgLevelBits min vpnBits)-1,0).padTo((pgLevels-i-1)*pgLevelBits))) :+ pte.ppn makePTE(s1_ppns(count), pte) }) stage2 := true.B } for (i <- 0 until pgLevels) { val leaf = mem_resp_valid && !traverse && count === i.U ccover(leaf && pte.v && !invalid_paddr && !invalid_gpa && pte.reserved_for_future === 0.U, s"L$i", s"successful page-table access, level $i") ccover(leaf && pte.v && invalid_paddr, s"L${i}_BAD_PPN_MSB", s"PPN too large, level $i") ccover(leaf && pte.v && invalid_gpa, s"L${i}_BAD_GPA_MSB", s"GPA too large, level $i") ccover(leaf && pte.v && pte.reserved_for_future =/= 0.U, s"L${i}_BAD_RSV_MSB", s"reserved MSBs set, level $i") ccover(leaf && !mem_resp_data(0), s"L${i}_INVALID_PTE", s"page not present, level $i") if (i != pgLevels-1) ccover(leaf && !pte.v && mem_resp_data(0), s"L${i}_BAD_PPN_LSB", s"PPN LSBs not zero, level $i") } ccover(mem_resp_valid && count === (pgLevels-1).U && pte.table(), s"TOO_DEEP", s"page table too deep") ccover(io.mem.s2_nack, "NACK", "D$ nacked page-table access") ccover(state === s_wait2 && io.mem.s2_xcpt.ae.ld, "AE", "access exception while walking page table") } // leaving gated-clock domain private def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = if (usingVM) property.cover(cond, s"PTW_$label", "MemorySystem;;" + desc) /** Relace PTE.ppn with ppn */ private def makePTE(ppn: UInt, default: PTE) = { val pte = WireDefault(default) pte.ppn := ppn pte } /** use hgatp and vpn to construct a new ppn */ private def makeHypervisorRootPTE(hgatp: PTBR, vpn: UInt, default: PTE) = { val count = pgLevels.U - minPgLevels.U - hgatp.additionalPgLevels val idxs = (0 to pgLevels-minPgLevels).map(i => (vpn >> (pgLevels-i)*pgLevelBits)) val lsbs = WireDefault(UInt(maxHypervisorExtraAddrBits.W), idxs(count)) val pte = WireDefault(default) pte.ppn := Cat(hgatp.ppn >> maxHypervisorExtraAddrBits, lsbs) pte } /** use hgatp and vpn to check for gpa out of range */ private def checkInvalidHypervisorGPA(hgatp: PTBR, vpn: UInt) = { val count = pgLevels.U - minPgLevels.U - hgatp.additionalPgLevels val idxs = (0 to pgLevels-minPgLevels).map(i => (vpn >> ((pgLevels-i)*pgLevelBits)+maxHypervisorExtraAddrBits)) idxs.extract(count) =/= 0.U } } /** Mix-ins for constructing tiles that might have a PTW */ trait CanHavePTW extends HasTileParameters with HasHellaCache { this: BaseTile => val module: CanHavePTWModule var nPTWPorts = 1 nDCachePorts += usingPTW.toInt } trait CanHavePTWModule extends HasHellaCacheModule { val outer: CanHavePTW val ptwPorts = ListBuffer(outer.dcache.module.io.ptw) val ptw = Module(new PTW(outer.nPTWPorts)(outer.dcache.node.edges.out(0), outer.p)) ptw.io.mem <> DontCare if (outer.usingPTW) { dcachePorts += ptw.io.mem } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File DCache.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.rocket import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import freechips.rocketchip.amba.AMBAProt import freechips.rocketchip.diplomacy.{BufferParams} import freechips.rocketchip.prci.{ClockCrossingType, RationalCrossing, SynchronousCrossing, AsynchronousCrossing, CreditedCrossing} import freechips.rocketchip.tile.{CoreBundle, LookupByHartId} import freechips.rocketchip.tilelink.{TLFIFOFixer,ClientMetadata, TLBundleA, TLAtomics, TLBundleB, TLPermissions} import freechips.rocketchip.tilelink.TLMessages.{AccessAck, HintAck, AccessAckData, Grant, GrantData, ReleaseAck} import freechips.rocketchip.util.{CanHaveErrors, ClockGate, IdentityCode, ReplacementPolicy, DescribedSRAM, property} import freechips.rocketchip.util.BooleanToAugmentedBoolean import freechips.rocketchip.util.UIntToAugmentedUInt import freechips.rocketchip.util.UIntIsOneOf import freechips.rocketchip.util.IntToAugmentedInt import freechips.rocketchip.util.SeqToAugmentedSeq import freechips.rocketchip.util.SeqBoolBitwiseOps // TODO: delete this trait once deduplication is smart enough to avoid globally inlining matching circuits trait InlineInstance { self: chisel3.experimental.BaseModule => chisel3.experimental.annotate( new chisel3.experimental.ChiselAnnotation { def toFirrtl: firrtl.annotations.Annotation = firrtl.passes.InlineAnnotation(self.toNamed) } ) } class DCacheErrors(implicit p: Parameters) extends L1HellaCacheBundle()(p) with CanHaveErrors { val correctable = (cacheParams.tagCode.canCorrect || cacheParams.dataCode.canCorrect).option(Valid(UInt(paddrBits.W))) val uncorrectable = (cacheParams.tagCode.canDetect || cacheParams.dataCode.canDetect).option(Valid(UInt(paddrBits.W))) val bus = Valid(UInt(paddrBits.W)) } class DCacheDataReq(implicit p: Parameters) extends L1HellaCacheBundle()(p) { val addr = UInt(untagBits.W) val write = Bool() val wdata = UInt((encBits * rowBytes / eccBytes).W) val wordMask = UInt((rowBytes / subWordBytes).W) val eccMask = UInt((wordBytes / eccBytes).W) val way_en = UInt(nWays.W) } class DCacheDataArray(implicit p: Parameters) extends L1HellaCacheModule()(p) { val io = IO(new Bundle { val req = Flipped(Valid(new DCacheDataReq)) val resp = Output(Vec(nWays, UInt((req.bits.wdata.getWidth).W))) }) require(rowBits % subWordBits == 0, "rowBits must be a multiple of subWordBits") val eccMask = if (eccBits == subWordBits) Seq(true.B) else io.req.bits.eccMask.asBools val wMask = if (nWays == 1) eccMask else (0 until nWays).flatMap(i => eccMask.map(_ && io.req.bits.way_en(i))) val wWords = io.req.bits.wdata.grouped(encBits * (subWordBits / eccBits)) val addr = io.req.bits.addr >> rowOffBits val data_arrays = Seq.tabulate(rowBits / subWordBits) { i => DescribedSRAM( name = s"${tileParams.baseName}_dcache_data_arrays_${i}", desc = "DCache Data Array", size = nSets * cacheBlockBytes / rowBytes, data = Vec(nWays * (subWordBits / eccBits), UInt(encBits.W)) ) } val rdata = for ((array , i) <- data_arrays.zipWithIndex) yield { val valid = io.req.valid && ((data_arrays.size == 1).B || io.req.bits.wordMask(i)) when (valid && io.req.bits.write) { val wMaskSlice = (0 until wMask.size).filter(j => i % (wordBits/subWordBits) == (j % (wordBytes/eccBytes)) / (subWordBytes/eccBytes)).map(wMask(_)) val wData = wWords(i).grouped(encBits) array.write(addr, VecInit((0 until nWays).flatMap(i => wData)), wMaskSlice) } val data = array.read(addr, valid && !io.req.bits.write) data.grouped(subWordBits / eccBits).map(_.asUInt).toSeq } (io.resp zip rdata.transpose).foreach { case (resp, data) => resp := data.asUInt } } class DCacheMetadataReq(implicit p: Parameters) extends L1HellaCacheBundle()(p) { val write = Bool() val addr = UInt(vaddrBitsExtended.W) val idx = UInt(idxBits.W) val way_en = UInt(nWays.W) val data = UInt(cacheParams.tagCode.width(new L1Metadata().getWidth).W) } class DCache(staticIdForMetadataUseOnly: Int, val crossing: ClockCrossingType)(implicit p: Parameters) extends HellaCache(staticIdForMetadataUseOnly)(p) { override lazy val module = new DCacheModule(this) } class DCacheTLBPort(implicit p: Parameters) extends CoreBundle()(p) { val req = Flipped(Decoupled(new TLBReq(coreDataBytes.log2))) val s1_resp = Output(new TLBResp(coreDataBytes.log2)) val s2_kill = Input(Bool()) } class DCacheModule(outer: DCache) extends HellaCacheModule(outer) { val tECC = cacheParams.tagCode val dECC = cacheParams.dataCode require(subWordBits % eccBits == 0, "subWordBits must be a multiple of eccBits") require(eccBytes == 1 || !dECC.isInstanceOf[IdentityCode]) require(cacheParams.silentDrop || cacheParams.acquireBeforeRelease, "!silentDrop requires acquireBeforeRelease") val usingRMW = eccBytes > 1 || usingAtomicsInCache val mmioOffset = outer.firstMMIO edge.manager.requireFifo(TLFIFOFixer.allVolatile) // TileLink pipelining MMIO requests val clock_en_reg = Reg(Bool()) io.cpu.clock_enabled := clock_en_reg val gated_clock = if (!cacheParams.clockGate) clock else ClockGate(clock, clock_en_reg, "dcache_clock_gate") class DCacheModuleImpl { // entering gated-clock domain val tlb = Module(new TLB(false, log2Ceil(coreDataBytes), TLBConfig(nTLBSets, nTLBWays, cacheParams.nTLBBasePageSectors, cacheParams.nTLBSuperpages))) val pma_checker = Module(new TLB(false, log2Ceil(coreDataBytes), TLBConfig(nTLBSets, nTLBWays, cacheParams.nTLBBasePageSectors, cacheParams.nTLBSuperpages)) with InlineInstance) // tags val replacer = ReplacementPolicy.fromString(cacheParams.replacementPolicy, nWays) /** Metadata Arbiter: * 0: Tag update on reset * 1: Tag update on ECC error * 2: Tag update on hit * 3: Tag update on refill * 4: Tag update on release * 5: Tag update on flush * 6: Tag update on probe * 7: Tag update on CPU request */ val metaArb = Module(new Arbiter(new DCacheMetadataReq, 8) with InlineInstance) val tag_array = DescribedSRAM( name = s"${tileParams.baseName}_dcache_tag_array", desc = "DCache Tag Array", size = nSets, data = Vec(nWays, chiselTypeOf(metaArb.io.out.bits.data)) ) // data val data = Module(new DCacheDataArray) /** Data Arbiter * 0: data from pending store buffer * 1: data from TL-D refill * 2: release to TL-A * 3: hit path to CPU */ val dataArb = Module(new Arbiter(new DCacheDataReq, 4) with InlineInstance) dataArb.io.in.tail.foreach(_.bits.wdata := dataArb.io.in.head.bits.wdata) // tie off write ports by default data.io.req.bits <> dataArb.io.out.bits data.io.req.valid := dataArb.io.out.valid dataArb.io.out.ready := true.B metaArb.io.out.ready := clock_en_reg val tl_out_a = Wire(chiselTypeOf(tl_out.a)) tl_out.a <> { val a_queue_depth = outer.crossing match { case RationalCrossing(_) => // TODO make this depend on the actual ratio? if (cacheParams.separateUncachedResp) (maxUncachedInFlight + 1) / 2 else 2 min maxUncachedInFlight-1 case SynchronousCrossing(BufferParams.none) => 1 // Need some buffering to guarantee livelock freedom case SynchronousCrossing(_) => 0 // Adequate buffering within the crossing case _: AsynchronousCrossing => 0 // Adequate buffering within the crossing case _: CreditedCrossing => 0 // Adequate buffering within the crossing } Queue(tl_out_a, a_queue_depth, flow = true) } val (tl_out_c, release_queue_empty) = if (cacheParams.acquireBeforeRelease) { val q = Module(new Queue(chiselTypeOf(tl_out.c.bits), cacheDataBeats, flow = true)) tl_out.c <> q.io.deq (q.io.enq, q.io.count === 0.U) } else { (tl_out.c, true.B) } val s1_valid = RegNext(io.cpu.req.fire, false.B) val s1_probe = RegNext(tl_out.b.fire, false.B) val probe_bits = RegEnable(tl_out.b.bits, tl_out.b.fire) // TODO has data now :( val s1_nack = WireDefault(false.B) val s1_valid_masked = s1_valid && !io.cpu.s1_kill val s1_valid_not_nacked = s1_valid && !s1_nack val s1_tlb_req_valid = RegNext(io.tlb_port.req.fire, false.B) val s2_tlb_req_valid = RegNext(s1_tlb_req_valid, false.B) val s0_clk_en = metaArb.io.out.valid && !metaArb.io.out.bits.write val s0_req = WireInit(io.cpu.req.bits) s0_req.addr := Cat(metaArb.io.out.bits.addr >> blockOffBits, io.cpu.req.bits.addr(blockOffBits-1,0)) s0_req.idx.foreach(_ := Cat(metaArb.io.out.bits.idx, s0_req.addr(blockOffBits-1, 0))) when (!metaArb.io.in(7).ready) { s0_req.phys := true.B } val s1_req = RegEnable(s0_req, s0_clk_en) val s1_vaddr = Cat(s1_req.idx.getOrElse(s1_req.addr) >> tagLSB, s1_req.addr(tagLSB-1, 0)) val s0_tlb_req = WireInit(io.tlb_port.req.bits) when (!io.tlb_port.req.fire) { s0_tlb_req.passthrough := s0_req.phys s0_tlb_req.vaddr := s0_req.addr s0_tlb_req.size := s0_req.size s0_tlb_req.cmd := s0_req.cmd s0_tlb_req.prv := s0_req.dprv s0_tlb_req.v := s0_req.dv } val s1_tlb_req = RegEnable(s0_tlb_req, s0_clk_en || io.tlb_port.req.valid) val s1_read = isRead(s1_req.cmd) val s1_write = isWrite(s1_req.cmd) val s1_readwrite = s1_read || s1_write val s1_sfence = s1_req.cmd === M_SFENCE || s1_req.cmd === M_HFENCEV || s1_req.cmd === M_HFENCEG val s1_flush_line = s1_req.cmd === M_FLUSH_ALL && s1_req.size(0) val s1_flush_valid = Reg(Bool()) val s1_waw_hazard = Wire(Bool()) val s_ready :: s_voluntary_writeback :: s_probe_rep_dirty :: s_probe_rep_clean :: s_probe_retry :: s_probe_rep_miss :: s_voluntary_write_meta :: s_probe_write_meta :: s_dummy :: s_voluntary_release :: Nil = Enum(10) val supports_flush = outer.flushOnFenceI || coreParams.haveCFlush val flushed = RegInit(true.B) val flushing = RegInit(false.B) val flushing_req = Reg(chiselTypeOf(s1_req)) val cached_grant_wait = RegInit(false.B) val resetting = RegInit(false.B) val flushCounter = RegInit((nSets * (nWays-1)).U(log2Ceil(nSets * nWays).W)) val release_ack_wait = RegInit(false.B) val release_ack_addr = Reg(UInt(paddrBits.W)) val release_state = RegInit(s_ready) val refill_way = Reg(UInt()) val any_pstore_valid = Wire(Bool()) val inWriteback = release_state.isOneOf(s_voluntary_writeback, s_probe_rep_dirty) val releaseWay = Wire(UInt()) io.cpu.req.ready := (release_state === s_ready) && !cached_grant_wait && !s1_nack // I/O MSHRs val uncachedInFlight = RegInit(VecInit(Seq.fill(maxUncachedInFlight)(false.B))) val uncachedReqs = Reg(Vec(maxUncachedInFlight, new HellaCacheReq)) val uncachedResp = WireInit(new HellaCacheReq, DontCare) // hit initiation path val s0_read = isRead(io.cpu.req.bits.cmd) dataArb.io.in(3).valid := io.cpu.req.valid && likelyNeedsRead(io.cpu.req.bits) dataArb.io.in(3).bits := dataArb.io.in(1).bits dataArb.io.in(3).bits.write := false.B dataArb.io.in(3).bits.addr := Cat(io.cpu.req.bits.idx.getOrElse(io.cpu.req.bits.addr) >> tagLSB, io.cpu.req.bits.addr(tagLSB-1, 0)) dataArb.io.in(3).bits.wordMask := { val mask = (subWordBytes.log2 until rowOffBits).foldLeft(1.U) { case (in, i) => val upper_mask = Mux((i >= wordBytes.log2).B || io.cpu.req.bits.size <= i.U, 0.U, ((BigInt(1) << (1 << (i - subWordBytes.log2)))-1).U) val upper = Mux(io.cpu.req.bits.addr(i), in, 0.U) | upper_mask val lower = Mux(io.cpu.req.bits.addr(i), 0.U, in) upper ## lower } Fill(subWordBytes / eccBytes, mask) } dataArb.io.in(3).bits.eccMask := ~0.U((wordBytes / eccBytes).W) dataArb.io.in(3).bits.way_en := ~0.U(nWays.W) when (!dataArb.io.in(3).ready && s0_read) { io.cpu.req.ready := false.B } val s1_did_read = RegEnable(dataArb.io.in(3).ready && (io.cpu.req.valid && needsRead(io.cpu.req.bits)), s0_clk_en) val s1_read_mask = RegEnable(dataArb.io.in(3).bits.wordMask, s0_clk_en) metaArb.io.in(7).valid := io.cpu.req.valid metaArb.io.in(7).bits.write := false.B metaArb.io.in(7).bits.idx := dataArb.io.in(3).bits.addr(idxMSB, idxLSB) metaArb.io.in(7).bits.addr := io.cpu.req.bits.addr metaArb.io.in(7).bits.way_en := metaArb.io.in(4).bits.way_en metaArb.io.in(7).bits.data := metaArb.io.in(4).bits.data when (!metaArb.io.in(7).ready) { io.cpu.req.ready := false.B } // address translation val s1_cmd_uses_tlb = s1_readwrite || s1_flush_line || s1_req.cmd === M_WOK io.ptw <> tlb.io.ptw tlb.io.kill := io.cpu.s2_kill || s2_tlb_req_valid && io.tlb_port.s2_kill tlb.io.req.valid := s1_tlb_req_valid || s1_valid && !io.cpu.s1_kill && s1_cmd_uses_tlb tlb.io.req.bits := s1_tlb_req when (!tlb.io.req.ready && !tlb.io.ptw.resp.valid && !io.cpu.req.bits.phys) { io.cpu.req.ready := false.B } when (!s1_tlb_req_valid && s1_valid && s1_cmd_uses_tlb && tlb.io.resp.miss) { s1_nack := true.B } tlb.io.sfence.valid := s1_valid && !io.cpu.s1_kill && s1_sfence tlb.io.sfence.bits.rs1 := s1_req.size(0) tlb.io.sfence.bits.rs2 := s1_req.size(1) tlb.io.sfence.bits.asid := io.cpu.s1_data.data tlb.io.sfence.bits.addr := s1_req.addr tlb.io.sfence.bits.hv := s1_req.cmd === M_HFENCEV tlb.io.sfence.bits.hg := s1_req.cmd === M_HFENCEG io.tlb_port.req.ready := clock_en_reg io.tlb_port.s1_resp := tlb.io.resp when (s1_tlb_req_valid && s1_valid && !(s1_req.phys && s1_req.no_xcpt)) { s1_nack := true.B } pma_checker.io <> DontCare pma_checker.io.req.bits.passthrough := true.B pma_checker.io.req.bits.vaddr := s1_req.addr pma_checker.io.req.bits.size := s1_req.size pma_checker.io.req.bits.cmd := s1_req.cmd pma_checker.io.req.bits.prv := s1_req.dprv pma_checker.io.req.bits.v := s1_req.dv val s1_paddr = Cat(Mux(s1_tlb_req_valid, s1_req.addr(paddrBits-1, pgIdxBits), tlb.io.resp.paddr >> pgIdxBits), s1_req.addr(pgIdxBits-1, 0)) val s1_victim_way = Wire(UInt()) val (s1_hit_way, s1_hit_state, s1_meta) = if (usingDataScratchpad) { val baseAddr = p(LookupByHartId)(_.dcache.flatMap(_.scratch.map(_.U)), io_hartid.get) | io_mmio_address_prefix.get val inScratchpad = s1_paddr >= baseAddr && s1_paddr < baseAddr + (nSets * cacheBlockBytes).U val hitState = Mux(inScratchpad, ClientMetadata.maximum, ClientMetadata.onReset) val dummyMeta = L1Metadata(0.U, ClientMetadata.onReset) (inScratchpad, hitState, Seq(tECC.encode(dummyMeta.asUInt))) } else { val metaReq = metaArb.io.out val metaIdx = metaReq.bits.idx when (metaReq.valid && metaReq.bits.write) { val wmask = if (nWays == 1) Seq(true.B) else metaReq.bits.way_en.asBools tag_array.write(metaIdx, VecInit(Seq.fill(nWays)(metaReq.bits.data)), wmask) } val s1_meta = tag_array.read(metaIdx, metaReq.valid && !metaReq.bits.write) val s1_meta_uncorrected = s1_meta.map(tECC.decode(_).uncorrected.asTypeOf(new L1Metadata)) val s1_tag = s1_paddr >> tagLSB val s1_meta_hit_way = s1_meta_uncorrected.map(r => r.coh.isValid() && r.tag === s1_tag).asUInt val s1_meta_hit_state = ( s1_meta_uncorrected.map(r => Mux(r.tag === s1_tag && !s1_flush_valid, r.coh.asUInt, 0.U)) .reduce (_|_)).asTypeOf(chiselTypeOf(ClientMetadata.onReset)) (s1_meta_hit_way, s1_meta_hit_state, s1_meta) } val s1_data_way = WireDefault(if (nWays == 1) 1.U else Mux(inWriteback, releaseWay, s1_hit_way)) val tl_d_data_encoded = Wire(chiselTypeOf(encodeData(tl_out.d.bits.data, false.B))) val s1_all_data_ways = VecInit(data.io.resp ++ (!cacheParams.separateUncachedResp).option(tl_d_data_encoded)) val s1_mask_xwr = new StoreGen(s1_req.size, s1_req.addr, 0.U, wordBytes).mask val s1_mask = Mux(s1_req.cmd === M_PWR, io.cpu.s1_data.mask, s1_mask_xwr) // for partial writes, s1_data.mask must be a subset of s1_mask_xwr assert(!(s1_valid_masked && s1_req.cmd === M_PWR) || (s1_mask_xwr | ~io.cpu.s1_data.mask).andR) val s2_valid = RegNext(s1_valid_masked && !s1_sfence, init=false.B) val s2_valid_no_xcpt = s2_valid && !io.cpu.s2_xcpt.asUInt.orR val s2_probe = RegNext(s1_probe, init=false.B) val releaseInFlight = s1_probe || s2_probe || release_state =/= s_ready val s2_not_nacked_in_s1 = RegNext(!s1_nack) val s2_valid_not_nacked_in_s1 = s2_valid && s2_not_nacked_in_s1 val s2_valid_masked = s2_valid_no_xcpt && s2_not_nacked_in_s1 val s2_valid_not_killed = s2_valid_masked && !io.cpu.s2_kill val s2_req = Reg(chiselTypeOf(io.cpu.req.bits)) val s2_cmd_flush_all = s2_req.cmd === M_FLUSH_ALL && !s2_req.size(0) val s2_cmd_flush_line = s2_req.cmd === M_FLUSH_ALL && s2_req.size(0) val s2_tlb_xcpt = Reg(chiselTypeOf(tlb.io.resp)) val s2_pma = Reg(chiselTypeOf(tlb.io.resp)) val s2_uncached_resp_addr = Reg(chiselTypeOf(s2_req.addr)) // should be DCE'd in synthesis when (s1_valid_not_nacked || s1_flush_valid) { s2_req := s1_req s2_req.addr := s1_paddr s2_tlb_xcpt := tlb.io.resp s2_pma := Mux(s1_tlb_req_valid, pma_checker.io.resp, tlb.io.resp) } val s2_vaddr = Cat(RegEnable(s1_vaddr, s1_valid_not_nacked || s1_flush_valid) >> tagLSB, s2_req.addr(tagLSB-1, 0)) val s2_read = isRead(s2_req.cmd) val s2_write = isWrite(s2_req.cmd) val s2_readwrite = s2_read || s2_write val s2_flush_valid_pre_tag_ecc = RegNext(s1_flush_valid) val s1_meta_decoded = s1_meta.map(tECC.decode(_)) val s1_meta_clk_en = s1_valid_not_nacked || s1_flush_valid || s1_probe val s2_meta_correctable_errors = s1_meta_decoded.map(m => RegEnable(m.correctable, s1_meta_clk_en)).asUInt val s2_meta_uncorrectable_errors = s1_meta_decoded.map(m => RegEnable(m.uncorrectable, s1_meta_clk_en)).asUInt val s2_meta_error_uncorrectable = s2_meta_uncorrectable_errors.orR val s2_meta_corrected = s1_meta_decoded.map(m => RegEnable(m.corrected, s1_meta_clk_en).asTypeOf(new L1Metadata)) val s2_meta_error = (s2_meta_uncorrectable_errors | s2_meta_correctable_errors).orR val s2_flush_valid = s2_flush_valid_pre_tag_ecc && !s2_meta_error val s2_data = { val wordsPerRow = rowBits / subWordBits val en = s1_valid || inWriteback || io.cpu.replay_next val word_en = Mux(inWriteback, Fill(wordsPerRow, 1.U), Mux(s1_did_read, s1_read_mask, 0.U)) val s1_way_words = s1_all_data_ways.map(_.grouped(dECC.width(eccBits) * (subWordBits / eccBits))) if (cacheParams.pipelineWayMux) { val s1_word_en = Mux(io.cpu.replay_next, 0.U, word_en) (for (i <- 0 until wordsPerRow) yield { val s2_way_en = RegEnable(Mux(s1_word_en(i), s1_data_way, 0.U), en) val s2_way_words = (0 until nWays).map(j => RegEnable(s1_way_words(j)(i), en && word_en(i))) (0 until nWays).map(j => Mux(s2_way_en(j), s2_way_words(j), 0.U)).reduce(_|_) }).asUInt } else { val s1_word_en = Mux(!io.cpu.replay_next, word_en, UIntToOH(uncachedResp.addr.extract(log2Up(rowBits/8)-1, log2Up(wordBytes)), wordsPerRow)) (for (i <- 0 until wordsPerRow) yield { RegEnable(Mux1H(Mux(s1_word_en(i), s1_data_way, 0.U), s1_way_words.map(_(i))), en) }).asUInt } } val s2_probe_way = RegEnable(s1_hit_way, s1_probe) val s2_probe_state = RegEnable(s1_hit_state, s1_probe) val s2_hit_way = RegEnable(s1_hit_way, s1_valid_not_nacked) val s2_hit_state = RegEnable(s1_hit_state, s1_valid_not_nacked || s1_flush_valid) val s2_waw_hazard = RegEnable(s1_waw_hazard, s1_valid_not_nacked) val s2_store_merge = Wire(Bool()) val s2_hit_valid = s2_hit_state.isValid() val (s2_hit, s2_grow_param, s2_new_hit_state) = s2_hit_state.onAccess(s2_req.cmd) val s2_data_decoded = decodeData(s2_data) val s2_word_idx = s2_req.addr.extract(log2Up(rowBits/8)-1, log2Up(wordBytes)) val s2_data_error = s2_data_decoded.map(_.error).orR val s2_data_error_uncorrectable = s2_data_decoded.map(_.uncorrectable).orR val s2_data_corrected = (s2_data_decoded.map(_.corrected): Seq[UInt]).asUInt val s2_data_uncorrected = (s2_data_decoded.map(_.uncorrected): Seq[UInt]).asUInt val s2_valid_hit_maybe_flush_pre_data_ecc_and_waw = s2_valid_masked && !s2_meta_error && s2_hit val s2_no_alloc_hazard = if (!usingVM || pgIdxBits >= untagBits) false.B else { // make sure that any in-flight non-allocating accesses are ordered before // any allocating accesses. this can only happen if aliasing is possible. val any_no_alloc_in_flight = Reg(Bool()) when (!uncachedInFlight.asUInt.orR) { any_no_alloc_in_flight := false.B } when (s2_valid && s2_req.no_alloc) { any_no_alloc_in_flight := true.B } val s1_need_check = any_no_alloc_in_flight || s2_valid && s2_req.no_alloc val concerns = (uncachedInFlight zip uncachedReqs) :+ (s2_valid && s2_req.no_alloc, s2_req) val s1_uncached_hits = concerns.map { c => val concern_wmask = new StoreGen(c._2.size, c._2.addr, 0.U, wordBytes).mask val addr_match = (c._2.addr ^ s1_paddr)(pgIdxBits+pgLevelBits-1, wordBytes.log2) === 0.U val mask_match = (concern_wmask & s1_mask_xwr).orR || c._2.cmd === M_PWR || s1_req.cmd === M_PWR val cmd_match = isWrite(c._2.cmd) || isWrite(s1_req.cmd) c._1 && s1_need_check && cmd_match && addr_match && mask_match } val s2_uncached_hits = RegEnable(s1_uncached_hits.asUInt, s1_valid_not_nacked) s2_uncached_hits.orR } val s2_valid_hit_pre_data_ecc_and_waw = s2_valid_hit_maybe_flush_pre_data_ecc_and_waw && s2_readwrite && !s2_no_alloc_hazard val s2_valid_flush_line = s2_valid_hit_maybe_flush_pre_data_ecc_and_waw && s2_cmd_flush_line val s2_valid_hit_pre_data_ecc = s2_valid_hit_pre_data_ecc_and_waw && (!s2_waw_hazard || s2_store_merge) val s2_valid_data_error = s2_valid_hit_pre_data_ecc_and_waw && s2_data_error val s2_valid_hit = s2_valid_hit_pre_data_ecc && !s2_data_error val s2_valid_miss = s2_valid_masked && s2_readwrite && !s2_meta_error && !s2_hit val s2_uncached = !s2_pma.cacheable || s2_req.no_alloc && !s2_pma.must_alloc && !s2_hit_valid val s2_valid_cached_miss = s2_valid_miss && !s2_uncached && !uncachedInFlight.asUInt.orR dontTouch(s2_valid_cached_miss) val s2_want_victimize = (!usingDataScratchpad).B && (s2_valid_cached_miss || s2_valid_flush_line || s2_valid_data_error || s2_flush_valid) val s2_cannot_victimize = !s2_flush_valid && io.cpu.s2_kill val s2_victimize = s2_want_victimize && !s2_cannot_victimize val s2_valid_uncached_pending = s2_valid_miss && s2_uncached && !uncachedInFlight.asUInt.andR val s2_victim_way = UIntToOH(RegEnable(s1_victim_way, s1_valid_not_nacked || s1_flush_valid)) val s2_victim_or_hit_way = Mux(s2_hit_valid, s2_hit_way, s2_victim_way) val s2_victim_tag = Mux(s2_valid_data_error || s2_valid_flush_line, s2_req.addr(paddrBits-1, tagLSB), Mux1H(s2_victim_way, s2_meta_corrected).tag) val s2_victim_state = Mux(s2_hit_valid, s2_hit_state, Mux1H(s2_victim_way, s2_meta_corrected).coh) val (s2_prb_ack_data, s2_report_param, probeNewCoh)= s2_probe_state.onProbe(probe_bits.param) val (s2_victim_dirty, s2_shrink_param, voluntaryNewCoh) = s2_victim_state.onCacheControl(M_FLUSH) dontTouch(s2_victim_dirty) val s2_update_meta = s2_hit_state =/= s2_new_hit_state val s2_dont_nack_uncached = s2_valid_uncached_pending && tl_out_a.ready val s2_dont_nack_misc = s2_valid_masked && !s2_meta_error && (supports_flush.B && s2_cmd_flush_all && flushed && !flushing || supports_flush.B && s2_cmd_flush_line && !s2_hit || s2_req.cmd === M_WOK) io.cpu.s2_nack := s2_valid_no_xcpt && !s2_dont_nack_uncached && !s2_dont_nack_misc && !s2_valid_hit when (io.cpu.s2_nack || (s2_valid_hit_pre_data_ecc_and_waw && s2_update_meta)) { s1_nack := true.B } // tag updates on ECC errors val s2_first_meta_corrected = PriorityMux(s2_meta_correctable_errors, s2_meta_corrected) metaArb.io.in(1).valid := s2_meta_error && (s2_valid_masked || s2_flush_valid_pre_tag_ecc || s2_probe) metaArb.io.in(1).bits.write := true.B metaArb.io.in(1).bits.way_en := s2_meta_uncorrectable_errors | Mux(s2_meta_error_uncorrectable, 0.U, PriorityEncoderOH(s2_meta_correctable_errors)) metaArb.io.in(1).bits.idx := Mux(s2_probe, probeIdx(probe_bits), s2_vaddr(idxMSB, idxLSB)) metaArb.io.in(1).bits.addr := Cat(io.cpu.req.bits.addr >> untagBits, metaArb.io.in(1).bits.idx << blockOffBits) metaArb.io.in(1).bits.data := tECC.encode { val new_meta = WireDefault(s2_first_meta_corrected) when (s2_meta_error_uncorrectable) { new_meta.coh := ClientMetadata.onReset } new_meta.asUInt } // tag updates on hit metaArb.io.in(2).valid := s2_valid_hit_pre_data_ecc_and_waw && s2_update_meta metaArb.io.in(2).bits.write := !io.cpu.s2_kill metaArb.io.in(2).bits.way_en := s2_victim_or_hit_way metaArb.io.in(2).bits.idx := s2_vaddr(idxMSB, idxLSB) metaArb.io.in(2).bits.addr := Cat(io.cpu.req.bits.addr >> untagBits, s2_vaddr(idxMSB, 0)) metaArb.io.in(2).bits.data := tECC.encode(L1Metadata(s2_req.addr >> tagLSB, s2_new_hit_state).asUInt) // load reservations and TL error reporting val s2_lr = (usingAtomics && !usingDataScratchpad).B && s2_req.cmd === M_XLR val s2_sc = (usingAtomics && !usingDataScratchpad).B && s2_req.cmd === M_XSC val lrscCount = RegInit(0.U) val lrscValid = lrscCount > lrscBackoff.U val lrscBackingOff = lrscCount > 0.U && !lrscValid val lrscAddr = Reg(UInt()) val lrscAddrMatch = lrscAddr === (s2_req.addr >> blockOffBits) val s2_sc_fail = s2_sc && !(lrscValid && lrscAddrMatch) when ((s2_valid_hit && s2_lr && !cached_grant_wait || s2_valid_cached_miss) && !io.cpu.s2_kill) { lrscCount := Mux(s2_hit, (lrscCycles - 1).U, 0.U) lrscAddr := s2_req.addr >> blockOffBits } when (lrscCount > 0.U) { lrscCount := lrscCount - 1.U } when (s2_valid_not_killed && lrscValid) { lrscCount := lrscBackoff.U } when (s1_probe) { lrscCount := 0.U } // don't perform data correction if it might clobber a recent store val s2_correct = s2_data_error && !any_pstore_valid && !RegNext(any_pstore_valid || s2_valid) && usingDataScratchpad.B // pending store buffer val s2_valid_correct = s2_valid_hit_pre_data_ecc_and_waw && s2_correct && !io.cpu.s2_kill def s2_store_valid_pre_kill = s2_valid_hit && s2_write && !s2_sc_fail def s2_store_valid = s2_store_valid_pre_kill && !io.cpu.s2_kill val pstore1_cmd = RegEnable(s1_req.cmd, s1_valid_not_nacked && s1_write) val pstore1_addr = RegEnable(s1_vaddr, s1_valid_not_nacked && s1_write) val pstore1_data = RegEnable(io.cpu.s1_data.data, s1_valid_not_nacked && s1_write) val pstore1_way = RegEnable(s1_hit_way, s1_valid_not_nacked && s1_write) val pstore1_mask = RegEnable(s1_mask, s1_valid_not_nacked && s1_write) val pstore1_storegen_data = WireDefault(pstore1_data) val pstore1_rmw = usingRMW.B && RegEnable(needsRead(s1_req), s1_valid_not_nacked && s1_write) val pstore1_merge_likely = s2_valid_not_nacked_in_s1 && s2_write && s2_store_merge val pstore1_merge = s2_store_valid && s2_store_merge val pstore2_valid = RegInit(false.B) val pstore_drain_opportunistic = !(io.cpu.req.valid && likelyNeedsRead(io.cpu.req.bits)) && !(s1_valid && s1_waw_hazard) val pstore_drain_on_miss = releaseInFlight || RegNext(io.cpu.s2_nack) val pstore1_held = RegInit(false.B) val pstore1_valid_likely = s2_valid && s2_write || pstore1_held def pstore1_valid_not_rmw(s2_kill: Bool) = s2_valid_hit_pre_data_ecc && s2_write && !s2_kill || pstore1_held val pstore1_valid = s2_store_valid || pstore1_held any_pstore_valid := pstore1_held || pstore2_valid val pstore_drain_structural = pstore1_valid_likely && pstore2_valid && ((s1_valid && s1_write) || pstore1_rmw) assert(pstore1_rmw || pstore1_valid_not_rmw(io.cpu.s2_kill) === pstore1_valid) ccover(pstore_drain_structural, "STORE_STRUCTURAL_HAZARD", "D$ read-modify-write structural hazard") ccover(pstore1_valid && pstore_drain_on_miss, "STORE_DRAIN_ON_MISS", "D$ store buffer drain on miss") ccover(s1_valid_not_nacked && s1_waw_hazard, "WAW_HAZARD", "D$ write-after-write hazard") def should_pstore_drain(truly: Bool) = { val s2_kill = truly && io.cpu.s2_kill !pstore1_merge_likely && (usingRMW.B && pstore_drain_structural || (((pstore1_valid_not_rmw(s2_kill) && !pstore1_rmw) || pstore2_valid) && (pstore_drain_opportunistic || pstore_drain_on_miss))) } val pstore_drain = should_pstore_drain(true.B) pstore1_held := (s2_store_valid && !s2_store_merge || pstore1_held) && pstore2_valid && !pstore_drain val advance_pstore1 = (pstore1_valid || s2_valid_correct) && (pstore2_valid === pstore_drain) pstore2_valid := pstore2_valid && !pstore_drain || advance_pstore1 val pstore2_addr = RegEnable(Mux(s2_correct, s2_vaddr, pstore1_addr), advance_pstore1) val pstore2_way = RegEnable(Mux(s2_correct, s2_hit_way, pstore1_way), advance_pstore1) val pstore2_storegen_data = { for (i <- 0 until wordBytes) yield RegEnable(pstore1_storegen_data(8*(i+1)-1, 8*i), advance_pstore1 || pstore1_merge && pstore1_mask(i)) }.asUInt val pstore2_storegen_mask = { val mask = Reg(UInt(wordBytes.W)) when (advance_pstore1 || pstore1_merge) { val mergedMask = pstore1_mask | Mux(pstore1_merge, mask, 0.U) mask := ~Mux(s2_correct, 0.U, ~mergedMask) } mask } s2_store_merge := (if (eccBytes == 1) false.B else { ccover(pstore1_merge, "STORE_MERGED", "D$ store merged") // only merge stores to ECC granules that are already stored-to, to avoid // WAW hazards val wordMatch = (eccMask(pstore2_storegen_mask) | ~eccMask(pstore1_mask)).andR val idxMatch = s2_vaddr(untagBits-1, log2Ceil(wordBytes)) === pstore2_addr(untagBits-1, log2Ceil(wordBytes)) val tagMatch = (s2_hit_way & pstore2_way).orR pstore2_valid && wordMatch && idxMatch && tagMatch }) dataArb.io.in(0).valid := should_pstore_drain(false.B) dataArb.io.in(0).bits.write := pstore_drain dataArb.io.in(0).bits.addr := Mux(pstore2_valid, pstore2_addr, pstore1_addr) dataArb.io.in(0).bits.way_en := Mux(pstore2_valid, pstore2_way, pstore1_way) dataArb.io.in(0).bits.wdata := encodeData(Fill(rowWords, Mux(pstore2_valid, pstore2_storegen_data, pstore1_data)), false.B) dataArb.io.in(0).bits.wordMask := { val eccMask = dataArb.io.in(0).bits.eccMask.asBools.grouped(subWordBytes/eccBytes).map(_.orR).toSeq.asUInt val wordMask = UIntToOH(Mux(pstore2_valid, pstore2_addr, pstore1_addr).extract(rowOffBits-1, wordBytes.log2)) FillInterleaved(wordBytes/subWordBytes, wordMask) & Fill(rowBytes/wordBytes, eccMask) } dataArb.io.in(0).bits.eccMask := eccMask(Mux(pstore2_valid, pstore2_storegen_mask, pstore1_mask)) // store->load RAW hazard detection def s1Depends(addr: UInt, mask: UInt) = addr(idxMSB, wordOffBits) === s1_vaddr(idxMSB, wordOffBits) && Mux(s1_write, (eccByteMask(mask) & eccByteMask(s1_mask_xwr)).orR, (mask & s1_mask_xwr).orR) val s1_hazard = (pstore1_valid_likely && s1Depends(pstore1_addr, pstore1_mask)) || (pstore2_valid && s1Depends(pstore2_addr, pstore2_storegen_mask)) val s1_raw_hazard = s1_read && s1_hazard s1_waw_hazard := (if (eccBytes == 1) false.B else { ccover(s1_valid_not_nacked && s1_waw_hazard, "WAW_HAZARD", "D$ write-after-write hazard") s1_write && (s1_hazard || needsRead(s1_req) && !s1_did_read) }) when (s1_valid && s1_raw_hazard) { s1_nack := true.B } // performance hints to processor io.cpu.s2_nack_cause_raw := RegNext(s1_raw_hazard) || !(!s2_waw_hazard || s2_store_merge) // Prepare a TileLink request message that initiates a transaction val a_source = PriorityEncoder(~uncachedInFlight.asUInt << mmioOffset) // skip the MSHR val acquire_address = (s2_req.addr >> idxLSB) << idxLSB val access_address = s2_req.addr val a_size = s2_req.size val a_data = Fill(beatWords, pstore1_data) val a_mask = pstore1_mask << (access_address.extract(beatBytes.log2-1, wordBytes.log2) << 3) val get = edge.Get(a_source, access_address, a_size)._2 val put = edge.Put(a_source, access_address, a_size, a_data)._2 val putpartial = edge.Put(a_source, access_address, a_size, a_data, a_mask)._2 val atomics = if (edge.manager.anySupportLogical) { MuxLookup(s2_req.cmd, WireDefault(0.U.asTypeOf(new TLBundleA(edge.bundle))))(Array( M_XA_SWAP -> edge.Logical(a_source, access_address, a_size, a_data, TLAtomics.SWAP)._2, M_XA_XOR -> edge.Logical(a_source, access_address, a_size, a_data, TLAtomics.XOR) ._2, M_XA_OR -> edge.Logical(a_source, access_address, a_size, a_data, TLAtomics.OR) ._2, M_XA_AND -> edge.Logical(a_source, access_address, a_size, a_data, TLAtomics.AND) ._2, M_XA_ADD -> edge.Arithmetic(a_source, access_address, a_size, a_data, TLAtomics.ADD)._2, M_XA_MIN -> edge.Arithmetic(a_source, access_address, a_size, a_data, TLAtomics.MIN)._2, M_XA_MAX -> edge.Arithmetic(a_source, access_address, a_size, a_data, TLAtomics.MAX)._2, M_XA_MINU -> edge.Arithmetic(a_source, access_address, a_size, a_data, TLAtomics.MINU)._2, M_XA_MAXU -> edge.Arithmetic(a_source, access_address, a_size, a_data, TLAtomics.MAXU)._2)) } else { // If no managers support atomics, assert fail if processor asks for them assert (!(tl_out_a.valid && s2_read && s2_write && s2_uncached)) WireDefault(new TLBundleA(edge.bundle), DontCare) } tl_out_a.valid := !io.cpu.s2_kill && (s2_valid_uncached_pending || (s2_valid_cached_miss && !(release_ack_wait && (s2_req.addr ^ release_ack_addr)(((pgIdxBits + pgLevelBits) min paddrBits) - 1, idxLSB) === 0.U) && (cacheParams.acquireBeforeRelease.B && !release_ack_wait && release_queue_empty || !s2_victim_dirty))) tl_out_a.bits := Mux(!s2_uncached, acquire(s2_vaddr, s2_req.addr, s2_grow_param), Mux(!s2_write, get, Mux(s2_req.cmd === M_PWR, putpartial, Mux(!s2_read, put, atomics)))) // Drive APROT Bits tl_out_a.bits.user.lift(AMBAProt).foreach { x => val user_bit_cacheable = s2_pma.cacheable x.privileged := s2_req.dprv === PRV.M.U || user_bit_cacheable // if the address is cacheable, enable outer caches x.bufferable := user_bit_cacheable x.modifiable := user_bit_cacheable x.readalloc := user_bit_cacheable x.writealloc := user_bit_cacheable // Following are always tied off x.fetch := false.B x.secure := true.B } // Set pending bits for outstanding TileLink transaction val a_sel = UIntToOH(a_source, maxUncachedInFlight+mmioOffset) >> mmioOffset when (tl_out_a.fire) { when (s2_uncached) { (a_sel.asBools zip (uncachedInFlight zip uncachedReqs)) foreach { case (s, (f, r)) => when (s) { f := true.B r := s2_req r.cmd := Mux(s2_write, Mux(s2_req.cmd === M_PWR, M_PWR, M_XWR), M_XRD) } } }.otherwise { cached_grant_wait := true.B refill_way := s2_victim_or_hit_way } } // grant val (d_first, d_last, d_done, d_address_inc) = edge.addr_inc(tl_out.d) val (d_opc, grantIsUncached, grantIsUncachedData) = { val uncachedGrantOpcodesSansData = Seq(AccessAck, HintAck) val uncachedGrantOpcodesWithData = Seq(AccessAckData) val uncachedGrantOpcodes = uncachedGrantOpcodesWithData ++ uncachedGrantOpcodesSansData val whole_opc = tl_out.d.bits.opcode if (usingDataScratchpad) { assert(!tl_out.d.valid || whole_opc.isOneOf(uncachedGrantOpcodes)) // the only valid TL-D messages are uncached, so we can do some pruning val opc = whole_opc(uncachedGrantOpcodes.map(_.getWidth).max - 1, 0) val data = DecodeLogic(opc, uncachedGrantOpcodesWithData, uncachedGrantOpcodesSansData) (opc, true.B, data) } else { (whole_opc, whole_opc.isOneOf(uncachedGrantOpcodes), whole_opc.isOneOf(uncachedGrantOpcodesWithData)) } } tl_d_data_encoded := encodeData(tl_out.d.bits.data, tl_out.d.bits.corrupt && !io.ptw.customCSRs.suppressCorruptOnGrantData && !grantIsUncached) val grantIsCached = d_opc.isOneOf(Grant, GrantData) val grantIsVoluntary = d_opc === ReleaseAck // Clears a different pending bit val grantIsRefill = d_opc === GrantData // Writes the data array val grantInProgress = RegInit(false.B) val blockProbeAfterGrantCount = RegInit(0.U) when (blockProbeAfterGrantCount > 0.U) { blockProbeAfterGrantCount := blockProbeAfterGrantCount - 1.U } val canAcceptCachedGrant = !release_state.isOneOf(s_voluntary_writeback, s_voluntary_write_meta, s_voluntary_release) tl_out.d.ready := Mux(grantIsCached, (!d_first || tl_out.e.ready) && canAcceptCachedGrant, true.B) val uncachedRespIdxOH = UIntToOH(tl_out.d.bits.source, maxUncachedInFlight+mmioOffset) >> mmioOffset uncachedResp := Mux1H(uncachedRespIdxOH, uncachedReqs) when (tl_out.d.fire) { when (grantIsCached) { grantInProgress := true.B assert(cached_grant_wait, "A GrantData was unexpected by the dcache.") when(d_last) { cached_grant_wait := false.B grantInProgress := false.B blockProbeAfterGrantCount := (blockProbeAfterGrantCycles - 1).U replacer.miss } } .elsewhen (grantIsUncached) { (uncachedRespIdxOH.asBools zip uncachedInFlight) foreach { case (s, f) => when (s && d_last) { assert(f, "An AccessAck was unexpected by the dcache.") // TODO must handle Ack coming back on same cycle! f := false.B } } when (grantIsUncachedData) { if (!cacheParams.separateUncachedResp) { if (!cacheParams.pipelineWayMux) s1_data_way := 1.U << nWays s2_req.cmd := M_XRD s2_req.size := uncachedResp.size s2_req.signed := uncachedResp.signed s2_req.tag := uncachedResp.tag s2_req.addr := { require(rowOffBits >= beatOffBits) val dontCareBits = s1_paddr >> rowOffBits << rowOffBits dontCareBits | uncachedResp.addr(beatOffBits-1, 0) } s2_uncached_resp_addr := uncachedResp.addr } } } .elsewhen (grantIsVoluntary) { assert(release_ack_wait, "A ReleaseAck was unexpected by the dcache.") // TODO should handle Ack coming back on same cycle! release_ack_wait := false.B } } // Finish TileLink transaction by issuing a GrantAck tl_out.e.valid := tl_out.d.valid && d_first && grantIsCached && canAcceptCachedGrant tl_out.e.bits := edge.GrantAck(tl_out.d.bits) assert(tl_out.e.fire === (tl_out.d.fire && d_first && grantIsCached)) // data refill // note this ready-valid signaling ignores E-channel backpressure, which // benignly means the data RAM might occasionally be redundantly written dataArb.io.in(1).valid := tl_out.d.valid && grantIsRefill && canAcceptCachedGrant when (grantIsRefill && !dataArb.io.in(1).ready) { tl_out.e.valid := false.B tl_out.d.ready := false.B } if (!usingDataScratchpad) { dataArb.io.in(1).bits.write := true.B dataArb.io.in(1).bits.addr := (s2_vaddr >> idxLSB) << idxLSB | d_address_inc dataArb.io.in(1).bits.way_en := refill_way dataArb.io.in(1).bits.wdata := tl_d_data_encoded dataArb.io.in(1).bits.wordMask := ~0.U((rowBytes / subWordBytes).W) dataArb.io.in(1).bits.eccMask := ~0.U((wordBytes / eccBytes).W) } else { dataArb.io.in(1).bits := dataArb.io.in(0).bits } // tag updates on refill // ignore backpressure from metaArb, which can only be caused by tag ECC // errors on hit-under-miss. failing to write the new tag will leave the // line invalid, so we'll simply request the line again later. metaArb.io.in(3).valid := grantIsCached && d_done && !tl_out.d.bits.denied metaArb.io.in(3).bits.write := true.B metaArb.io.in(3).bits.way_en := refill_way metaArb.io.in(3).bits.idx := s2_vaddr(idxMSB, idxLSB) metaArb.io.in(3).bits.addr := Cat(io.cpu.req.bits.addr >> untagBits, s2_vaddr(idxMSB, 0)) metaArb.io.in(3).bits.data := tECC.encode(L1Metadata(s2_req.addr >> tagLSB, s2_hit_state.onGrant(s2_req.cmd, tl_out.d.bits.param)).asUInt) if (!cacheParams.separateUncachedResp) { // don't accept uncached grants if there's a structural hazard on s2_data... val blockUncachedGrant = Reg(Bool()) blockUncachedGrant := dataArb.io.out.valid when (grantIsUncachedData && (blockUncachedGrant || s1_valid)) { tl_out.d.ready := false.B // ...but insert bubble to guarantee grant's eventual forward progress when (tl_out.d.valid) { io.cpu.req.ready := false.B dataArb.io.in(1).valid := true.B dataArb.io.in(1).bits.write := false.B blockUncachedGrant := !dataArb.io.in(1).ready } } } ccover(tl_out.d.valid && !tl_out.d.ready, "BLOCK_D", "D$ D-channel blocked") // Handle an incoming TileLink Probe message val block_probe_for_core_progress = blockProbeAfterGrantCount > 0.U || lrscValid val block_probe_for_pending_release_ack = release_ack_wait && (tl_out.b.bits.address ^ release_ack_addr)(((pgIdxBits + pgLevelBits) min paddrBits) - 1, idxLSB) === 0.U val block_probe_for_ordering = releaseInFlight || block_probe_for_pending_release_ack || grantInProgress metaArb.io.in(6).valid := tl_out.b.valid && (!block_probe_for_core_progress || lrscBackingOff) tl_out.b.ready := metaArb.io.in(6).ready && !(block_probe_for_core_progress || block_probe_for_ordering || s1_valid || s2_valid) metaArb.io.in(6).bits.write := false.B metaArb.io.in(6).bits.idx := probeIdx(tl_out.b.bits) metaArb.io.in(6).bits.addr := Cat(io.cpu.req.bits.addr >> paddrBits, tl_out.b.bits.address) metaArb.io.in(6).bits.way_en := metaArb.io.in(4).bits.way_en metaArb.io.in(6).bits.data := metaArb.io.in(4).bits.data // replacement policy s1_victim_way := (if (replacer.perSet && nWays > 1) { val repl_array = Mem(nSets, UInt(replacer.nBits.W)) val s1_repl_idx = s1_req.addr(idxBits+blockOffBits-1, blockOffBits) val s2_repl_idx = s2_vaddr(idxBits+blockOffBits-1, blockOffBits) val s2_repl_state = Reg(UInt(replacer.nBits.W)) val s2_new_repl_state = replacer.get_next_state(s2_repl_state, OHToUInt(s2_hit_way)) val s2_repl_wen = s2_valid_masked && s2_hit_way.orR && s2_repl_state =/= s2_new_repl_state val s1_repl_state = Mux(s2_repl_wen && s2_repl_idx === s1_repl_idx, s2_new_repl_state, repl_array(s1_repl_idx)) when (s1_valid_not_nacked) { s2_repl_state := s1_repl_state } val waddr = Mux(resetting, flushCounter(idxBits-1, 0), s2_repl_idx) val wdata = Mux(resetting, 0.U, s2_new_repl_state) val wen = resetting || s2_repl_wen when (wen) { repl_array(waddr) := wdata } replacer.get_replace_way(s1_repl_state) } else { replacer.way }) // release val (c_first, c_last, releaseDone, c_count) = edge.count(tl_out_c) val releaseRejected = Wire(Bool()) val s1_release_data_valid = RegNext(dataArb.io.in(2).fire) val s2_release_data_valid = RegNext(s1_release_data_valid && !releaseRejected) releaseRejected := s2_release_data_valid && !tl_out_c.fire val releaseDataBeat = Cat(0.U, c_count) + Mux(releaseRejected, 0.U, s1_release_data_valid + Cat(0.U, s2_release_data_valid)) val nackResponseMessage = edge.ProbeAck(b = probe_bits, reportPermissions = TLPermissions.NtoN) val cleanReleaseMessage = edge.ProbeAck(b = probe_bits, reportPermissions = s2_report_param) val dirtyReleaseMessage = edge.ProbeAck(b = probe_bits, reportPermissions = s2_report_param, data = 0.U) tl_out_c.valid := (s2_release_data_valid || (!cacheParams.silentDrop.B && release_state === s_voluntary_release)) && !(c_first && release_ack_wait) tl_out_c.bits := nackResponseMessage val newCoh = WireDefault(probeNewCoh) releaseWay := s2_probe_way if (!usingDataScratchpad) { when (s2_victimize) { assert(s2_valid_flush_line || s2_flush_valid || io.cpu.s2_nack) val discard_line = s2_valid_flush_line && s2_req.size(1) || s2_flush_valid && flushing_req.size(1) release_state := Mux(s2_victim_dirty && !discard_line, s_voluntary_writeback, Mux(!cacheParams.silentDrop.B && !release_ack_wait && release_queue_empty && s2_victim_state.isValid() && (s2_valid_flush_line || s2_flush_valid || s2_readwrite && !s2_hit_valid), s_voluntary_release, s_voluntary_write_meta)) probe_bits := addressToProbe(s2_vaddr, Cat(s2_victim_tag, s2_req.addr(tagLSB-1, idxLSB)) << idxLSB) } when (s2_probe) { val probeNack = WireDefault(true.B) when (s2_meta_error) { release_state := s_probe_retry }.elsewhen (s2_prb_ack_data) { release_state := s_probe_rep_dirty }.elsewhen (s2_probe_state.isValid()) { tl_out_c.valid := true.B tl_out_c.bits := cleanReleaseMessage release_state := Mux(releaseDone, s_probe_write_meta, s_probe_rep_clean) }.otherwise { tl_out_c.valid := true.B probeNack := !releaseDone release_state := Mux(releaseDone, s_ready, s_probe_rep_miss) } when (probeNack) { s1_nack := true.B } } when (release_state === s_probe_retry) { metaArb.io.in(6).valid := true.B metaArb.io.in(6).bits.idx := probeIdx(probe_bits) metaArb.io.in(6).bits.addr := Cat(io.cpu.req.bits.addr >> paddrBits, probe_bits.address) when (metaArb.io.in(6).ready) { release_state := s_ready s1_probe := true.B } } when (release_state === s_probe_rep_miss) { tl_out_c.valid := true.B when (releaseDone) { release_state := s_ready } } when (release_state === s_probe_rep_clean) { tl_out_c.valid := true.B tl_out_c.bits := cleanReleaseMessage when (releaseDone) { release_state := s_probe_write_meta } } when (release_state === s_probe_rep_dirty) { tl_out_c.bits := dirtyReleaseMessage when (releaseDone) { release_state := s_probe_write_meta } } when (release_state.isOneOf(s_voluntary_writeback, s_voluntary_write_meta, s_voluntary_release)) { when (release_state === s_voluntary_release) { tl_out_c.bits := edge.Release(fromSource = 0.U, toAddress = 0.U, lgSize = lgCacheBlockBytes.U, shrinkPermissions = s2_shrink_param)._2 }.otherwise { tl_out_c.bits := edge.Release(fromSource = 0.U, toAddress = 0.U, lgSize = lgCacheBlockBytes.U, shrinkPermissions = s2_shrink_param, data = 0.U)._2 } newCoh := voluntaryNewCoh releaseWay := s2_victim_or_hit_way when (releaseDone) { release_state := s_voluntary_write_meta } when (tl_out_c.fire && c_first) { release_ack_wait := true.B release_ack_addr := probe_bits.address } } tl_out_c.bits.source := probe_bits.source tl_out_c.bits.address := probe_bits.address tl_out_c.bits.data := s2_data_corrected tl_out_c.bits.corrupt := inWriteback && s2_data_error_uncorrectable } tl_out_c.bits.user.lift(AMBAProt).foreach { x => x.fetch := false.B x.secure := true.B x.privileged := true.B x.bufferable := true.B x.modifiable := true.B x.readalloc := true.B x.writealloc := true.B } dataArb.io.in(2).valid := inWriteback && releaseDataBeat < refillCycles.U dataArb.io.in(2).bits := dataArb.io.in(1).bits dataArb.io.in(2).bits.write := false.B dataArb.io.in(2).bits.addr := (probeIdx(probe_bits) << blockOffBits) | (releaseDataBeat(log2Up(refillCycles)-1,0) << rowOffBits) dataArb.io.in(2).bits.wordMask := ~0.U((rowBytes / subWordBytes).W) dataArb.io.in(2).bits.eccMask := ~0.U((wordBytes / eccBytes).W) dataArb.io.in(2).bits.way_en := ~0.U(nWays.W) metaArb.io.in(4).valid := release_state.isOneOf(s_voluntary_write_meta, s_probe_write_meta) metaArb.io.in(4).bits.write := true.B metaArb.io.in(4).bits.way_en := releaseWay metaArb.io.in(4).bits.idx := probeIdx(probe_bits) metaArb.io.in(4).bits.addr := Cat(io.cpu.req.bits.addr >> untagBits, probe_bits.address(idxMSB, 0)) metaArb.io.in(4).bits.data := tECC.encode(L1Metadata(tl_out_c.bits.address >> tagLSB, newCoh).asUInt) when (metaArb.io.in(4).fire) { release_state := s_ready } // cached response (io.cpu.resp.bits: Data).waiveAll :<>= (s2_req: Data).waiveAll io.cpu.resp.bits.has_data := s2_read io.cpu.resp.bits.replay := false.B io.cpu.s2_uncached := s2_uncached && !s2_hit io.cpu.s2_paddr := s2_req.addr io.cpu.s2_gpa := s2_tlb_xcpt.gpa io.cpu.s2_gpa_is_pte := s2_tlb_xcpt.gpa_is_pte // report whether there are any outstanding accesses. disregard any // slave-port accesses, since they don't affect local memory ordering. val s1_isSlavePortAccess = s1_req.no_xcpt val s2_isSlavePortAccess = s2_req.no_xcpt io.cpu.ordered := !(s1_valid && !s1_isSlavePortAccess || s2_valid && !s2_isSlavePortAccess || cached_grant_wait || uncachedInFlight.asUInt.orR) io.cpu.store_pending := (cached_grant_wait && isWrite(s2_req.cmd)) || uncachedInFlight.asUInt.orR val s1_xcpt_valid = tlb.io.req.valid && !s1_isSlavePortAccess && !s1_nack io.cpu.s2_xcpt := Mux(RegNext(s1_xcpt_valid), s2_tlb_xcpt, 0.U.asTypeOf(s2_tlb_xcpt)) if (usingDataScratchpad) { assert(!(s2_valid_masked && s2_req.cmd.isOneOf(M_XLR, M_XSC))) } else { ccover(tl_out.b.valid && !tl_out.b.ready, "BLOCK_B", "D$ B-channel blocked") } // uncached response val s1_uncached_data_word = { val word_idx = uncachedResp.addr.extract(log2Up(rowBits/8)-1, log2Up(wordBytes)) val words = tl_out.d.bits.data.grouped(wordBits) words(word_idx) } val s2_uncached_data_word = RegEnable(s1_uncached_data_word, io.cpu.replay_next) val doUncachedResp = RegNext(io.cpu.replay_next) io.cpu.resp.valid := (s2_valid_hit_pre_data_ecc || doUncachedResp) && !s2_data_error io.cpu.replay_next := tl_out.d.fire && grantIsUncachedData && !cacheParams.separateUncachedResp.B when (doUncachedResp) { assert(!s2_valid_hit) io.cpu.resp.bits.replay := true.B io.cpu.resp.bits.addr := s2_uncached_resp_addr } io.cpu.uncached_resp.map { resp => resp.valid := tl_out.d.valid && grantIsUncachedData resp.bits.tag := uncachedResp.tag resp.bits.size := uncachedResp.size resp.bits.signed := uncachedResp.signed resp.bits.data := new LoadGen(uncachedResp.size, uncachedResp.signed, uncachedResp.addr, s1_uncached_data_word, false.B, wordBytes).data resp.bits.data_raw := s1_uncached_data_word when (grantIsUncachedData && !resp.ready) { tl_out.d.ready := false.B } } // load data subword mux/sign extension val s2_data_word = (0 until rowBits by wordBits).map(i => s2_data_uncorrected(wordBits+i-1,i)).reduce(_|_) val s2_data_word_corrected = (0 until rowBits by wordBits).map(i => s2_data_corrected(wordBits+i-1,i)).reduce(_|_) val s2_data_word_possibly_uncached = Mux(cacheParams.pipelineWayMux.B && doUncachedResp, s2_uncached_data_word, 0.U) | s2_data_word val loadgen = new LoadGen(s2_req.size, s2_req.signed, s2_req.addr, s2_data_word_possibly_uncached, s2_sc, wordBytes) io.cpu.resp.bits.data := loadgen.data | s2_sc_fail io.cpu.resp.bits.data_word_bypass := loadgen.wordData io.cpu.resp.bits.data_raw := s2_data_word io.cpu.resp.bits.store_data := pstore1_data // AMOs if (usingRMW) { val amoalus = (0 until coreDataBits / xLen).map { i => val amoalu = Module(new AMOALU(xLen)) amoalu.io.mask := pstore1_mask >> (i * xBytes) amoalu.io.cmd := (if (usingAtomicsInCache) pstore1_cmd else M_XWR) amoalu.io.lhs := s2_data_word >> (i * xLen) amoalu.io.rhs := pstore1_data >> (i * xLen) amoalu } pstore1_storegen_data := (if (!usingDataScratchpad) amoalus.map(_.io.out).asUInt else { val mask = FillInterleaved(8, Mux(s2_correct, 0.U, pstore1_mask)) amoalus.map(_.io.out_unmasked).asUInt & mask | s2_data_word_corrected & ~mask }) } else if (!usingAtomics) { assert(!(s1_valid_masked && s1_read && s1_write), "unsupported D$ operation") } if (coreParams.useVector) { edge.manager.managers.foreach { m => // Statically ensure that no-allocate accesses are permitted. // We could consider turning some of these into dynamic PMA checks. require(!m.supportsAcquireB || m.supportsGet, "With a vector unit, cacheable memory must support Get") require(!m.supportsAcquireT || m.supportsPutPartial, "With a vector unit, cacheable memory must support PutPartial") } } // flushes if (!usingDataScratchpad) when (RegNext(reset.asBool)) { resetting := true.B } val flushCounterNext = flushCounter +& 1.U val flushDone = (flushCounterNext >> log2Ceil(nSets)) === nWays.U val flushCounterWrap = flushCounterNext(log2Ceil(nSets)-1, 0) ccover(s2_valid_masked && s2_cmd_flush_all && s2_meta_error, "TAG_ECC_ERROR_DURING_FENCE_I", "D$ ECC error in tag array during cache flush") ccover(s2_valid_masked && s2_cmd_flush_all && s2_data_error, "DATA_ECC_ERROR_DURING_FENCE_I", "D$ ECC error in data array during cache flush") s1_flush_valid := metaArb.io.in(5).fire && !s1_flush_valid && !s2_flush_valid_pre_tag_ecc && release_state === s_ready && !release_ack_wait metaArb.io.in(5).valid := flushing && !flushed metaArb.io.in(5).bits.write := false.B metaArb.io.in(5).bits.idx := flushCounter(idxBits-1, 0) metaArb.io.in(5).bits.addr := Cat(io.cpu.req.bits.addr >> untagBits, metaArb.io.in(5).bits.idx << blockOffBits) metaArb.io.in(5).bits.way_en := metaArb.io.in(4).bits.way_en metaArb.io.in(5).bits.data := metaArb.io.in(4).bits.data // Only flush D$ on FENCE.I if some cached executable regions are untracked. if (supports_flush) { when (s2_valid_masked && s2_cmd_flush_all) { when (!flushed && !io.cpu.s2_kill && !release_ack_wait && !uncachedInFlight.asUInt.orR) { flushing := true.B flushing_req := s2_req } } when (tl_out_a.fire && !s2_uncached) { flushed := false.B } when (flushing) { s1_victim_way := flushCounter >> log2Up(nSets) when (s2_flush_valid) { flushCounter := flushCounterNext when (flushDone) { flushed := true.B if (!isPow2(nWays)) flushCounter := flushCounterWrap } } when (flushed && release_state === s_ready && !release_ack_wait) { flushing := false.B } } } metaArb.io.in(0).valid := resetting metaArb.io.in(0).bits := metaArb.io.in(5).bits metaArb.io.in(0).bits.write := true.B metaArb.io.in(0).bits.way_en := ~0.U(nWays.W) metaArb.io.in(0).bits.data := tECC.encode(L1Metadata(0.U, ClientMetadata.onReset).asUInt) when (resetting) { flushCounter := flushCounterNext when (flushDone) { resetting := false.B if (!isPow2(nWays)) flushCounter := flushCounterWrap } } // gate the clock clock_en_reg := !cacheParams.clockGate.B || io.ptw.customCSRs.disableDCacheClockGate || io.cpu.keep_clock_enabled || metaArb.io.out.valid || // subsumes resetting || flushing s1_probe || s2_probe || s1_valid || s2_valid || io.tlb_port.req.valid || s1_tlb_req_valid || s2_tlb_req_valid || pstore1_held || pstore2_valid || release_state =/= s_ready || release_ack_wait || !release_queue_empty || !tlb.io.req.ready || cached_grant_wait || uncachedInFlight.asUInt.orR || lrscCount > 0.U || blockProbeAfterGrantCount > 0.U // performance events io.cpu.perf.acquire := edge.done(tl_out_a) io.cpu.perf.release := edge.done(tl_out_c) io.cpu.perf.grant := tl_out.d.valid && d_last io.cpu.perf.tlbMiss := io.ptw.req.fire io.cpu.perf.storeBufferEmptyAfterLoad := !( (s1_valid && s1_write) || ((s2_valid && s2_write && !s2_waw_hazard) || pstore1_held) || pstore2_valid) io.cpu.perf.storeBufferEmptyAfterStore := !( (s1_valid && s1_write) || (s2_valid && s2_write && pstore1_rmw) || ((s2_valid && s2_write && !s2_waw_hazard || pstore1_held) && pstore2_valid)) io.cpu.perf.canAcceptStoreThenLoad := !( ((s2_valid && s2_write && pstore1_rmw) && (s1_valid && s1_write && !s1_waw_hazard)) || (pstore2_valid && pstore1_valid_likely && (s1_valid && s1_write))) io.cpu.perf.canAcceptStoreThenRMW := io.cpu.perf.canAcceptStoreThenLoad && !pstore2_valid io.cpu.perf.canAcceptLoadThenLoad := !((s1_valid && s1_write && needsRead(s1_req)) && ((s2_valid && s2_write && !s2_waw_hazard || pstore1_held) || pstore2_valid)) io.cpu.perf.blocked := { // stop reporting blocked just before unblocking to avoid overly conservative stalling val beatsBeforeEnd = outer.crossing match { case SynchronousCrossing(_) => 2 case RationalCrossing(_) => 1 // assumes 1 < ratio <= 2; need more bookkeeping for optimal handling of >2 case _: AsynchronousCrossing => 1 // likewise case _: CreditedCrossing => 1 // likewise } val near_end_of_refill = if (cacheBlockBytes / beatBytes <= beatsBeforeEnd) tl_out.d.valid else { val refill_count = RegInit(0.U((cacheBlockBytes / beatBytes).log2.W)) when (tl_out.d.fire && grantIsRefill) { refill_count := refill_count + 1.U } refill_count >= (cacheBlockBytes / beatBytes - beatsBeforeEnd).U } cached_grant_wait && !near_end_of_refill } // report errors val (data_error, data_error_uncorrectable, data_error_addr) = if (usingDataScratchpad) (s2_valid_data_error, s2_data_error_uncorrectable, s2_req.addr) else { (RegNext(tl_out_c.fire && inWriteback && s2_data_error), RegNext(s2_data_error_uncorrectable), probe_bits.address) // This is stable for a cycle after tl_out_c.fire, so don't need a register } { val error_addr = Mux(metaArb.io.in(1).valid, Cat(s2_first_meta_corrected.tag, metaArb.io.in(1).bits.addr(tagLSB-1, idxLSB)), data_error_addr >> idxLSB) << idxLSB io.errors.uncorrectable.foreach { u => u.valid := metaArb.io.in(1).valid && s2_meta_error_uncorrectable || data_error && data_error_uncorrectable u.bits := error_addr } io.errors.correctable.foreach { c => c.valid := metaArb.io.in(1).valid || data_error c.bits := error_addr io.errors.uncorrectable.foreach { u => when (u.valid) { c.valid := false.B } } } io.errors.bus.valid := tl_out.d.fire && (tl_out.d.bits.denied || tl_out.d.bits.corrupt) io.errors.bus.bits := Mux(grantIsCached, s2_req.addr >> idxLSB << idxLSB, 0.U) ccoverNotScratchpad(io.errors.bus.valid && grantIsCached, "D_ERROR_CACHED", "D$ D-channel error, cached") ccover(io.errors.bus.valid && !grantIsCached, "D_ERROR_UNCACHED", "D$ D-channel error, uncached") } if (usingDataScratchpad) { val data_error_cover = Seq( property.CoverBoolean(!data_error, Seq("no_data_error")), property.CoverBoolean(data_error && !data_error_uncorrectable, Seq("data_correctable_error")), property.CoverBoolean(data_error && data_error_uncorrectable, Seq("data_uncorrectable_error"))) val request_source = Seq( property.CoverBoolean(s2_isSlavePortAccess, Seq("from_TL")), property.CoverBoolean(!s2_isSlavePortAccess, Seq("from_CPU"))) property.cover(new property.CrossProperty( Seq(data_error_cover, request_source), Seq(), "MemorySystem;;Scratchpad Memory Bit Flip Cross Covers")) } else { val data_error_type = Seq( property.CoverBoolean(!s2_valid_data_error, Seq("no_data_error")), property.CoverBoolean(s2_valid_data_error && !s2_data_error_uncorrectable, Seq("data_correctable_error")), property.CoverBoolean(s2_valid_data_error && s2_data_error_uncorrectable, Seq("data_uncorrectable_error"))) val data_error_dirty = Seq( property.CoverBoolean(!s2_victim_dirty, Seq("data_clean")), property.CoverBoolean(s2_victim_dirty, Seq("data_dirty"))) val request_source = if (supports_flush) { Seq( property.CoverBoolean(!flushing, Seq("access")), property.CoverBoolean(flushing, Seq("during_flush"))) } else { Seq(property.CoverBoolean(true.B, Seq("never_flush"))) } val tag_error_cover = Seq( property.CoverBoolean( !s2_meta_error, Seq("no_tag_error")), property.CoverBoolean( s2_meta_error && !s2_meta_error_uncorrectable, Seq("tag_correctable_error")), property.CoverBoolean( s2_meta_error && s2_meta_error_uncorrectable, Seq("tag_uncorrectable_error"))) property.cover(new property.CrossProperty( Seq(data_error_type, data_error_dirty, request_source, tag_error_cover), Seq(), "MemorySystem;;Cache Memory Bit Flip Cross Covers")) } } // leaving gated-clock domain val dcacheImpl = withClock (gated_clock) { new DCacheModuleImpl } def encodeData(x: UInt, poison: Bool) = x.grouped(eccBits).map(dECC.encode(_, if (dECC.canDetect) poison else false.B)).asUInt def dummyEncodeData(x: UInt) = x.grouped(eccBits).map(dECC.swizzle(_)).asUInt def decodeData(x: UInt) = x.grouped(dECC.width(eccBits)).map(dECC.decode(_)) def eccMask(byteMask: UInt) = byteMask.grouped(eccBytes).map(_.orR).asUInt def eccByteMask(byteMask: UInt) = FillInterleaved(eccBytes, eccMask(byteMask)) def likelyNeedsRead(req: HellaCacheReq) = { val res = !req.cmd.isOneOf(M_XWR, M_PFW) || req.size < log2Ceil(eccBytes).U assert(!needsRead(req) || res) res } def needsRead(req: HellaCacheReq) = isRead(req.cmd) || (isWrite(req.cmd) && (req.cmd === M_PWR || req.size < log2Ceil(eccBytes).U)) def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = property.cover(cond, s"DCACHE_$label", "MemorySystem;;" + desc) def ccoverNotScratchpad(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = if (!usingDataScratchpad) ccover(cond, label, desc) require(!usingVM || tagLSB <= pgIdxBits, s"D$$ set size must not exceed ${1<<(pgIdxBits-10)} KiB; got ${(nSets * cacheBlockBytes)>>10} KiB") def tagLSB: Int = untagBits def probeIdx(b: TLBundleB): UInt = b.address(idxMSB, idxLSB) def addressToProbe(vaddr: UInt, paddr: UInt): TLBundleB = { val res = Wire(new TLBundleB(edge.bundle)) res :#= DontCare res.address := paddr res.source := (mmioOffset - 1).U res } def acquire(vaddr: UInt, paddr: UInt, param: UInt): TLBundleA = { if (!edge.manager.anySupportAcquireB) WireDefault(0.U.asTypeOf(new TLBundleA(edge.bundle))) else edge.AcquireBlock(0.U, paddr >> lgCacheBlockBytes << lgCacheBlockBytes, lgCacheBlockBytes.U, param)._2 } } File DescribedSRAM.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3.{Data, SyncReadMem, Vec} import chisel3.util.log2Ceil object DescribedSRAM { def apply[T <: Data]( name: String, desc: String, size: BigInt, // depth data: T ): SyncReadMem[T] = { val mem = SyncReadMem(size, data) mem.suggestName(name) val granWidth = data match { case v: Vec[_] => v.head.getWidth case d => d.getWidth } val uid = 0 Annotated.srams( component = mem, name = name, address_width = log2Ceil(size), data_width = data.getWidth, depth = size, description = desc, write_mask_granularity = granWidth ) mem } } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } } File AMOALU.scala: // See LICENSE.SiFive for license details. // See LICENSE.Berkeley for license details. package freechips.rocketchip.rocket import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.Parameters class StoreGen(typ: UInt, addr: UInt, dat: UInt, maxSize: Int) { val size = Wire(UInt(log2Up(log2Up(maxSize)+1).W)) size := typ val dat_padded = dat.pad(maxSize*8) def misaligned: Bool = (addr & ((1.U << size) - 1.U)(log2Up(maxSize)-1,0)).orR def mask = { var res = 1.U for (i <- 0 until log2Up(maxSize)) { val upper = Mux(addr(i), res, 0.U) | Mux(size >= (i+1).U, ((BigInt(1) << (1 << i))-1).U, 0.U) val lower = Mux(addr(i), 0.U, res) res = Cat(upper, lower) } res } protected def genData(i: Int): UInt = if (i >= log2Up(maxSize)) dat_padded else Mux(size === i.U, Fill(1 << (log2Up(maxSize)-i), dat_padded((8 << i)-1,0)), genData(i+1)) def data = genData(0) def wordData = genData(2) } class LoadGen(typ: UInt, signed: Bool, addr: UInt, dat: UInt, zero: Bool, maxSize: Int) { private val size = new StoreGen(typ, addr, dat, maxSize).size private def genData(logMinSize: Int): UInt = { var res = dat for (i <- log2Up(maxSize)-1 to logMinSize by -1) { val pos = 8 << i val shifted = Mux(addr(i), res(2*pos-1,pos), res(pos-1,0)) val doZero = (i == 0).B && zero val zeroed = Mux(doZero, 0.U, shifted) res = Cat(Mux(size === i.U || doZero, Fill(8*maxSize-pos, signed && zeroed(pos-1)), res(8*maxSize-1,pos)), zeroed) } res } def wordData = genData(2) def data = genData(0) } class AMOALU(operandBits: Int)(implicit p: Parameters) extends Module { val minXLen = 32 val widths = (0 to log2Ceil(operandBits / minXLen)).map(minXLen << _) val io = IO(new Bundle { val mask = Input(UInt((operandBits / 8).W)) val cmd = Input(UInt(M_SZ.W)) val lhs = Input(UInt(operandBits.W)) val rhs = Input(UInt(operandBits.W)) val out = Output(UInt(operandBits.W)) val out_unmasked = Output(UInt(operandBits.W)) }) val max = io.cmd === M_XA_MAX || io.cmd === M_XA_MAXU val min = io.cmd === M_XA_MIN || io.cmd === M_XA_MINU val add = io.cmd === M_XA_ADD val logic_and = io.cmd === M_XA_OR || io.cmd === M_XA_AND val logic_xor = io.cmd === M_XA_XOR || io.cmd === M_XA_OR val adder_out = { // partition the carry chain to support sub-xLen addition val mask = ~(0.U(operandBits.W) +: widths.init.map(w => !io.mask(w/8-1) << (w-1))).reduce(_|_) (io.lhs & mask) + (io.rhs & mask) } val less = { // break up the comparator so the lower parts will be CSE'd def isLessUnsigned(x: UInt, y: UInt, n: Int): Bool = { if (n == minXLen) x(n-1, 0) < y(n-1, 0) else x(n-1, n/2) < y(n-1, n/2) || x(n-1, n/2) === y(n-1, n/2) && isLessUnsigned(x, y, n/2) } def isLess(x: UInt, y: UInt, n: Int): Bool = { val signed = { val mask = M_XA_MIN ^ M_XA_MINU (io.cmd & mask) === (M_XA_MIN & mask) } Mux(x(n-1) === y(n-1), isLessUnsigned(x, y, n), Mux(signed, x(n-1), y(n-1))) } PriorityMux(widths.reverse.map(w => (io.mask(w/8/2), isLess(io.lhs, io.rhs, w)))) } val minmax = Mux(Mux(less, min, max), io.lhs, io.rhs) val logic = Mux(logic_and, io.lhs & io.rhs, 0.U) | Mux(logic_xor, io.lhs ^ io.rhs, 0.U) val out = Mux(add, adder_out, Mux(logic_and || logic_xor, logic, minmax)) val wmask = FillInterleaved(8, io.mask) io.out := wmask & out | ~wmask & io.lhs io.out_unmasked := out }
module DCache_2( // @[DCache.scala:101:7] input clock, // @[DCache.scala:101:7] input reset, // @[DCache.scala:101:7] input auto_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_b_ready, // @[LazyModuleImp.scala:107:25] input auto_out_b_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_b_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_b_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_b_bits_size, // @[LazyModuleImp.scala:107:25] input auto_out_b_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_out_b_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_out_b_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_out_b_bits_data, // @[LazyModuleImp.scala:107:25] input auto_out_b_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_out_c_ready, // @[LazyModuleImp.scala:107:25] output auto_out_c_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_c_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_c_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_c_bits_size, // @[LazyModuleImp.scala:107:25] output auto_out_c_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_c_bits_address, // @[LazyModuleImp.scala:107:25] output [63:0] auto_out_c_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [63:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_out_e_ready, // @[LazyModuleImp.scala:107:25] output auto_out_e_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_e_bits_sink, // @[LazyModuleImp.scala:107:25] output io_cpu_req_ready, // @[HellaCache.scala:243:14] input io_cpu_req_valid, // @[HellaCache.scala:243:14] input [39:0] io_cpu_req_bits_addr, // @[HellaCache.scala:243:14] input [6:0] io_cpu_req_bits_tag, // @[HellaCache.scala:243:14] input [4:0] io_cpu_req_bits_cmd, // @[HellaCache.scala:243:14] input [1:0] io_cpu_req_bits_size, // @[HellaCache.scala:243:14] input io_cpu_req_bits_signed, // @[HellaCache.scala:243:14] input [1:0] io_cpu_req_bits_dprv, // @[HellaCache.scala:243:14] input io_cpu_req_bits_dv, // @[HellaCache.scala:243:14] input io_cpu_req_bits_phys, // @[HellaCache.scala:243:14] input io_cpu_req_bits_no_resp, // @[HellaCache.scala:243:14] input io_cpu_s1_kill, // @[HellaCache.scala:243:14] input [63:0] io_cpu_s1_data_data, // @[HellaCache.scala:243:14] input [7:0] io_cpu_s1_data_mask, // @[HellaCache.scala:243:14] output io_cpu_s2_nack, // @[HellaCache.scala:243:14] output io_cpu_s2_nack_cause_raw, // @[HellaCache.scala:243:14] output io_cpu_s2_uncached, // @[HellaCache.scala:243:14] output [31:0] io_cpu_s2_paddr, // @[HellaCache.scala:243:14] output io_cpu_resp_valid, // @[HellaCache.scala:243:14] output [39:0] io_cpu_resp_bits_addr, // @[HellaCache.scala:243:14] output [6:0] io_cpu_resp_bits_tag, // @[HellaCache.scala:243:14] output [4:0] io_cpu_resp_bits_cmd, // @[HellaCache.scala:243:14] output [1:0] io_cpu_resp_bits_size, // @[HellaCache.scala:243:14] output io_cpu_resp_bits_signed, // @[HellaCache.scala:243:14] output [1:0] io_cpu_resp_bits_dprv, // @[HellaCache.scala:243:14] output io_cpu_resp_bits_dv, // @[HellaCache.scala:243:14] output [63:0] io_cpu_resp_bits_data, // @[HellaCache.scala:243:14] output [7:0] io_cpu_resp_bits_mask, // @[HellaCache.scala:243:14] output io_cpu_resp_bits_replay, // @[HellaCache.scala:243:14] output io_cpu_resp_bits_has_data, // @[HellaCache.scala:243:14] output [63:0] io_cpu_resp_bits_data_word_bypass, // @[HellaCache.scala:243:14] output [63:0] io_cpu_resp_bits_data_raw, // @[HellaCache.scala:243:14] output [63:0] io_cpu_resp_bits_store_data, // @[HellaCache.scala:243:14] output io_cpu_replay_next, // @[HellaCache.scala:243:14] output io_cpu_s2_xcpt_ma_ld, // @[HellaCache.scala:243:14] output io_cpu_s2_xcpt_ma_st, // @[HellaCache.scala:243:14] output io_cpu_s2_xcpt_pf_ld, // @[HellaCache.scala:243:14] output io_cpu_s2_xcpt_pf_st, // @[HellaCache.scala:243:14] output io_cpu_s2_xcpt_ae_ld, // @[HellaCache.scala:243:14] output io_cpu_s2_xcpt_ae_st, // @[HellaCache.scala:243:14] output [39:0] io_cpu_s2_gpa, // @[HellaCache.scala:243:14] output io_cpu_ordered, // @[HellaCache.scala:243:14] output io_cpu_store_pending, // @[HellaCache.scala:243:14] output io_cpu_perf_acquire, // @[HellaCache.scala:243:14] output io_cpu_perf_release, // @[HellaCache.scala:243:14] output io_cpu_perf_grant, // @[HellaCache.scala:243:14] output io_cpu_perf_tlbMiss, // @[HellaCache.scala:243:14] output io_cpu_perf_blocked, // @[HellaCache.scala:243:14] output io_cpu_perf_canAcceptStoreThenLoad, // @[HellaCache.scala:243:14] output io_cpu_perf_canAcceptStoreThenRMW, // @[HellaCache.scala:243:14] output io_cpu_perf_canAcceptLoadThenLoad, // @[HellaCache.scala:243:14] output io_cpu_perf_storeBufferEmptyAfterLoad, // @[HellaCache.scala:243:14] output io_cpu_perf_storeBufferEmptyAfterStore, // @[HellaCache.scala:243:14] input io_cpu_keep_clock_enabled, // @[HellaCache.scala:243:14] input io_ptw_req_ready, // @[HellaCache.scala:243:14] output io_ptw_req_valid, // @[HellaCache.scala:243:14] output [26:0] io_ptw_req_bits_bits_addr, // @[HellaCache.scala:243:14] output io_ptw_req_bits_bits_need_gpa, // @[HellaCache.scala:243:14] input io_ptw_resp_valid, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_ae_ptw, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_ae_final, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_pf, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_gf, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_hr, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_hw, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_hx, // @[HellaCache.scala:243:14] input [9:0] io_ptw_resp_bits_pte_reserved_for_future, // @[HellaCache.scala:243:14] input [43:0] io_ptw_resp_bits_pte_ppn, // @[HellaCache.scala:243:14] input [1:0] io_ptw_resp_bits_pte_reserved_for_software, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_pte_d, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_pte_a, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_pte_g, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_pte_u, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_pte_x, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_pte_w, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_pte_r, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_pte_v, // @[HellaCache.scala:243:14] input [1:0] io_ptw_resp_bits_level, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_homogeneous, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_gpa_valid, // @[HellaCache.scala:243:14] input [38:0] io_ptw_resp_bits_gpa_bits, // @[HellaCache.scala:243:14] input io_ptw_resp_bits_gpa_is_pte, // @[HellaCache.scala:243:14] input [3:0] io_ptw_ptbr_mode, // @[HellaCache.scala:243:14] input [43:0] io_ptw_ptbr_ppn, // @[HellaCache.scala:243:14] input io_ptw_status_debug, // @[HellaCache.scala:243:14] input io_ptw_status_cease, // @[HellaCache.scala:243:14] input io_ptw_status_wfi, // @[HellaCache.scala:243:14] input [31:0] io_ptw_status_isa, // @[HellaCache.scala:243:14] input [1:0] io_ptw_status_dprv, // @[HellaCache.scala:243:14] input io_ptw_status_dv, // @[HellaCache.scala:243:14] input [1:0] io_ptw_status_prv, // @[HellaCache.scala:243:14] input io_ptw_status_v, // @[HellaCache.scala:243:14] input io_ptw_status_sd, // @[HellaCache.scala:243:14] input io_ptw_status_mpv, // @[HellaCache.scala:243:14] input io_ptw_status_gva, // @[HellaCache.scala:243:14] input io_ptw_status_tsr, // @[HellaCache.scala:243:14] input io_ptw_status_tw, // @[HellaCache.scala:243:14] input io_ptw_status_tvm, // @[HellaCache.scala:243:14] input io_ptw_status_mxr, // @[HellaCache.scala:243:14] input io_ptw_status_sum, // @[HellaCache.scala:243:14] input io_ptw_status_mprv, // @[HellaCache.scala:243:14] input [1:0] io_ptw_status_fs, // @[HellaCache.scala:243:14] input [1:0] io_ptw_status_mpp, // @[HellaCache.scala:243:14] input io_ptw_status_spp, // @[HellaCache.scala:243:14] input io_ptw_status_mpie, // @[HellaCache.scala:243:14] input io_ptw_status_spie, // @[HellaCache.scala:243:14] input io_ptw_status_mie, // @[HellaCache.scala:243:14] input io_ptw_status_sie, // @[HellaCache.scala:243:14] input io_ptw_hstatus_spvp, // @[HellaCache.scala:243:14] input io_ptw_hstatus_spv, // @[HellaCache.scala:243:14] input io_ptw_hstatus_gva, // @[HellaCache.scala:243:14] input io_ptw_gstatus_debug, // @[HellaCache.scala:243:14] input io_ptw_gstatus_cease, // @[HellaCache.scala:243:14] input io_ptw_gstatus_wfi, // @[HellaCache.scala:243:14] input [31:0] io_ptw_gstatus_isa, // @[HellaCache.scala:243:14] input [1:0] io_ptw_gstatus_dprv, // @[HellaCache.scala:243:14] input io_ptw_gstatus_dv, // @[HellaCache.scala:243:14] input [1:0] io_ptw_gstatus_prv, // @[HellaCache.scala:243:14] input io_ptw_gstatus_v, // @[HellaCache.scala:243:14] input io_ptw_gstatus_sd, // @[HellaCache.scala:243:14] input [22:0] io_ptw_gstatus_zero2, // @[HellaCache.scala:243:14] input io_ptw_gstatus_mpv, // @[HellaCache.scala:243:14] input io_ptw_gstatus_gva, // @[HellaCache.scala:243:14] input io_ptw_gstatus_mbe, // @[HellaCache.scala:243:14] input io_ptw_gstatus_sbe, // @[HellaCache.scala:243:14] input [1:0] io_ptw_gstatus_sxl, // @[HellaCache.scala:243:14] input [7:0] io_ptw_gstatus_zero1, // @[HellaCache.scala:243:14] input io_ptw_gstatus_tsr, // @[HellaCache.scala:243:14] input io_ptw_gstatus_tw, // @[HellaCache.scala:243:14] input io_ptw_gstatus_tvm, // @[HellaCache.scala:243:14] input io_ptw_gstatus_mxr, // @[HellaCache.scala:243:14] input io_ptw_gstatus_sum, // @[HellaCache.scala:243:14] input io_ptw_gstatus_mprv, // @[HellaCache.scala:243:14] input [1:0] io_ptw_gstatus_fs, // @[HellaCache.scala:243:14] input [1:0] io_ptw_gstatus_mpp, // @[HellaCache.scala:243:14] input [1:0] io_ptw_gstatus_vs, // @[HellaCache.scala:243:14] input io_ptw_gstatus_spp, // @[HellaCache.scala:243:14] input io_ptw_gstatus_mpie, // @[HellaCache.scala:243:14] input io_ptw_gstatus_ube, // @[HellaCache.scala:243:14] input io_ptw_gstatus_spie, // @[HellaCache.scala:243:14] input io_ptw_gstatus_upie, // @[HellaCache.scala:243:14] input io_ptw_gstatus_mie, // @[HellaCache.scala:243:14] input io_ptw_gstatus_hie, // @[HellaCache.scala:243:14] input io_ptw_gstatus_sie, // @[HellaCache.scala:243:14] input io_ptw_gstatus_uie, // @[HellaCache.scala:243:14] input io_ptw_pmp_0_cfg_l, // @[HellaCache.scala:243:14] input [1:0] io_ptw_pmp_0_cfg_a, // @[HellaCache.scala:243:14] input io_ptw_pmp_0_cfg_x, // @[HellaCache.scala:243:14] input io_ptw_pmp_0_cfg_w, // @[HellaCache.scala:243:14] input io_ptw_pmp_0_cfg_r, // @[HellaCache.scala:243:14] input [29:0] io_ptw_pmp_0_addr, // @[HellaCache.scala:243:14] input [31:0] io_ptw_pmp_0_mask, // @[HellaCache.scala:243:14] input io_ptw_pmp_1_cfg_l, // @[HellaCache.scala:243:14] input [1:0] io_ptw_pmp_1_cfg_a, // @[HellaCache.scala:243:14] input io_ptw_pmp_1_cfg_x, // @[HellaCache.scala:243:14] input io_ptw_pmp_1_cfg_w, // @[HellaCache.scala:243:14] input io_ptw_pmp_1_cfg_r, // @[HellaCache.scala:243:14] input [29:0] io_ptw_pmp_1_addr, // @[HellaCache.scala:243:14] input [31:0] io_ptw_pmp_1_mask, // @[HellaCache.scala:243:14] input io_ptw_pmp_2_cfg_l, // @[HellaCache.scala:243:14] input [1:0] io_ptw_pmp_2_cfg_a, // @[HellaCache.scala:243:14] input io_ptw_pmp_2_cfg_x, // @[HellaCache.scala:243:14] input io_ptw_pmp_2_cfg_w, // @[HellaCache.scala:243:14] input io_ptw_pmp_2_cfg_r, // @[HellaCache.scala:243:14] input [29:0] io_ptw_pmp_2_addr, // @[HellaCache.scala:243:14] input [31:0] io_ptw_pmp_2_mask, // @[HellaCache.scala:243:14] input io_ptw_pmp_3_cfg_l, // @[HellaCache.scala:243:14] input [1:0] io_ptw_pmp_3_cfg_a, // @[HellaCache.scala:243:14] input io_ptw_pmp_3_cfg_x, // @[HellaCache.scala:243:14] input io_ptw_pmp_3_cfg_w, // @[HellaCache.scala:243:14] input io_ptw_pmp_3_cfg_r, // @[HellaCache.scala:243:14] input [29:0] io_ptw_pmp_3_addr, // @[HellaCache.scala:243:14] input [31:0] io_ptw_pmp_3_mask, // @[HellaCache.scala:243:14] input io_ptw_pmp_4_cfg_l, // @[HellaCache.scala:243:14] input [1:0] io_ptw_pmp_4_cfg_a, // @[HellaCache.scala:243:14] input io_ptw_pmp_4_cfg_x, // @[HellaCache.scala:243:14] input io_ptw_pmp_4_cfg_w, // @[HellaCache.scala:243:14] input io_ptw_pmp_4_cfg_r, // @[HellaCache.scala:243:14] input [29:0] io_ptw_pmp_4_addr, // @[HellaCache.scala:243:14] input [31:0] io_ptw_pmp_4_mask, // @[HellaCache.scala:243:14] input io_ptw_pmp_5_cfg_l, // @[HellaCache.scala:243:14] input [1:0] io_ptw_pmp_5_cfg_a, // @[HellaCache.scala:243:14] input io_ptw_pmp_5_cfg_x, // @[HellaCache.scala:243:14] input io_ptw_pmp_5_cfg_w, // @[HellaCache.scala:243:14] input io_ptw_pmp_5_cfg_r, // @[HellaCache.scala:243:14] input [29:0] io_ptw_pmp_5_addr, // @[HellaCache.scala:243:14] input [31:0] io_ptw_pmp_5_mask, // @[HellaCache.scala:243:14] input io_ptw_pmp_6_cfg_l, // @[HellaCache.scala:243:14] input [1:0] io_ptw_pmp_6_cfg_a, // @[HellaCache.scala:243:14] input io_ptw_pmp_6_cfg_x, // @[HellaCache.scala:243:14] input io_ptw_pmp_6_cfg_w, // @[HellaCache.scala:243:14] input io_ptw_pmp_6_cfg_r, // @[HellaCache.scala:243:14] input [29:0] io_ptw_pmp_6_addr, // @[HellaCache.scala:243:14] input [31:0] io_ptw_pmp_6_mask, // @[HellaCache.scala:243:14] input io_ptw_pmp_7_cfg_l, // @[HellaCache.scala:243:14] input [1:0] io_ptw_pmp_7_cfg_a, // @[HellaCache.scala:243:14] input io_ptw_pmp_7_cfg_x, // @[HellaCache.scala:243:14] input io_ptw_pmp_7_cfg_w, // @[HellaCache.scala:243:14] input io_ptw_pmp_7_cfg_r, // @[HellaCache.scala:243:14] input [29:0] io_ptw_pmp_7_addr, // @[HellaCache.scala:243:14] input [31:0] io_ptw_pmp_7_mask, // @[HellaCache.scala:243:14] input io_ptw_customCSRs_csrs_0_ren, // @[HellaCache.scala:243:14] input io_ptw_customCSRs_csrs_0_wen, // @[HellaCache.scala:243:14] input [63:0] io_ptw_customCSRs_csrs_0_wdata, // @[HellaCache.scala:243:14] input [63:0] io_ptw_customCSRs_csrs_0_value, // @[HellaCache.scala:243:14] input io_ptw_customCSRs_csrs_1_ren, // @[HellaCache.scala:243:14] input io_ptw_customCSRs_csrs_1_wen, // @[HellaCache.scala:243:14] input [63:0] io_ptw_customCSRs_csrs_1_wdata, // @[HellaCache.scala:243:14] input [63:0] io_ptw_customCSRs_csrs_1_value, // @[HellaCache.scala:243:14] input io_ptw_customCSRs_csrs_2_ren, // @[HellaCache.scala:243:14] input io_ptw_customCSRs_csrs_2_wen, // @[HellaCache.scala:243:14] input [63:0] io_ptw_customCSRs_csrs_2_wdata, // @[HellaCache.scala:243:14] input [63:0] io_ptw_customCSRs_csrs_2_value, // @[HellaCache.scala:243:14] input io_ptw_customCSRs_csrs_3_ren, // @[HellaCache.scala:243:14] input io_ptw_customCSRs_csrs_3_wen, // @[HellaCache.scala:243:14] input [63:0] io_ptw_customCSRs_csrs_3_wdata, // @[HellaCache.scala:243:14] input [63:0] io_ptw_customCSRs_csrs_3_value // @[HellaCache.scala:243:14] ); wire [19:0] s2_meta_corrected_7_tag; // @[DCache.scala:361:99] wire [1:0] s2_meta_corrected_7_coh_state; // @[DCache.scala:361:99] wire [63:0] s1_all_data_ways_7; // @[DCache.scala:325:33] wire [63:0] s1_all_data_ways_6; // @[DCache.scala:325:33] wire [63:0] s1_all_data_ways_5; // @[DCache.scala:325:33] wire [63:0] s1_all_data_ways_4; // @[DCache.scala:325:33] wire [63:0] s1_all_data_ways_3; // @[DCache.scala:325:33] wire [63:0] s1_all_data_ways_2; // @[DCache.scala:325:33] wire [63:0] s1_all_data_ways_1; // @[DCache.scala:325:33] wire [63:0] s1_all_data_ways_0; // @[DCache.scala:325:33] wire rockettile_dcache_tag_array_MPORT_en; // @[DCache.scala:310:27] wire s0_req_phys; // @[DCache.scala:192:24] wire [39:0] s0_req_addr; // @[DCache.scala:192:24] wire tl_out_a_valid; // @[DCache.scala:159:22] wire [63:0] tl_out_a_bits_data; // @[DCache.scala:159:22] wire [7:0] tl_out_a_bits_mask; // @[DCache.scala:159:22] wire [31:0] tl_out_a_bits_address; // @[DCache.scala:159:22] wire tl_out_a_bits_source; // @[DCache.scala:159:22] wire [3:0] tl_out_a_bits_size; // @[DCache.scala:159:22] wire [2:0] tl_out_a_bits_param; // @[DCache.scala:159:22] wire [2:0] tl_out_a_bits_opcode; // @[DCache.scala:159:22] wire [5:0] metaArb_io_out_bits_idx; // @[DCache.scala:135:28] wire metaArb_io_in_0_valid; // @[DCache.scala:135:28] wire [4:0] pma_checker_io_req_bits_cmd; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_req_bits_size; // @[DCache.scala:120:32] wire [175:0] _rockettile_dcache_tag_array_RW0_rdata; // @[DescribedSRAM.scala:17:26] wire _lfsr_prng_io_out_0; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_1; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_2; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_3; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_4; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_5; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_6; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_7; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_8; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_9; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_10; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_11; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_12; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_13; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_14; // @[PRNG.scala:91:22] wire _lfsr_prng_io_out_15; // @[PRNG.scala:91:22] wire [19:0] _pma_checker_entries_barrier_12_io_y_ppn; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_12_io_y_hr; // @[package.scala:267:25] wire [19:0] _pma_checker_entries_barrier_11_io_y_ppn; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_11_io_y_c; // @[package.scala:267:25] wire [19:0] _pma_checker_entries_barrier_10_io_y_ppn; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_10_io_y_c; // @[package.scala:267:25] wire [19:0] _pma_checker_entries_barrier_9_io_y_ppn; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_9_io_y_c; // @[package.scala:267:25] wire [19:0] _pma_checker_entries_barrier_8_io_y_ppn; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_8_io_y_c; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_7_io_y_c; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_6_io_y_c; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_5_io_y_c; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_4_io_y_c; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_3_io_y_c; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_2_io_y_c; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_1_io_y_c; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_u; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_ae_ptw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_ae_final; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_ae_stage2; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_pf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_gf; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_sw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_sx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_sr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_hw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_hx; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_hr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_pw; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_px; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_pr; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_ppp; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_pal; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_paa; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_eff; // @[package.scala:267:25] wire _pma_checker_entries_barrier_io_y_c; // @[package.scala:267:25] wire _pma_checker_pma_io_resp_r; // @[TLB.scala:422:19] wire _pma_checker_pma_io_resp_w; // @[TLB.scala:422:19] wire _pma_checker_pma_io_resp_pp; // @[TLB.scala:422:19] wire _pma_checker_pma_io_resp_al; // @[TLB.scala:422:19] wire _pma_checker_pma_io_resp_aa; // @[TLB.scala:422:19] wire _pma_checker_pma_io_resp_x; // @[TLB.scala:422:19] wire _pma_checker_pma_io_resp_eff; // @[TLB.scala:422:19] wire [19:0] _pma_checker_mpu_ppn_barrier_io_y_ppn; // @[package.scala:267:25] wire _tlb_io_req_ready; // @[DCache.scala:119:19] wire _tlb_io_resp_miss; // @[DCache.scala:119:19] wire [31:0] _tlb_io_resp_paddr; // @[DCache.scala:119:19] wire [39:0] _tlb_io_resp_gpa; // @[DCache.scala:119:19] wire _tlb_io_resp_pf_ld; // @[DCache.scala:119:19] wire _tlb_io_resp_pf_st; // @[DCache.scala:119:19] wire _tlb_io_resp_pf_inst; // @[DCache.scala:119:19] wire _tlb_io_resp_ae_ld; // @[DCache.scala:119:19] wire _tlb_io_resp_ae_st; // @[DCache.scala:119:19] wire _tlb_io_resp_ae_inst; // @[DCache.scala:119:19] wire _tlb_io_resp_ma_ld; // @[DCache.scala:119:19] wire _tlb_io_resp_ma_st; // @[DCache.scala:119:19] wire _tlb_io_resp_cacheable; // @[DCache.scala:119:19] wire _tlb_io_resp_must_alloc; // @[DCache.scala:119:19] wire _tlb_io_resp_prefetchable; // @[DCache.scala:119:19] wire [1:0] _tlb_io_resp_size; // @[DCache.scala:119:19] wire [4:0] _tlb_io_resp_cmd; // @[DCache.scala:119:19] wire auto_out_a_ready_0 = auto_out_a_ready; // @[DCache.scala:101:7] wire auto_out_b_valid_0 = auto_out_b_valid; // @[DCache.scala:101:7] wire [2:0] auto_out_b_bits_opcode_0 = auto_out_b_bits_opcode; // @[DCache.scala:101:7] wire [1:0] auto_out_b_bits_param_0 = auto_out_b_bits_param; // @[DCache.scala:101:7] wire [3:0] auto_out_b_bits_size_0 = auto_out_b_bits_size; // @[DCache.scala:101:7] wire auto_out_b_bits_source_0 = auto_out_b_bits_source; // @[DCache.scala:101:7] wire [31:0] auto_out_b_bits_address_0 = auto_out_b_bits_address; // @[DCache.scala:101:7] wire [7:0] auto_out_b_bits_mask_0 = auto_out_b_bits_mask; // @[DCache.scala:101:7] wire [63:0] auto_out_b_bits_data_0 = auto_out_b_bits_data; // @[DCache.scala:101:7] wire auto_out_b_bits_corrupt_0 = auto_out_b_bits_corrupt; // @[DCache.scala:101:7] wire auto_out_c_ready_0 = auto_out_c_ready; // @[DCache.scala:101:7] wire auto_out_d_valid_0 = auto_out_d_valid; // @[DCache.scala:101:7] wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[DCache.scala:101:7] wire [1:0] auto_out_d_bits_param_0 = auto_out_d_bits_param; // @[DCache.scala:101:7] wire [3:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[DCache.scala:101:7] wire auto_out_d_bits_source_0 = auto_out_d_bits_source; // @[DCache.scala:101:7] wire [2:0] auto_out_d_bits_sink_0 = auto_out_d_bits_sink; // @[DCache.scala:101:7] wire auto_out_d_bits_denied_0 = auto_out_d_bits_denied; // @[DCache.scala:101:7] wire [63:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[DCache.scala:101:7] wire auto_out_d_bits_corrupt_0 = auto_out_d_bits_corrupt; // @[DCache.scala:101:7] wire auto_out_e_ready_0 = auto_out_e_ready; // @[DCache.scala:101:7] wire io_cpu_req_valid_0 = io_cpu_req_valid; // @[DCache.scala:101:7] wire [39:0] io_cpu_req_bits_addr_0 = io_cpu_req_bits_addr; // @[DCache.scala:101:7] wire [6:0] io_cpu_req_bits_tag_0 = io_cpu_req_bits_tag; // @[DCache.scala:101:7] wire [4:0] io_cpu_req_bits_cmd_0 = io_cpu_req_bits_cmd; // @[DCache.scala:101:7] wire [1:0] io_cpu_req_bits_size_0 = io_cpu_req_bits_size; // @[DCache.scala:101:7] wire io_cpu_req_bits_signed_0 = io_cpu_req_bits_signed; // @[DCache.scala:101:7] wire [1:0] io_cpu_req_bits_dprv_0 = io_cpu_req_bits_dprv; // @[DCache.scala:101:7] wire io_cpu_req_bits_dv_0 = io_cpu_req_bits_dv; // @[DCache.scala:101:7] wire io_cpu_req_bits_phys_0 = io_cpu_req_bits_phys; // @[DCache.scala:101:7] wire io_cpu_req_bits_no_resp_0 = io_cpu_req_bits_no_resp; // @[DCache.scala:101:7] wire io_cpu_s1_kill_0 = io_cpu_s1_kill; // @[DCache.scala:101:7] wire [63:0] io_cpu_s1_data_data_0 = io_cpu_s1_data_data; // @[DCache.scala:101:7] wire [7:0] io_cpu_s1_data_mask_0 = io_cpu_s1_data_mask; // @[DCache.scala:101:7] wire io_cpu_keep_clock_enabled_0 = io_cpu_keep_clock_enabled; // @[DCache.scala:101:7] wire io_ptw_req_ready_0 = io_ptw_req_ready; // @[DCache.scala:101:7] wire io_ptw_resp_valid_0 = io_ptw_resp_valid; // @[DCache.scala:101:7] wire io_ptw_resp_bits_ae_ptw_0 = io_ptw_resp_bits_ae_ptw; // @[DCache.scala:101:7] wire io_ptw_resp_bits_ae_final_0 = io_ptw_resp_bits_ae_final; // @[DCache.scala:101:7] wire io_ptw_resp_bits_pf_0 = io_ptw_resp_bits_pf; // @[DCache.scala:101:7] wire io_ptw_resp_bits_gf_0 = io_ptw_resp_bits_gf; // @[DCache.scala:101:7] wire io_ptw_resp_bits_hr_0 = io_ptw_resp_bits_hr; // @[DCache.scala:101:7] wire io_ptw_resp_bits_hw_0 = io_ptw_resp_bits_hw; // @[DCache.scala:101:7] wire io_ptw_resp_bits_hx_0 = io_ptw_resp_bits_hx; // @[DCache.scala:101:7] wire [9:0] io_ptw_resp_bits_pte_reserved_for_future_0 = io_ptw_resp_bits_pte_reserved_for_future; // @[DCache.scala:101:7] wire [43:0] io_ptw_resp_bits_pte_ppn_0 = io_ptw_resp_bits_pte_ppn; // @[DCache.scala:101:7] wire [1:0] io_ptw_resp_bits_pte_reserved_for_software_0 = io_ptw_resp_bits_pte_reserved_for_software; // @[DCache.scala:101:7] wire io_ptw_resp_bits_pte_d_0 = io_ptw_resp_bits_pte_d; // @[DCache.scala:101:7] wire io_ptw_resp_bits_pte_a_0 = io_ptw_resp_bits_pte_a; // @[DCache.scala:101:7] wire io_ptw_resp_bits_pte_g_0 = io_ptw_resp_bits_pte_g; // @[DCache.scala:101:7] wire io_ptw_resp_bits_pte_u_0 = io_ptw_resp_bits_pte_u; // @[DCache.scala:101:7] wire io_ptw_resp_bits_pte_x_0 = io_ptw_resp_bits_pte_x; // @[DCache.scala:101:7] wire io_ptw_resp_bits_pte_w_0 = io_ptw_resp_bits_pte_w; // @[DCache.scala:101:7] wire io_ptw_resp_bits_pte_r_0 = io_ptw_resp_bits_pte_r; // @[DCache.scala:101:7] wire io_ptw_resp_bits_pte_v_0 = io_ptw_resp_bits_pte_v; // @[DCache.scala:101:7] wire [1:0] io_ptw_resp_bits_level_0 = io_ptw_resp_bits_level; // @[DCache.scala:101:7] wire io_ptw_resp_bits_homogeneous_0 = io_ptw_resp_bits_homogeneous; // @[DCache.scala:101:7] wire io_ptw_resp_bits_gpa_valid_0 = io_ptw_resp_bits_gpa_valid; // @[DCache.scala:101:7] wire [38:0] io_ptw_resp_bits_gpa_bits_0 = io_ptw_resp_bits_gpa_bits; // @[DCache.scala:101:7] wire io_ptw_resp_bits_gpa_is_pte_0 = io_ptw_resp_bits_gpa_is_pte; // @[DCache.scala:101:7] wire [3:0] io_ptw_ptbr_mode_0 = io_ptw_ptbr_mode; // @[DCache.scala:101:7] wire [43:0] io_ptw_ptbr_ppn_0 = io_ptw_ptbr_ppn; // @[DCache.scala:101:7] wire io_ptw_status_debug_0 = io_ptw_status_debug; // @[DCache.scala:101:7] wire io_ptw_status_cease_0 = io_ptw_status_cease; // @[DCache.scala:101:7] wire io_ptw_status_wfi_0 = io_ptw_status_wfi; // @[DCache.scala:101:7] wire [31:0] io_ptw_status_isa_0 = io_ptw_status_isa; // @[DCache.scala:101:7] wire [1:0] io_ptw_status_dprv_0 = io_ptw_status_dprv; // @[DCache.scala:101:7] wire io_ptw_status_dv_0 = io_ptw_status_dv; // @[DCache.scala:101:7] wire [1:0] io_ptw_status_prv_0 = io_ptw_status_prv; // @[DCache.scala:101:7] wire io_ptw_status_v_0 = io_ptw_status_v; // @[DCache.scala:101:7] wire io_ptw_status_sd_0 = io_ptw_status_sd; // @[DCache.scala:101:7] wire io_ptw_status_mpv_0 = io_ptw_status_mpv; // @[DCache.scala:101:7] wire io_ptw_status_gva_0 = io_ptw_status_gva; // @[DCache.scala:101:7] wire io_ptw_status_tsr_0 = io_ptw_status_tsr; // @[DCache.scala:101:7] wire io_ptw_status_tw_0 = io_ptw_status_tw; // @[DCache.scala:101:7] wire io_ptw_status_tvm_0 = io_ptw_status_tvm; // @[DCache.scala:101:7] wire io_ptw_status_mxr_0 = io_ptw_status_mxr; // @[DCache.scala:101:7] wire io_ptw_status_sum_0 = io_ptw_status_sum; // @[DCache.scala:101:7] wire io_ptw_status_mprv_0 = io_ptw_status_mprv; // @[DCache.scala:101:7] wire [1:0] io_ptw_status_fs_0 = io_ptw_status_fs; // @[DCache.scala:101:7] wire [1:0] io_ptw_status_mpp_0 = io_ptw_status_mpp; // @[DCache.scala:101:7] wire io_ptw_status_spp_0 = io_ptw_status_spp; // @[DCache.scala:101:7] wire io_ptw_status_mpie_0 = io_ptw_status_mpie; // @[DCache.scala:101:7] wire io_ptw_status_spie_0 = io_ptw_status_spie; // @[DCache.scala:101:7] wire io_ptw_status_mie_0 = io_ptw_status_mie; // @[DCache.scala:101:7] wire io_ptw_status_sie_0 = io_ptw_status_sie; // @[DCache.scala:101:7] wire io_ptw_hstatus_spvp_0 = io_ptw_hstatus_spvp; // @[DCache.scala:101:7] wire io_ptw_hstatus_spv_0 = io_ptw_hstatus_spv; // @[DCache.scala:101:7] wire io_ptw_hstatus_gva_0 = io_ptw_hstatus_gva; // @[DCache.scala:101:7] wire io_ptw_gstatus_debug_0 = io_ptw_gstatus_debug; // @[DCache.scala:101:7] wire io_ptw_gstatus_cease_0 = io_ptw_gstatus_cease; // @[DCache.scala:101:7] wire io_ptw_gstatus_wfi_0 = io_ptw_gstatus_wfi; // @[DCache.scala:101:7] wire [31:0] io_ptw_gstatus_isa_0 = io_ptw_gstatus_isa; // @[DCache.scala:101:7] wire [1:0] io_ptw_gstatus_dprv_0 = io_ptw_gstatus_dprv; // @[DCache.scala:101:7] wire io_ptw_gstatus_dv_0 = io_ptw_gstatus_dv; // @[DCache.scala:101:7] wire [1:0] io_ptw_gstatus_prv_0 = io_ptw_gstatus_prv; // @[DCache.scala:101:7] wire io_ptw_gstatus_v_0 = io_ptw_gstatus_v; // @[DCache.scala:101:7] wire io_ptw_gstatus_sd_0 = io_ptw_gstatus_sd; // @[DCache.scala:101:7] wire [22:0] io_ptw_gstatus_zero2_0 = io_ptw_gstatus_zero2; // @[DCache.scala:101:7] wire io_ptw_gstatus_mpv_0 = io_ptw_gstatus_mpv; // @[DCache.scala:101:7] wire io_ptw_gstatus_gva_0 = io_ptw_gstatus_gva; // @[DCache.scala:101:7] wire io_ptw_gstatus_mbe_0 = io_ptw_gstatus_mbe; // @[DCache.scala:101:7] wire io_ptw_gstatus_sbe_0 = io_ptw_gstatus_sbe; // @[DCache.scala:101:7] wire [1:0] io_ptw_gstatus_sxl_0 = io_ptw_gstatus_sxl; // @[DCache.scala:101:7] wire [7:0] io_ptw_gstatus_zero1_0 = io_ptw_gstatus_zero1; // @[DCache.scala:101:7] wire io_ptw_gstatus_tsr_0 = io_ptw_gstatus_tsr; // @[DCache.scala:101:7] wire io_ptw_gstatus_tw_0 = io_ptw_gstatus_tw; // @[DCache.scala:101:7] wire io_ptw_gstatus_tvm_0 = io_ptw_gstatus_tvm; // @[DCache.scala:101:7] wire io_ptw_gstatus_mxr_0 = io_ptw_gstatus_mxr; // @[DCache.scala:101:7] wire io_ptw_gstatus_sum_0 = io_ptw_gstatus_sum; // @[DCache.scala:101:7] wire io_ptw_gstatus_mprv_0 = io_ptw_gstatus_mprv; // @[DCache.scala:101:7] wire [1:0] io_ptw_gstatus_fs_0 = io_ptw_gstatus_fs; // @[DCache.scala:101:7] wire [1:0] io_ptw_gstatus_mpp_0 = io_ptw_gstatus_mpp; // @[DCache.scala:101:7] wire [1:0] io_ptw_gstatus_vs_0 = io_ptw_gstatus_vs; // @[DCache.scala:101:7] wire io_ptw_gstatus_spp_0 = io_ptw_gstatus_spp; // @[DCache.scala:101:7] wire io_ptw_gstatus_mpie_0 = io_ptw_gstatus_mpie; // @[DCache.scala:101:7] wire io_ptw_gstatus_ube_0 = io_ptw_gstatus_ube; // @[DCache.scala:101:7] wire io_ptw_gstatus_spie_0 = io_ptw_gstatus_spie; // @[DCache.scala:101:7] wire io_ptw_gstatus_upie_0 = io_ptw_gstatus_upie; // @[DCache.scala:101:7] wire io_ptw_gstatus_mie_0 = io_ptw_gstatus_mie; // @[DCache.scala:101:7] wire io_ptw_gstatus_hie_0 = io_ptw_gstatus_hie; // @[DCache.scala:101:7] wire io_ptw_gstatus_sie_0 = io_ptw_gstatus_sie; // @[DCache.scala:101:7] wire io_ptw_gstatus_uie_0 = io_ptw_gstatus_uie; // @[DCache.scala:101:7] wire io_ptw_pmp_0_cfg_l_0 = io_ptw_pmp_0_cfg_l; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_0_cfg_a_0 = io_ptw_pmp_0_cfg_a; // @[DCache.scala:101:7] wire io_ptw_pmp_0_cfg_x_0 = io_ptw_pmp_0_cfg_x; // @[DCache.scala:101:7] wire io_ptw_pmp_0_cfg_w_0 = io_ptw_pmp_0_cfg_w; // @[DCache.scala:101:7] wire io_ptw_pmp_0_cfg_r_0 = io_ptw_pmp_0_cfg_r; // @[DCache.scala:101:7] wire [29:0] io_ptw_pmp_0_addr_0 = io_ptw_pmp_0_addr; // @[DCache.scala:101:7] wire [31:0] io_ptw_pmp_0_mask_0 = io_ptw_pmp_0_mask; // @[DCache.scala:101:7] wire io_ptw_pmp_1_cfg_l_0 = io_ptw_pmp_1_cfg_l; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_1_cfg_a_0 = io_ptw_pmp_1_cfg_a; // @[DCache.scala:101:7] wire io_ptw_pmp_1_cfg_x_0 = io_ptw_pmp_1_cfg_x; // @[DCache.scala:101:7] wire io_ptw_pmp_1_cfg_w_0 = io_ptw_pmp_1_cfg_w; // @[DCache.scala:101:7] wire io_ptw_pmp_1_cfg_r_0 = io_ptw_pmp_1_cfg_r; // @[DCache.scala:101:7] wire [29:0] io_ptw_pmp_1_addr_0 = io_ptw_pmp_1_addr; // @[DCache.scala:101:7] wire [31:0] io_ptw_pmp_1_mask_0 = io_ptw_pmp_1_mask; // @[DCache.scala:101:7] wire io_ptw_pmp_2_cfg_l_0 = io_ptw_pmp_2_cfg_l; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_2_cfg_a_0 = io_ptw_pmp_2_cfg_a; // @[DCache.scala:101:7] wire io_ptw_pmp_2_cfg_x_0 = io_ptw_pmp_2_cfg_x; // @[DCache.scala:101:7] wire io_ptw_pmp_2_cfg_w_0 = io_ptw_pmp_2_cfg_w; // @[DCache.scala:101:7] wire io_ptw_pmp_2_cfg_r_0 = io_ptw_pmp_2_cfg_r; // @[DCache.scala:101:7] wire [29:0] io_ptw_pmp_2_addr_0 = io_ptw_pmp_2_addr; // @[DCache.scala:101:7] wire [31:0] io_ptw_pmp_2_mask_0 = io_ptw_pmp_2_mask; // @[DCache.scala:101:7] wire io_ptw_pmp_3_cfg_l_0 = io_ptw_pmp_3_cfg_l; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_3_cfg_a_0 = io_ptw_pmp_3_cfg_a; // @[DCache.scala:101:7] wire io_ptw_pmp_3_cfg_x_0 = io_ptw_pmp_3_cfg_x; // @[DCache.scala:101:7] wire io_ptw_pmp_3_cfg_w_0 = io_ptw_pmp_3_cfg_w; // @[DCache.scala:101:7] wire io_ptw_pmp_3_cfg_r_0 = io_ptw_pmp_3_cfg_r; // @[DCache.scala:101:7] wire [29:0] io_ptw_pmp_3_addr_0 = io_ptw_pmp_3_addr; // @[DCache.scala:101:7] wire [31:0] io_ptw_pmp_3_mask_0 = io_ptw_pmp_3_mask; // @[DCache.scala:101:7] wire io_ptw_pmp_4_cfg_l_0 = io_ptw_pmp_4_cfg_l; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_4_cfg_a_0 = io_ptw_pmp_4_cfg_a; // @[DCache.scala:101:7] wire io_ptw_pmp_4_cfg_x_0 = io_ptw_pmp_4_cfg_x; // @[DCache.scala:101:7] wire io_ptw_pmp_4_cfg_w_0 = io_ptw_pmp_4_cfg_w; // @[DCache.scala:101:7] wire io_ptw_pmp_4_cfg_r_0 = io_ptw_pmp_4_cfg_r; // @[DCache.scala:101:7] wire [29:0] io_ptw_pmp_4_addr_0 = io_ptw_pmp_4_addr; // @[DCache.scala:101:7] wire [31:0] io_ptw_pmp_4_mask_0 = io_ptw_pmp_4_mask; // @[DCache.scala:101:7] wire io_ptw_pmp_5_cfg_l_0 = io_ptw_pmp_5_cfg_l; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_5_cfg_a_0 = io_ptw_pmp_5_cfg_a; // @[DCache.scala:101:7] wire io_ptw_pmp_5_cfg_x_0 = io_ptw_pmp_5_cfg_x; // @[DCache.scala:101:7] wire io_ptw_pmp_5_cfg_w_0 = io_ptw_pmp_5_cfg_w; // @[DCache.scala:101:7] wire io_ptw_pmp_5_cfg_r_0 = io_ptw_pmp_5_cfg_r; // @[DCache.scala:101:7] wire [29:0] io_ptw_pmp_5_addr_0 = io_ptw_pmp_5_addr; // @[DCache.scala:101:7] wire [31:0] io_ptw_pmp_5_mask_0 = io_ptw_pmp_5_mask; // @[DCache.scala:101:7] wire io_ptw_pmp_6_cfg_l_0 = io_ptw_pmp_6_cfg_l; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_6_cfg_a_0 = io_ptw_pmp_6_cfg_a; // @[DCache.scala:101:7] wire io_ptw_pmp_6_cfg_x_0 = io_ptw_pmp_6_cfg_x; // @[DCache.scala:101:7] wire io_ptw_pmp_6_cfg_w_0 = io_ptw_pmp_6_cfg_w; // @[DCache.scala:101:7] wire io_ptw_pmp_6_cfg_r_0 = io_ptw_pmp_6_cfg_r; // @[DCache.scala:101:7] wire [29:0] io_ptw_pmp_6_addr_0 = io_ptw_pmp_6_addr; // @[DCache.scala:101:7] wire [31:0] io_ptw_pmp_6_mask_0 = io_ptw_pmp_6_mask; // @[DCache.scala:101:7] wire io_ptw_pmp_7_cfg_l_0 = io_ptw_pmp_7_cfg_l; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_7_cfg_a_0 = io_ptw_pmp_7_cfg_a; // @[DCache.scala:101:7] wire io_ptw_pmp_7_cfg_x_0 = io_ptw_pmp_7_cfg_x; // @[DCache.scala:101:7] wire io_ptw_pmp_7_cfg_w_0 = io_ptw_pmp_7_cfg_w; // @[DCache.scala:101:7] wire io_ptw_pmp_7_cfg_r_0 = io_ptw_pmp_7_cfg_r; // @[DCache.scala:101:7] wire [29:0] io_ptw_pmp_7_addr_0 = io_ptw_pmp_7_addr; // @[DCache.scala:101:7] wire [31:0] io_ptw_pmp_7_mask_0 = io_ptw_pmp_7_mask; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_0_ren_0 = io_ptw_customCSRs_csrs_0_ren; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_0_wen_0 = io_ptw_customCSRs_csrs_0_wen; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_0_wdata_0 = io_ptw_customCSRs_csrs_0_wdata; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_0_value_0 = io_ptw_customCSRs_csrs_0_value; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_1_ren_0 = io_ptw_customCSRs_csrs_1_ren; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_1_wen_0 = io_ptw_customCSRs_csrs_1_wen; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_1_wdata_0 = io_ptw_customCSRs_csrs_1_wdata; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_1_value_0 = io_ptw_customCSRs_csrs_1_value; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_2_ren_0 = io_ptw_customCSRs_csrs_2_ren; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_2_wen_0 = io_ptw_customCSRs_csrs_2_wen; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_2_wdata_0 = io_ptw_customCSRs_csrs_2_wdata; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_2_value_0 = io_ptw_customCSRs_csrs_2_value; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_3_ren_0 = io_ptw_customCSRs_csrs_3_ren; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_3_wen_0 = io_ptw_customCSRs_csrs_3_wen; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_3_wdata_0 = io_ptw_customCSRs_csrs_3_wdata; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_3_value_0 = io_ptw_customCSRs_csrs_3_value; // @[DCache.scala:101:7] wire _dataArb_io_in_3_valid_T_55 = reset; // @[DCache.scala:1186:11] wire _pstore_drain_opportunistic_T_55 = reset; // @[DCache.scala:1186:11] wire auto_out_a_bits_corrupt = 1'h0; // @[DCache.scala:101:7] wire auto_out_c_bits_corrupt = 1'h0; // @[DCache.scala:101:7] wire io_cpu_req_bits_no_alloc = 1'h0; // @[DCache.scala:101:7] wire io_cpu_req_bits_no_xcpt = 1'h0; // @[DCache.scala:101:7] wire io_cpu_s2_kill = 1'h0; // @[DCache.scala:101:7] wire io_cpu_s2_xcpt_gf_ld = 1'h0; // @[DCache.scala:101:7] wire io_cpu_s2_xcpt_gf_st = 1'h0; // @[DCache.scala:101:7] wire io_cpu_s2_gpa_is_pte = 1'h0; // @[DCache.scala:101:7] wire io_ptw_req_bits_bits_vstage1 = 1'h0; // @[DCache.scala:101:7] wire io_ptw_req_bits_bits_stage2 = 1'h0; // @[DCache.scala:101:7] wire io_ptw_resp_bits_fragmented_superpage = 1'h0; // @[DCache.scala:101:7] wire io_ptw_status_mbe = 1'h0; // @[DCache.scala:101:7] wire io_ptw_status_sbe = 1'h0; // @[DCache.scala:101:7] wire io_ptw_status_sd_rv32 = 1'h0; // @[DCache.scala:101:7] wire io_ptw_status_ube = 1'h0; // @[DCache.scala:101:7] wire io_ptw_status_upie = 1'h0; // @[DCache.scala:101:7] wire io_ptw_status_hie = 1'h0; // @[DCache.scala:101:7] wire io_ptw_status_uie = 1'h0; // @[DCache.scala:101:7] wire io_ptw_hstatus_vtsr = 1'h0; // @[DCache.scala:101:7] wire io_ptw_hstatus_vtw = 1'h0; // @[DCache.scala:101:7] wire io_ptw_hstatus_vtvm = 1'h0; // @[DCache.scala:101:7] wire io_ptw_hstatus_hu = 1'h0; // @[DCache.scala:101:7] wire io_ptw_hstatus_vsbe = 1'h0; // @[DCache.scala:101:7] wire io_ptw_gstatus_sd_rv32 = 1'h0; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_0_stall = 1'h0; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_0_set = 1'h0; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_1_stall = 1'h0; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_1_set = 1'h0; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_2_stall = 1'h0; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_2_set = 1'h0; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_3_stall = 1'h0; // @[DCache.scala:101:7] wire io_ptw_customCSRs_csrs_3_set = 1'h0; // @[DCache.scala:101:7] wire io_tlb_port_req_valid = 1'h0; // @[DCache.scala:101:7] wire io_tlb_port_req_bits_passthrough = 1'h0; // @[DCache.scala:101:7] wire io_tlb_port_req_bits_v = 1'h0; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_gpa_is_pte = 1'h0; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_gf_ld = 1'h0; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_gf_st = 1'h0; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_gf_inst = 1'h0; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_ma_inst = 1'h0; // @[DCache.scala:101:7] wire io_tlb_port_s2_kill = 1'h0; // @[DCache.scala:101:7] wire nodeOut_a_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17] wire nodeOut_c_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17] wire pma_checker_io_req_valid = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_resp_miss = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_resp_gpa_is_pte = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_resp_gf_ld = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_resp_gf_st = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_resp_gf_inst = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_resp_ma_inst = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_sfence_valid = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_sfence_bits_rs1 = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_sfence_bits_rs2 = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_sfence_bits_asid = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_sfence_bits_hv = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_sfence_bits_hg = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_req_ready = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_req_valid = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_req_bits_bits_need_gpa = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_req_bits_bits_vstage1 = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_req_bits_bits_stage2 = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_valid = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_ae_ptw = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_ae_final = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_pf = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_gf = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_hr = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_hw = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_hx = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_pte_d = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_pte_a = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_pte_g = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_pte_u = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_pte_x = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_pte_w = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_pte_r = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_pte_v = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_fragmented_superpage = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_homogeneous = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_gpa_valid = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_resp_bits_gpa_is_pte = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_debug = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_cease = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_wfi = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_dv = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_v = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_sd = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_mpv = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_gva = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_mbe = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_sbe = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_sd_rv32 = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_tsr = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_tw = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_tvm = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_mxr = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_sum = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_mprv = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_spp = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_mpie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_ube = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_spie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_upie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_mie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_hie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_sie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_status_uie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_hstatus_vtsr = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_hstatus_vtw = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_hstatus_vtvm = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_hstatus_hu = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_hstatus_spvp = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_hstatus_spv = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_hstatus_gva = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_hstatus_vsbe = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_debug = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_cease = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_wfi = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_dv = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_v = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_sd = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_mpv = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_gva = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_mbe = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_sbe = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_sd_rv32 = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_tsr = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_tw = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_tvm = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_mxr = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_sum = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_mprv = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_spp = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_mpie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_ube = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_spie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_upie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_mie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_hie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_sie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_gstatus_uie = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_0_cfg_l = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_0_cfg_x = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_0_cfg_w = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_0_cfg_r = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_1_cfg_l = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_1_cfg_x = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_1_cfg_w = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_1_cfg_r = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_2_cfg_l = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_2_cfg_x = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_2_cfg_w = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_2_cfg_r = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_3_cfg_l = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_3_cfg_x = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_3_cfg_w = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_3_cfg_r = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_4_cfg_l = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_4_cfg_x = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_4_cfg_w = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_4_cfg_r = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_5_cfg_l = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_5_cfg_x = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_5_cfg_w = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_5_cfg_r = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_6_cfg_l = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_6_cfg_x = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_6_cfg_w = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_6_cfg_r = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_7_cfg_l = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_7_cfg_x = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_7_cfg_w = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_pmp_7_cfg_r = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_0_ren = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_0_wen = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_0_stall = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_0_set = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_1_ren = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_1_wen = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_1_stall = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_1_set = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_2_ren = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_2_wen = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_2_stall = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_2_set = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_3_ren = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_3_wen = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_3_stall = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_ptw_customCSRs_csrs_3_set = 1'h0; // @[DCache.scala:120:32] wire pma_checker_io_kill = 1'h0; // @[DCache.scala:120:32] wire pma_checker_priv_v = 1'h0; // @[TLB.scala:369:34] wire pma_checker__stage1_en_T = 1'h0; // @[TLB.scala:374:41] wire pma_checker_stage1_en = 1'h0; // @[TLB.scala:374:29] wire pma_checker__vstage1_en_T = 1'h0; // @[TLB.scala:376:38] wire pma_checker__vstage1_en_T_1 = 1'h0; // @[TLB.scala:376:68] wire pma_checker_vstage1_en = 1'h0; // @[TLB.scala:376:48] wire pma_checker__stage2_en_T = 1'h0; // @[TLB.scala:378:38] wire pma_checker__stage2_en_T_1 = 1'h0; // @[TLB.scala:378:68] wire pma_checker_stage2_en = 1'h0; // @[TLB.scala:378:48] wire pma_checker__vm_enabled_T = 1'h0; // @[TLB.scala:399:31] wire pma_checker__vm_enabled_T_1 = 1'h0; // @[TLB.scala:399:45] wire pma_checker__vm_enabled_T_2 = 1'h0; // @[TLB.scala:399:64] wire pma_checker_vm_enabled = 1'h0; // @[TLB.scala:399:61] wire pma_checker__vsatp_mode_mismatch_T = 1'h0; // @[TLB.scala:403:52] wire pma_checker__vsatp_mode_mismatch_T_1 = 1'h0; // @[TLB.scala:403:37] wire pma_checker__vsatp_mode_mismatch_T_2 = 1'h0; // @[TLB.scala:403:81] wire pma_checker_vsatp_mode_mismatch = 1'h0; // @[TLB.scala:403:78] wire pma_checker_do_refill = 1'h0; // @[TLB.scala:408:29] wire pma_checker__invalidate_refill_T = 1'h0; // @[package.scala:16:47] wire pma_checker__invalidate_refill_T_1 = 1'h0; // @[package.scala:16:47] wire pma_checker__invalidate_refill_T_2 = 1'h0; // @[package.scala:81:59] wire pma_checker_invalidate_refill = 1'h0; // @[TLB.scala:410:88] wire pma_checker__mpu_ppn_T = 1'h0; // @[TLB.scala:413:32] wire pma_checker_prot_r = 1'h0; // @[TLB.scala:429:55] wire pma_checker_prot_w = 1'h0; // @[TLB.scala:430:55] wire pma_checker_prot_x = 1'h0; // @[TLB.scala:434:55] wire pma_checker__sector_hits_T = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_1 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_2 = 1'h0; // @[package.scala:81:59] wire pma_checker_sector_hits_0 = 1'h0; // @[TLB.scala:172:55] wire pma_checker__sector_hits_T_8 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_9 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_10 = 1'h0; // @[package.scala:81:59] wire pma_checker_sector_hits_1 = 1'h0; // @[TLB.scala:172:55] wire pma_checker__sector_hits_T_16 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_17 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_18 = 1'h0; // @[package.scala:81:59] wire pma_checker_sector_hits_2 = 1'h0; // @[TLB.scala:172:55] wire pma_checker__sector_hits_T_24 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_25 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_26 = 1'h0; // @[package.scala:81:59] wire pma_checker_sector_hits_3 = 1'h0; // @[TLB.scala:172:55] wire pma_checker__sector_hits_T_32 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_33 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_34 = 1'h0; // @[package.scala:81:59] wire pma_checker_sector_hits_4 = 1'h0; // @[TLB.scala:172:55] wire pma_checker__sector_hits_T_40 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_41 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_42 = 1'h0; // @[package.scala:81:59] wire pma_checker_sector_hits_5 = 1'h0; // @[TLB.scala:172:55] wire pma_checker__sector_hits_T_48 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_49 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_50 = 1'h0; // @[package.scala:81:59] wire pma_checker_sector_hits_6 = 1'h0; // @[TLB.scala:172:55] wire pma_checker__sector_hits_T_56 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_57 = 1'h0; // @[package.scala:81:59] wire pma_checker__sector_hits_T_58 = 1'h0; // @[package.scala:81:59] wire pma_checker_sector_hits_7 = 1'h0; // @[TLB.scala:172:55] wire pma_checker_superpage_hits_tagMatch = 1'h0; // @[TLB.scala:178:33] wire pma_checker__superpage_hits_ignore_T = 1'h0; // @[TLB.scala:182:28] wire pma_checker_superpage_hits_ignore = 1'h0; // @[TLB.scala:182:34] wire pma_checker__superpage_hits_T_4 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__superpage_hits_T_9 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_superpage_hits_0 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_superpage_hits_tagMatch_1 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__superpage_hits_ignore_T_3 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_superpage_hits_ignore_3 = 1'h0; // @[TLB.scala:182:34] wire pma_checker__superpage_hits_T_18 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__superpage_hits_T_23 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_superpage_hits_1 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_superpage_hits_tagMatch_2 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__superpage_hits_ignore_T_6 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_superpage_hits_ignore_6 = 1'h0; // @[TLB.scala:182:34] wire pma_checker__superpage_hits_T_32 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__superpage_hits_T_37 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_superpage_hits_2 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_superpage_hits_tagMatch_3 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__superpage_hits_ignore_T_9 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_superpage_hits_ignore_9 = 1'h0; // @[TLB.scala:182:34] wire pma_checker__superpage_hits_T_46 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__superpage_hits_T_51 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_superpage_hits_3 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_5 = 1'h0; // @[TLB.scala:188:18] wire pma_checker_hitsVec_0 = 1'h0; // @[TLB.scala:440:44] wire pma_checker__hitsVec_T_11 = 1'h0; // @[TLB.scala:188:18] wire pma_checker_hitsVec_1 = 1'h0; // @[TLB.scala:440:44] wire pma_checker__hitsVec_T_17 = 1'h0; // @[TLB.scala:188:18] wire pma_checker_hitsVec_2 = 1'h0; // @[TLB.scala:440:44] wire pma_checker__hitsVec_T_23 = 1'h0; // @[TLB.scala:188:18] wire pma_checker_hitsVec_3 = 1'h0; // @[TLB.scala:440:44] wire pma_checker__hitsVec_T_29 = 1'h0; // @[TLB.scala:188:18] wire pma_checker_hitsVec_4 = 1'h0; // @[TLB.scala:440:44] wire pma_checker__hitsVec_T_35 = 1'h0; // @[TLB.scala:188:18] wire pma_checker_hitsVec_5 = 1'h0; // @[TLB.scala:440:44] wire pma_checker__hitsVec_T_41 = 1'h0; // @[TLB.scala:188:18] wire pma_checker_hitsVec_6 = 1'h0; // @[TLB.scala:440:44] wire pma_checker__hitsVec_T_47 = 1'h0; // @[TLB.scala:188:18] wire pma_checker_hitsVec_7 = 1'h0; // @[TLB.scala:440:44] wire pma_checker_hitsVec_tagMatch = 1'h0; // @[TLB.scala:178:33] wire pma_checker__hitsVec_ignore_T = 1'h0; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore = 1'h0; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_52 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_57 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_62 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_hitsVec_8 = 1'h0; // @[TLB.scala:440:44] wire pma_checker_hitsVec_tagMatch_1 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__hitsVec_ignore_T_3 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_3 = 1'h0; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_67 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_72 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_77 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_hitsVec_9 = 1'h0; // @[TLB.scala:440:44] wire pma_checker_hitsVec_tagMatch_2 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__hitsVec_ignore_T_6 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_6 = 1'h0; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_82 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_87 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_92 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_hitsVec_10 = 1'h0; // @[TLB.scala:440:44] wire pma_checker_hitsVec_tagMatch_3 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__hitsVec_ignore_T_9 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_9 = 1'h0; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_97 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_102 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_107 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_hitsVec_11 = 1'h0; // @[TLB.scala:440:44] wire pma_checker_hitsVec_tagMatch_4 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__hitsVec_ignore_T_12 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_12 = 1'h0; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_112 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_117 = 1'h0; // @[TLB.scala:183:29] wire pma_checker__hitsVec_T_122 = 1'h0; // @[TLB.scala:183:29] wire pma_checker_hitsVec_12 = 1'h0; // @[TLB.scala:440:44] wire pma_checker_refill_v = 1'h0; // @[TLB.scala:448:33] wire pma_checker_newEntry_u = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_g = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_ae_ptw = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_ae_final = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_ae_stage2 = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_pf = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_gf = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_sw = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_sx = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_sr = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_hw = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_hx = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_hr = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_pw = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_px = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_pr = 1'h0; // @[TLB.scala:449:24] wire pma_checker_newEntry_fragmented_superpage = 1'h0; // @[TLB.scala:449:24] wire pma_checker__newEntry_g_T = 1'h0; // @[TLB.scala:453:25] wire pma_checker__newEntry_ae_stage2_T = 1'h0; // @[TLB.scala:456:53] wire pma_checker__newEntry_ae_stage2_T_1 = 1'h0; // @[TLB.scala:456:84] wire pma_checker__newEntry_sr_T_1 = 1'h0; // @[PTW.scala:141:44] wire pma_checker__newEntry_sr_T_2 = 1'h0; // @[PTW.scala:141:38] wire pma_checker__newEntry_sr_T_3 = 1'h0; // @[PTW.scala:141:32] wire pma_checker__newEntry_sr_T_4 = 1'h0; // @[PTW.scala:141:52] wire pma_checker__newEntry_sr_T_5 = 1'h0; // @[PTW.scala:149:35] wire pma_checker__newEntry_sw_T_1 = 1'h0; // @[PTW.scala:141:44] wire pma_checker__newEntry_sw_T_2 = 1'h0; // @[PTW.scala:141:38] wire pma_checker__newEntry_sw_T_3 = 1'h0; // @[PTW.scala:141:32] wire pma_checker__newEntry_sw_T_4 = 1'h0; // @[PTW.scala:141:52] wire pma_checker__newEntry_sw_T_5 = 1'h0; // @[PTW.scala:151:35] wire pma_checker__newEntry_sw_T_6 = 1'h0; // @[PTW.scala:151:40] wire pma_checker__newEntry_sx_T_1 = 1'h0; // @[PTW.scala:141:44] wire pma_checker__newEntry_sx_T_2 = 1'h0; // @[PTW.scala:141:38] wire pma_checker__newEntry_sx_T_3 = 1'h0; // @[PTW.scala:141:32] wire pma_checker__newEntry_sx_T_4 = 1'h0; // @[PTW.scala:141:52] wire pma_checker__newEntry_sx_T_5 = 1'h0; // @[PTW.scala:153:35] wire pma_checker__waddr_T = 1'h0; // @[TLB.scala:477:45] wire pma_checker__superpage_entries_0_level_T = 1'h0; // @[package.scala:163:13] wire pma_checker__superpage_entries_1_level_T = 1'h0; // @[package.scala:163:13] wire pma_checker__superpage_entries_2_level_T = 1'h0; // @[package.scala:163:13] wire pma_checker__superpage_entries_3_level_T = 1'h0; // @[package.scala:163:13] wire pma_checker_sum = 1'h0; // @[TLB.scala:510:16] wire pma_checker__mxr_T = 1'h0; // @[TLB.scala:518:36] wire pma_checker_mxr = 1'h0; // @[TLB.scala:518:31] wire pma_checker__bad_va_T = 1'h0; // @[TLB.scala:568:21] wire pma_checker_bad_va = 1'h0; // @[TLB.scala:568:34] wire pma_checker_cmd_readx = 1'h0; // @[TLB.scala:575:37] wire pma_checker__gf_ld_array_T = 1'h0; // @[TLB.scala:600:32] wire pma_checker__gf_st_array_T = 1'h0; // @[TLB.scala:601:32] wire pma_checker__gpa_hits_hit_mask_T_1 = 1'h0; // @[TLB.scala:606:60] wire pma_checker_tlb_hit_if_not_gpa_miss = 1'h0; // @[TLB.scala:610:43] wire pma_checker_tlb_hit = 1'h0; // @[TLB.scala:611:40] wire pma_checker__tlb_miss_T_1 = 1'h0; // @[TLB.scala:613:29] wire pma_checker__tlb_miss_T_3 = 1'h0; // @[TLB.scala:613:53] wire pma_checker_tlb_miss = 1'h0; // @[TLB.scala:613:64] wire pma_checker__state_vec_0_set_left_older_T = 1'h0; // @[Replacement.scala:196:43] wire pma_checker__state_vec_0_set_left_older_T_1 = 1'h0; // @[Replacement.scala:196:43] wire pma_checker_state_vec_0_left_subtree_state_1 = 1'h0; // @[package.scala:163:13] wire pma_checker_state_vec_0_right_subtree_state_1 = 1'h0; // @[Replacement.scala:198:38] wire pma_checker__state_vec_0_T_1 = 1'h0; // @[package.scala:163:13] wire pma_checker__state_vec_0_T_2 = 1'h0; // @[Replacement.scala:218:17] wire pma_checker__state_vec_0_T_4 = 1'h0; // @[Replacement.scala:203:16] wire pma_checker__state_vec_0_T_5 = 1'h0; // @[Replacement.scala:207:62] wire pma_checker__state_vec_0_T_6 = 1'h0; // @[Replacement.scala:218:17] wire pma_checker__state_vec_0_set_left_older_T_2 = 1'h0; // @[Replacement.scala:196:43] wire pma_checker_state_vec_0_left_subtree_state_2 = 1'h0; // @[package.scala:163:13] wire pma_checker_state_vec_0_right_subtree_state_2 = 1'h0; // @[Replacement.scala:198:38] wire pma_checker__state_vec_0_T_12 = 1'h0; // @[package.scala:163:13] wire pma_checker__state_vec_0_T_13 = 1'h0; // @[Replacement.scala:218:17] wire pma_checker__state_vec_0_T_15 = 1'h0; // @[Replacement.scala:203:16] wire pma_checker__state_vec_0_T_16 = 1'h0; // @[Replacement.scala:207:62] wire pma_checker__state_vec_0_T_17 = 1'h0; // @[Replacement.scala:218:17] wire pma_checker__state_reg_set_left_older_T = 1'h0; // @[Replacement.scala:196:43] wire pma_checker_state_reg_left_subtree_state = 1'h0; // @[package.scala:163:13] wire pma_checker_state_reg_right_subtree_state = 1'h0; // @[Replacement.scala:198:38] wire pma_checker__state_reg_T = 1'h0; // @[package.scala:163:13] wire pma_checker__state_reg_T_1 = 1'h0; // @[Replacement.scala:218:17] wire pma_checker__state_reg_T_3 = 1'h0; // @[Replacement.scala:203:16] wire pma_checker__state_reg_T_4 = 1'h0; // @[Replacement.scala:207:62] wire pma_checker__state_reg_T_5 = 1'h0; // @[Replacement.scala:218:17] wire pma_checker__multipleHits_T_2 = 1'h0; // @[Misc.scala:181:37] wire pma_checker_multipleHits_leftOne = 1'h0; // @[Misc.scala:178:18] wire pma_checker__multipleHits_T_4 = 1'h0; // @[Misc.scala:181:37] wire pma_checker_multipleHits_leftOne_1 = 1'h0; // @[Misc.scala:178:18] wire pma_checker__multipleHits_T_5 = 1'h0; // @[Misc.scala:182:39] wire pma_checker_multipleHits_rightOne = 1'h0; // @[Misc.scala:178:18] wire pma_checker_multipleHits_rightOne_1 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_6 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_7 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_rightTwo = 1'h0; // @[Misc.scala:183:49] wire pma_checker_multipleHits_leftOne_2 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_8 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_9 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_leftTwo = 1'h0; // @[Misc.scala:183:49] wire pma_checker__multipleHits_T_11 = 1'h0; // @[Misc.scala:181:37] wire pma_checker_multipleHits_leftOne_3 = 1'h0; // @[Misc.scala:178:18] wire pma_checker__multipleHits_T_13 = 1'h0; // @[Misc.scala:181:37] wire pma_checker_multipleHits_leftOne_4 = 1'h0; // @[Misc.scala:178:18] wire pma_checker__multipleHits_T_14 = 1'h0; // @[Misc.scala:182:39] wire pma_checker_multipleHits_rightOne_2 = 1'h0; // @[Misc.scala:178:18] wire pma_checker_multipleHits_rightOne_3 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_15 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_16 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_rightTwo_1 = 1'h0; // @[Misc.scala:183:49] wire pma_checker_multipleHits_rightOne_4 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_17 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_18 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_rightTwo_2 = 1'h0; // @[Misc.scala:183:49] wire pma_checker_multipleHits_leftOne_5 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_19 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_20 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_leftTwo_1 = 1'h0; // @[Misc.scala:183:49] wire pma_checker__multipleHits_T_23 = 1'h0; // @[Misc.scala:181:37] wire pma_checker_multipleHits_leftOne_6 = 1'h0; // @[Misc.scala:178:18] wire pma_checker__multipleHits_T_25 = 1'h0; // @[Misc.scala:181:37] wire pma_checker_multipleHits_leftOne_7 = 1'h0; // @[Misc.scala:178:18] wire pma_checker__multipleHits_T_26 = 1'h0; // @[Misc.scala:182:39] wire pma_checker_multipleHits_rightOne_5 = 1'h0; // @[Misc.scala:178:18] wire pma_checker_multipleHits_rightOne_6 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_27 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_28 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_rightTwo_3 = 1'h0; // @[Misc.scala:183:49] wire pma_checker_multipleHits_leftOne_8 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_29 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_30 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_leftTwo_2 = 1'h0; // @[Misc.scala:183:49] wire pma_checker__multipleHits_T_33 = 1'h0; // @[Misc.scala:181:37] wire pma_checker_multipleHits_leftOne_9 = 1'h0; // @[Misc.scala:178:18] wire pma_checker__multipleHits_T_34 = 1'h0; // @[Misc.scala:182:39] wire pma_checker_multipleHits_rightOne_7 = 1'h0; // @[Misc.scala:178:18] wire pma_checker_multipleHits_leftOne_10 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_35 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_36 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_leftTwo_3 = 1'h0; // @[Misc.scala:183:49] wire pma_checker__multipleHits_T_38 = 1'h0; // @[Misc.scala:181:37] wire pma_checker_multipleHits_leftOne_11 = 1'h0; // @[Misc.scala:178:18] wire pma_checker__multipleHits_T_39 = 1'h0; // @[Misc.scala:182:39] wire pma_checker_multipleHits_rightOne_8 = 1'h0; // @[Misc.scala:178:18] wire pma_checker_multipleHits_rightOne_9 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_40 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_41 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_rightTwo_4 = 1'h0; // @[Misc.scala:183:49] wire pma_checker_multipleHits_rightOne_10 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_42 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_43 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_rightTwo_5 = 1'h0; // @[Misc.scala:183:49] wire pma_checker_multipleHits_rightOne_11 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_44 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_45 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits_rightTwo_6 = 1'h0; // @[Misc.scala:183:49] wire pma_checker__multipleHits_T_46 = 1'h0; // @[Misc.scala:183:16] wire pma_checker__multipleHits_T_47 = 1'h0; // @[Misc.scala:183:37] wire pma_checker__multipleHits_T_48 = 1'h0; // @[Misc.scala:183:61] wire pma_checker_multipleHits = 1'h0; // @[Misc.scala:183:49] wire pma_checker__io_resp_pf_ld_T = 1'h0; // @[TLB.scala:633:28] wire pma_checker__io_resp_pf_st_T = 1'h0; // @[TLB.scala:634:28] wire pma_checker__io_resp_gf_ld_T = 1'h0; // @[TLB.scala:637:29] wire pma_checker__io_resp_gf_ld_T_2 = 1'h0; // @[TLB.scala:637:66] wire pma_checker__io_resp_gf_ld_T_3 = 1'h0; // @[TLB.scala:637:42] wire pma_checker__io_resp_gf_st_T = 1'h0; // @[TLB.scala:638:29] wire pma_checker__io_resp_gf_st_T_2 = 1'h0; // @[TLB.scala:638:73] wire pma_checker__io_resp_gf_st_T_3 = 1'h0; // @[TLB.scala:638:49] wire pma_checker__io_resp_gf_inst_T_1 = 1'h0; // @[TLB.scala:639:56] wire pma_checker__io_resp_gf_inst_T_2 = 1'h0; // @[TLB.scala:639:30] wire pma_checker__io_resp_miss_T = 1'h0; // @[TLB.scala:651:29] wire pma_checker__io_resp_miss_T_1 = 1'h0; // @[TLB.scala:651:52] wire pma_checker__io_resp_miss_T_2 = 1'h0; // @[TLB.scala:651:64] wire pma_checker__io_resp_gpa_is_pte_T = 1'h0; // @[TLB.scala:655:36] wire pma_checker__io_ptw_req_valid_T = 1'h0; // @[TLB.scala:662:29] wire pma_checker_r_superpage_repl_addr_left_subtree_older = 1'h0; // @[Replacement.scala:243:38] wire pma_checker_r_superpage_repl_addr_left_subtree_state = 1'h0; // @[package.scala:163:13] wire pma_checker_r_superpage_repl_addr_right_subtree_state = 1'h0; // @[Replacement.scala:245:38] wire pma_checker__r_superpage_repl_addr_T = 1'h0; // @[Replacement.scala:262:12] wire pma_checker__r_superpage_repl_addr_T_1 = 1'h0; // @[Replacement.scala:262:12] wire pma_checker__r_superpage_repl_addr_T_2 = 1'h0; // @[Replacement.scala:250:16] wire pma_checker__r_superpage_repl_addr_T_4 = 1'h0; // @[TLB.scala:757:16] wire pma_checker_r_sectored_repl_addr_left_subtree_older = 1'h0; // @[Replacement.scala:243:38] wire pma_checker_r_sectored_repl_addr_left_subtree_older_1 = 1'h0; // @[Replacement.scala:243:38] wire pma_checker_r_sectored_repl_addr_left_subtree_state_1 = 1'h0; // @[package.scala:163:13] wire pma_checker_r_sectored_repl_addr_right_subtree_state_1 = 1'h0; // @[Replacement.scala:245:38] wire pma_checker__r_sectored_repl_addr_T = 1'h0; // @[Replacement.scala:262:12] wire pma_checker__r_sectored_repl_addr_T_1 = 1'h0; // @[Replacement.scala:262:12] wire pma_checker__r_sectored_repl_addr_T_2 = 1'h0; // @[Replacement.scala:250:16] wire pma_checker_r_sectored_repl_addr_left_subtree_older_2 = 1'h0; // @[Replacement.scala:243:38] wire pma_checker_r_sectored_repl_addr_left_subtree_state_2 = 1'h0; // @[package.scala:163:13] wire pma_checker_r_sectored_repl_addr_right_subtree_state_2 = 1'h0; // @[Replacement.scala:245:38] wire pma_checker__r_sectored_repl_addr_T_4 = 1'h0; // @[Replacement.scala:262:12] wire pma_checker__r_sectored_repl_addr_T_5 = 1'h0; // @[Replacement.scala:262:12] wire pma_checker__r_sectored_repl_addr_T_6 = 1'h0; // @[Replacement.scala:250:16] wire pma_checker__r_sectored_repl_addr_valids_T = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_1 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_2 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_3 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_4 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_5 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_6 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_7 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_8 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_9 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_10 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_11 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_12 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_13 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_14 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_15 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_16 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_17 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_18 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_19 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_20 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_21 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_22 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_valids_T_23 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_repl_addr_T_10 = 1'h0; // @[TLB.scala:757:16] wire pma_checker__r_sectored_hit_valid_T = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_hit_valid_T_1 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_hit_valid_T_2 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_hit_valid_T_3 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_hit_valid_T_4 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_hit_valid_T_5 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_hit_valid_T_6 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_sectored_hit_bits_T_1 = 1'h0; // @[OneHot.scala:32:14] wire pma_checker__r_sectored_hit_bits_T_3 = 1'h0; // @[OneHot.scala:32:14] wire pma_checker__r_sectored_hit_bits_T_5 = 1'h0; // @[CircuitMath.scala:28:8] wire pma_checker__r_superpage_hit_valid_T = 1'h0; // @[package.scala:81:59] wire pma_checker__r_superpage_hit_valid_T_1 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_superpage_hit_valid_T_2 = 1'h0; // @[package.scala:81:59] wire pma_checker__r_superpage_hit_bits_T_1 = 1'h0; // @[OneHot.scala:32:14] wire pma_checker__r_superpage_hit_bits_T_3 = 1'h0; // @[CircuitMath.scala:28:8] wire pma_checker_hv = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg = 1'h0; // @[TLB.scala:722:36] wire pma_checker_hv_1 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_1 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_hv_2 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_2 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_hv_3 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_3 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_hv_4 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_4 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_hv_5 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_5 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_hv_6 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_6 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_hv_7 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_7 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_hv_8 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_8 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_tagMatch = 1'h0; // @[TLB.scala:178:33] wire pma_checker__ignore_T = 1'h0; // @[TLB.scala:182:28] wire pma_checker_ignore = 1'h0; // @[TLB.scala:182:34] wire pma_checker_hv_9 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_9 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_tagMatch_1 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__ignore_T_3 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_ignore_3 = 1'h0; // @[TLB.scala:182:34] wire pma_checker_hv_10 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_10 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_tagMatch_2 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__ignore_T_6 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_ignore_6 = 1'h0; // @[TLB.scala:182:34] wire pma_checker_hv_11 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_11 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_tagMatch_3 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__ignore_T_9 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_ignore_9 = 1'h0; // @[TLB.scala:182:34] wire pma_checker_hv_12 = 1'h0; // @[TLB.scala:721:36] wire pma_checker_hg_12 = 1'h0; // @[TLB.scala:722:36] wire pma_checker_tagMatch_4 = 1'h0; // @[TLB.scala:178:33] wire pma_checker__ignore_T_12 = 1'h0; // @[TLB.scala:182:28] wire pma_checker_ignore_12 = 1'h0; // @[TLB.scala:182:34] wire metaArb_io_in_1_valid = 1'h0; // @[DCache.scala:135:28] wire metaArb_io_in_5_valid = 1'h0; // @[DCache.scala:135:28] wire metaArb_io_in_5_bits_write = 1'h0; // @[DCache.scala:135:28] wire metaArb_io_in_6_bits_write = 1'h0; // @[DCache.scala:135:28] wire metaArb_io_in_7_bits_write = 1'h0; // @[DCache.scala:135:28] wire dataArb_io_in_2_bits_write = 1'h0; // @[DCache.scala:152:28] wire dataArb_io_in_3_bits_write = 1'h0; // @[DCache.scala:152:28] wire tl_out_a_bits_corrupt = 1'h0; // @[DCache.scala:159:22] wire nodeOut_a_deq_bits_corrupt = 1'h0; // @[Decoupled.scala:356:21] wire _s1_tlb_req_valid_T = 1'h0; // @[Decoupled.scala:51:35] wire s0_req_no_alloc = 1'h0; // @[DCache.scala:192:24] wire s0_req_no_xcpt = 1'h0; // @[DCache.scala:192:24] wire s1_waw_hazard = 1'h0; // @[DCache.scala:216:27] wire _uncachedInFlight_WIRE_0 = 1'h0; // @[DCache.scala:236:41] wire _dataArb_io_in_3_valid_res_T_4 = 1'h0; // @[DCache.scala:1185:58] wire _dataArb_io_in_3_valid_T_49 = 1'h0; // @[DCache.scala:1191:57] wire _s1_did_read_T_49 = 1'h0; // @[DCache.scala:1191:57] wire _tlb_io_kill_T = 1'h0; // @[DCache.scala:272:53] wire _tlb_io_kill_T_1 = 1'h0; // @[DCache.scala:272:33] wire _s2_pma_T_gpa_is_pte = 1'h0; // @[DCache.scala:349:18] wire _s2_pma_T_gf_ld = 1'h0; // @[DCache.scala:349:18] wire _s2_pma_T_gf_st = 1'h0; // @[DCache.scala:349:18] wire _s2_pma_T_gf_inst = 1'h0; // @[DCache.scala:349:18] wire _s2_pma_T_ma_inst = 1'h0; // @[DCache.scala:349:18] wire s2_meta_error_uncorrectable = 1'h0; // @[DCache.scala:360:66] wire s2_meta_error = 1'h0; // @[DCache.scala:362:83] wire s2_store_merge = 1'h0; // @[DCache.scala:388:28] wire _r_T_26 = 1'h0; // @[Misc.scala:35:9] wire _r_T_29 = 1'h0; // @[Misc.scala:35:9] wire _r_T_32 = 1'h0; // @[Misc.scala:35:9] wire _r_T_35 = 1'h0; // @[Misc.scala:35:9] wire _r_T_38 = 1'h0; // @[Misc.scala:35:9] wire _s2_data_error_T = 1'h0; // @[ECC.scala:15:27] wire _s2_data_error_T_1 = 1'h0; // @[ECC.scala:15:27] wire _s2_data_error_T_2 = 1'h0; // @[ECC.scala:15:27] wire _s2_data_error_T_3 = 1'h0; // @[ECC.scala:15:27] wire _s2_data_error_T_4 = 1'h0; // @[ECC.scala:15:27] wire _s2_data_error_T_5 = 1'h0; // @[ECC.scala:15:27] wire _s2_data_error_T_6 = 1'h0; // @[ECC.scala:15:27] wire _s2_data_error_T_7 = 1'h0; // @[ECC.scala:15:27] wire _s2_data_error_T_8 = 1'h0; // @[package.scala:81:59] wire _s2_data_error_T_9 = 1'h0; // @[package.scala:81:59] wire _s2_data_error_T_10 = 1'h0; // @[package.scala:81:59] wire _s2_data_error_T_11 = 1'h0; // @[package.scala:81:59] wire _s2_data_error_T_12 = 1'h0; // @[package.scala:81:59] wire _s2_data_error_T_13 = 1'h0; // @[package.scala:81:59] wire s2_data_error = 1'h0; // @[package.scala:81:59] wire _s2_data_error_uncorrectable_T = 1'h0; // @[package.scala:81:59] wire _s2_data_error_uncorrectable_T_1 = 1'h0; // @[package.scala:81:59] wire _s2_data_error_uncorrectable_T_2 = 1'h0; // @[package.scala:81:59] wire _s2_data_error_uncorrectable_T_3 = 1'h0; // @[package.scala:81:59] wire _s2_data_error_uncorrectable_T_4 = 1'h0; // @[package.scala:81:59] wire _s2_data_error_uncorrectable_T_5 = 1'h0; // @[package.scala:81:59] wire s2_data_error_uncorrectable = 1'h0; // @[package.scala:81:59] wire s2_valid_data_error = 1'h0; // @[DCache.scala:421:63] wire s2_cannot_victimize = 1'h0; // @[DCache.scala:428:45] wire _r_T_73 = 1'h0; // @[Misc.scala:38:9] wire _r_T_77 = 1'h0; // @[Misc.scala:38:9] wire _r_T_81 = 1'h0; // @[Misc.scala:38:9] wire _r_T_119 = 1'h0; // @[Metadata.scala:140:24] wire _r_T_121 = 1'h0; // @[Metadata.scala:140:24] wire _r_T_137 = 1'h0; // @[Misc.scala:38:9] wire _r_T_141 = 1'h0; // @[Misc.scala:38:9] wire _r_T_145 = 1'h0; // @[Misc.scala:38:9] wire _s2_dont_nack_misc_T_2 = 1'h0; // @[DCache.scala:442:23] wire _s2_dont_nack_misc_T_3 = 1'h0; // @[DCache.scala:442:43] wire _s2_dont_nack_misc_T_5 = 1'h0; // @[DCache.scala:442:54] wire _s2_dont_nack_misc_T_6 = 1'h0; // @[DCache.scala:443:23] wire _s2_dont_nack_misc_T_8 = 1'h0; // @[DCache.scala:443:44] wire _s2_dont_nack_misc_T_9 = 1'h0; // @[DCache.scala:442:67] wire _s2_first_meta_corrected_T = 1'h0; // @[Mux.scala:52:83] wire _s2_first_meta_corrected_T_1 = 1'h0; // @[Mux.scala:52:83] wire _s2_first_meta_corrected_T_2 = 1'h0; // @[Mux.scala:52:83] wire _s2_first_meta_corrected_T_3 = 1'h0; // @[Mux.scala:52:83] wire _s2_first_meta_corrected_T_4 = 1'h0; // @[Mux.scala:52:83] wire _s2_first_meta_corrected_T_5 = 1'h0; // @[Mux.scala:52:83] wire _s2_first_meta_corrected_T_6 = 1'h0; // @[Mux.scala:52:83] wire _s2_first_meta_corrected_T_7 = 1'h0; // @[Mux.scala:52:83] wire _metaArb_io_in_1_valid_T_2 = 1'h0; // @[DCache.scala:450:43] wire _metaArb_io_in_1_bits_way_en_T = 1'h0; // @[OneHot.scala:85:71] wire _metaArb_io_in_1_bits_way_en_T_1 = 1'h0; // @[OneHot.scala:85:71] wire _metaArb_io_in_1_bits_way_en_T_2 = 1'h0; // @[OneHot.scala:85:71] wire _metaArb_io_in_1_bits_way_en_T_3 = 1'h0; // @[OneHot.scala:85:71] wire _metaArb_io_in_1_bits_way_en_T_4 = 1'h0; // @[OneHot.scala:85:71] wire _metaArb_io_in_1_bits_way_en_T_5 = 1'h0; // @[OneHot.scala:85:71] wire _metaArb_io_in_1_bits_way_en_T_6 = 1'h0; // @[OneHot.scala:85:71] wire _metaArb_io_in_1_bits_way_en_T_7 = 1'h0; // @[OneHot.scala:85:71] wire _s2_correct_T_1 = 1'h0; // @[DCache.scala:487:34] wire _s2_correct_T_4 = 1'h0; // @[DCache.scala:487:55] wire s2_correct = 1'h0; // @[DCache.scala:487:97] wire _s2_valid_correct_T = 1'h0; // @[DCache.scala:489:60] wire s2_valid_correct = 1'h0; // @[DCache.scala:489:74] wire _pstore1_rmw_T_49 = 1'h0; // @[DCache.scala:1191:57] wire pstore1_merge_likely = 1'h0; // @[DCache.scala:499:68] wire pstore1_merge = 1'h0; // @[DCache.scala:500:38] wire _pstore_drain_opportunistic_res_T_4 = 1'h0; // @[DCache.scala:1185:58] wire _pstore_drain_opportunistic_T_49 = 1'h0; // @[DCache.scala:1191:57] wire _pstore_drain_opportunistic_T_60 = 1'h0; // @[DCache.scala:502:106] wire pstore_drain_s2_kill = 1'h0; // @[DCache.scala:515:25] wire _pstore2_storegen_data_T_2 = 1'h0; // @[DCache.scala:528:95] wire _pstore2_storegen_data_T_6 = 1'h0; // @[DCache.scala:528:95] wire _pstore2_storegen_data_T_10 = 1'h0; // @[DCache.scala:528:95] wire _pstore2_storegen_data_T_14 = 1'h0; // @[DCache.scala:528:95] wire _pstore2_storegen_data_T_18 = 1'h0; // @[DCache.scala:528:95] wire _pstore2_storegen_data_T_22 = 1'h0; // @[DCache.scala:528:95] wire _pstore2_storegen_data_T_26 = 1'h0; // @[DCache.scala:528:95] wire _pstore2_storegen_data_T_30 = 1'h0; // @[DCache.scala:528:95] wire dataArb_io_in_0_valid_s2_kill = 1'h0; // @[DCache.scala:515:25] wire _dataArb_io_in_0_bits_wordMask_T_1 = 1'h0; // @[DCache.scala:555:20] wire _io_cpu_s2_nack_cause_raw_T_2 = 1'h0; // @[DCache.scala:574:57] wire get_corrupt = 1'h0; // @[Edges.scala:460:17] wire _put_legal_T_62 = 1'h0; // @[Parameters.scala:684:29] wire _put_legal_T_68 = 1'h0; // @[Parameters.scala:684:54] wire put_corrupt = 1'h0; // @[Edges.scala:480:17] wire _putpartial_legal_T_62 = 1'h0; // @[Parameters.scala:684:29] wire _putpartial_legal_T_68 = 1'h0; // @[Parameters.scala:684:54] wire putpartial_corrupt = 1'h0; // @[Edges.scala:500:17] wire _atomics_WIRE_source = 1'h0; // @[DCache.scala:587:51] wire _atomics_WIRE_corrupt = 1'h0; // @[DCache.scala:587:51] wire _atomics_WIRE_1_source = 1'h0; // @[DCache.scala:587:38] wire _atomics_WIRE_1_corrupt = 1'h0; // @[DCache.scala:587:38] wire _atomics_legal_T_46 = 1'h0; // @[Parameters.scala:684:29] wire _atomics_legal_T_52 = 1'h0; // @[Parameters.scala:684:54] wire atomics_a_corrupt = 1'h0; // @[Edges.scala:534:17] wire _atomics_legal_T_100 = 1'h0; // @[Parameters.scala:684:29] wire _atomics_legal_T_106 = 1'h0; // @[Parameters.scala:684:54] wire atomics_a_1_corrupt = 1'h0; // @[Edges.scala:534:17] wire _atomics_legal_T_154 = 1'h0; // @[Parameters.scala:684:29] wire _atomics_legal_T_160 = 1'h0; // @[Parameters.scala:684:54] wire atomics_a_2_corrupt = 1'h0; // @[Edges.scala:534:17] wire _atomics_legal_T_208 = 1'h0; // @[Parameters.scala:684:29] wire _atomics_legal_T_214 = 1'h0; // @[Parameters.scala:684:54] wire atomics_a_3_corrupt = 1'h0; // @[Edges.scala:534:17] wire _atomics_legal_T_262 = 1'h0; // @[Parameters.scala:684:29] wire _atomics_legal_T_268 = 1'h0; // @[Parameters.scala:684:54] wire atomics_a_4_corrupt = 1'h0; // @[Edges.scala:517:17] wire _atomics_legal_T_316 = 1'h0; // @[Parameters.scala:684:29] wire _atomics_legal_T_322 = 1'h0; // @[Parameters.scala:684:54] wire atomics_a_5_corrupt = 1'h0; // @[Edges.scala:517:17] wire _atomics_legal_T_370 = 1'h0; // @[Parameters.scala:684:29] wire _atomics_legal_T_376 = 1'h0; // @[Parameters.scala:684:54] wire atomics_a_6_corrupt = 1'h0; // @[Edges.scala:517:17] wire _atomics_legal_T_424 = 1'h0; // @[Parameters.scala:684:29] wire _atomics_legal_T_430 = 1'h0; // @[Parameters.scala:684:54] wire atomics_a_7_corrupt = 1'h0; // @[Edges.scala:517:17] wire _atomics_legal_T_478 = 1'h0; // @[Parameters.scala:684:29] wire _atomics_legal_T_484 = 1'h0; // @[Parameters.scala:684:54] wire atomics_a_8_corrupt = 1'h0; // @[Edges.scala:517:17] wire _atomics_T_1_corrupt = 1'h0; // @[DCache.scala:587:81] wire _atomics_T_3_corrupt = 1'h0; // @[DCache.scala:587:81] wire _atomics_T_5_corrupt = 1'h0; // @[DCache.scala:587:81] wire _atomics_T_7_corrupt = 1'h0; // @[DCache.scala:587:81] wire _atomics_T_9_corrupt = 1'h0; // @[DCache.scala:587:81] wire _atomics_T_11_corrupt = 1'h0; // @[DCache.scala:587:81] wire _atomics_T_13_corrupt = 1'h0; // @[DCache.scala:587:81] wire _atomics_T_15_corrupt = 1'h0; // @[DCache.scala:587:81] wire atomics_corrupt = 1'h0; // @[DCache.scala:587:81] wire _tl_out_a_valid_T_8 = 1'h0; // @[DCache.scala:607:44] wire _tl_out_a_valid_T_9 = 1'h0; // @[DCache.scala:607:65] wire _tl_out_a_bits_legal_T = 1'h0; // @[Parameters.scala:684:29] wire _tl_out_a_bits_legal_T_18 = 1'h0; // @[Parameters.scala:684:54] wire _tl_out_a_bits_legal_T_33 = 1'h0; // @[Parameters.scala:686:26] wire tl_out_a_bits_a_source = 1'h0; // @[Edges.scala:346:17] wire tl_out_a_bits_a_corrupt = 1'h0; // @[Edges.scala:346:17] wire tl_out_a_bits_a_mask_sub_size = 1'h0; // @[Misc.scala:209:26] wire _tl_out_a_bits_a_mask_sub_acc_T = 1'h0; // @[Misc.scala:215:38] wire _tl_out_a_bits_a_mask_sub_acc_T_1 = 1'h0; // @[Misc.scala:215:38] wire _tl_out_a_bits_a_mask_sub_acc_T_2 = 1'h0; // @[Misc.scala:215:38] wire _tl_out_a_bits_a_mask_sub_acc_T_3 = 1'h0; // @[Misc.scala:215:38] wire _tl_out_a_bits_T_6_corrupt = 1'h0; // @[DCache.scala:611:8] wire _tl_out_a_bits_T_7_corrupt = 1'h0; // @[DCache.scala:610:8] wire _tl_out_a_bits_T_8_corrupt = 1'h0; // @[DCache.scala:609:8] wire _tl_out_a_bits_T_9_corrupt = 1'h0; // @[DCache.scala:608:23] wire nackResponseMessage_corrupt = 1'h0; // @[Edges.scala:416:17] wire cleanReleaseMessage_corrupt = 1'h0; // @[Edges.scala:416:17] wire dirtyReleaseMessage_corrupt = 1'h0; // @[Edges.scala:433:17] wire _nodeOut_c_valid_T = 1'h0; // @[DCache.scala:810:48] wire _nodeOut_c_valid_T_2 = 1'h0; // @[DCache.scala:810:74] wire _discard_line_T_2 = 1'h0; // @[DCache.scala:818:102] wire _release_state_T_2 = 1'h0; // @[DCache.scala:820:28] wire _release_state_T_4 = 1'h0; // @[DCache.scala:820:54] wire _release_state_T_5 = 1'h0; // @[DCache.scala:820:75] wire _release_state_T_7 = 1'h0; // @[DCache.scala:820:98] wire _release_state_T_12 = 1'h0; // @[DCache.scala:820:127] wire probe_bits_res_source = 1'h0; // @[DCache.scala:1202:19] wire probe_bits_res_corrupt = 1'h0; // @[DCache.scala:1202:19] wire _nodeOut_c_bits_legal_T = 1'h0; // @[Parameters.scala:684:29] wire _nodeOut_c_bits_legal_T_1 = 1'h0; // @[Parameters.scala:137:31] wire _nodeOut_c_bits_legal_T_10 = 1'h0; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_15 = 1'h0; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_18 = 1'h0; // @[Parameters.scala:684:54] wire _nodeOut_c_bits_legal_T_25 = 1'h0; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_30 = 1'h0; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_31 = 1'h0; // @[Parameters.scala:685:42] wire _nodeOut_c_bits_legal_T_32 = 1'h0; // @[Parameters.scala:684:54] wire _nodeOut_c_bits_legal_T_33 = 1'h0; // @[Parameters.scala:686:26] wire nodeOut_c_bits_legal = 1'h0; // @[Parameters.scala:686:26] wire nodeOut_c_bits_c_source = 1'h0; // @[Edges.scala:380:17] wire nodeOut_c_bits_c_corrupt = 1'h0; // @[Edges.scala:380:17] wire _nodeOut_c_bits_legal_T_34 = 1'h0; // @[Parameters.scala:684:29] wire _nodeOut_c_bits_legal_T_35 = 1'h0; // @[Parameters.scala:137:31] wire _nodeOut_c_bits_legal_T_44 = 1'h0; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_49 = 1'h0; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_52 = 1'h0; // @[Parameters.scala:684:54] wire _nodeOut_c_bits_legal_T_59 = 1'h0; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_64 = 1'h0; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_65 = 1'h0; // @[Parameters.scala:685:42] wire _nodeOut_c_bits_legal_T_66 = 1'h0; // @[Parameters.scala:684:54] wire _nodeOut_c_bits_legal_T_67 = 1'h0; // @[Parameters.scala:686:26] wire nodeOut_c_bits_legal_1 = 1'h0; // @[Parameters.scala:686:26] wire nodeOut_c_bits_c_1_source = 1'h0; // @[Edges.scala:396:17] wire nodeOut_c_bits_c_1_corrupt = 1'h0; // @[Edges.scala:396:17] wire _nodeOut_c_bits_corrupt_T = 1'h0; // @[DCache.scala:887:42] wire _io_cpu_s2_xcpt_WIRE_miss = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_gpa_is_pte = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_pf_ld = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_pf_st = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_pf_inst = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_gf_ld = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_gf_st = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_gf_inst = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_ae_ld = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_ae_st = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_ae_inst = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_ma_ld = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_ma_st = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_ma_inst = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_cacheable = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_must_alloc = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_WIRE_prefetchable = 1'h0; // @[DCache.scala:933:74] wire _io_cpu_s2_xcpt_T_gpa_is_pte = 1'h0; // @[DCache.scala:933:24] wire _io_cpu_s2_xcpt_T_gf_ld = 1'h0; // @[DCache.scala:933:24] wire _io_cpu_s2_xcpt_T_gf_st = 1'h0; // @[DCache.scala:933:24] wire _io_cpu_s2_xcpt_T_gf_inst = 1'h0; // @[DCache.scala:933:24] wire _io_cpu_s2_xcpt_T_ma_inst = 1'h0; // @[DCache.scala:933:24] wire _s2_data_word_possibly_uncached_T = 1'h0; // @[DCache.scala:972:73] wire io_cpu_resp_bits_data_doZero = 1'h0; // @[AMOALU.scala:43:31] wire io_cpu_resp_bits_data_doZero_1 = 1'h0; // @[AMOALU.scala:43:31] wire io_cpu_resp_bits_data_word_bypass_doZero = 1'h0; // @[AMOALU.scala:43:31] wire _s1_flush_valid_T = 1'h0; // @[Decoupled.scala:51:35] wire _s1_flush_valid_T_2 = 1'h0; // @[DCache.scala:1014:43] wire _s1_flush_valid_T_4 = 1'h0; // @[DCache.scala:1014:62] wire _s1_flush_valid_T_6 = 1'h0; // @[DCache.scala:1014:93] wire _s1_flush_valid_T_8 = 1'h0; // @[DCache.scala:1014:122] wire _metaArb_io_in_5_valid_T = 1'h0; // @[DCache.scala:1015:41] wire _metaArb_io_in_5_valid_T_1 = 1'h0; // @[DCache.scala:1015:38] wire _clock_en_reg_T_17 = 1'h0; // @[DCache.scala:1070:25] wire _io_cpu_perf_canAcceptLoadThenLoad_T_50 = 1'h0; // @[DCache.scala:1191:57] wire io_cpu_clock_enabled = 1'h1; // @[DCache.scala:101:7] wire io_ptw_req_bits_valid = 1'h1; // @[DCache.scala:101:7] wire io_tlb_port_req_ready = 1'h1; // @[DCache.scala:101:7] wire pma_checker_io_req_ready = 1'h1; // @[DCache.scala:120:32] wire pma_checker_io_req_bits_passthrough = 1'h1; // @[DCache.scala:120:32] wire pma_checker_io_ptw_req_bits_valid = 1'h1; // @[DCache.scala:120:32] wire pma_checker__mpu_ppn_ignore_T = 1'h1; // @[TLB.scala:197:28] wire pma_checker_mpu_ppn_ignore = 1'h1; // @[TLB.scala:197:34] wire pma_checker__mpu_ppn_ignore_T_1 = 1'h1; // @[TLB.scala:197:28] wire pma_checker_mpu_ppn_ignore_1 = 1'h1; // @[TLB.scala:197:34] wire pma_checker__mpu_priv_T = 1'h1; // @[TLB.scala:415:52] wire pma_checker__mpu_priv_T_1 = 1'h1; // @[TLB.scala:415:38] wire pma_checker__homogeneous_T_59 = 1'h1; // @[TLBPermissions.scala:87:22] wire pma_checker__deny_access_to_debug_T = 1'h1; // @[TLB.scala:428:39] wire pma_checker__sector_hits_T_6 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__sector_hits_T_14 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__sector_hits_T_22 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__sector_hits_T_30 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__sector_hits_T_38 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__sector_hits_T_46 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__sector_hits_T_54 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__sector_hits_T_62 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__superpage_hits_tagMatch_T = 1'h1; // @[TLB.scala:178:43] wire pma_checker__superpage_hits_ignore_T_1 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__superpage_hits_ignore_T_2 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_superpage_hits_ignore_2 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__superpage_hits_T_13 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__superpage_hits_tagMatch_T_1 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__superpage_hits_ignore_T_4 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__superpage_hits_ignore_T_5 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_superpage_hits_ignore_5 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__superpage_hits_T_27 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__superpage_hits_tagMatch_T_2 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__superpage_hits_ignore_T_7 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__superpage_hits_ignore_T_8 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_superpage_hits_ignore_8 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__superpage_hits_T_41 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__superpage_hits_tagMatch_T_3 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__superpage_hits_ignore_T_10 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__superpage_hits_ignore_T_11 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_superpage_hits_ignore_11 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__superpage_hits_T_55 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__hitsVec_T_3 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__hitsVec_T_9 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__hitsVec_T_15 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__hitsVec_T_21 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__hitsVec_T_27 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__hitsVec_T_33 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__hitsVec_T_39 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__hitsVec_T_45 = 1'h1; // @[TLB.scala:174:105] wire pma_checker__hitsVec_tagMatch_T = 1'h1; // @[TLB.scala:178:43] wire pma_checker__hitsVec_ignore_T_1 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__hitsVec_ignore_T_2 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_2 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_61 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__hitsVec_tagMatch_T_1 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__hitsVec_ignore_T_4 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__hitsVec_ignore_T_5 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_5 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_76 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__hitsVec_tagMatch_T_2 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__hitsVec_ignore_T_7 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__hitsVec_ignore_T_8 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_8 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_91 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__hitsVec_tagMatch_T_3 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__hitsVec_ignore_T_10 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__hitsVec_ignore_T_11 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_11 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_106 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__hitsVec_tagMatch_T_4 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__hitsVec_ignore_T_13 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_13 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_116 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__hitsVec_ignore_T_14 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_hitsVec_ignore_14 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__hitsVec_T_121 = 1'h1; // @[TLB.scala:183:40] wire pma_checker__hits_T = 1'h1; // @[TLB.scala:442:18] wire pma_checker__newEntry_sr_T = 1'h1; // @[PTW.scala:141:47] wire pma_checker__newEntry_sw_T = 1'h1; // @[PTW.scala:141:47] wire pma_checker__newEntry_sx_T = 1'h1; // @[PTW.scala:141:47] wire pma_checker__ppn_T = 1'h1; // @[TLB.scala:502:30] wire pma_checker__ppn_ignore_T = 1'h1; // @[TLB.scala:197:28] wire pma_checker__ppn_ignore_T_1 = 1'h1; // @[TLB.scala:197:28] wire pma_checker_ppn_ignore_1 = 1'h1; // @[TLB.scala:197:34] wire pma_checker__ppn_ignore_T_2 = 1'h1; // @[TLB.scala:197:28] wire pma_checker__ppn_ignore_T_3 = 1'h1; // @[TLB.scala:197:28] wire pma_checker_ppn_ignore_3 = 1'h1; // @[TLB.scala:197:34] wire pma_checker__ppn_ignore_T_4 = 1'h1; // @[TLB.scala:197:28] wire pma_checker__ppn_ignore_T_5 = 1'h1; // @[TLB.scala:197:28] wire pma_checker_ppn_ignore_5 = 1'h1; // @[TLB.scala:197:34] wire pma_checker__ppn_ignore_T_6 = 1'h1; // @[TLB.scala:197:28] wire pma_checker__ppn_ignore_T_7 = 1'h1; // @[TLB.scala:197:28] wire pma_checker_ppn_ignore_7 = 1'h1; // @[TLB.scala:197:34] wire pma_checker__ppn_ignore_T_8 = 1'h1; // @[TLB.scala:197:28] wire pma_checker_ppn_ignore_8 = 1'h1; // @[TLB.scala:197:34] wire pma_checker__ppn_ignore_T_9 = 1'h1; // @[TLB.scala:197:28] wire pma_checker_ppn_ignore_9 = 1'h1; // @[TLB.scala:197:34] wire pma_checker__stage1_bypass_T_1 = 1'h1; // @[TLB.scala:517:83] wire pma_checker__stage2_bypass_T = 1'h1; // @[TLB.scala:523:42] wire pma_checker__bad_va_T_1 = 1'h1; // @[TLB.scala:560:26] wire pma_checker__gpa_hits_hit_mask_T_3 = 1'h1; // @[TLB.scala:606:107] wire pma_checker__tlb_miss_T = 1'h1; // @[TLB.scala:613:32] wire pma_checker__tlb_miss_T_2 = 1'h1; // @[TLB.scala:613:56] wire pma_checker__tlb_miss_T_4 = 1'h1; // @[TLB.scala:613:67] wire pma_checker_state_vec_0_set_left_older = 1'h1; // @[Replacement.scala:196:33] wire pma_checker_state_vec_0_set_left_older_1 = 1'h1; // @[Replacement.scala:196:33] wire pma_checker__state_vec_0_T_3 = 1'h1; // @[Replacement.scala:218:7] wire pma_checker__state_vec_0_T_7 = 1'h1; // @[Replacement.scala:218:7] wire pma_checker__state_vec_0_T_8 = 1'h1; // @[Replacement.scala:206:16] wire pma_checker_state_vec_0_set_left_older_2 = 1'h1; // @[Replacement.scala:196:33] wire pma_checker__state_vec_0_T_14 = 1'h1; // @[Replacement.scala:218:7] wire pma_checker__state_vec_0_T_18 = 1'h1; // @[Replacement.scala:218:7] wire pma_checker__state_vec_0_T_19 = 1'h1; // @[Replacement.scala:206:16] wire pma_checker_state_reg_set_left_older = 1'h1; // @[Replacement.scala:196:33] wire pma_checker__state_reg_T_2 = 1'h1; // @[Replacement.scala:218:7] wire pma_checker__state_reg_T_6 = 1'h1; // @[Replacement.scala:218:7] wire pma_checker__state_reg_T_7 = 1'h1; // @[Replacement.scala:206:16] wire pma_checker__io_req_ready_T = 1'h1; // @[TLB.scala:631:25] wire pma_checker__io_resp_gpa_page_T = 1'h1; // @[TLB.scala:657:20] wire pma_checker__io_ptw_req_bits_valid_T = 1'h1; // @[TLB.scala:663:28] wire pma_checker__r_superpage_repl_addr_T_6 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_superpage_repl_addr_T_7 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_superpage_repl_addr_T_8 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_superpage_repl_addr_T_9 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_sectored_repl_addr_T_12 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_sectored_repl_addr_T_13 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_sectored_repl_addr_T_14 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_sectored_repl_addr_T_15 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_sectored_repl_addr_T_16 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_sectored_repl_addr_T_17 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_sectored_repl_addr_T_18 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__r_sectored_repl_addr_T_19 = 1'h1; // @[OneHot.scala:48:45] wire pma_checker__tagMatch_T = 1'h1; // @[TLB.scala:178:43] wire pma_checker__ignore_T_1 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__ignore_T_2 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_ignore_2 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__tagMatch_T_1 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__ignore_T_4 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__ignore_T_5 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_ignore_5 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__tagMatch_T_2 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__ignore_T_7 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__ignore_T_8 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_ignore_8 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__tagMatch_T_3 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__ignore_T_10 = 1'h1; // @[TLB.scala:182:28] wire pma_checker__ignore_T_11 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_ignore_11 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__tagMatch_T_4 = 1'h1; // @[TLB.scala:178:43] wire pma_checker__ignore_T_13 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_ignore_13 = 1'h1; // @[TLB.scala:182:34] wire pma_checker__ignore_T_14 = 1'h1; // @[TLB.scala:182:28] wire pma_checker_ignore_14 = 1'h1; // @[TLB.scala:182:34] wire metaArb_io_in_0_ready = 1'h1; // @[DCache.scala:135:28] wire metaArb_io_in_0_bits_write = 1'h1; // @[DCache.scala:135:28] wire metaArb_io_in_1_bits_write = 1'h1; // @[DCache.scala:135:28] wire metaArb_io_in_2_bits_write = 1'h1; // @[DCache.scala:135:28] wire metaArb_io_in_3_bits_write = 1'h1; // @[DCache.scala:135:28] wire metaArb_io_in_4_bits_write = 1'h1; // @[DCache.scala:135:28] wire metaArb_io_out_ready = 1'h1; // @[DCache.scala:135:28] wire metaArb__io_in_0_ready_T = 1'h1; // @[Arbiter.scala:153:19] wire dataArb_io_in_0_ready = 1'h1; // @[DCache.scala:152:28] wire dataArb_io_in_1_bits_wordMask = 1'h1; // @[DCache.scala:152:28] wire dataArb_io_in_2_bits_wordMask = 1'h1; // @[DCache.scala:152:28] wire dataArb_io_in_3_bits_wordMask = 1'h1; // @[DCache.scala:152:28] wire dataArb_io_out_ready = 1'h1; // @[DCache.scala:152:28] wire dataArb__io_in_0_ready_T = 1'h1; // @[Arbiter.scala:153:19] wire _s2_valid_not_killed_T = 1'h1; // @[DCache.scala:338:48] wire _s2_flush_valid_T = 1'h1; // @[DCache.scala:363:54] wire _s2_valid_hit_maybe_flush_pre_data_ecc_and_waw_T = 1'h1; // @[DCache.scala:397:74] wire _s2_valid_hit_pre_data_ecc_and_waw_T_1 = 1'h1; // @[DCache.scala:418:108] wire _s2_valid_hit_pre_data_ecc_T = 1'h1; // @[DCache.scala:420:73] wire _s2_valid_hit_pre_data_ecc_T_1 = 1'h1; // @[DCache.scala:420:88] wire _s2_valid_hit_T = 1'h1; // @[DCache.scala:422:51] wire _s2_valid_miss_T_1 = 1'h1; // @[DCache.scala:423:58] wire _s2_victimize_T = 1'h1; // @[DCache.scala:429:43] wire _r_T_117 = 1'h1; // @[Metadata.scala:140:24] wire _s2_dont_nack_misc_T = 1'h1; // @[DCache.scala:441:46] wire _s2_dont_nack_misc_T_4 = 1'h1; // @[DCache.scala:442:57] wire _metaArb_io_in_2_bits_write_T = 1'h1; // @[DCache.scala:463:34] wire _s2_valid_correct_T_1 = 1'h1; // @[DCache.scala:489:77] wire _pstore1_merge_T_3 = 1'h1; // @[DCache.scala:491:51] wire _pstore_drain_opportunistic_T_61 = 1'h1; // @[DCache.scala:502:95] wire _pstore1_valid_T_3 = 1'h1; // @[DCache.scala:491:51] wire _pstore_drain_T = 1'h1; // @[DCache.scala:516:5] wire _pstore_drain_T_3 = 1'h1; // @[DCache.scala:506:87] wire _pstore1_held_T_3 = 1'h1; // @[DCache.scala:491:51] wire _pstore1_held_T_5 = 1'h1; // @[DCache.scala:521:38] wire _dataArb_io_in_0_valid_T = 1'h1; // @[DCache.scala:516:5] wire _dataArb_io_in_0_valid_T_3 = 1'h1; // @[DCache.scala:506:87] wire _dataArb_io_in_0_bits_wordMask_T = 1'h1; // @[DCache.scala:555:20] wire _io_cpu_s2_nack_cause_raw_T = 1'h1; // @[DCache.scala:574:59] wire _io_cpu_s2_nack_cause_raw_T_1 = 1'h1; // @[DCache.scala:574:74] wire _get_legal_T = 1'h1; // @[Parameters.scala:92:28] wire _get_legal_T_1 = 1'h1; // @[Parameters.scala:92:38] wire _get_legal_T_2 = 1'h1; // @[Parameters.scala:92:33] wire _get_legal_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _get_legal_T_10 = 1'h1; // @[Parameters.scala:92:28] wire _get_legal_T_11 = 1'h1; // @[Parameters.scala:92:38] wire _get_legal_T_12 = 1'h1; // @[Parameters.scala:92:33] wire _get_legal_T_13 = 1'h1; // @[Parameters.scala:684:29] wire _put_legal_T = 1'h1; // @[Parameters.scala:92:28] wire _put_legal_T_1 = 1'h1; // @[Parameters.scala:92:38] wire _put_legal_T_2 = 1'h1; // @[Parameters.scala:92:33] wire _put_legal_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _put_legal_T_10 = 1'h1; // @[Parameters.scala:92:28] wire _put_legal_T_11 = 1'h1; // @[Parameters.scala:92:38] wire _put_legal_T_12 = 1'h1; // @[Parameters.scala:92:33] wire _put_legal_T_13 = 1'h1; // @[Parameters.scala:684:29] wire _putpartial_legal_T = 1'h1; // @[Parameters.scala:92:28] wire _putpartial_legal_T_1 = 1'h1; // @[Parameters.scala:92:38] wire _putpartial_legal_T_2 = 1'h1; // @[Parameters.scala:92:33] wire _putpartial_legal_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _putpartial_legal_T_10 = 1'h1; // @[Parameters.scala:92:28] wire _putpartial_legal_T_11 = 1'h1; // @[Parameters.scala:92:38] wire _putpartial_legal_T_12 = 1'h1; // @[Parameters.scala:92:33] wire _putpartial_legal_T_13 = 1'h1; // @[Parameters.scala:684:29] wire _atomics_legal_T = 1'h1; // @[Parameters.scala:92:28] wire _atomics_legal_T_1 = 1'h1; // @[Parameters.scala:92:38] wire _atomics_legal_T_2 = 1'h1; // @[Parameters.scala:92:33] wire _atomics_legal_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _atomics_legal_T_54 = 1'h1; // @[Parameters.scala:92:28] wire _atomics_legal_T_55 = 1'h1; // @[Parameters.scala:92:38] wire _atomics_legal_T_56 = 1'h1; // @[Parameters.scala:92:33] wire _atomics_legal_T_57 = 1'h1; // @[Parameters.scala:684:29] wire _atomics_legal_T_108 = 1'h1; // @[Parameters.scala:92:28] wire _atomics_legal_T_109 = 1'h1; // @[Parameters.scala:92:38] wire _atomics_legal_T_110 = 1'h1; // @[Parameters.scala:92:33] wire _atomics_legal_T_111 = 1'h1; // @[Parameters.scala:684:29] wire _atomics_legal_T_162 = 1'h1; // @[Parameters.scala:92:28] wire _atomics_legal_T_163 = 1'h1; // @[Parameters.scala:92:38] wire _atomics_legal_T_164 = 1'h1; // @[Parameters.scala:92:33] wire _atomics_legal_T_165 = 1'h1; // @[Parameters.scala:684:29] wire _atomics_legal_T_216 = 1'h1; // @[Parameters.scala:92:28] wire _atomics_legal_T_217 = 1'h1; // @[Parameters.scala:92:38] wire _atomics_legal_T_218 = 1'h1; // @[Parameters.scala:92:33] wire _atomics_legal_T_219 = 1'h1; // @[Parameters.scala:684:29] wire _atomics_legal_T_270 = 1'h1; // @[Parameters.scala:92:28] wire _atomics_legal_T_271 = 1'h1; // @[Parameters.scala:92:38] wire _atomics_legal_T_272 = 1'h1; // @[Parameters.scala:92:33] wire _atomics_legal_T_273 = 1'h1; // @[Parameters.scala:684:29] wire _atomics_legal_T_324 = 1'h1; // @[Parameters.scala:92:28] wire _atomics_legal_T_325 = 1'h1; // @[Parameters.scala:92:38] wire _atomics_legal_T_326 = 1'h1; // @[Parameters.scala:92:33] wire _atomics_legal_T_327 = 1'h1; // @[Parameters.scala:684:29] wire _atomics_legal_T_378 = 1'h1; // @[Parameters.scala:92:28] wire _atomics_legal_T_379 = 1'h1; // @[Parameters.scala:92:38] wire _atomics_legal_T_380 = 1'h1; // @[Parameters.scala:92:33] wire _atomics_legal_T_381 = 1'h1; // @[Parameters.scala:684:29] wire _atomics_legal_T_432 = 1'h1; // @[Parameters.scala:92:28] wire _atomics_legal_T_433 = 1'h1; // @[Parameters.scala:92:38] wire _atomics_legal_T_434 = 1'h1; // @[Parameters.scala:92:33] wire _atomics_legal_T_435 = 1'h1; // @[Parameters.scala:684:29] wire _tl_out_a_valid_T = 1'h1; // @[DCache.scala:603:21] wire _tl_out_a_bits_legal_T_19 = 1'h1; // @[Parameters.scala:91:44] wire _tl_out_a_bits_legal_T_20 = 1'h1; // @[Parameters.scala:684:29] wire tl_out_a_bits_a_mask_sub_sub_sub_0_1 = 1'h1; // @[Misc.scala:206:21] wire tl_out_a_bits_a_mask_sub_sub_size = 1'h1; // @[Misc.scala:209:26] wire tl_out_a_bits_a_mask_sub_sub_0_1 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_sub_sub_1_1 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_sub_0_1 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_sub_1_1 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_sub_2_1 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_sub_3_1 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_size = 1'h1; // @[Misc.scala:209:26] wire tl_out_a_bits_a_mask_acc = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_acc_1 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_acc_2 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_acc_3 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_acc_4 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_acc_5 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_acc_6 = 1'h1; // @[Misc.scala:215:29] wire tl_out_a_bits_a_mask_acc_7 = 1'h1; // @[Misc.scala:215:29] wire _dataArb_io_in_1_bits_wordMask_T = 1'h1; // @[DCache.scala:731:39] wire _nodeOut_c_bits_legal_T_5 = 1'h1; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_16 = 1'h1; // @[Parameters.scala:685:42] wire _nodeOut_c_bits_legal_T_17 = 1'h1; // @[Parameters.scala:685:42] wire _nodeOut_c_bits_legal_T_19 = 1'h1; // @[Parameters.scala:91:44] wire _nodeOut_c_bits_legal_T_20 = 1'h1; // @[Parameters.scala:684:29] wire _nodeOut_c_bits_legal_T_39 = 1'h1; // @[Parameters.scala:137:59] wire _nodeOut_c_bits_legal_T_50 = 1'h1; // @[Parameters.scala:685:42] wire _nodeOut_c_bits_legal_T_51 = 1'h1; // @[Parameters.scala:685:42] wire _nodeOut_c_bits_legal_T_53 = 1'h1; // @[Parameters.scala:91:44] wire _nodeOut_c_bits_legal_T_54 = 1'h1; // @[Parameters.scala:684:29] wire _dataArb_io_in_2_bits_wordMask_T = 1'h1; // @[DCache.scala:904:37] wire _io_cpu_ordered_T = 1'h1; // @[DCache.scala:929:35] wire _s1_xcpt_valid_T = 1'h1; // @[DCache.scala:932:43] wire _io_cpu_resp_valid_T_1 = 1'h1; // @[DCache.scala:949:73] wire _io_cpu_replay_next_T_2 = 1'h1; // @[DCache.scala:950:65] wire _clock_en_reg_T = 1'h1; // @[DCache.scala:1060:19] wire _clock_en_reg_T_2 = 1'h1; // @[DCache.scala:1060:44] wire _clock_en_reg_T_3 = 1'h1; // @[DCache.scala:1061:46] wire _clock_en_reg_T_4 = 1'h1; // @[DCache.scala:1062:31] wire _clock_en_reg_T_5 = 1'h1; // @[DCache.scala:1063:26] wire _clock_en_reg_T_6 = 1'h1; // @[DCache.scala:1064:14] wire _clock_en_reg_T_7 = 1'h1; // @[DCache.scala:1064:26] wire _clock_en_reg_T_8 = 1'h1; // @[DCache.scala:1065:14] wire _clock_en_reg_T_9 = 1'h1; // @[DCache.scala:1065:26] wire _clock_en_reg_T_10 = 1'h1; // @[DCache.scala:1066:27] wire _clock_en_reg_T_11 = 1'h1; // @[DCache.scala:1067:22] wire _clock_en_reg_T_12 = 1'h1; // @[DCache.scala:1067:42] wire _clock_en_reg_T_13 = 1'h1; // @[DCache.scala:1068:18] wire _clock_en_reg_T_15 = 1'h1; // @[DCache.scala:1068:35] wire _clock_en_reg_T_16 = 1'h1; // @[DCache.scala:1069:31] wire _clock_en_reg_T_18 = 1'h1; // @[DCache.scala:1070:22] wire _clock_en_reg_T_20 = 1'h1; // @[DCache.scala:1070:46] wire _clock_en_reg_T_21 = 1'h1; // @[DCache.scala:1071:23] wire _clock_en_reg_T_23 = 1'h1; // @[DCache.scala:1072:23] wire _clock_en_reg_T_25 = 1'h1; // @[DCache.scala:1072:54] wire _clock_en_reg_T_27 = 1'h1; // @[DCache.scala:1073:21] wire _io_cpu_perf_storeBufferEmptyAfterLoad_T_2 = 1'h1; // @[DCache.scala:1082:31] wire _io_cpu_perf_storeBufferEmptyAfterStore_T_5 = 1'h1; // @[DCache.scala:1087:31] wire _io_cpu_perf_canAcceptStoreThenLoad_T_3 = 1'h1; // @[DCache.scala:1089:72] wire _io_cpu_perf_canAcceptLoadThenLoad_T_56 = 1'h1; // @[DCache.scala:1092:115] wire [15:0] io_ptw_ptbr_asid = 16'h0; // @[DCache.scala:101:7] wire [15:0] io_ptw_hgatp_asid = 16'h0; // @[DCache.scala:101:7] wire [15:0] io_ptw_vsatp_asid = 16'h0; // @[DCache.scala:101:7] wire [15:0] pma_checker_io_ptw_ptbr_asid = 16'h0; // @[DCache.scala:120:32] wire [15:0] pma_checker_io_ptw_hgatp_asid = 16'h0; // @[DCache.scala:120:32] wire [15:0] pma_checker_io_ptw_vsatp_asid = 16'h0; // @[DCache.scala:120:32] wire [15:0] pma_checker_satp_asid = 16'h0; // @[TLB.scala:373:17] wire [3:0] io_ptw_hgatp_mode = 4'h0; // @[DCache.scala:101:7] wire [3:0] io_ptw_vsatp_mode = 4'h0; // @[DCache.scala:101:7] wire [3:0] pma_checker_io_ptw_ptbr_mode = 4'h0; // @[DCache.scala:120:32] wire [3:0] pma_checker_io_ptw_hgatp_mode = 4'h0; // @[DCache.scala:120:32] wire [3:0] pma_checker_io_ptw_vsatp_mode = 4'h0; // @[DCache.scala:120:32] wire [3:0] pma_checker_satp_mode = 4'h0; // @[TLB.scala:373:17] wire [3:0] pma_checker_real_hits_hi_hi = 4'h0; // @[package.scala:45:27] wire [3:0] pma_checker_lo = 4'h0; // @[OneHot.scala:21:45] wire [3:0] pma_checker_hi = 4'h0; // @[OneHot.scala:21:45] wire [3:0] pma_checker_hi_1 = 4'h0; // @[OneHot.scala:30:18] wire [3:0] pma_checker_lo_1 = 4'h0; // @[OneHot.scala:31:18] wire [3:0] pma_checker__multipleHits_T_31 = 4'h0; // @[Misc.scala:182:39] wire [3:0] pma_checker_r_superpage_repl_addr_valids = 4'h0; // @[package.scala:45:27] wire [3:0] pma_checker_r_sectored_repl_addr_valids_lo = 4'h0; // @[package.scala:45:27] wire [3:0] pma_checker_r_sectored_repl_addr_valids_hi = 4'h0; // @[package.scala:45:27] wire [3:0] pma_checker_r_sectored_hit_bits_lo = 4'h0; // @[OneHot.scala:21:45] wire [3:0] pma_checker_r_sectored_hit_bits_hi = 4'h0; // @[OneHot.scala:21:45] wire [3:0] pma_checker_r_sectored_hit_bits_hi_1 = 4'h0; // @[OneHot.scala:30:18] wire [3:0] pma_checker_r_sectored_hit_bits_lo_1 = 4'h0; // @[OneHot.scala:31:18] wire [3:0] pma_checker__r_sectored_hit_bits_T_2 = 4'h0; // @[OneHot.scala:32:28] wire [3:0] pma_checker__r_superpage_hit_bits_T = 4'h0; // @[OneHot.scala:21:45] wire [3:0] s2_meta_correctable_errors_lo = 4'h0; // @[package.scala:45:27] wire [3:0] s2_meta_correctable_errors_hi = 4'h0; // @[package.scala:45:27] wire [3:0] s2_meta_uncorrectable_errors_lo = 4'h0; // @[package.scala:45:27] wire [3:0] s2_meta_uncorrectable_errors_hi = 4'h0; // @[package.scala:45:27] wire [3:0] _r_T_16 = 4'h0; // @[Metadata.scala:68:10] wire [3:0] _r_T_63 = 4'h0; // @[Metadata.scala:125:10] wire [3:0] _r_T_127 = 4'h0; // @[Metadata.scala:125:10] wire [3:0] _a_mask_T = 4'h0; // @[DCache.scala:582:90] wire [3:0] _atomics_WIRE_size = 4'h0; // @[DCache.scala:587:51] wire [3:0] _atomics_WIRE_1_size = 4'h0; // @[DCache.scala:587:38] wire [3:0] _metaArb_io_in_3_bits_data_T_5 = 4'h0; // @[Metadata.scala:87:10] wire [3:0] probe_bits_res_size = 4'h0; // @[DCache.scala:1202:19] wire [43:0] io_ptw_hgatp_ppn = 44'h0; // @[DCache.scala:101:7] wire [43:0] io_ptw_vsatp_ppn = 44'h0; // @[DCache.scala:101:7] wire [43:0] pma_checker_io_ptw_resp_bits_pte_ppn = 44'h0; // @[DCache.scala:120:32] wire [43:0] pma_checker_io_ptw_ptbr_ppn = 44'h0; // @[DCache.scala:120:32] wire [43:0] pma_checker_io_ptw_hgatp_ppn = 44'h0; // @[DCache.scala:120:32] wire [43:0] pma_checker_io_ptw_vsatp_ppn = 44'h0; // @[DCache.scala:120:32] wire [43:0] pma_checker_satp_ppn = 44'h0; // @[TLB.scala:373:17] wire [22:0] io_ptw_status_zero2 = 23'h0; // @[DCache.scala:101:7] wire [22:0] pma_checker_io_ptw_status_zero2 = 23'h0; // @[DCache.scala:120:32] wire [22:0] pma_checker_io_ptw_gstatus_zero2 = 23'h0; // @[DCache.scala:120:32] wire [7:0] io_cpu_req_bits_mask = 8'h0; // @[DCache.scala:101:7] wire [7:0] io_ptw_status_zero1 = 8'h0; // @[DCache.scala:101:7] wire [7:0] pma_checker_io_ptw_status_zero1 = 8'h0; // @[DCache.scala:120:32] wire [7:0] pma_checker_io_ptw_gstatus_zero1 = 8'h0; // @[DCache.scala:120:32] wire [7:0] pma_checker_r_sectored_repl_addr_valids = 8'h0; // @[package.scala:45:27] wire [7:0] pma_checker__r_sectored_hit_bits_T = 8'h0; // @[OneHot.scala:21:45] wire [7:0] metaArb_io_in_1_bits_way_en = 8'h0; // @[DCache.scala:135:28] wire [7:0] s0_req_mask = 8'h0; // @[DCache.scala:192:24] wire [7:0] s2_meta_correctable_errors = 8'h0; // @[package.scala:45:27] wire [7:0] s2_meta_uncorrectable_errors = 8'h0; // @[package.scala:45:27] wire [7:0] _s2_meta_error_T = 8'h0; // @[DCache.scala:362:53] wire [7:0] _metaArb_io_in_1_bits_way_en_T_8 = 8'h0; // @[Mux.scala:50:70] wire [7:0] _metaArb_io_in_1_bits_way_en_T_9 = 8'h0; // @[Mux.scala:50:70] wire [7:0] _metaArb_io_in_1_bits_way_en_T_10 = 8'h0; // @[Mux.scala:50:70] wire [7:0] _metaArb_io_in_1_bits_way_en_T_11 = 8'h0; // @[Mux.scala:50:70] wire [7:0] _metaArb_io_in_1_bits_way_en_T_12 = 8'h0; // @[Mux.scala:50:70] wire [7:0] _metaArb_io_in_1_bits_way_en_T_13 = 8'h0; // @[Mux.scala:50:70] wire [7:0] _metaArb_io_in_1_bits_way_en_T_14 = 8'h0; // @[Mux.scala:50:70] wire [7:0] _metaArb_io_in_1_bits_way_en_T_15 = 8'h0; // @[Mux.scala:50:70] wire [7:0] _metaArb_io_in_1_bits_way_en_T_16 = 8'h0; // @[DCache.scala:452:69] wire [7:0] _metaArb_io_in_1_bits_way_en_T_17 = 8'h0; // @[DCache.scala:452:64] wire [7:0] _pstore2_storegen_mask_mergedMask_T = 8'h0; // @[DCache.scala:533:42] wire [7:0] _atomics_WIRE_mask = 8'h0; // @[DCache.scala:587:51] wire [7:0] _atomics_WIRE_1_mask = 8'h0; // @[DCache.scala:587:38] wire [7:0] probe_bits_res_mask = 8'h0; // @[DCache.scala:1202:19] wire [1:0] io_ptw_status_xs = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_status_vs = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_hstatus_zero3 = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_hstatus_zero2 = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_gstatus_xs = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_0_cfg_res = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_1_cfg_res = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_2_cfg_res = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_3_cfg_res = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_4_cfg_res = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_5_cfg_res = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_6_cfg_res = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_ptw_pmp_7_cfg_res = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_tlb_port_req_bits_size = 2'h0; // @[DCache.scala:101:7] wire [1:0] io_tlb_port_req_bits_prv = 2'h0; // @[DCache.scala:101:7] wire [1:0] pma_checker_io_ptw_resp_bits_pte_reserved_for_software = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_resp_bits_level = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_status_dprv = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_status_prv = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_status_sxl = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_status_uxl = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_status_xs = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_status_fs = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_status_mpp = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_status_vs = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_hstatus_vsxl = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_hstatus_zero3 = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_hstatus_zero2 = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_gstatus_dprv = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_gstatus_prv = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_gstatus_sxl = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_gstatus_uxl = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_gstatus_xs = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_gstatus_fs = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_gstatus_mpp = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_gstatus_vs = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_0_cfg_res = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_0_cfg_a = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_1_cfg_res = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_1_cfg_a = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_2_cfg_res = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_2_cfg_a = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_3_cfg_res = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_3_cfg_a = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_4_cfg_res = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_4_cfg_a = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_5_cfg_res = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_5_cfg_a = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_6_cfg_res = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_6_cfg_a = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_7_cfg_res = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_ptw_pmp_7_cfg_a = 2'h0; // @[DCache.scala:120:32] wire [1:0] pma_checker_real_hits_lo_lo_hi = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker_real_hits_lo_hi_hi = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker_real_hits_hi_lo_hi = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker_real_hits_hi_hi_lo = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker_real_hits_hi_hi_hi = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker__special_entry_level_T = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker_special_entry_data_0_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_special_entry_data_0_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_special_entry_data_0_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_special_entry_data_0_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_special_entry_data_0_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_waddr = 2'h0; // @[TLB.scala:477:22] wire [1:0] pma_checker_superpage_entries_0_data_0_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_0_data_0_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_0_data_0_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_0_data_0_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_0_data_0_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_1_data_0_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_1_data_0_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_1_data_0_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_1_data_0_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_1_data_0_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_2_data_0_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_2_data_0_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_2_data_0_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_2_data_0_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_2_data_0_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_3_data_0_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_3_data_0_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_3_data_0_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_3_data_0_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_3_data_0_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_idx = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker_sectored_entries_0_0_data_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_0_data_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_0_data_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_0_data_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_0_data_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_idx_1 = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker_sectored_entries_0_1_data_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_1_data_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_1_data_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_1_data_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_1_data_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_idx_2 = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker_sectored_entries_0_2_data_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_2_data_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_2_data_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_2_data_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_2_data_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_idx_3 = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker_sectored_entries_0_3_data_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_3_data_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_3_data_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_3_data_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_3_data_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_idx_4 = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker_sectored_entries_0_4_data_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_4_data_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_4_data_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_4_data_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_4_data_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_idx_5 = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker_sectored_entries_0_5_data_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_5_data_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_5_data_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_5_data_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_5_data_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_idx_6 = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker_sectored_entries_0_6_data_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_6_data_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_6_data_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_6_data_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_6_data_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_idx_7 = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker_sectored_entries_0_7_data_lo_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_7_data_lo_hi_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_7_data_hi_lo_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_7_data_hi_lo_hi_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_7_data_hi_hi_lo_hi = 2'h0; // @[TLB.scala:217:24] wire [1:0] pma_checker__pr_array_T = 2'h0; // @[TLB.scala:529:26] wire [1:0] pma_checker__pw_array_T = 2'h0; // @[TLB.scala:531:26] wire [1:0] pma_checker__px_array_T = 2'h0; // @[TLB.scala:533:26] wire [1:0] pma_checker_lo_lo = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_lo_hi = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_hi_lo = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_hi_hi = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_hi_2 = 2'h0; // @[OneHot.scala:30:18] wire [1:0] pma_checker_lo_2 = 2'h0; // @[OneHot.scala:31:18] wire [1:0] pma_checker__state_vec_0_T = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker__state_vec_0_T_11 = 2'h0; // @[Replacement.scala:207:62] wire [1:0] pma_checker_lo_3 = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_hi_3 = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_hi_4 = 2'h0; // @[OneHot.scala:30:18] wire [1:0] pma_checker_lo_4 = 2'h0; // @[OneHot.scala:31:18] wire [1:0] pma_checker_state_reg_touch_way_sized = 2'h0; // @[package.scala:163:13] wire [1:0] pma_checker__multipleHits_T_3 = 2'h0; // @[Misc.scala:182:39] wire [1:0] pma_checker__multipleHits_T_12 = 2'h0; // @[Misc.scala:182:39] wire [1:0] pma_checker__multipleHits_T_24 = 2'h0; // @[Misc.scala:182:39] wire [1:0] pma_checker__multipleHits_T_32 = 2'h0; // @[Misc.scala:181:37] wire [1:0] pma_checker__multipleHits_T_37 = 2'h0; // @[Misc.scala:182:39] wire [1:0] pma_checker__r_superpage_repl_addr_T_3 = 2'h0; // @[Replacement.scala:249:12] wire [1:0] pma_checker_r_superpage_repl_addr_valids_lo = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker_r_superpage_repl_addr_valids_hi = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker__r_superpage_repl_addr_T_12 = 2'h0; // @[Mux.scala:50:70] wire [1:0] pma_checker__r_superpage_repl_addr_T_13 = 2'h0; // @[TLB.scala:757:8] wire [1:0] pma_checker__r_sectored_repl_addr_T_3 = 2'h0; // @[Replacement.scala:249:12] wire [1:0] pma_checker__r_sectored_repl_addr_T_7 = 2'h0; // @[Replacement.scala:249:12] wire [1:0] pma_checker__r_sectored_repl_addr_T_8 = 2'h0; // @[Replacement.scala:250:16] wire [1:0] pma_checker_r_sectored_repl_addr_valids_lo_lo = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker_r_sectored_repl_addr_valids_lo_hi = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker_r_sectored_repl_addr_valids_hi_lo = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker_r_sectored_repl_addr_valids_hi_hi = 2'h0; // @[package.scala:45:27] wire [1:0] pma_checker_r_sectored_hit_bits_lo_lo = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_r_sectored_hit_bits_lo_hi = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_r_sectored_hit_bits_hi_lo = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_r_sectored_hit_bits_hi_hi = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_r_sectored_hit_bits_hi_2 = 2'h0; // @[OneHot.scala:30:18] wire [1:0] pma_checker_r_sectored_hit_bits_lo_2 = 2'h0; // @[OneHot.scala:31:18] wire [1:0] pma_checker__r_sectored_hit_bits_T_4 = 2'h0; // @[OneHot.scala:32:28] wire [1:0] pma_checker__r_sectored_hit_bits_T_6 = 2'h0; // @[OneHot.scala:32:10] wire [1:0] pma_checker_r_superpage_hit_bits_lo = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_r_superpage_hit_bits_hi = 2'h0; // @[OneHot.scala:21:45] wire [1:0] pma_checker_r_superpage_hit_bits_hi_1 = 2'h0; // @[OneHot.scala:30:18] wire [1:0] pma_checker_r_superpage_hit_bits_lo_1 = 2'h0; // @[OneHot.scala:31:18] wire [1:0] pma_checker__r_superpage_hit_bits_T_2 = 2'h0; // @[OneHot.scala:32:28] wire [1:0] pma_checker__r_superpage_hit_bits_T_4 = 2'h0; // @[OneHot.scala:32:10] wire [1:0] s1_meta_hit_state_meta_state = 2'h0; // @[Metadata.scala:160:20] wire [1:0] _s2_valid_no_xcpt_T_1 = 2'h0; // @[DCache.scala:332:54] wire [1:0] s2_meta_correctable_errors_lo_lo = 2'h0; // @[package.scala:45:27] wire [1:0] s2_meta_correctable_errors_lo_hi = 2'h0; // @[package.scala:45:27] wire [1:0] s2_meta_correctable_errors_hi_lo = 2'h0; // @[package.scala:45:27] wire [1:0] s2_meta_correctable_errors_hi_hi = 2'h0; // @[package.scala:45:27] wire [1:0] s2_meta_uncorrectable_errors_lo_lo = 2'h0; // @[package.scala:45:27] wire [1:0] s2_meta_uncorrectable_errors_lo_hi = 2'h0; // @[package.scala:45:27] wire [1:0] s2_meta_uncorrectable_errors_hi_lo = 2'h0; // @[package.scala:45:27] wire [1:0] s2_meta_uncorrectable_errors_hi_hi = 2'h0; // @[package.scala:45:27] wire [1:0] _r_T_1 = 2'h0; // @[Metadata.scala:26:15] wire [1:0] _r_T_3 = 2'h0; // @[Metadata.scala:26:15] wire [1:0] _r_T_5 = 2'h0; // @[Metadata.scala:26:15] wire [1:0] _r_T_15 = 2'h0; // @[Metadata.scala:26:15] wire [1:0] _r_T_75 = 2'h0; // @[Misc.scala:38:63] wire [1:0] _r_T_79 = 2'h0; // @[Misc.scala:38:63] wire [1:0] _r_T_83 = 2'h0; // @[Misc.scala:38:63] wire [1:0] _r_T_87 = 2'h0; // @[Misc.scala:38:63] wire [1:0] _r_T_91 = 2'h0; // @[Misc.scala:38:63] wire [1:0] _r_T_139 = 2'h0; // @[Misc.scala:38:63] wire [1:0] _r_T_143 = 2'h0; // @[Misc.scala:38:63] wire [1:0] _r_T_147 = 2'h0; // @[Misc.scala:38:63] wire [1:0] _r_T_151 = 2'h0; // @[Misc.scala:38:63] wire [1:0] _r_T_155 = 2'h0; // @[Misc.scala:38:63] wire [1:0] metaArb_io_in_1_bits_data_new_meta_coh_meta_state = 2'h0; // @[Metadata.scala:160:20] wire [1:0] _metaArb_io_in_3_bits_data_T_2 = 2'h0; // @[Metadata.scala:26:15] wire [1:0] _metaArb_io_in_3_bits_data_T_4 = 2'h0; // @[Metadata.scala:26:15] wire [1:0] probe_bits_res_param = 2'h0; // @[DCache.scala:1202:19] wire [1:0] _nodeOut_c_bits_legal_T_2 = 2'h0; // @[Parameters.scala:137:41] wire [1:0] _nodeOut_c_bits_legal_T_36 = 2'h0; // @[Parameters.scala:137:41] wire [1:0] _io_cpu_s2_xcpt_WIRE_size = 2'h0; // @[DCache.scala:933:74] wire [1:0] metaArb_io_in_0_bits_data_meta_state = 2'h0; // @[Metadata.scala:160:20] wire [1:0] metaArb_io_in_0_bits_data_meta_1_coh_state = 2'h0; // @[HellaCache.scala:305:20] wire [29:0] io_ptw_hstatus_zero6 = 30'h0; // @[DCache.scala:101:7] wire [29:0] pma_checker_io_ptw_hstatus_zero6 = 30'h0; // @[DCache.scala:120:32] wire [29:0] pma_checker_io_ptw_pmp_0_addr = 30'h0; // @[DCache.scala:120:32] wire [29:0] pma_checker_io_ptw_pmp_1_addr = 30'h0; // @[DCache.scala:120:32] wire [29:0] pma_checker_io_ptw_pmp_2_addr = 30'h0; // @[DCache.scala:120:32] wire [29:0] pma_checker_io_ptw_pmp_3_addr = 30'h0; // @[DCache.scala:120:32] wire [29:0] pma_checker_io_ptw_pmp_4_addr = 30'h0; // @[DCache.scala:120:32] wire [29:0] pma_checker_io_ptw_pmp_5_addr = 30'h0; // @[DCache.scala:120:32] wire [29:0] pma_checker_io_ptw_pmp_6_addr = 30'h0; // @[DCache.scala:120:32] wire [29:0] pma_checker_io_ptw_pmp_7_addr = 30'h0; // @[DCache.scala:120:32] wire [8:0] io_ptw_hstatus_zero5 = 9'h0; // @[DCache.scala:101:7] wire [8:0] pma_checker_io_ptw_hstatus_zero5 = 9'h0; // @[DCache.scala:120:32] wire [5:0] io_ptw_hstatus_vgein = 6'h0; // @[DCache.scala:101:7] wire [5:0] pma_checker_io_ptw_hstatus_vgein = 6'h0; // @[DCache.scala:120:32] wire [5:0] pma_checker_real_hits_lo = 6'h0; // @[package.scala:45:27] wire [5:0] pma_checker_special_entry_data_0_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_superpage_entries_0_data_0_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_superpage_entries_1_data_0_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_superpage_entries_2_data_0_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_superpage_entries_3_data_0_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_0_data_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_1_data_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_2_data_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_3_data_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_4_data_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_5_data_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_6_data_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_7_data_hi_lo = 6'h0; // @[TLB.scala:217:24] wire [5:0] pma_checker__multipleHits_T = 6'h0; // @[Misc.scala:181:37] wire [4:0] io_ptw_hstatus_zero1 = 5'h0; // @[DCache.scala:101:7] wire [4:0] io_tlb_port_req_bits_cmd = 5'h0; // @[DCache.scala:101:7] wire [4:0] pma_checker_io_ptw_hstatus_zero1 = 5'h0; // @[DCache.scala:120:32] wire [4:0] _io_cpu_s2_xcpt_WIRE_cmd = 5'h0; // @[DCache.scala:933:74] wire [7:0] pma_checker__r_sectored_repl_addr_T_11 = 8'hFF; // @[TLB.scala:757:43] wire [7:0] metaArb_io_in_0_bits_way_en = 8'hFF; // @[DCache.scala:135:28] wire [7:0] dataArb_io_in_1_bits_eccMask = 8'hFF; // @[DCache.scala:152:28] wire [7:0] dataArb_io_in_2_bits_eccMask = 8'hFF; // @[DCache.scala:152:28] wire [7:0] dataArb_io_in_2_bits_way_en = 8'hFF; // @[DCache.scala:152:28] wire [7:0] dataArb_io_in_3_bits_eccMask = 8'hFF; // @[DCache.scala:152:28] wire [7:0] dataArb_io_in_3_bits_way_en = 8'hFF; // @[DCache.scala:152:28] wire [7:0] _dataArb_io_in_3_bits_wordMask_T = 8'hFF; // @[DCache.scala:254:9] wire [7:0] _dataArb_io_in_3_bits_eccMask_T = 8'hFF; // @[DCache.scala:256:36] wire [7:0] _dataArb_io_in_3_bits_way_en_T = 8'hFF; // @[DCache.scala:257:35] wire [7:0] tl_out_a_bits_a_mask = 8'hFF; // @[Edges.scala:346:17] wire [7:0] _tl_out_a_bits_a_mask_T = 8'hFF; // @[Misc.scala:222:10] wire [7:0] _dataArb_io_in_1_bits_eccMask_T = 8'hFF; // @[DCache.scala:732:38] wire [7:0] _dataArb_io_in_2_bits_eccMask_T = 8'hFF; // @[DCache.scala:905:36] wire [7:0] _dataArb_io_in_2_bits_way_en_T = 8'hFF; // @[DCache.scala:906:35] wire [7:0] _metaArb_io_in_0_bits_way_en_T = 8'hFF; // @[DCache.scala:1049:35] wire [2:0] pma_checker__r_sectored_repl_addr_T_20 = 3'h6; // @[Mux.scala:50:70] wire [2:0] tl_out_a_bits_a_opcode = 3'h6; // @[Edges.scala:346:17] wire [2:0] _tl_out_a_bits_a_mask_sizeOH_T = 3'h6; // @[Misc.scala:202:34] wire [2:0] nodeOut_c_bits_c_opcode = 3'h6; // @[Edges.scala:380:17] wire [2:0] pma_checker_real_hits_lo_lo = 3'h0; // @[package.scala:45:27] wire [2:0] pma_checker_real_hits_lo_hi = 3'h0; // @[package.scala:45:27] wire [2:0] pma_checker_real_hits_hi_lo = 3'h0; // @[package.scala:45:27] wire [2:0] pma_checker_special_entry_data_0_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_special_entry_data_0_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_special_entry_data_0_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_special_entry_data_0_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_0_data_0_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_0_data_0_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_0_data_0_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_0_data_0_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_1_data_0_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_1_data_0_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_1_data_0_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_1_data_0_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_2_data_0_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_2_data_0_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_2_data_0_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_2_data_0_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_3_data_0_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_3_data_0_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_3_data_0_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_3_data_0_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_waddr_1 = 3'h0; // @[TLB.scala:485:22] wire [2:0] pma_checker_sectored_entries_0_0_data_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_0_data_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_0_data_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_0_data_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_1_data_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_1_data_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_1_data_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_1_data_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_2_data_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_2_data_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_2_data_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_2_data_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_3_data_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_3_data_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_3_data_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_3_data_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_4_data_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_4_data_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_4_data_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_4_data_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_5_data_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_5_data_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_5_data_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_5_data_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_6_data_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_6_data_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_6_data_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_6_data_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_7_data_lo_hi_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_7_data_hi_lo_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_7_data_hi_lo_hi = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_7_data_hi_hi_lo = 3'h0; // @[TLB.scala:217:24] wire [2:0] pma_checker_state_vec_0_touch_way_sized = 3'h0; // @[package.scala:163:13] wire [2:0] pma_checker_state_vec_0_left_subtree_state = 3'h0; // @[package.scala:163:13] wire [2:0] pma_checker_state_vec_0_right_subtree_state = 3'h0; // @[Replacement.scala:198:38] wire [2:0] pma_checker__state_vec_0_T_10 = 3'h0; // @[Replacement.scala:203:16] wire [2:0] pma_checker__multipleHits_T_1 = 3'h0; // @[Misc.scala:181:37] wire [2:0] pma_checker__multipleHits_T_10 = 3'h0; // @[Misc.scala:182:39] wire [2:0] pma_checker__multipleHits_T_22 = 3'h0; // @[Misc.scala:181:37] wire [2:0] pma_checker_r_sectored_repl_addr_left_subtree_state = 3'h0; // @[package.scala:163:13] wire [2:0] pma_checker_r_sectored_repl_addr_right_subtree_state = 3'h0; // @[Replacement.scala:245:38] wire [2:0] pma_checker__r_sectored_repl_addr_T_9 = 3'h0; // @[Replacement.scala:249:12] wire [2:0] pma_checker__r_sectored_repl_addr_T_26 = 3'h0; // @[Mux.scala:50:70] wire [2:0] pma_checker__r_sectored_repl_addr_T_27 = 3'h0; // @[TLB.scala:757:8] wire [2:0] pma_checker__r_sectored_hit_bits_T_7 = 3'h0; // @[OneHot.scala:32:10] wire [2:0] get_param = 3'h0; // @[Edges.scala:460:17] wire [2:0] put_opcode = 3'h0; // @[Edges.scala:480:17] wire [2:0] put_param = 3'h0; // @[Edges.scala:480:17] wire [2:0] putpartial_param = 3'h0; // @[Edges.scala:500:17] wire [2:0] _atomics_WIRE_opcode = 3'h0; // @[DCache.scala:587:51] wire [2:0] _atomics_WIRE_param = 3'h0; // @[DCache.scala:587:51] wire [2:0] _atomics_WIRE_1_opcode = 3'h0; // @[DCache.scala:587:38] wire [2:0] _atomics_WIRE_1_param = 3'h0; // @[DCache.scala:587:38] wire [2:0] atomics_a_1_param = 3'h0; // @[Edges.scala:534:17] wire [2:0] atomics_a_5_param = 3'h0; // @[Edges.scala:517:17] wire [2:0] probe_bits_res_opcode = 3'h0; // @[DCache.scala:1202:19] wire [2:0] pma_checker__state_vec_0_T_9 = 3'h5; // @[Replacement.scala:202:12] wire [2:0] pma_checker__state_vec_0_T_20 = 3'h5; // @[Replacement.scala:202:12] wire [2:0] pma_checker__state_vec_0_T_21 = 3'h5; // @[Replacement.scala:206:16] wire [2:0] pma_checker__state_reg_T_8 = 3'h5; // @[Replacement.scala:202:12] wire [2:0] pma_checker__r_sectored_repl_addr_T_21 = 3'h5; // @[Mux.scala:50:70] wire [2:0] tl_out_a_bits_a_mask_sizeOH = 3'h5; // @[Misc.scala:202:81] wire [2:0] nackResponseMessage_param = 3'h5; // @[Edges.scala:416:17] wire [2:0] dirtyReleaseMessage_opcode = 3'h5; // @[Edges.scala:433:17] wire [2:0] pma_checker__r_sectored_repl_addr_T_22 = 3'h4; // @[Mux.scala:50:70] wire [2:0] get_opcode = 3'h4; // @[Edges.scala:460:17] wire [2:0] atomics_a_4_param = 3'h4; // @[Edges.scala:517:17] wire [2:0] _tl_out_a_bits_a_mask_sizeOH_T_2 = 3'h4; // @[OneHot.scala:65:27] wire [2:0] nackResponseMessage_opcode = 3'h4; // @[Edges.scala:416:17] wire [2:0] cleanReleaseMessage_opcode = 3'h4; // @[Edges.scala:416:17] wire [1:0] pma_checker__r_superpage_repl_addr_T_11 = 2'h1; // @[Mux.scala:50:70] wire [1:0] _r_T_7 = 2'h1; // @[Metadata.scala:25:15] wire [1:0] _r_T_9 = 2'h1; // @[Metadata.scala:25:15] wire [1:0] _r_T_17 = 2'h1; // @[Metadata.scala:25:15] wire [1:0] _r_T_19 = 2'h1; // @[Metadata.scala:25:15] wire [1:0] dataArb_io_in_0_bits_wordMask_wordMask = 2'h1; // @[OneHot.scala:58:35] wire [1:0] _dataArb_io_in_0_bits_wordMask_T_2 = 2'h1; // @[DCache.scala:555:20] wire [1:0] _metaArb_io_in_3_bits_data_T_6 = 2'h1; // @[Metadata.scala:25:15] wire [3:0] pma_checker__r_superpage_repl_addr_T_5 = 4'hF; // @[TLB.scala:757:43] wire [3:0] _r_T_12 = 4'hF; // @[Metadata.scala:65:10] wire [3:0] tl_out_a_bits_a_mask_lo = 4'hF; // @[Misc.scala:222:10] wire [3:0] tl_out_a_bits_a_mask_hi = 4'hF; // @[Misc.scala:222:10] wire [1:0] io_ptw_status_sxl = 2'h2; // @[DCache.scala:101:7] wire [1:0] io_ptw_status_uxl = 2'h2; // @[DCache.scala:101:7] wire [1:0] io_ptw_hstatus_vsxl = 2'h2; // @[DCache.scala:101:7] wire [1:0] io_ptw_gstatus_uxl = 2'h2; // @[DCache.scala:101:7] wire [1:0] pma_checker_state_vec_0_hi = 2'h2; // @[Replacement.scala:202:12] wire [1:0] pma_checker_state_vec_0_hi_1 = 2'h2; // @[Replacement.scala:202:12] wire [1:0] pma_checker_state_reg_hi = 2'h2; // @[Replacement.scala:202:12] wire [1:0] pma_checker__r_superpage_repl_addr_T_10 = 2'h2; // @[Mux.scala:50:70] wire [1:0] pma_checker__state_T = 2'h2; // @[TLB.scala:704:45] wire [1:0] _r_T_118 = 2'h2; // @[Metadata.scala:140:24] wire [1:0] _r_T_120 = 2'h2; // @[Metadata.scala:140:24] wire [1:0] _r_T_122 = 2'h2; // @[Metadata.scala:140:24] wire [1:0] tl_out_a_bits_a_mask_sizeOH_shiftAmount = 2'h2; // @[OneHot.scala:64:49] wire [2:0] pma_checker__r_sectored_repl_addr_T_23 = 3'h3; // @[Mux.scala:50:70] wire [2:0] atomics_a_opcode = 3'h3; // @[Edges.scala:534:17] wire [2:0] atomics_a_param = 3'h3; // @[Edges.scala:534:17] wire [2:0] atomics_a_1_opcode = 3'h3; // @[Edges.scala:534:17] wire [2:0] atomics_a_2_opcode = 3'h3; // @[Edges.scala:534:17] wire [2:0] atomics_a_3_opcode = 3'h3; // @[Edges.scala:534:17] wire [2:0] atomics_a_8_param = 3'h3; // @[Edges.scala:517:17] wire [2:0] pma_checker__r_sectored_repl_addr_T_24 = 3'h2; // @[Mux.scala:50:70] wire [2:0] atomics_a_3_param = 3'h2; // @[Edges.scala:534:17] wire [2:0] atomics_a_4_opcode = 3'h2; // @[Edges.scala:517:17] wire [2:0] atomics_a_5_opcode = 3'h2; // @[Edges.scala:517:17] wire [2:0] atomics_a_6_opcode = 3'h2; // @[Edges.scala:517:17] wire [2:0] atomics_a_7_opcode = 3'h2; // @[Edges.scala:517:17] wire [2:0] atomics_a_7_param = 3'h2; // @[Edges.scala:517:17] wire [2:0] atomics_a_8_opcode = 3'h2; // @[Edges.scala:517:17] wire [2:0] pma_checker_mpu_priv = 3'h1; // @[TLB.scala:415:27] wire [2:0] pma_checker__r_sectored_repl_addr_T_25 = 3'h1; // @[Mux.scala:50:70] wire [2:0] putpartial_opcode = 3'h1; // @[Edges.scala:500:17] wire [2:0] atomics_a_2_param = 3'h1; // @[Edges.scala:534:17] wire [2:0] atomics_a_6_param = 3'h1; // @[Edges.scala:517:17] wire [3:0] pma_checker_state_vec_0_hi_2 = 4'h8; // @[Replacement.scala:202:12] wire [3:0] _r_T_71 = 4'h8; // @[Metadata.scala:133:10] wire [3:0] _r_T_135 = 4'h8; // @[Metadata.scala:133:10] wire [11:0] pma_checker__gpa_hits_hit_mask_T_2 = 12'h0; // @[TLB.scala:606:24] wire [11:0] pma_checker__io_resp_gpa_offset_T = 12'h0; // @[TLB.scala:658:47] wire [26:0] pma_checker_io_ptw_req_bits_bits_addr = 27'h0; // @[DCache.scala:120:32] wire [26:0] pma_checker__io_resp_gpa_page_T_2 = 27'h0; // @[TLB.scala:657:58] wire [6:0] pma_checker__state_vec_0_T_22 = 7'h45; // @[Replacement.scala:202:12] wire [63:0] io_cpu_req_bits_data = 64'h0; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_0_sdata = 64'h0; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_1_sdata = 64'h0; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_2_sdata = 64'h0; // @[DCache.scala:101:7] wire [63:0] io_ptw_customCSRs_csrs_3_sdata = 64'h0; // @[DCache.scala:101:7] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_0_wdata = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_0_value = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_0_sdata = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_1_wdata = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_1_value = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_1_sdata = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_2_wdata = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_2_value = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_2_sdata = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_3_wdata = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_3_value = 64'h0; // @[DCache.scala:120:32] wire [63:0] pma_checker_io_ptw_customCSRs_csrs_3_sdata = 64'h0; // @[DCache.scala:120:32] wire [63:0] s0_req_data = 64'h0; // @[DCache.scala:192:24] wire [63:0] get_data = 64'h0; // @[Edges.scala:460:17] wire [63:0] _atomics_WIRE_data = 64'h0; // @[DCache.scala:587:51] wire [63:0] _atomics_WIRE_1_data = 64'h0; // @[DCache.scala:587:38] wire [63:0] tl_out_a_bits_a_data = 64'h0; // @[Edges.scala:346:17] wire [63:0] nackResponseMessage_data = 64'h0; // @[Edges.scala:416:17] wire [63:0] cleanReleaseMessage_data = 64'h0; // @[Edges.scala:416:17] wire [63:0] dirtyReleaseMessage_data = 64'h0; // @[Edges.scala:433:17] wire [63:0] probe_bits_res_data = 64'h0; // @[DCache.scala:1202:19] wire [63:0] nodeOut_c_bits_c_data = 64'h0; // @[Edges.scala:380:17] wire [63:0] nodeOut_c_bits_c_1_data = 64'h0; // @[Edges.scala:396:17] wire [63:0] _s2_data_word_possibly_uncached_T_1 = 64'h0; // @[DCache.scala:972:43] wire [38:0] pma_checker_io_sfence_bits_addr = 39'h0; // @[DCache.scala:120:32] wire [38:0] pma_checker_io_ptw_resp_bits_gpa_bits = 39'h0; // @[DCache.scala:120:32] wire [39:0] io_tlb_port_req_bits_vaddr = 40'h0; // @[DCache.scala:101:7] wire [39:0] _io_cpu_s2_xcpt_WIRE_gpa = 40'h0; // @[DCache.scala:933:74] wire [21:0] pma_checker_special_entry_data_0_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_superpage_entries_0_data_0_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_superpage_entries_1_data_0_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_superpage_entries_2_data_0_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_superpage_entries_3_data_0_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_sectored_entries_0_0_data_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_sectored_entries_0_1_data_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_sectored_entries_0_2_data_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_sectored_entries_0_3_data_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_sectored_entries_0_4_data_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_sectored_entries_0_5_data_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_sectored_entries_0_6_data_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] pma_checker_sectored_entries_0_7_data_hi_hi_hi = 22'h0; // @[TLB.scala:217:24] wire [21:0] metaArb_io_in_0_bits_data = 22'h0; // @[DCache.scala:135:28] wire [21:0] _metaArb_io_in_0_bits_data_T = 22'h0; // @[DCache.scala:1050:85] wire [19:0] pma_checker_refill_ppn = 20'h0; // @[TLB.scala:406:44] wire [19:0] pma_checker_newEntry_ppn = 20'h0; // @[TLB.scala:449:24] wire [19:0] pma_checker__ppn_T_42 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_43 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_44 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_45 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_46 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_47 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_48 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_49 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_50 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_51 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_52 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_53 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_54 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_56 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_57 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_58 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_59 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_60 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_61 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_62 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_63 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_64 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_65 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_66 = 20'h0; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_67 = 20'h0; // @[Mux.scala:30:73] wire [19:0] metaArb_io_in_0_bits_data_meta_1_tag = 20'h0; // @[HellaCache.scala:305:20] wire [31:0] pma_checker_io_ptw_status_isa = 32'h0; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_ptw_gstatus_isa = 32'h0; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_ptw_pmp_0_mask = 32'h0; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_ptw_pmp_1_mask = 32'h0; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_ptw_pmp_2_mask = 32'h0; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_ptw_pmp_3_mask = 32'h0; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_ptw_pmp_4_mask = 32'h0; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_ptw_pmp_5_mask = 32'h0; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_ptw_pmp_6_mask = 32'h0; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_ptw_pmp_7_mask = 32'h0; // @[DCache.scala:120:32] wire [31:0] _atomics_WIRE_address = 32'h0; // @[DCache.scala:587:51] wire [31:0] _atomics_WIRE_1_address = 32'h0; // @[DCache.scala:587:38] wire [31:0] nodeOut_c_bits_c_address = 32'h0; // @[Edges.scala:380:17] wire [31:0] nodeOut_c_bits_c_1_address = 32'h0; // @[Edges.scala:396:17] wire [31:0] _io_cpu_s2_xcpt_WIRE_paddr = 32'h0; // @[DCache.scala:933:74] wire [3:0] _r_T_10 = 4'h6; // @[Metadata.scala:64:10] wire [3:0] _r_T_65 = 4'h6; // @[Metadata.scala:127:10] wire [3:0] _r_T_129 = 4'h6; // @[Metadata.scala:127:10] wire [3:0] tl_out_a_bits_a_size = 4'h6; // @[Edges.scala:346:17] wire [3:0] _release_state_T_13 = 4'h6; // @[DCache.scala:820:27] wire [3:0] nodeOut_c_bits_c_size = 4'h6; // @[Edges.scala:380:17] wire [3:0] nodeOut_c_bits_c_1_size = 4'h6; // @[Edges.scala:396:17] wire [2:0] nodeOut_c_bits_c_1_opcode = 3'h7; // @[Edges.scala:396:17] wire [32:0] _nodeOut_c_bits_legal_T_27 = 33'h80000000; // @[Parameters.scala:137:41] wire [32:0] _nodeOut_c_bits_legal_T_28 = 33'h80000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_29 = 33'h80000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_61 = 33'h80000000; // @[Parameters.scala:137:41] wire [32:0] _nodeOut_c_bits_legal_T_62 = 33'h80000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_63 = 33'h80000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_23 = 33'h8000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_24 = 33'h8000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_57 = 33'h8000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_58 = 33'h8000000; // @[Parameters.scala:137:46] wire [28:0] _nodeOut_c_bits_legal_T_22 = 29'h8000000; // @[Parameters.scala:137:41] wire [28:0] _nodeOut_c_bits_legal_T_56 = 29'h8000000; // @[Parameters.scala:137:41] wire [32:0] _nodeOut_c_bits_legal_T_13 = 33'hC000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_14 = 33'hC000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_47 = 33'hC000000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_48 = 33'hC000000; // @[Parameters.scala:137:46] wire [28:0] _nodeOut_c_bits_legal_T_12 = 29'hC000000; // @[Parameters.scala:137:41] wire [28:0] _nodeOut_c_bits_legal_T_46 = 29'hC000000; // @[Parameters.scala:137:41] wire [32:0] _nodeOut_c_bits_legal_T_8 = 33'h10000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_9 = 33'h10000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_42 = 33'h10000; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_43 = 33'h10000; // @[Parameters.scala:137:46] wire [17:0] _nodeOut_c_bits_legal_T_7 = 18'h10000; // @[Parameters.scala:137:41] wire [17:0] _nodeOut_c_bits_legal_T_41 = 18'h10000; // @[Parameters.scala:137:41] wire [32:0] _nodeOut_c_bits_legal_T_3 = 33'h0; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_4 = 33'h0; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_37 = 33'h0; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_legal_T_38 = 33'h0; // @[Parameters.scala:137:46] wire [3:0] _r_T_24 = 4'hC; // @[Metadata.scala:72:10] wire [3:0] _metaArb_io_in_3_bits_data_T_9 = 4'hC; // @[Metadata.scala:89:10] wire [1:0] _r_T_11 = 2'h3; // @[Metadata.scala:24:15] wire [1:0] _r_T_13 = 2'h3; // @[Metadata.scala:24:15] wire [1:0] _r_T_21 = 2'h3; // @[Metadata.scala:24:15] wire [1:0] _r_T_23 = 2'h3; // @[Metadata.scala:24:15] wire [1:0] tl_out_a_bits_a_mask_lo_lo = 2'h3; // @[Misc.scala:222:10] wire [1:0] tl_out_a_bits_a_mask_lo_hi = 2'h3; // @[Misc.scala:222:10] wire [1:0] tl_out_a_bits_a_mask_hi_lo = 2'h3; // @[Misc.scala:222:10] wire [1:0] tl_out_a_bits_a_mask_hi_hi = 2'h3; // @[Misc.scala:222:10] wire [1:0] _metaArb_io_in_3_bits_data_T_8 = 2'h3; // @[Metadata.scala:24:15] wire [3:0] _r_T_20 = 4'h4; // @[Metadata.scala:70:10] wire [3:0] _r_T_67 = 4'h4; // @[Metadata.scala:129:10] wire [3:0] _r_T_131 = 4'h4; // @[Metadata.scala:129:10] wire [3:0] _tl_out_a_bits_a_mask_sizeOH_T_1 = 4'h4; // @[OneHot.scala:65:12] wire [3:0] _metaArb_io_in_3_bits_data_T_7 = 4'h4; // @[Metadata.scala:88:10] wire [3:0] _r_T_6 = 4'h1; // @[Metadata.scala:62:10] wire [3:0] _r_T_62 = 4'h1; // @[Metadata.scala:124:10] wire [3:0] _r_T_126 = 4'h1; // @[Metadata.scala:124:10] wire [3:0] _metaArb_io_in_3_bits_data_T_3 = 4'h1; // @[Metadata.scala:86:10] wire [8:0] _s1_data_way_T_1 = 9'h100; // @[DCache.scala:694:32] wire [3:0] _r_T_70 = 4'h9; // @[Metadata.scala:132:10] wire [3:0] _r_T_134 = 4'h9; // @[Metadata.scala:132:10] wire [3:0] _r_T_69 = 4'hA; // @[Metadata.scala:131:10] wire [3:0] _r_T_133 = 4'hA; // @[Metadata.scala:131:10] wire [3:0] _r_T_68 = 4'hB; // @[Metadata.scala:130:10] wire [3:0] _r_T_132 = 4'hB; // @[Metadata.scala:130:10] wire [3:0] _r_T_18 = 4'h5; // @[Metadata.scala:69:10] wire [3:0] _r_T_66 = 4'h5; // @[Metadata.scala:128:10] wire [3:0] _r_T_130 = 4'h5; // @[Metadata.scala:128:10] wire [3:0] _r_T_8 = 4'h7; // @[Metadata.scala:63:10] wire [3:0] _r_T_64 = 4'h7; // @[Metadata.scala:126:10] wire [3:0] _r_T_128 = 4'h7; // @[Metadata.scala:126:10] wire [3:0] _r_T_4 = 4'h2; // @[Metadata.scala:61:10] wire [3:0] _r_T_61 = 4'h2; // @[Metadata.scala:123:10] wire [3:0] _r_T_125 = 4'h2; // @[Metadata.scala:123:10] wire [3:0] _r_T_2 = 4'h3; // @[Metadata.scala:60:10] wire [3:0] _r_T_60 = 4'h3; // @[Metadata.scala:122:10] wire [3:0] _r_T_124 = 4'h3; // @[Metadata.scala:122:10] wire [3:0] _r_T_22 = 4'hD; // @[Metadata.scala:71:10] wire [3:0] _r_T_14 = 4'hE; // @[Metadata.scala:66:10] wire [13:0] pma_checker__gf_ld_array_T_2 = 14'h0; // @[TLB.scala:600:46] wire [13:0] pma_checker_gf_ld_array = 14'h0; // @[TLB.scala:600:24] wire [13:0] pma_checker__gf_st_array_T_1 = 14'h0; // @[TLB.scala:601:53] wire [13:0] pma_checker_gf_st_array = 14'h0; // @[TLB.scala:601:24] wire [13:0] pma_checker__gf_inst_array_T = 14'h0; // @[TLB.scala:602:36] wire [13:0] pma_checker_gf_inst_array = 14'h0; // @[TLB.scala:602:26] wire [13:0] pma_checker_gpa_hits_need_gpa_mask = 14'h0; // @[TLB.scala:605:73] wire [13:0] pma_checker__io_resp_gf_ld_T_1 = 14'h0; // @[TLB.scala:637:58] wire [13:0] pma_checker__io_resp_gf_st_T_1 = 14'h0; // @[TLB.scala:638:65] wire [13:0] pma_checker__io_resp_gf_inst_T = 14'h0; // @[TLB.scala:639:48] wire [6:0] pma_checker_real_hits_hi = 7'h0; // @[package.scala:45:27] wire [6:0] pma_checker__state_vec_WIRE_0 = 7'h0; // @[Replacement.scala:305:25] wire [6:0] pma_checker__multipleHits_T_21 = 7'h0; // @[Misc.scala:182:39] wire [12:0] pma_checker_real_hits = 13'h0; // @[package.scala:45:27] wire [12:0] pma_checker__stage1_bypass_T = 13'h0; // @[TLB.scala:517:27] wire [12:0] pma_checker_stage1_bypass = 13'h0; // @[TLB.scala:517:61] wire [12:0] pma_checker__r_array_T_2 = 13'h0; // @[TLB.scala:520:74] wire [12:0] pma_checker__hr_array_T_2 = 13'h0; // @[TLB.scala:524:60] wire [12:0] pma_checker__gpa_hits_T = 13'h0; // @[TLB.scala:607:30] wire [12:0] pma_checker__tlb_hit_T = 13'h0; // @[TLB.scala:611:28] wire [12:0] pma_checker__stage1_bypass_T_2 = 13'h1FFF; // @[TLB.scala:517:68] wire [12:0] pma_checker__stage1_bypass_T_4 = 13'h1FFF; // @[TLB.scala:517:95] wire [12:0] pma_checker_stage2_bypass = 13'h1FFF; // @[TLB.scala:523:27] wire [12:0] pma_checker__hr_array_T_4 = 13'h1FFF; // @[TLB.scala:524:111] wire [12:0] pma_checker__hw_array_T_1 = 13'h1FFF; // @[TLB.scala:525:55] wire [12:0] pma_checker__hx_array_T_1 = 13'h1FFF; // @[TLB.scala:526:55] wire [12:0] pma_checker__gpa_hits_hit_mask_T_4 = 13'h1FFF; // @[TLB.scala:606:88] wire [12:0] pma_checker_gpa_hits_hit_mask = 13'h1FFF; // @[TLB.scala:606:82] wire [12:0] pma_checker__gpa_hits_T_1 = 13'h1FFF; // @[TLB.scala:607:16] wire [12:0] pma_checker_gpa_hits = 13'h1FFF; // @[TLB.scala:607:14] wire [13:0] pma_checker_hr_array = 14'h3FFF; // @[TLB.scala:524:21] wire [13:0] pma_checker_hw_array = 14'h3FFF; // @[TLB.scala:525:21] wire [13:0] pma_checker_hx_array = 14'h3FFF; // @[TLB.scala:526:21] wire [13:0] pma_checker__must_alloc_array_T_8 = 14'h3FFF; // @[TLB.scala:596:19] wire [13:0] pma_checker__gf_ld_array_T_1 = 14'h3FFF; // @[TLB.scala:600:50] wire [30:0] pma_checker_special_entry_data_0_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_superpage_entries_0_data_0_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_superpage_entries_1_data_0_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_superpage_entries_2_data_0_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_superpage_entries_3_data_0_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_sectored_entries_0_0_data_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_sectored_entries_0_1_data_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_sectored_entries_0_2_data_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_sectored_entries_0_3_data_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_sectored_entries_0_4_data_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_sectored_entries_0_5_data_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_sectored_entries_0_6_data_hi = 31'h0; // @[TLB.scala:217:24] wire [30:0] pma_checker_sectored_entries_0_7_data_hi = 31'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_special_entry_data_0_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_superpage_entries_0_data_0_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_superpage_entries_1_data_0_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_superpage_entries_2_data_0_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_superpage_entries_3_data_0_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_sectored_entries_0_0_data_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_sectored_entries_0_1_data_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_sectored_entries_0_2_data_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_sectored_entries_0_3_data_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_sectored_entries_0_4_data_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_sectored_entries_0_5_data_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_sectored_entries_0_6_data_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [24:0] pma_checker_sectored_entries_0_7_data_hi_hi = 25'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_special_entry_data_0_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_superpage_entries_0_data_0_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_superpage_entries_1_data_0_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_superpage_entries_2_data_0_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_superpage_entries_3_data_0_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_sectored_entries_0_0_data_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_sectored_entries_0_1_data_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_sectored_entries_0_2_data_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_sectored_entries_0_3_data_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_sectored_entries_0_4_data_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_sectored_entries_0_5_data_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_sectored_entries_0_6_data_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [20:0] pma_checker_sectored_entries_0_7_data_hi_hi_hi_hi = 21'h0; // @[TLB.scala:217:24] wire [13:0] pma_checker_hits = 14'h2000; // @[TLB.scala:442:17] wire [9:0] pma_checker_io_ptw_resp_bits_pte_reserved_for_future = 10'h0; // @[DCache.scala:120:32] wire [31:0] _nodeOut_c_bits_legal_T_26 = 32'h80000000; // @[Parameters.scala:137:31] wire [31:0] _nodeOut_c_bits_legal_T_60 = 32'h80000000; // @[Parameters.scala:137:31] wire [27:0] _nodeOut_c_bits_legal_T_11 = 28'hC000000; // @[Parameters.scala:137:31] wire [27:0] _nodeOut_c_bits_legal_T_45 = 28'hC000000; // @[Parameters.scala:137:31] wire [27:0] _nodeOut_c_bits_legal_T_21 = 28'h8000000; // @[Parameters.scala:137:31] wire [27:0] _nodeOut_c_bits_legal_T_55 = 28'h8000000; // @[Parameters.scala:137:31] wire [16:0] _nodeOut_c_bits_legal_T_6 = 17'h10000; // @[Parameters.scala:137:31] wire [16:0] _nodeOut_c_bits_legal_T_40 = 17'h10000; // @[Parameters.scala:137:31] wire [41:0] pma_checker__mpu_ppn_WIRE_1 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_1 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_3 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_5 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_7 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_9 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_11 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_13 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_15 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_17 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_19 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_21 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_23 = 42'h0; // @[TLB.scala:170:77] wire [41:0] pma_checker__entries_WIRE_25 = 42'h0; // @[TLB.scala:170:77] wire nodeOut_a_ready = auto_out_a_ready_0; // @[DCache.scala:101:7] wire nodeOut_a_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_param; // @[MixedNode.scala:542:17] wire [3:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17] wire nodeOut_a_bits_source; // @[MixedNode.scala:542:17] wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17] wire [7:0] nodeOut_a_bits_mask; // @[MixedNode.scala:542:17] wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17] wire nodeOut_b_ready; // @[MixedNode.scala:542:17] wire nodeOut_b_valid = auto_out_b_valid_0; // @[DCache.scala:101:7] wire [2:0] nodeOut_b_bits_opcode = auto_out_b_bits_opcode_0; // @[DCache.scala:101:7] wire [1:0] nodeOut_b_bits_param = auto_out_b_bits_param_0; // @[DCache.scala:101:7] wire [3:0] nodeOut_b_bits_size = auto_out_b_bits_size_0; // @[DCache.scala:101:7] wire nodeOut_b_bits_source = auto_out_b_bits_source_0; // @[DCache.scala:101:7] wire [31:0] nodeOut_b_bits_address = auto_out_b_bits_address_0; // @[DCache.scala:101:7] wire [7:0] nodeOut_b_bits_mask = auto_out_b_bits_mask_0; // @[DCache.scala:101:7] wire [63:0] nodeOut_b_bits_data = auto_out_b_bits_data_0; // @[DCache.scala:101:7] wire nodeOut_b_bits_corrupt = auto_out_b_bits_corrupt_0; // @[DCache.scala:101:7] wire nodeOut_c_ready = auto_out_c_ready_0; // @[DCache.scala:101:7] wire nodeOut_c_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_c_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_c_bits_param; // @[MixedNode.scala:542:17] wire [3:0] nodeOut_c_bits_size; // @[MixedNode.scala:542:17] wire nodeOut_c_bits_source; // @[MixedNode.scala:542:17] wire [31:0] nodeOut_c_bits_address; // @[MixedNode.scala:542:17] wire [63:0] nodeOut_c_bits_data; // @[MixedNode.scala:542:17] wire nodeOut_d_ready; // @[MixedNode.scala:542:17] wire nodeOut_d_valid = auto_out_d_valid_0; // @[DCache.scala:101:7] wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[DCache.scala:101:7] wire [1:0] nodeOut_d_bits_param = auto_out_d_bits_param_0; // @[DCache.scala:101:7] wire [3:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[DCache.scala:101:7] wire nodeOut_d_bits_source = auto_out_d_bits_source_0; // @[DCache.scala:101:7] wire [2:0] nodeOut_d_bits_sink = auto_out_d_bits_sink_0; // @[DCache.scala:101:7] wire nodeOut_d_bits_denied = auto_out_d_bits_denied_0; // @[DCache.scala:101:7] wire [63:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[DCache.scala:101:7] wire nodeOut_d_bits_corrupt = auto_out_d_bits_corrupt_0; // @[DCache.scala:101:7] wire nodeOut_e_ready = auto_out_e_ready_0; // @[DCache.scala:101:7] wire nodeOut_e_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_e_bits_sink; // @[MixedNode.scala:542:17] wire metaArb_io_in_7_valid = io_cpu_req_valid_0; // @[DCache.scala:101:7, :135:28] wire [39:0] metaArb_io_in_7_bits_addr = io_cpu_req_bits_addr_0; // @[DCache.scala:101:7, :135:28] wire [6:0] s0_req_tag = io_cpu_req_bits_tag_0; // @[DCache.scala:101:7, :192:24] wire [4:0] s0_req_cmd = io_cpu_req_bits_cmd_0; // @[DCache.scala:101:7, :192:24] wire [1:0] s0_req_size = io_cpu_req_bits_size_0; // @[DCache.scala:101:7, :192:24] wire s0_req_signed = io_cpu_req_bits_signed_0; // @[DCache.scala:101:7, :192:24] wire [1:0] s0_req_dprv = io_cpu_req_bits_dprv_0; // @[DCache.scala:101:7, :192:24] wire s0_req_dv = io_cpu_req_bits_dv_0; // @[DCache.scala:101:7, :192:24] wire s0_req_no_resp = io_cpu_req_bits_no_resp_0; // @[DCache.scala:101:7, :192:24] wire _io_cpu_s2_nack_T_5; // @[DCache.scala:445:86] wire _io_cpu_s2_nack_cause_raw_T_3; // @[DCache.scala:574:54] wire _io_cpu_s2_uncached_T_1; // @[DCache.scala:920:37] wire _io_cpu_resp_valid_T_2; // @[DCache.scala:949:70] wire [63:0] _io_cpu_resp_bits_data_T_24; // @[DCache.scala:974:41] wire s2_read; // @[Consts.scala:89:68] wire [63:0] _io_cpu_resp_bits_data_word_bypass_T_7; // @[AMOALU.scala:45:16] wire [63:0] s2_data_word; // @[DCache.scala:970:80] wire _io_cpu_replay_next_T_3; // @[DCache.scala:950:62] wire _io_cpu_s2_xcpt_T_ma_ld; // @[DCache.scala:933:24] wire _io_cpu_s2_xcpt_T_ma_st; // @[DCache.scala:933:24] wire _io_cpu_s2_xcpt_T_pf_ld; // @[DCache.scala:933:24] wire _io_cpu_s2_xcpt_T_pf_st; // @[DCache.scala:933:24] wire _io_cpu_s2_xcpt_T_ae_ld; // @[DCache.scala:933:24] wire _io_cpu_s2_xcpt_T_ae_st; // @[DCache.scala:933:24] wire _io_cpu_ordered_T_8; // @[DCache.scala:929:21] wire _io_cpu_store_pending_T_25; // @[DCache.scala:930:70] wire io_cpu_perf_acquire_done; // @[Edges.scala:233:22] wire io_cpu_perf_release_done; // @[Edges.scala:233:22] wire _io_cpu_perf_grant_T; // @[DCache.scala:1078:39] wire _io_cpu_perf_tlbMiss_T; // @[Decoupled.scala:51:35] wire _io_cpu_perf_blocked_T_1; // @[DCache.scala:1106:23] wire _io_cpu_perf_canAcceptStoreThenLoad_T_10; // @[DCache.scala:1088:41] wire _io_cpu_perf_canAcceptStoreThenRMW_T_1; // @[DCache.scala:1091:75] wire _io_cpu_perf_canAcceptLoadThenLoad_T_61; // @[DCache.scala:1092:40] wire _io_cpu_perf_storeBufferEmptyAfterLoad_T_7; // @[DCache.scala:1080:44] wire _io_cpu_perf_storeBufferEmptyAfterStore_T_10; // @[DCache.scala:1084:45] wire _io_errors_bus_valid_T_2; // @[DCache.scala:1129:42] wire [2:0] auto_out_a_bits_opcode_0; // @[DCache.scala:101:7] wire [2:0] auto_out_a_bits_param_0; // @[DCache.scala:101:7] wire [3:0] auto_out_a_bits_size_0; // @[DCache.scala:101:7] wire auto_out_a_bits_source_0; // @[DCache.scala:101:7] wire [31:0] auto_out_a_bits_address_0; // @[DCache.scala:101:7] wire [7:0] auto_out_a_bits_mask_0; // @[DCache.scala:101:7] wire [63:0] auto_out_a_bits_data_0; // @[DCache.scala:101:7] wire auto_out_a_valid_0; // @[DCache.scala:101:7] wire auto_out_b_ready_0; // @[DCache.scala:101:7] wire [2:0] auto_out_c_bits_opcode_0; // @[DCache.scala:101:7] wire [2:0] auto_out_c_bits_param_0; // @[DCache.scala:101:7] wire [3:0] auto_out_c_bits_size_0; // @[DCache.scala:101:7] wire auto_out_c_bits_source_0; // @[DCache.scala:101:7] wire [31:0] auto_out_c_bits_address_0; // @[DCache.scala:101:7] wire [63:0] auto_out_c_bits_data_0; // @[DCache.scala:101:7] wire auto_out_c_valid_0; // @[DCache.scala:101:7] wire auto_out_d_ready_0; // @[DCache.scala:101:7] wire [2:0] auto_out_e_bits_sink_0; // @[DCache.scala:101:7] wire auto_out_e_valid_0; // @[DCache.scala:101:7] wire io_cpu_req_ready_0; // @[DCache.scala:101:7] wire [39:0] io_cpu_resp_bits_addr_0; // @[DCache.scala:101:7] wire [6:0] io_cpu_resp_bits_tag_0; // @[DCache.scala:101:7] wire [4:0] io_cpu_resp_bits_cmd_0; // @[DCache.scala:101:7] wire [1:0] io_cpu_resp_bits_size_0; // @[DCache.scala:101:7] wire io_cpu_resp_bits_signed_0; // @[DCache.scala:101:7] wire [1:0] io_cpu_resp_bits_dprv_0; // @[DCache.scala:101:7] wire io_cpu_resp_bits_dv_0; // @[DCache.scala:101:7] wire [63:0] io_cpu_resp_bits_data_0; // @[DCache.scala:101:7] wire [7:0] io_cpu_resp_bits_mask_0; // @[DCache.scala:101:7] wire io_cpu_resp_bits_replay_0; // @[DCache.scala:101:7] wire io_cpu_resp_bits_has_data_0; // @[DCache.scala:101:7] wire [63:0] io_cpu_resp_bits_data_word_bypass_0; // @[DCache.scala:101:7] wire [63:0] io_cpu_resp_bits_data_raw_0; // @[DCache.scala:101:7] wire [63:0] io_cpu_resp_bits_store_data_0; // @[DCache.scala:101:7] wire io_cpu_resp_valid_0; // @[DCache.scala:101:7] wire io_cpu_s2_xcpt_ma_ld_0; // @[DCache.scala:101:7] wire io_cpu_s2_xcpt_ma_st_0; // @[DCache.scala:101:7] wire io_cpu_s2_xcpt_pf_ld_0; // @[DCache.scala:101:7] wire io_cpu_s2_xcpt_pf_st_0; // @[DCache.scala:101:7] wire io_cpu_s2_xcpt_ae_ld_0; // @[DCache.scala:101:7] wire io_cpu_s2_xcpt_ae_st_0; // @[DCache.scala:101:7] wire io_cpu_perf_acquire_0; // @[DCache.scala:101:7] wire io_cpu_perf_release_0; // @[DCache.scala:101:7] wire io_cpu_perf_grant_0; // @[DCache.scala:101:7] wire io_cpu_perf_tlbMiss_0; // @[DCache.scala:101:7] wire io_cpu_perf_blocked_0; // @[DCache.scala:101:7] wire io_cpu_perf_canAcceptStoreThenLoad_0; // @[DCache.scala:101:7] wire io_cpu_perf_canAcceptStoreThenRMW_0; // @[DCache.scala:101:7] wire io_cpu_perf_canAcceptLoadThenLoad_0; // @[DCache.scala:101:7] wire io_cpu_perf_storeBufferEmptyAfterLoad_0; // @[DCache.scala:101:7] wire io_cpu_perf_storeBufferEmptyAfterStore_0; // @[DCache.scala:101:7] wire io_cpu_s2_nack_0; // @[DCache.scala:101:7] wire io_cpu_s2_nack_cause_raw_0; // @[DCache.scala:101:7] wire io_cpu_s2_uncached_0; // @[DCache.scala:101:7] wire [31:0] io_cpu_s2_paddr_0; // @[DCache.scala:101:7] wire io_cpu_replay_next_0; // @[DCache.scala:101:7] wire [39:0] io_cpu_s2_gpa_0; // @[DCache.scala:101:7] wire io_cpu_ordered_0; // @[DCache.scala:101:7] wire io_cpu_store_pending_0; // @[DCache.scala:101:7] wire [26:0] io_ptw_req_bits_bits_addr_0; // @[DCache.scala:101:7] wire io_ptw_req_bits_bits_need_gpa_0; // @[DCache.scala:101:7] wire io_ptw_req_valid_0; // @[DCache.scala:101:7] wire io_errors_bus_valid; // @[DCache.scala:101:7] wire [31:0] io_errors_bus_bits; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_pf_ld; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_pf_st; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_pf_inst; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_ae_ld; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_ae_st; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_ae_inst; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_ma_ld; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_ma_st; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_miss; // @[DCache.scala:101:7] wire [31:0] io_tlb_port_s1_resp_paddr; // @[DCache.scala:101:7] wire [39:0] io_tlb_port_s1_resp_gpa; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_cacheable; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_must_alloc; // @[DCache.scala:101:7] wire io_tlb_port_s1_resp_prefetchable; // @[DCache.scala:101:7] wire [1:0] io_tlb_port_s1_resp_size; // @[DCache.scala:101:7] wire [4:0] io_tlb_port_s1_resp_cmd; // @[DCache.scala:101:7] wire nodeOut_a_deq_ready = nodeOut_a_ready; // @[Decoupled.scala:356:21] wire nodeOut_a_deq_valid; // @[Decoupled.scala:356:21] assign auto_out_a_valid_0 = nodeOut_a_valid; // @[DCache.scala:101:7] wire [2:0] nodeOut_a_deq_bits_opcode; // @[Decoupled.scala:356:21] assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[DCache.scala:101:7] wire [2:0] nodeOut_a_deq_bits_param; // @[Decoupled.scala:356:21] assign auto_out_a_bits_param_0 = nodeOut_a_bits_param; // @[DCache.scala:101:7] wire [3:0] nodeOut_a_deq_bits_size; // @[Decoupled.scala:356:21] assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[DCache.scala:101:7] wire nodeOut_a_deq_bits_source; // @[Decoupled.scala:356:21] assign auto_out_a_bits_source_0 = nodeOut_a_bits_source; // @[DCache.scala:101:7] wire [31:0] nodeOut_a_deq_bits_address; // @[Decoupled.scala:356:21] assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[DCache.scala:101:7] wire [7:0] nodeOut_a_deq_bits_mask; // @[Decoupled.scala:356:21] assign auto_out_a_bits_mask_0 = nodeOut_a_bits_mask; // @[DCache.scala:101:7] wire [63:0] nodeOut_a_deq_bits_data; // @[Decoupled.scala:356:21] assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[DCache.scala:101:7] wire _nodeOut_b_ready_T_4; // @[DCache.scala:770:44] assign auto_out_b_ready_0 = nodeOut_b_ready; // @[DCache.scala:101:7] assign auto_out_c_valid_0 = nodeOut_c_valid; // @[DCache.scala:101:7] assign auto_out_c_bits_opcode_0 = nodeOut_c_bits_opcode; // @[DCache.scala:101:7] assign auto_out_c_bits_param_0 = nodeOut_c_bits_param; // @[DCache.scala:101:7] assign auto_out_c_bits_size_0 = nodeOut_c_bits_size; // @[DCache.scala:101:7] assign auto_out_c_bits_source_0 = nodeOut_c_bits_source; // @[DCache.scala:101:7] assign auto_out_c_bits_address_0 = nodeOut_c_bits_address; // @[DCache.scala:101:7] wire [63:0] s2_data_corrected; // @[package.scala:45:27] assign auto_out_c_bits_data_0 = nodeOut_c_bits_data; // @[DCache.scala:101:7] assign auto_out_d_ready_0 = nodeOut_d_ready; // @[DCache.scala:101:7] wire uncachedRespIdxOH_shiftAmount = nodeOut_d_bits_source; // @[OneHot.scala:64:49] wire [2:0] nodeOut_e_bits_e_sink = nodeOut_d_bits_sink; // @[Edges.scala:451:17] wire [63:0] s1_uncached_data_word = nodeOut_d_bits_data; // @[package.scala:211:50] assign auto_out_e_valid_0 = nodeOut_e_valid; // @[DCache.scala:101:7] assign auto_out_e_bits_sink_0 = nodeOut_e_bits_sink; // @[DCache.scala:101:7] wire [1:0] pma_checker_io_resp_size = pma_checker_io_req_bits_size; // @[DCache.scala:120:32] wire [4:0] pma_checker_io_resp_cmd = pma_checker_io_req_bits_cmd; // @[DCache.scala:120:32] wire [31:0] pma_checker__io_resp_paddr_T_1; // @[TLB.scala:652:23] wire [39:0] pma_checker__io_resp_gpa_T; // @[TLB.scala:659:8] wire pma_checker__io_resp_pf_ld_T_3; // @[TLB.scala:633:41] wire pma_checker__io_resp_pf_st_T_3; // @[TLB.scala:634:48] wire pma_checker__io_resp_pf_inst_T_2; // @[TLB.scala:635:29] wire pma_checker__io_resp_ae_ld_T_1; // @[TLB.scala:641:41] wire pma_checker__io_resp_ae_st_T_1; // @[TLB.scala:642:41] wire pma_checker__io_resp_ae_inst_T_2; // @[TLB.scala:643:41] wire pma_checker__io_resp_ma_ld_T; // @[TLB.scala:645:31] wire pma_checker__io_resp_ma_st_T; // @[TLB.scala:646:31] wire pma_checker__io_resp_cacheable_T_1; // @[TLB.scala:648:41] wire pma_checker__io_resp_must_alloc_T_1; // @[TLB.scala:649:51] wire pma_checker__io_resp_prefetchable_T_2; // @[TLB.scala:650:59] wire [39:0] pma_checker_io_req_bits_vaddr; // @[DCache.scala:120:32] wire [1:0] pma_checker_io_req_bits_prv; // @[DCache.scala:120:32] wire pma_checker_io_req_bits_v; // @[DCache.scala:120:32] wire pma_checker_io_resp_pf_ld; // @[DCache.scala:120:32] wire pma_checker_io_resp_pf_st; // @[DCache.scala:120:32] wire pma_checker_io_resp_pf_inst; // @[DCache.scala:120:32] wire pma_checker_io_resp_ae_ld; // @[DCache.scala:120:32] wire pma_checker_io_resp_ae_st; // @[DCache.scala:120:32] wire pma_checker_io_resp_ae_inst; // @[DCache.scala:120:32] wire pma_checker_io_resp_ma_ld; // @[DCache.scala:120:32] wire pma_checker_io_resp_ma_st; // @[DCache.scala:120:32] wire [31:0] pma_checker_io_resp_paddr; // @[DCache.scala:120:32] wire [39:0] pma_checker_io_resp_gpa; // @[DCache.scala:120:32] wire pma_checker_io_resp_cacheable; // @[DCache.scala:120:32] wire pma_checker_io_resp_must_alloc; // @[DCache.scala:120:32] wire pma_checker_io_resp_prefetchable; // @[DCache.scala:120:32] wire [26:0] pma_checker_vpn = pma_checker_io_req_bits_vaddr[38:12]; // @[TLB.scala:335:30] wire [26:0] pma_checker__mpu_ppn_T_24 = pma_checker_vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] pma_checker__mpu_ppn_T_28 = pma_checker_vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] pma_checker__sector_hits_T_3 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__sector_hits_T_11 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__sector_hits_T_19 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__sector_hits_T_27 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__sector_hits_T_35 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__sector_hits_T_43 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__sector_hits_T_51 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__sector_hits_T_59 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__superpage_hits_T = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_5 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_10 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_14 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_19 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_24 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_28 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_33 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_38 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_42 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_47 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__superpage_hits_T_52 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__hitsVec_T_6 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__hitsVec_T_12 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__hitsVec_T_18 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__hitsVec_T_24 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__hitsVec_T_30 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__hitsVec_T_36 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__hitsVec_T_42 = pma_checker_vpn; // @[TLB.scala:174:61, :335:30] wire [26:0] pma_checker__hitsVec_T_48 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_53 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_58 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_63 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_68 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_73 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_78 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_83 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_88 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_93 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_98 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_103 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_108 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_113 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__hitsVec_T_118 = pma_checker_vpn; // @[TLB.scala:183:52, :335:30] wire [26:0] pma_checker__ppn_T_5 = pma_checker_vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] pma_checker__ppn_T_13 = pma_checker_vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] pma_checker__ppn_T_21 = pma_checker_vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] pma_checker__ppn_T_29 = pma_checker_vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] pma_checker__ppn_T_33 = pma_checker_vpn; // @[TLB.scala:198:28, :335:30] wire [26:0] pma_checker__ppn_T_37 = pma_checker_vpn; // @[TLB.scala:198:28, :335:30] wire pma_checker_priv_s = pma_checker_io_req_bits_prv[0]; // @[TLB.scala:370:20] wire pma_checker_priv_uses_vm = ~(pma_checker_io_req_bits_prv[1]); // @[TLB.scala:372:27] wire [19:0] pma_checker__mpu_ppn_T_23; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_22; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_21; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_20; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_19; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_18; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_17; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_16; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_15; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_14; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_13; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_12; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_11; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_10; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_9; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_8; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_7; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_6; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_5; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_4; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_3; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_2; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_T_1; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_1 = pma_checker__mpu_ppn_WIRE_1[0]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_fragmented_superpage = pma_checker__mpu_ppn_T_1; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_2 = pma_checker__mpu_ppn_WIRE_1[1]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_c = pma_checker__mpu_ppn_T_2; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_3 = pma_checker__mpu_ppn_WIRE_1[2]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_eff = pma_checker__mpu_ppn_T_3; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_4 = pma_checker__mpu_ppn_WIRE_1[3]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_paa = pma_checker__mpu_ppn_T_4; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_5 = pma_checker__mpu_ppn_WIRE_1[4]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_pal = pma_checker__mpu_ppn_T_5; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_6 = pma_checker__mpu_ppn_WIRE_1[5]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_ppp = pma_checker__mpu_ppn_T_6; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_7 = pma_checker__mpu_ppn_WIRE_1[6]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_pr = pma_checker__mpu_ppn_T_7; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_8 = pma_checker__mpu_ppn_WIRE_1[7]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_px = pma_checker__mpu_ppn_T_8; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_9 = pma_checker__mpu_ppn_WIRE_1[8]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_pw = pma_checker__mpu_ppn_T_9; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_10 = pma_checker__mpu_ppn_WIRE_1[9]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_hr = pma_checker__mpu_ppn_T_10; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_11 = pma_checker__mpu_ppn_WIRE_1[10]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_hx = pma_checker__mpu_ppn_T_11; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_12 = pma_checker__mpu_ppn_WIRE_1[11]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_hw = pma_checker__mpu_ppn_T_12; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_13 = pma_checker__mpu_ppn_WIRE_1[12]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_sr = pma_checker__mpu_ppn_T_13; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_14 = pma_checker__mpu_ppn_WIRE_1[13]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_sx = pma_checker__mpu_ppn_T_14; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_15 = pma_checker__mpu_ppn_WIRE_1[14]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_sw = pma_checker__mpu_ppn_T_15; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_16 = pma_checker__mpu_ppn_WIRE_1[15]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_gf = pma_checker__mpu_ppn_T_16; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_17 = pma_checker__mpu_ppn_WIRE_1[16]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_pf = pma_checker__mpu_ppn_T_17; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_18 = pma_checker__mpu_ppn_WIRE_1[17]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_ae_stage2 = pma_checker__mpu_ppn_T_18; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_19 = pma_checker__mpu_ppn_WIRE_1[18]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_ae_final = pma_checker__mpu_ppn_T_19; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_20 = pma_checker__mpu_ppn_WIRE_1[19]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_ae_ptw = pma_checker__mpu_ppn_T_20; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_21 = pma_checker__mpu_ppn_WIRE_1[20]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_g = pma_checker__mpu_ppn_T_21; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_22 = pma_checker__mpu_ppn_WIRE_1[21]; // @[TLB.scala:170:77] wire pma_checker__mpu_ppn_WIRE_u = pma_checker__mpu_ppn_T_22; // @[TLB.scala:170:77] assign pma_checker__mpu_ppn_T_23 = pma_checker__mpu_ppn_WIRE_1[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__mpu_ppn_WIRE_ppn = pma_checker__mpu_ppn_T_23; // @[TLB.scala:170:77] wire [1:0] pma_checker_mpu_ppn_res = _pma_checker_mpu_ppn_barrier_io_y_ppn[19:18]; // @[package.scala:267:25] wire [26:0] pma_checker__mpu_ppn_T_25 = {pma_checker__mpu_ppn_T_24[26:20], pma_checker__mpu_ppn_T_24[19:0] | _pma_checker_mpu_ppn_barrier_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__mpu_ppn_T_26 = pma_checker__mpu_ppn_T_25[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] pma_checker__mpu_ppn_T_27 = {pma_checker_mpu_ppn_res, pma_checker__mpu_ppn_T_26}; // @[TLB.scala:195:26, :198:{18,58}] wire [26:0] pma_checker__mpu_ppn_T_29 = {pma_checker__mpu_ppn_T_28[26:20], pma_checker__mpu_ppn_T_28[19:0] | _pma_checker_mpu_ppn_barrier_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__mpu_ppn_T_30 = pma_checker__mpu_ppn_T_29[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] pma_checker__mpu_ppn_T_31 = {pma_checker__mpu_ppn_T_27, pma_checker__mpu_ppn_T_30}; // @[TLB.scala:198:{18,58}] wire [27:0] pma_checker__mpu_ppn_T_32 = pma_checker_io_req_bits_vaddr[39:12]; // @[TLB.scala:413:146] wire [27:0] pma_checker__mpu_ppn_T_33 = pma_checker__mpu_ppn_T_32; // @[TLB.scala:413:{20,146}] wire [27:0] pma_checker_mpu_ppn = pma_checker__mpu_ppn_T_33; // @[TLB.scala:412:20, :413:20] wire [11:0] pma_checker__mpu_physaddr_T = pma_checker_io_req_bits_vaddr[11:0]; // @[TLB.scala:414:52] wire [11:0] pma_checker__io_resp_paddr_T = pma_checker_io_req_bits_vaddr[11:0]; // @[TLB.scala:414:52, :652:46] wire [11:0] pma_checker__io_resp_gpa_offset_T_1 = pma_checker_io_req_bits_vaddr[11:0]; // @[TLB.scala:414:52, :658:82] wire [39:0] pma_checker_mpu_physaddr = {pma_checker_mpu_ppn, pma_checker__mpu_physaddr_T}; // @[TLB.scala:412:20, :414:{25,52}] wire [39:0] pma_checker__homogeneous_T = pma_checker_mpu_physaddr; // @[TLB.scala:414:25] wire [39:0] pma_checker__homogeneous_T_67 = pma_checker_mpu_physaddr; // @[TLB.scala:414:25] wire [39:0] pma_checker__deny_access_to_debug_T_1 = pma_checker_mpu_physaddr; // @[TLB.scala:414:25] wire [2:0] pma_checker__mpu_priv_T_2 = {1'h0, pma_checker_io_req_bits_prv}; // @[TLB.scala:415:103] wire pma_checker_cacheable; // @[TLB.scala:425:41] wire pma_checker_newEntry_c = pma_checker_cacheable; // @[TLB.scala:425:41, :449:24] wire [40:0] pma_checker__homogeneous_T_1 = {1'h0, pma_checker__homogeneous_T}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_2 = pma_checker__homogeneous_T_1 & 41'h1FFFFFFE000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_3 = pma_checker__homogeneous_T_2; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_4 = pma_checker__homogeneous_T_3 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker__homogeneous_T_50 = pma_checker__homogeneous_T_4; // @[TLBPermissions.scala:101:65] wire [39:0] _GEN = {pma_checker_mpu_physaddr[39:14], pma_checker_mpu_physaddr[13:0] ^ 14'h3000}; // @[TLB.scala:414:25] wire [39:0] pma_checker__homogeneous_T_5; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_5 = _GEN; // @[Parameters.scala:137:31] wire [39:0] pma_checker__homogeneous_T_72; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_72 = _GEN; // @[Parameters.scala:137:31] wire [40:0] pma_checker__homogeneous_T_6 = {1'h0, pma_checker__homogeneous_T_5}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_7 = pma_checker__homogeneous_T_6 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_8 = pma_checker__homogeneous_T_7; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_9 = pma_checker__homogeneous_T_8 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_0 = {pma_checker_mpu_physaddr[39:17], pma_checker_mpu_physaddr[16:0] ^ 17'h10000}; // @[TLB.scala:414:25] wire [39:0] pma_checker__homogeneous_T_10; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_10 = _GEN_0; // @[Parameters.scala:137:31] wire [39:0] pma_checker__homogeneous_T_60; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_60 = _GEN_0; // @[Parameters.scala:137:31] wire [39:0] pma_checker__homogeneous_T_77; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_77 = _GEN_0; // @[Parameters.scala:137:31] wire [39:0] pma_checker__homogeneous_T_109; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_109 = _GEN_0; // @[Parameters.scala:137:31] wire [39:0] pma_checker__homogeneous_T_116; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_116 = _GEN_0; // @[Parameters.scala:137:31] wire [40:0] pma_checker__homogeneous_T_11 = {1'h0, pma_checker__homogeneous_T_10}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_12 = pma_checker__homogeneous_T_11 & 41'h1FFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_13 = pma_checker__homogeneous_T_12; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_14 = pma_checker__homogeneous_T_13 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] pma_checker__homogeneous_T_15 = {pma_checker_mpu_physaddr[39:21], pma_checker_mpu_physaddr[20:0] ^ 21'h100000}; // @[TLB.scala:414:25] wire [40:0] pma_checker__homogeneous_T_16 = {1'h0, pma_checker__homogeneous_T_15}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_17 = pma_checker__homogeneous_T_16 & 41'h1FFFFFEF000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_18 = pma_checker__homogeneous_T_17; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_19 = pma_checker__homogeneous_T_18 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] pma_checker__homogeneous_T_20 = {pma_checker_mpu_physaddr[39:26], pma_checker_mpu_physaddr[25:0] ^ 26'h2000000}; // @[TLB.scala:414:25] wire [40:0] pma_checker__homogeneous_T_21 = {1'h0, pma_checker__homogeneous_T_20}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_22 = pma_checker__homogeneous_T_21 & 41'h1FFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_23 = pma_checker__homogeneous_T_22; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_24 = pma_checker__homogeneous_T_23 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] pma_checker__homogeneous_T_25 = {pma_checker_mpu_physaddr[39:26], pma_checker_mpu_physaddr[25:0] ^ 26'h2010000}; // @[TLB.scala:414:25] wire [40:0] pma_checker__homogeneous_T_26 = {1'h0, pma_checker__homogeneous_T_25}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_27 = pma_checker__homogeneous_T_26 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_28 = pma_checker__homogeneous_T_27; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_29 = pma_checker__homogeneous_T_28 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_1 = {pma_checker_mpu_physaddr[39:28], pma_checker_mpu_physaddr[27:0] ^ 28'h8000000}; // @[TLB.scala:414:25] wire [39:0] pma_checker__homogeneous_T_30; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_30 = _GEN_1; // @[Parameters.scala:137:31] wire [39:0] pma_checker__homogeneous_T_82; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_82 = _GEN_1; // @[Parameters.scala:137:31] wire [39:0] pma_checker__homogeneous_T_97; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_97 = _GEN_1; // @[Parameters.scala:137:31] wire [40:0] pma_checker__homogeneous_T_31 = {1'h0, pma_checker__homogeneous_T_30}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_32 = pma_checker__homogeneous_T_31 & 41'h1FFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_33 = pma_checker__homogeneous_T_32; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_34 = pma_checker__homogeneous_T_33 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] pma_checker__homogeneous_T_35 = {pma_checker_mpu_physaddr[39:28], pma_checker_mpu_physaddr[27:0] ^ 28'hC000000}; // @[TLB.scala:414:25] wire [40:0] pma_checker__homogeneous_T_36 = {1'h0, pma_checker__homogeneous_T_35}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_37 = pma_checker__homogeneous_T_36 & 41'h1FFFC000000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_38 = pma_checker__homogeneous_T_37; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_39 = pma_checker__homogeneous_T_38 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] pma_checker__homogeneous_T_40 = {pma_checker_mpu_physaddr[39:29], pma_checker_mpu_physaddr[28:0] ^ 29'h10020000}; // @[TLB.scala:414:25] wire [40:0] pma_checker__homogeneous_T_41 = {1'h0, pma_checker__homogeneous_T_40}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_42 = pma_checker__homogeneous_T_41 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_43 = pma_checker__homogeneous_T_42; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_44 = pma_checker__homogeneous_T_43 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_2 = {pma_checker_mpu_physaddr[39:32], pma_checker_mpu_physaddr[31:0] ^ 32'h80000000}; // @[TLB.scala:414:25, :417:15] wire [39:0] pma_checker__homogeneous_T_45; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_45 = _GEN_2; // @[Parameters.scala:137:31] wire [39:0] pma_checker__homogeneous_T_87; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_87 = _GEN_2; // @[Parameters.scala:137:31] wire [39:0] pma_checker__homogeneous_T_102; // @[Parameters.scala:137:31] assign pma_checker__homogeneous_T_102 = _GEN_2; // @[Parameters.scala:137:31] wire [40:0] pma_checker__homogeneous_T_46 = {1'h0, pma_checker__homogeneous_T_45}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_47 = pma_checker__homogeneous_T_46 & 41'h1FFF0000000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_48 = pma_checker__homogeneous_T_47; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_49 = pma_checker__homogeneous_T_48 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker__homogeneous_T_51 = pma_checker__homogeneous_T_50 | pma_checker__homogeneous_T_9; // @[TLBPermissions.scala:101:65] wire pma_checker__homogeneous_T_52 = pma_checker__homogeneous_T_51 | pma_checker__homogeneous_T_14; // @[TLBPermissions.scala:101:65] wire pma_checker__homogeneous_T_53 = pma_checker__homogeneous_T_52 | pma_checker__homogeneous_T_19; // @[TLBPermissions.scala:101:65] wire pma_checker__homogeneous_T_54 = pma_checker__homogeneous_T_53 | pma_checker__homogeneous_T_24; // @[TLBPermissions.scala:101:65] wire pma_checker__homogeneous_T_55 = pma_checker__homogeneous_T_54 | pma_checker__homogeneous_T_29; // @[TLBPermissions.scala:101:65] wire pma_checker__homogeneous_T_56 = pma_checker__homogeneous_T_55 | pma_checker__homogeneous_T_34; // @[TLBPermissions.scala:101:65] wire pma_checker__homogeneous_T_57 = pma_checker__homogeneous_T_56 | pma_checker__homogeneous_T_39; // @[TLBPermissions.scala:101:65] wire pma_checker__homogeneous_T_58 = pma_checker__homogeneous_T_57 | pma_checker__homogeneous_T_44; // @[TLBPermissions.scala:101:65] wire pma_checker_homogeneous = pma_checker__homogeneous_T_58 | pma_checker__homogeneous_T_49; // @[TLBPermissions.scala:101:65] wire [40:0] pma_checker__homogeneous_T_61 = {1'h0, pma_checker__homogeneous_T_60}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_62 = pma_checker__homogeneous_T_61 & 41'h8A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_63 = pma_checker__homogeneous_T_62; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_64 = pma_checker__homogeneous_T_63 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker__homogeneous_T_65 = pma_checker__homogeneous_T_64; // @[TLBPermissions.scala:87:66] wire pma_checker__homogeneous_T_66 = ~pma_checker__homogeneous_T_65; // @[TLBPermissions.scala:87:{22,66}] wire [40:0] pma_checker__homogeneous_T_68 = {1'h0, pma_checker__homogeneous_T_67}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_69 = pma_checker__homogeneous_T_68 & 41'h9E113000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_70 = pma_checker__homogeneous_T_69; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_71 = pma_checker__homogeneous_T_70 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker__homogeneous_T_92 = pma_checker__homogeneous_T_71; // @[TLBPermissions.scala:85:66] wire [40:0] pma_checker__homogeneous_T_73 = {1'h0, pma_checker__homogeneous_T_72}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_74 = pma_checker__homogeneous_T_73 & 41'h9E113000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_75 = pma_checker__homogeneous_T_74; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_76 = pma_checker__homogeneous_T_75 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] pma_checker__homogeneous_T_78 = {1'h0, pma_checker__homogeneous_T_77}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_79 = pma_checker__homogeneous_T_78 & 41'h9E110000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_80 = pma_checker__homogeneous_T_79; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_81 = pma_checker__homogeneous_T_80 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] pma_checker__homogeneous_T_83 = {1'h0, pma_checker__homogeneous_T_82}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_84 = pma_checker__homogeneous_T_83 & 41'h9E110000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_85 = pma_checker__homogeneous_T_84; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_86 = pma_checker__homogeneous_T_85 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] pma_checker__homogeneous_T_88 = {1'h0, pma_checker__homogeneous_T_87}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_89 = pma_checker__homogeneous_T_88 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_90 = pma_checker__homogeneous_T_89; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_91 = pma_checker__homogeneous_T_90 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker__homogeneous_T_93 = pma_checker__homogeneous_T_92 | pma_checker__homogeneous_T_76; // @[TLBPermissions.scala:85:66] wire pma_checker__homogeneous_T_94 = pma_checker__homogeneous_T_93 | pma_checker__homogeneous_T_81; // @[TLBPermissions.scala:85:66] wire pma_checker__homogeneous_T_95 = pma_checker__homogeneous_T_94 | pma_checker__homogeneous_T_86; // @[TLBPermissions.scala:85:66] wire pma_checker__homogeneous_T_96 = pma_checker__homogeneous_T_95 | pma_checker__homogeneous_T_91; // @[TLBPermissions.scala:85:66] wire [40:0] pma_checker__homogeneous_T_98 = {1'h0, pma_checker__homogeneous_T_97}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_99 = pma_checker__homogeneous_T_98 & 41'h8E000000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_100 = pma_checker__homogeneous_T_99; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_101 = pma_checker__homogeneous_T_100 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker__homogeneous_T_107 = pma_checker__homogeneous_T_101; // @[TLBPermissions.scala:85:66] wire [40:0] pma_checker__homogeneous_T_103 = {1'h0, pma_checker__homogeneous_T_102}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_104 = pma_checker__homogeneous_T_103 & 41'h80000000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_105 = pma_checker__homogeneous_T_104; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_106 = pma_checker__homogeneous_T_105 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker__homogeneous_T_108 = pma_checker__homogeneous_T_107 | pma_checker__homogeneous_T_106; // @[TLBPermissions.scala:85:66] wire [40:0] pma_checker__homogeneous_T_110 = {1'h0, pma_checker__homogeneous_T_109}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_111 = pma_checker__homogeneous_T_110 & 41'h8A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_112 = pma_checker__homogeneous_T_111; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_113 = pma_checker__homogeneous_T_112 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker__homogeneous_T_114 = pma_checker__homogeneous_T_113; // @[TLBPermissions.scala:87:66] wire pma_checker__homogeneous_T_115 = ~pma_checker__homogeneous_T_114; // @[TLBPermissions.scala:87:{22,66}] wire [40:0] pma_checker__homogeneous_T_117 = {1'h0, pma_checker__homogeneous_T_116}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__homogeneous_T_118 = pma_checker__homogeneous_T_117 & 41'h8A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__homogeneous_T_119 = pma_checker__homogeneous_T_118; // @[Parameters.scala:137:46] wire pma_checker__homogeneous_T_120 = pma_checker__homogeneous_T_119 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker__homogeneous_T_121 = pma_checker__homogeneous_T_120; // @[TLBPermissions.scala:87:66] wire pma_checker__homogeneous_T_122 = ~pma_checker__homogeneous_T_121; // @[TLBPermissions.scala:87:{22,66}] wire [40:0] pma_checker__deny_access_to_debug_T_2 = {1'h0, pma_checker__deny_access_to_debug_T_1}; // @[Parameters.scala:137:{31,41}] wire [40:0] pma_checker__deny_access_to_debug_T_3 = pma_checker__deny_access_to_debug_T_2 & 41'h1FFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [40:0] pma_checker__deny_access_to_debug_T_4 = pma_checker__deny_access_to_debug_T_3; // @[Parameters.scala:137:46] wire pma_checker__deny_access_to_debug_T_5 = pma_checker__deny_access_to_debug_T_4 == 41'h0; // @[Parameters.scala:137:{46,59}] wire pma_checker_deny_access_to_debug = pma_checker__deny_access_to_debug_T_5; // @[TLB.scala:428:50] wire pma_checker__prot_r_T = ~pma_checker_deny_access_to_debug; // @[TLB.scala:428:50, :429:33] wire pma_checker__prot_r_T_1 = _pma_checker_pma_io_resp_r & pma_checker__prot_r_T; // @[TLB.scala:422:19, :429:{30,33}] wire pma_checker__prot_w_T = ~pma_checker_deny_access_to_debug; // @[TLB.scala:428:50, :429:33, :430:33] wire pma_checker__prot_w_T_1 = _pma_checker_pma_io_resp_w & pma_checker__prot_w_T; // @[TLB.scala:422:19, :430:{30,33}] wire pma_checker__prot_x_T = ~pma_checker_deny_access_to_debug; // @[TLB.scala:428:50, :429:33, :434:33] wire pma_checker__prot_x_T_1 = _pma_checker_pma_io_resp_x & pma_checker__prot_x_T; // @[TLB.scala:422:19, :434:{30,33}] wire [24:0] pma_checker__sector_hits_T_4 = pma_checker__sector_hits_T_3[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__sector_hits_T_5 = pma_checker__sector_hits_T_4 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__sector_hits_T_7 = pma_checker__sector_hits_T_5 & pma_checker__sector_hits_T_6; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__sector_hits_T_12 = pma_checker__sector_hits_T_11[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__sector_hits_T_13 = pma_checker__sector_hits_T_12 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__sector_hits_T_15 = pma_checker__sector_hits_T_13 & pma_checker__sector_hits_T_14; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__sector_hits_T_20 = pma_checker__sector_hits_T_19[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__sector_hits_T_21 = pma_checker__sector_hits_T_20 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__sector_hits_T_23 = pma_checker__sector_hits_T_21 & pma_checker__sector_hits_T_22; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__sector_hits_T_28 = pma_checker__sector_hits_T_27[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__sector_hits_T_29 = pma_checker__sector_hits_T_28 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__sector_hits_T_31 = pma_checker__sector_hits_T_29 & pma_checker__sector_hits_T_30; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__sector_hits_T_36 = pma_checker__sector_hits_T_35[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__sector_hits_T_37 = pma_checker__sector_hits_T_36 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__sector_hits_T_39 = pma_checker__sector_hits_T_37 & pma_checker__sector_hits_T_38; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__sector_hits_T_44 = pma_checker__sector_hits_T_43[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__sector_hits_T_45 = pma_checker__sector_hits_T_44 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__sector_hits_T_47 = pma_checker__sector_hits_T_45 & pma_checker__sector_hits_T_46; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__sector_hits_T_52 = pma_checker__sector_hits_T_51[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__sector_hits_T_53 = pma_checker__sector_hits_T_52 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__sector_hits_T_55 = pma_checker__sector_hits_T_53 & pma_checker__sector_hits_T_54; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__sector_hits_T_60 = pma_checker__sector_hits_T_59[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__sector_hits_T_61 = pma_checker__sector_hits_T_60 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__sector_hits_T_63 = pma_checker__sector_hits_T_61 & pma_checker__sector_hits_T_62; // @[TLB.scala:174:{86,95,105}] wire [8:0] pma_checker__superpage_hits_T_1 = pma_checker__superpage_hits_T[26:18]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_2 = pma_checker__superpage_hits_T_1 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__superpage_hits_T_3 = pma_checker__superpage_hits_T_2; // @[TLB.scala:183:{40,79}] wire pma_checker_superpage_hits_ignore_1 = pma_checker__superpage_hits_ignore_T_1; // @[TLB.scala:182:{28,34}] wire [8:0] pma_checker__superpage_hits_T_6 = pma_checker__superpage_hits_T_5[17:9]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_7 = pma_checker__superpage_hits_T_6 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__superpage_hits_T_8 = pma_checker_superpage_hits_ignore_1 | pma_checker__superpage_hits_T_7; // @[TLB.scala:182:34, :183:{40,79}] wire [8:0] pma_checker__superpage_hits_T_11 = pma_checker__superpage_hits_T_10[8:0]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_12 = pma_checker__superpage_hits_T_11 == 9'h0; // @[TLB.scala:183:{58,79}] wire [8:0] pma_checker__superpage_hits_T_15 = pma_checker__superpage_hits_T_14[26:18]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_16 = pma_checker__superpage_hits_T_15 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__superpage_hits_T_17 = pma_checker__superpage_hits_T_16; // @[TLB.scala:183:{40,79}] wire pma_checker_superpage_hits_ignore_4 = pma_checker__superpage_hits_ignore_T_4; // @[TLB.scala:182:{28,34}] wire [8:0] pma_checker__superpage_hits_T_20 = pma_checker__superpage_hits_T_19[17:9]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_21 = pma_checker__superpage_hits_T_20 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__superpage_hits_T_22 = pma_checker_superpage_hits_ignore_4 | pma_checker__superpage_hits_T_21; // @[TLB.scala:182:34, :183:{40,79}] wire [8:0] pma_checker__superpage_hits_T_25 = pma_checker__superpage_hits_T_24[8:0]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_26 = pma_checker__superpage_hits_T_25 == 9'h0; // @[TLB.scala:183:{58,79}] wire [8:0] pma_checker__superpage_hits_T_29 = pma_checker__superpage_hits_T_28[26:18]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_30 = pma_checker__superpage_hits_T_29 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__superpage_hits_T_31 = pma_checker__superpage_hits_T_30; // @[TLB.scala:183:{40,79}] wire pma_checker_superpage_hits_ignore_7 = pma_checker__superpage_hits_ignore_T_7; // @[TLB.scala:182:{28,34}] wire [8:0] pma_checker__superpage_hits_T_34 = pma_checker__superpage_hits_T_33[17:9]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_35 = pma_checker__superpage_hits_T_34 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__superpage_hits_T_36 = pma_checker_superpage_hits_ignore_7 | pma_checker__superpage_hits_T_35; // @[TLB.scala:182:34, :183:{40,79}] wire [8:0] pma_checker__superpage_hits_T_39 = pma_checker__superpage_hits_T_38[8:0]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_40 = pma_checker__superpage_hits_T_39 == 9'h0; // @[TLB.scala:183:{58,79}] wire [8:0] pma_checker__superpage_hits_T_43 = pma_checker__superpage_hits_T_42[26:18]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_44 = pma_checker__superpage_hits_T_43 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__superpage_hits_T_45 = pma_checker__superpage_hits_T_44; // @[TLB.scala:183:{40,79}] wire pma_checker_superpage_hits_ignore_10 = pma_checker__superpage_hits_ignore_T_10; // @[TLB.scala:182:{28,34}] wire [8:0] pma_checker__superpage_hits_T_48 = pma_checker__superpage_hits_T_47[17:9]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_49 = pma_checker__superpage_hits_T_48 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__superpage_hits_T_50 = pma_checker_superpage_hits_ignore_10 | pma_checker__superpage_hits_T_49; // @[TLB.scala:182:34, :183:{40,79}] wire [8:0] pma_checker__superpage_hits_T_53 = pma_checker__superpage_hits_T_52[8:0]; // @[TLB.scala:183:{52,58}] wire pma_checker__superpage_hits_T_54 = pma_checker__superpage_hits_T_53 == 9'h0; // @[TLB.scala:183:{58,79}] wire [1:0] pma_checker_hitsVec_idx = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker_hitsVec_idx_1 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker_hitsVec_idx_2 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker_hitsVec_idx_3 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker_hitsVec_idx_4 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker_hitsVec_idx_5 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker_hitsVec_idx_6 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker_hitsVec_idx_7 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker__entries_T = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker__entries_T_24 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker__entries_T_48 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker__entries_T_72 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker__entries_T_96 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker__entries_T_120 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker__entries_T_144 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [1:0] pma_checker__entries_T_168 = pma_checker_vpn[1:0]; // @[package.scala:163:13] wire [24:0] pma_checker__hitsVec_T_1 = pma_checker__hitsVec_T[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__hitsVec_T_2 = pma_checker__hitsVec_T_1 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__hitsVec_T_4 = pma_checker__hitsVec_T_2 & pma_checker__hitsVec_T_3; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__hitsVec_T_7 = pma_checker__hitsVec_T_6[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__hitsVec_T_8 = pma_checker__hitsVec_T_7 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__hitsVec_T_10 = pma_checker__hitsVec_T_8 & pma_checker__hitsVec_T_9; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__hitsVec_T_13 = pma_checker__hitsVec_T_12[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__hitsVec_T_14 = pma_checker__hitsVec_T_13 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__hitsVec_T_16 = pma_checker__hitsVec_T_14 & pma_checker__hitsVec_T_15; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__hitsVec_T_19 = pma_checker__hitsVec_T_18[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__hitsVec_T_20 = pma_checker__hitsVec_T_19 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__hitsVec_T_22 = pma_checker__hitsVec_T_20 & pma_checker__hitsVec_T_21; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__hitsVec_T_25 = pma_checker__hitsVec_T_24[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__hitsVec_T_26 = pma_checker__hitsVec_T_25 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__hitsVec_T_28 = pma_checker__hitsVec_T_26 & pma_checker__hitsVec_T_27; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__hitsVec_T_31 = pma_checker__hitsVec_T_30[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__hitsVec_T_32 = pma_checker__hitsVec_T_31 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__hitsVec_T_34 = pma_checker__hitsVec_T_32 & pma_checker__hitsVec_T_33; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__hitsVec_T_37 = pma_checker__hitsVec_T_36[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__hitsVec_T_38 = pma_checker__hitsVec_T_37 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__hitsVec_T_40 = pma_checker__hitsVec_T_38 & pma_checker__hitsVec_T_39; // @[TLB.scala:174:{86,95,105}] wire [24:0] pma_checker__hitsVec_T_43 = pma_checker__hitsVec_T_42[26:2]; // @[TLB.scala:174:{61,68}] wire pma_checker__hitsVec_T_44 = pma_checker__hitsVec_T_43 == 25'h0; // @[TLB.scala:174:{68,86}] wire pma_checker__hitsVec_T_46 = pma_checker__hitsVec_T_44 & pma_checker__hitsVec_T_45; // @[TLB.scala:174:{86,95,105}] wire [8:0] pma_checker__hitsVec_T_49 = pma_checker__hitsVec_T_48[26:18]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_50 = pma_checker__hitsVec_T_49 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__hitsVec_T_51 = pma_checker__hitsVec_T_50; // @[TLB.scala:183:{40,79}] wire pma_checker_hitsVec_ignore_1 = pma_checker__hitsVec_ignore_T_1; // @[TLB.scala:182:{28,34}] wire [8:0] pma_checker__hitsVec_T_54 = pma_checker__hitsVec_T_53[17:9]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_55 = pma_checker__hitsVec_T_54 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__hitsVec_T_56 = pma_checker_hitsVec_ignore_1 | pma_checker__hitsVec_T_55; // @[TLB.scala:182:34, :183:{40,79}] wire [8:0] pma_checker__hitsVec_T_59 = pma_checker__hitsVec_T_58[8:0]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_60 = pma_checker__hitsVec_T_59 == 9'h0; // @[TLB.scala:183:{58,79}] wire [8:0] pma_checker__hitsVec_T_64 = pma_checker__hitsVec_T_63[26:18]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_65 = pma_checker__hitsVec_T_64 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__hitsVec_T_66 = pma_checker__hitsVec_T_65; // @[TLB.scala:183:{40,79}] wire pma_checker_hitsVec_ignore_4 = pma_checker__hitsVec_ignore_T_4; // @[TLB.scala:182:{28,34}] wire [8:0] pma_checker__hitsVec_T_69 = pma_checker__hitsVec_T_68[17:9]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_70 = pma_checker__hitsVec_T_69 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__hitsVec_T_71 = pma_checker_hitsVec_ignore_4 | pma_checker__hitsVec_T_70; // @[TLB.scala:182:34, :183:{40,79}] wire [8:0] pma_checker__hitsVec_T_74 = pma_checker__hitsVec_T_73[8:0]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_75 = pma_checker__hitsVec_T_74 == 9'h0; // @[TLB.scala:183:{58,79}] wire [8:0] pma_checker__hitsVec_T_79 = pma_checker__hitsVec_T_78[26:18]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_80 = pma_checker__hitsVec_T_79 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__hitsVec_T_81 = pma_checker__hitsVec_T_80; // @[TLB.scala:183:{40,79}] wire pma_checker_hitsVec_ignore_7 = pma_checker__hitsVec_ignore_T_7; // @[TLB.scala:182:{28,34}] wire [8:0] pma_checker__hitsVec_T_84 = pma_checker__hitsVec_T_83[17:9]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_85 = pma_checker__hitsVec_T_84 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__hitsVec_T_86 = pma_checker_hitsVec_ignore_7 | pma_checker__hitsVec_T_85; // @[TLB.scala:182:34, :183:{40,79}] wire [8:0] pma_checker__hitsVec_T_89 = pma_checker__hitsVec_T_88[8:0]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_90 = pma_checker__hitsVec_T_89 == 9'h0; // @[TLB.scala:183:{58,79}] wire [8:0] pma_checker__hitsVec_T_94 = pma_checker__hitsVec_T_93[26:18]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_95 = pma_checker__hitsVec_T_94 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__hitsVec_T_96 = pma_checker__hitsVec_T_95; // @[TLB.scala:183:{40,79}] wire pma_checker_hitsVec_ignore_10 = pma_checker__hitsVec_ignore_T_10; // @[TLB.scala:182:{28,34}] wire [8:0] pma_checker__hitsVec_T_99 = pma_checker__hitsVec_T_98[17:9]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_100 = pma_checker__hitsVec_T_99 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__hitsVec_T_101 = pma_checker_hitsVec_ignore_10 | pma_checker__hitsVec_T_100; // @[TLB.scala:182:34, :183:{40,79}] wire [8:0] pma_checker__hitsVec_T_104 = pma_checker__hitsVec_T_103[8:0]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_105 = pma_checker__hitsVec_T_104 == 9'h0; // @[TLB.scala:183:{58,79}] wire [8:0] pma_checker__hitsVec_T_109 = pma_checker__hitsVec_T_108[26:18]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_110 = pma_checker__hitsVec_T_109 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker__hitsVec_T_111 = pma_checker__hitsVec_T_110; // @[TLB.scala:183:{40,79}] wire [8:0] pma_checker__hitsVec_T_114 = pma_checker__hitsVec_T_113[17:9]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_115 = pma_checker__hitsVec_T_114 == 9'h0; // @[TLB.scala:183:{58,79}] wire [8:0] pma_checker__hitsVec_T_119 = pma_checker__hitsVec_T_118[8:0]; // @[TLB.scala:183:{52,58}] wire pma_checker__hitsVec_T_120 = pma_checker__hitsVec_T_119 == 9'h0; // @[TLB.scala:183:{58,79}] wire pma_checker_newEntry_ppp; // @[TLB.scala:449:24] wire pma_checker_newEntry_pal; // @[TLB.scala:449:24] wire pma_checker_newEntry_paa; // @[TLB.scala:449:24] wire pma_checker_newEntry_eff; // @[TLB.scala:449:24] wire [1:0] _GEN_3 = {pma_checker_newEntry_c, 1'h0}; // @[TLB.scala:217:24, :449:24] wire [1:0] pma_checker_special_entry_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_special_entry_data_0_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_0_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_0_data_0_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_1_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_1_data_0_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_2_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_2_data_0_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_3_data_0_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_3_data_0_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_0_data_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_0_data_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_1_data_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_1_data_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_2_data_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_2_data_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_3_data_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_3_data_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_4_data_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_4_data_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_5_data_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_5_data_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_6_data_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_6_data_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_7_data_lo_lo_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_7_data_lo_lo_lo = _GEN_3; // @[TLB.scala:217:24] wire [1:0] _GEN_4 = {pma_checker_newEntry_pal, pma_checker_newEntry_paa}; // @[TLB.scala:217:24, :449:24] wire [1:0] pma_checker_special_entry_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_special_entry_data_0_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_0_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_0_data_0_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_1_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_1_data_0_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_2_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_2_data_0_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_superpage_entries_3_data_0_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_3_data_0_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_0_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_0_data_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_1_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_1_data_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_2_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_2_data_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_3_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_3_data_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_4_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_4_data_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_5_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_5_data_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_6_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_6_data_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [1:0] pma_checker_sectored_entries_0_7_data_lo_lo_hi_hi; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_7_data_lo_lo_hi_hi = _GEN_4; // @[TLB.scala:217:24] wire [2:0] pma_checker_special_entry_data_0_lo_lo_hi = {pma_checker_special_entry_data_0_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_special_entry_data_0_lo_lo = {pma_checker_special_entry_data_0_lo_lo_hi, pma_checker_special_entry_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [2:0] _GEN_5 = {2'h0, pma_checker_newEntry_ppp}; // @[TLB.scala:217:24, :449:24] wire [2:0] pma_checker_special_entry_data_0_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_special_entry_data_0_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_0_data_0_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_0_data_0_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_1_data_0_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_1_data_0_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_2_data_0_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_2_data_0_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_3_data_0_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_superpage_entries_3_data_0_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_0_data_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_0_data_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_1_data_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_1_data_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_2_data_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_2_data_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_3_data_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_3_data_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_4_data_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_4_data_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_5_data_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_5_data_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_6_data_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_6_data_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_7_data_lo_hi_lo; // @[TLB.scala:217:24] assign pma_checker_sectored_entries_0_7_data_lo_hi_lo = _GEN_5; // @[TLB.scala:217:24] wire [5:0] pma_checker_special_entry_data_0_lo_hi = {3'h0, pma_checker_special_entry_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_special_entry_data_0_lo = {pma_checker_special_entry_data_0_lo_hi, pma_checker_special_entry_data_0_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__special_entry_data_0_T = {31'h0, pma_checker_special_entry_data_0_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_0_data_0_lo_lo_hi = {pma_checker_superpage_entries_0_data_0_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_superpage_entries_0_data_0_lo_lo = {pma_checker_superpage_entries_0_data_0_lo_lo_hi, pma_checker_superpage_entries_0_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_superpage_entries_0_data_0_lo_hi = {3'h0, pma_checker_superpage_entries_0_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_superpage_entries_0_data_0_lo = {pma_checker_superpage_entries_0_data_0_lo_hi, pma_checker_superpage_entries_0_data_0_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__superpage_entries_0_data_0_T = {31'h0, pma_checker_superpage_entries_0_data_0_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_1_data_0_lo_lo_hi = {pma_checker_superpage_entries_1_data_0_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_superpage_entries_1_data_0_lo_lo = {pma_checker_superpage_entries_1_data_0_lo_lo_hi, pma_checker_superpage_entries_1_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_superpage_entries_1_data_0_lo_hi = {3'h0, pma_checker_superpage_entries_1_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_superpage_entries_1_data_0_lo = {pma_checker_superpage_entries_1_data_0_lo_hi, pma_checker_superpage_entries_1_data_0_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__superpage_entries_1_data_0_T = {31'h0, pma_checker_superpage_entries_1_data_0_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_2_data_0_lo_lo_hi = {pma_checker_superpage_entries_2_data_0_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_superpage_entries_2_data_0_lo_lo = {pma_checker_superpage_entries_2_data_0_lo_lo_hi, pma_checker_superpage_entries_2_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_superpage_entries_2_data_0_lo_hi = {3'h0, pma_checker_superpage_entries_2_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_superpage_entries_2_data_0_lo = {pma_checker_superpage_entries_2_data_0_lo_hi, pma_checker_superpage_entries_2_data_0_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__superpage_entries_2_data_0_T = {31'h0, pma_checker_superpage_entries_2_data_0_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_superpage_entries_3_data_0_lo_lo_hi = {pma_checker_superpage_entries_3_data_0_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_superpage_entries_3_data_0_lo_lo = {pma_checker_superpage_entries_3_data_0_lo_lo_hi, pma_checker_superpage_entries_3_data_0_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_superpage_entries_3_data_0_lo_hi = {3'h0, pma_checker_superpage_entries_3_data_0_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_superpage_entries_3_data_0_lo = {pma_checker_superpage_entries_3_data_0_lo_hi, pma_checker_superpage_entries_3_data_0_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__superpage_entries_3_data_0_T = {31'h0, pma_checker_superpage_entries_3_data_0_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_0_data_lo_lo_hi = {pma_checker_sectored_entries_0_0_data_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_sectored_entries_0_0_data_lo_lo = {pma_checker_sectored_entries_0_0_data_lo_lo_hi, pma_checker_sectored_entries_0_0_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_0_data_lo_hi = {3'h0, pma_checker_sectored_entries_0_0_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_sectored_entries_0_0_data_lo = {pma_checker_sectored_entries_0_0_data_lo_hi, pma_checker_sectored_entries_0_0_data_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__sectored_entries_0_0_data_T = {31'h0, pma_checker_sectored_entries_0_0_data_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_1_data_lo_lo_hi = {pma_checker_sectored_entries_0_1_data_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_sectored_entries_0_1_data_lo_lo = {pma_checker_sectored_entries_0_1_data_lo_lo_hi, pma_checker_sectored_entries_0_1_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_1_data_lo_hi = {3'h0, pma_checker_sectored_entries_0_1_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_sectored_entries_0_1_data_lo = {pma_checker_sectored_entries_0_1_data_lo_hi, pma_checker_sectored_entries_0_1_data_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__sectored_entries_0_1_data_T = {31'h0, pma_checker_sectored_entries_0_1_data_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_2_data_lo_lo_hi = {pma_checker_sectored_entries_0_2_data_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_sectored_entries_0_2_data_lo_lo = {pma_checker_sectored_entries_0_2_data_lo_lo_hi, pma_checker_sectored_entries_0_2_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_2_data_lo_hi = {3'h0, pma_checker_sectored_entries_0_2_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_sectored_entries_0_2_data_lo = {pma_checker_sectored_entries_0_2_data_lo_hi, pma_checker_sectored_entries_0_2_data_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__sectored_entries_0_2_data_T = {31'h0, pma_checker_sectored_entries_0_2_data_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_3_data_lo_lo_hi = {pma_checker_sectored_entries_0_3_data_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_sectored_entries_0_3_data_lo_lo = {pma_checker_sectored_entries_0_3_data_lo_lo_hi, pma_checker_sectored_entries_0_3_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_3_data_lo_hi = {3'h0, pma_checker_sectored_entries_0_3_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_sectored_entries_0_3_data_lo = {pma_checker_sectored_entries_0_3_data_lo_hi, pma_checker_sectored_entries_0_3_data_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__sectored_entries_0_3_data_T = {31'h0, pma_checker_sectored_entries_0_3_data_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_4_data_lo_lo_hi = {pma_checker_sectored_entries_0_4_data_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_sectored_entries_0_4_data_lo_lo = {pma_checker_sectored_entries_0_4_data_lo_lo_hi, pma_checker_sectored_entries_0_4_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_4_data_lo_hi = {3'h0, pma_checker_sectored_entries_0_4_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_sectored_entries_0_4_data_lo = {pma_checker_sectored_entries_0_4_data_lo_hi, pma_checker_sectored_entries_0_4_data_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__sectored_entries_0_4_data_T = {31'h0, pma_checker_sectored_entries_0_4_data_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_5_data_lo_lo_hi = {pma_checker_sectored_entries_0_5_data_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_sectored_entries_0_5_data_lo_lo = {pma_checker_sectored_entries_0_5_data_lo_lo_hi, pma_checker_sectored_entries_0_5_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_5_data_lo_hi = {3'h0, pma_checker_sectored_entries_0_5_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_sectored_entries_0_5_data_lo = {pma_checker_sectored_entries_0_5_data_lo_hi, pma_checker_sectored_entries_0_5_data_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__sectored_entries_0_5_data_T = {31'h0, pma_checker_sectored_entries_0_5_data_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_6_data_lo_lo_hi = {pma_checker_sectored_entries_0_6_data_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_sectored_entries_0_6_data_lo_lo = {pma_checker_sectored_entries_0_6_data_lo_lo_hi, pma_checker_sectored_entries_0_6_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_6_data_lo_hi = {3'h0, pma_checker_sectored_entries_0_6_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_sectored_entries_0_6_data_lo = {pma_checker_sectored_entries_0_6_data_lo_hi, pma_checker_sectored_entries_0_6_data_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__sectored_entries_0_6_data_T = {31'h0, pma_checker_sectored_entries_0_6_data_lo}; // @[TLB.scala:217:24] wire [2:0] pma_checker_sectored_entries_0_7_data_lo_lo_hi = {pma_checker_sectored_entries_0_7_data_lo_lo_hi_hi, pma_checker_newEntry_eff}; // @[TLB.scala:217:24, :449:24] wire [4:0] pma_checker_sectored_entries_0_7_data_lo_lo = {pma_checker_sectored_entries_0_7_data_lo_lo_hi, pma_checker_sectored_entries_0_7_data_lo_lo_lo}; // @[TLB.scala:217:24] wire [5:0] pma_checker_sectored_entries_0_7_data_lo_hi = {3'h0, pma_checker_sectored_entries_0_7_data_lo_hi_lo}; // @[TLB.scala:217:24] wire [10:0] pma_checker_sectored_entries_0_7_data_lo = {pma_checker_sectored_entries_0_7_data_lo_hi, pma_checker_sectored_entries_0_7_data_lo_lo}; // @[TLB.scala:217:24] wire [41:0] pma_checker__sectored_entries_0_7_data_T = {31'h0, pma_checker_sectored_entries_0_7_data_lo}; // @[TLB.scala:217:24] wire [19:0] pma_checker__entries_T_23; // @[TLB.scala:170:77] wire pma_checker__entries_T_22; // @[TLB.scala:170:77] wire pma_checker__entries_T_21; // @[TLB.scala:170:77] wire pma_checker__entries_T_20; // @[TLB.scala:170:77] wire pma_checker__entries_T_19; // @[TLB.scala:170:77] wire pma_checker__entries_T_18; // @[TLB.scala:170:77] wire pma_checker__entries_T_17; // @[TLB.scala:170:77] wire pma_checker__entries_T_16; // @[TLB.scala:170:77] wire pma_checker__entries_T_15; // @[TLB.scala:170:77] wire pma_checker__entries_T_14; // @[TLB.scala:170:77] wire pma_checker__entries_T_13; // @[TLB.scala:170:77] wire pma_checker__entries_T_12; // @[TLB.scala:170:77] wire pma_checker__entries_T_11; // @[TLB.scala:170:77] wire pma_checker__entries_T_10; // @[TLB.scala:170:77] wire pma_checker__entries_T_9; // @[TLB.scala:170:77] wire pma_checker__entries_T_8; // @[TLB.scala:170:77] wire pma_checker__entries_T_7; // @[TLB.scala:170:77] wire pma_checker__entries_T_6; // @[TLB.scala:170:77] wire pma_checker__entries_T_5; // @[TLB.scala:170:77] wire pma_checker__entries_T_4; // @[TLB.scala:170:77] wire pma_checker__entries_T_3; // @[TLB.scala:170:77] wire pma_checker__entries_T_2; // @[TLB.scala:170:77] wire pma_checker__entries_T_1; // @[TLB.scala:170:77] assign pma_checker__entries_T_1 = pma_checker__entries_WIRE_1[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_fragmented_superpage = pma_checker__entries_T_1; // @[TLB.scala:170:77] assign pma_checker__entries_T_2 = pma_checker__entries_WIRE_1[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_c = pma_checker__entries_T_2; // @[TLB.scala:170:77] assign pma_checker__entries_T_3 = pma_checker__entries_WIRE_1[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_eff = pma_checker__entries_T_3; // @[TLB.scala:170:77] assign pma_checker__entries_T_4 = pma_checker__entries_WIRE_1[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_paa = pma_checker__entries_T_4; // @[TLB.scala:170:77] assign pma_checker__entries_T_5 = pma_checker__entries_WIRE_1[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_pal = pma_checker__entries_T_5; // @[TLB.scala:170:77] assign pma_checker__entries_T_6 = pma_checker__entries_WIRE_1[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_ppp = pma_checker__entries_T_6; // @[TLB.scala:170:77] assign pma_checker__entries_T_7 = pma_checker__entries_WIRE_1[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_pr = pma_checker__entries_T_7; // @[TLB.scala:170:77] assign pma_checker__entries_T_8 = pma_checker__entries_WIRE_1[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_px = pma_checker__entries_T_8; // @[TLB.scala:170:77] assign pma_checker__entries_T_9 = pma_checker__entries_WIRE_1[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_pw = pma_checker__entries_T_9; // @[TLB.scala:170:77] assign pma_checker__entries_T_10 = pma_checker__entries_WIRE_1[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_hr = pma_checker__entries_T_10; // @[TLB.scala:170:77] assign pma_checker__entries_T_11 = pma_checker__entries_WIRE_1[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_hx = pma_checker__entries_T_11; // @[TLB.scala:170:77] assign pma_checker__entries_T_12 = pma_checker__entries_WIRE_1[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_hw = pma_checker__entries_T_12; // @[TLB.scala:170:77] assign pma_checker__entries_T_13 = pma_checker__entries_WIRE_1[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_sr = pma_checker__entries_T_13; // @[TLB.scala:170:77] assign pma_checker__entries_T_14 = pma_checker__entries_WIRE_1[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_sx = pma_checker__entries_T_14; // @[TLB.scala:170:77] assign pma_checker__entries_T_15 = pma_checker__entries_WIRE_1[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_sw = pma_checker__entries_T_15; // @[TLB.scala:170:77] assign pma_checker__entries_T_16 = pma_checker__entries_WIRE_1[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_gf = pma_checker__entries_T_16; // @[TLB.scala:170:77] assign pma_checker__entries_T_17 = pma_checker__entries_WIRE_1[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_pf = pma_checker__entries_T_17; // @[TLB.scala:170:77] assign pma_checker__entries_T_18 = pma_checker__entries_WIRE_1[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_ae_stage2 = pma_checker__entries_T_18; // @[TLB.scala:170:77] assign pma_checker__entries_T_19 = pma_checker__entries_WIRE_1[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_ae_final = pma_checker__entries_T_19; // @[TLB.scala:170:77] assign pma_checker__entries_T_20 = pma_checker__entries_WIRE_1[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_ae_ptw = pma_checker__entries_T_20; // @[TLB.scala:170:77] assign pma_checker__entries_T_21 = pma_checker__entries_WIRE_1[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_g = pma_checker__entries_T_21; // @[TLB.scala:170:77] assign pma_checker__entries_T_22 = pma_checker__entries_WIRE_1[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_u = pma_checker__entries_T_22; // @[TLB.scala:170:77] assign pma_checker__entries_T_23 = pma_checker__entries_WIRE_1[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_ppn = pma_checker__entries_T_23; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_47; // @[TLB.scala:170:77] wire pma_checker__entries_T_46; // @[TLB.scala:170:77] wire pma_checker__entries_T_45; // @[TLB.scala:170:77] wire pma_checker__entries_T_44; // @[TLB.scala:170:77] wire pma_checker__entries_T_43; // @[TLB.scala:170:77] wire pma_checker__entries_T_42; // @[TLB.scala:170:77] wire pma_checker__entries_T_41; // @[TLB.scala:170:77] wire pma_checker__entries_T_40; // @[TLB.scala:170:77] wire pma_checker__entries_T_39; // @[TLB.scala:170:77] wire pma_checker__entries_T_38; // @[TLB.scala:170:77] wire pma_checker__entries_T_37; // @[TLB.scala:170:77] wire pma_checker__entries_T_36; // @[TLB.scala:170:77] wire pma_checker__entries_T_35; // @[TLB.scala:170:77] wire pma_checker__entries_T_34; // @[TLB.scala:170:77] wire pma_checker__entries_T_33; // @[TLB.scala:170:77] wire pma_checker__entries_T_32; // @[TLB.scala:170:77] wire pma_checker__entries_T_31; // @[TLB.scala:170:77] wire pma_checker__entries_T_30; // @[TLB.scala:170:77] wire pma_checker__entries_T_29; // @[TLB.scala:170:77] wire pma_checker__entries_T_28; // @[TLB.scala:170:77] wire pma_checker__entries_T_27; // @[TLB.scala:170:77] wire pma_checker__entries_T_26; // @[TLB.scala:170:77] wire pma_checker__entries_T_25; // @[TLB.scala:170:77] assign pma_checker__entries_T_25 = pma_checker__entries_WIRE_3[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_fragmented_superpage = pma_checker__entries_T_25; // @[TLB.scala:170:77] assign pma_checker__entries_T_26 = pma_checker__entries_WIRE_3[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_c = pma_checker__entries_T_26; // @[TLB.scala:170:77] assign pma_checker__entries_T_27 = pma_checker__entries_WIRE_3[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_eff = pma_checker__entries_T_27; // @[TLB.scala:170:77] assign pma_checker__entries_T_28 = pma_checker__entries_WIRE_3[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_paa = pma_checker__entries_T_28; // @[TLB.scala:170:77] assign pma_checker__entries_T_29 = pma_checker__entries_WIRE_3[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_pal = pma_checker__entries_T_29; // @[TLB.scala:170:77] assign pma_checker__entries_T_30 = pma_checker__entries_WIRE_3[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_ppp = pma_checker__entries_T_30; // @[TLB.scala:170:77] assign pma_checker__entries_T_31 = pma_checker__entries_WIRE_3[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_pr = pma_checker__entries_T_31; // @[TLB.scala:170:77] assign pma_checker__entries_T_32 = pma_checker__entries_WIRE_3[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_px = pma_checker__entries_T_32; // @[TLB.scala:170:77] assign pma_checker__entries_T_33 = pma_checker__entries_WIRE_3[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_pw = pma_checker__entries_T_33; // @[TLB.scala:170:77] assign pma_checker__entries_T_34 = pma_checker__entries_WIRE_3[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_hr = pma_checker__entries_T_34; // @[TLB.scala:170:77] assign pma_checker__entries_T_35 = pma_checker__entries_WIRE_3[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_hx = pma_checker__entries_T_35; // @[TLB.scala:170:77] assign pma_checker__entries_T_36 = pma_checker__entries_WIRE_3[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_hw = pma_checker__entries_T_36; // @[TLB.scala:170:77] assign pma_checker__entries_T_37 = pma_checker__entries_WIRE_3[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_sr = pma_checker__entries_T_37; // @[TLB.scala:170:77] assign pma_checker__entries_T_38 = pma_checker__entries_WIRE_3[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_sx = pma_checker__entries_T_38; // @[TLB.scala:170:77] assign pma_checker__entries_T_39 = pma_checker__entries_WIRE_3[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_sw = pma_checker__entries_T_39; // @[TLB.scala:170:77] assign pma_checker__entries_T_40 = pma_checker__entries_WIRE_3[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_gf = pma_checker__entries_T_40; // @[TLB.scala:170:77] assign pma_checker__entries_T_41 = pma_checker__entries_WIRE_3[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_pf = pma_checker__entries_T_41; // @[TLB.scala:170:77] assign pma_checker__entries_T_42 = pma_checker__entries_WIRE_3[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_ae_stage2 = pma_checker__entries_T_42; // @[TLB.scala:170:77] assign pma_checker__entries_T_43 = pma_checker__entries_WIRE_3[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_ae_final = pma_checker__entries_T_43; // @[TLB.scala:170:77] assign pma_checker__entries_T_44 = pma_checker__entries_WIRE_3[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_ae_ptw = pma_checker__entries_T_44; // @[TLB.scala:170:77] assign pma_checker__entries_T_45 = pma_checker__entries_WIRE_3[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_g = pma_checker__entries_T_45; // @[TLB.scala:170:77] assign pma_checker__entries_T_46 = pma_checker__entries_WIRE_3[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_2_u = pma_checker__entries_T_46; // @[TLB.scala:170:77] assign pma_checker__entries_T_47 = pma_checker__entries_WIRE_3[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_2_ppn = pma_checker__entries_T_47; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_71; // @[TLB.scala:170:77] wire pma_checker__entries_T_70; // @[TLB.scala:170:77] wire pma_checker__entries_T_69; // @[TLB.scala:170:77] wire pma_checker__entries_T_68; // @[TLB.scala:170:77] wire pma_checker__entries_T_67; // @[TLB.scala:170:77] wire pma_checker__entries_T_66; // @[TLB.scala:170:77] wire pma_checker__entries_T_65; // @[TLB.scala:170:77] wire pma_checker__entries_T_64; // @[TLB.scala:170:77] wire pma_checker__entries_T_63; // @[TLB.scala:170:77] wire pma_checker__entries_T_62; // @[TLB.scala:170:77] wire pma_checker__entries_T_61; // @[TLB.scala:170:77] wire pma_checker__entries_T_60; // @[TLB.scala:170:77] wire pma_checker__entries_T_59; // @[TLB.scala:170:77] wire pma_checker__entries_T_58; // @[TLB.scala:170:77] wire pma_checker__entries_T_57; // @[TLB.scala:170:77] wire pma_checker__entries_T_56; // @[TLB.scala:170:77] wire pma_checker__entries_T_55; // @[TLB.scala:170:77] wire pma_checker__entries_T_54; // @[TLB.scala:170:77] wire pma_checker__entries_T_53; // @[TLB.scala:170:77] wire pma_checker__entries_T_52; // @[TLB.scala:170:77] wire pma_checker__entries_T_51; // @[TLB.scala:170:77] wire pma_checker__entries_T_50; // @[TLB.scala:170:77] wire pma_checker__entries_T_49; // @[TLB.scala:170:77] assign pma_checker__entries_T_49 = pma_checker__entries_WIRE_5[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_fragmented_superpage = pma_checker__entries_T_49; // @[TLB.scala:170:77] assign pma_checker__entries_T_50 = pma_checker__entries_WIRE_5[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_c = pma_checker__entries_T_50; // @[TLB.scala:170:77] assign pma_checker__entries_T_51 = pma_checker__entries_WIRE_5[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_eff = pma_checker__entries_T_51; // @[TLB.scala:170:77] assign pma_checker__entries_T_52 = pma_checker__entries_WIRE_5[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_paa = pma_checker__entries_T_52; // @[TLB.scala:170:77] assign pma_checker__entries_T_53 = pma_checker__entries_WIRE_5[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_pal = pma_checker__entries_T_53; // @[TLB.scala:170:77] assign pma_checker__entries_T_54 = pma_checker__entries_WIRE_5[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_ppp = pma_checker__entries_T_54; // @[TLB.scala:170:77] assign pma_checker__entries_T_55 = pma_checker__entries_WIRE_5[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_pr = pma_checker__entries_T_55; // @[TLB.scala:170:77] assign pma_checker__entries_T_56 = pma_checker__entries_WIRE_5[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_px = pma_checker__entries_T_56; // @[TLB.scala:170:77] assign pma_checker__entries_T_57 = pma_checker__entries_WIRE_5[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_pw = pma_checker__entries_T_57; // @[TLB.scala:170:77] assign pma_checker__entries_T_58 = pma_checker__entries_WIRE_5[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_hr = pma_checker__entries_T_58; // @[TLB.scala:170:77] assign pma_checker__entries_T_59 = pma_checker__entries_WIRE_5[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_hx = pma_checker__entries_T_59; // @[TLB.scala:170:77] assign pma_checker__entries_T_60 = pma_checker__entries_WIRE_5[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_hw = pma_checker__entries_T_60; // @[TLB.scala:170:77] assign pma_checker__entries_T_61 = pma_checker__entries_WIRE_5[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_sr = pma_checker__entries_T_61; // @[TLB.scala:170:77] assign pma_checker__entries_T_62 = pma_checker__entries_WIRE_5[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_sx = pma_checker__entries_T_62; // @[TLB.scala:170:77] assign pma_checker__entries_T_63 = pma_checker__entries_WIRE_5[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_sw = pma_checker__entries_T_63; // @[TLB.scala:170:77] assign pma_checker__entries_T_64 = pma_checker__entries_WIRE_5[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_gf = pma_checker__entries_T_64; // @[TLB.scala:170:77] assign pma_checker__entries_T_65 = pma_checker__entries_WIRE_5[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_pf = pma_checker__entries_T_65; // @[TLB.scala:170:77] assign pma_checker__entries_T_66 = pma_checker__entries_WIRE_5[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_ae_stage2 = pma_checker__entries_T_66; // @[TLB.scala:170:77] assign pma_checker__entries_T_67 = pma_checker__entries_WIRE_5[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_ae_final = pma_checker__entries_T_67; // @[TLB.scala:170:77] assign pma_checker__entries_T_68 = pma_checker__entries_WIRE_5[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_ae_ptw = pma_checker__entries_T_68; // @[TLB.scala:170:77] assign pma_checker__entries_T_69 = pma_checker__entries_WIRE_5[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_g = pma_checker__entries_T_69; // @[TLB.scala:170:77] assign pma_checker__entries_T_70 = pma_checker__entries_WIRE_5[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_4_u = pma_checker__entries_T_70; // @[TLB.scala:170:77] assign pma_checker__entries_T_71 = pma_checker__entries_WIRE_5[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_4_ppn = pma_checker__entries_T_71; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_95; // @[TLB.scala:170:77] wire pma_checker__entries_T_94; // @[TLB.scala:170:77] wire pma_checker__entries_T_93; // @[TLB.scala:170:77] wire pma_checker__entries_T_92; // @[TLB.scala:170:77] wire pma_checker__entries_T_91; // @[TLB.scala:170:77] wire pma_checker__entries_T_90; // @[TLB.scala:170:77] wire pma_checker__entries_T_89; // @[TLB.scala:170:77] wire pma_checker__entries_T_88; // @[TLB.scala:170:77] wire pma_checker__entries_T_87; // @[TLB.scala:170:77] wire pma_checker__entries_T_86; // @[TLB.scala:170:77] wire pma_checker__entries_T_85; // @[TLB.scala:170:77] wire pma_checker__entries_T_84; // @[TLB.scala:170:77] wire pma_checker__entries_T_83; // @[TLB.scala:170:77] wire pma_checker__entries_T_82; // @[TLB.scala:170:77] wire pma_checker__entries_T_81; // @[TLB.scala:170:77] wire pma_checker__entries_T_80; // @[TLB.scala:170:77] wire pma_checker__entries_T_79; // @[TLB.scala:170:77] wire pma_checker__entries_T_78; // @[TLB.scala:170:77] wire pma_checker__entries_T_77; // @[TLB.scala:170:77] wire pma_checker__entries_T_76; // @[TLB.scala:170:77] wire pma_checker__entries_T_75; // @[TLB.scala:170:77] wire pma_checker__entries_T_74; // @[TLB.scala:170:77] wire pma_checker__entries_T_73; // @[TLB.scala:170:77] assign pma_checker__entries_T_73 = pma_checker__entries_WIRE_7[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_fragmented_superpage = pma_checker__entries_T_73; // @[TLB.scala:170:77] assign pma_checker__entries_T_74 = pma_checker__entries_WIRE_7[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_c = pma_checker__entries_T_74; // @[TLB.scala:170:77] assign pma_checker__entries_T_75 = pma_checker__entries_WIRE_7[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_eff = pma_checker__entries_T_75; // @[TLB.scala:170:77] assign pma_checker__entries_T_76 = pma_checker__entries_WIRE_7[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_paa = pma_checker__entries_T_76; // @[TLB.scala:170:77] assign pma_checker__entries_T_77 = pma_checker__entries_WIRE_7[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_pal = pma_checker__entries_T_77; // @[TLB.scala:170:77] assign pma_checker__entries_T_78 = pma_checker__entries_WIRE_7[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_ppp = pma_checker__entries_T_78; // @[TLB.scala:170:77] assign pma_checker__entries_T_79 = pma_checker__entries_WIRE_7[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_pr = pma_checker__entries_T_79; // @[TLB.scala:170:77] assign pma_checker__entries_T_80 = pma_checker__entries_WIRE_7[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_px = pma_checker__entries_T_80; // @[TLB.scala:170:77] assign pma_checker__entries_T_81 = pma_checker__entries_WIRE_7[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_pw = pma_checker__entries_T_81; // @[TLB.scala:170:77] assign pma_checker__entries_T_82 = pma_checker__entries_WIRE_7[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_hr = pma_checker__entries_T_82; // @[TLB.scala:170:77] assign pma_checker__entries_T_83 = pma_checker__entries_WIRE_7[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_hx = pma_checker__entries_T_83; // @[TLB.scala:170:77] assign pma_checker__entries_T_84 = pma_checker__entries_WIRE_7[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_hw = pma_checker__entries_T_84; // @[TLB.scala:170:77] assign pma_checker__entries_T_85 = pma_checker__entries_WIRE_7[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_sr = pma_checker__entries_T_85; // @[TLB.scala:170:77] assign pma_checker__entries_T_86 = pma_checker__entries_WIRE_7[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_sx = pma_checker__entries_T_86; // @[TLB.scala:170:77] assign pma_checker__entries_T_87 = pma_checker__entries_WIRE_7[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_sw = pma_checker__entries_T_87; // @[TLB.scala:170:77] assign pma_checker__entries_T_88 = pma_checker__entries_WIRE_7[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_gf = pma_checker__entries_T_88; // @[TLB.scala:170:77] assign pma_checker__entries_T_89 = pma_checker__entries_WIRE_7[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_pf = pma_checker__entries_T_89; // @[TLB.scala:170:77] assign pma_checker__entries_T_90 = pma_checker__entries_WIRE_7[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_ae_stage2 = pma_checker__entries_T_90; // @[TLB.scala:170:77] assign pma_checker__entries_T_91 = pma_checker__entries_WIRE_7[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_ae_final = pma_checker__entries_T_91; // @[TLB.scala:170:77] assign pma_checker__entries_T_92 = pma_checker__entries_WIRE_7[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_ae_ptw = pma_checker__entries_T_92; // @[TLB.scala:170:77] assign pma_checker__entries_T_93 = pma_checker__entries_WIRE_7[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_g = pma_checker__entries_T_93; // @[TLB.scala:170:77] assign pma_checker__entries_T_94 = pma_checker__entries_WIRE_7[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_6_u = pma_checker__entries_T_94; // @[TLB.scala:170:77] assign pma_checker__entries_T_95 = pma_checker__entries_WIRE_7[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_6_ppn = pma_checker__entries_T_95; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_119; // @[TLB.scala:170:77] wire pma_checker__entries_T_118; // @[TLB.scala:170:77] wire pma_checker__entries_T_117; // @[TLB.scala:170:77] wire pma_checker__entries_T_116; // @[TLB.scala:170:77] wire pma_checker__entries_T_115; // @[TLB.scala:170:77] wire pma_checker__entries_T_114; // @[TLB.scala:170:77] wire pma_checker__entries_T_113; // @[TLB.scala:170:77] wire pma_checker__entries_T_112; // @[TLB.scala:170:77] wire pma_checker__entries_T_111; // @[TLB.scala:170:77] wire pma_checker__entries_T_110; // @[TLB.scala:170:77] wire pma_checker__entries_T_109; // @[TLB.scala:170:77] wire pma_checker__entries_T_108; // @[TLB.scala:170:77] wire pma_checker__entries_T_107; // @[TLB.scala:170:77] wire pma_checker__entries_T_106; // @[TLB.scala:170:77] wire pma_checker__entries_T_105; // @[TLB.scala:170:77] wire pma_checker__entries_T_104; // @[TLB.scala:170:77] wire pma_checker__entries_T_103; // @[TLB.scala:170:77] wire pma_checker__entries_T_102; // @[TLB.scala:170:77] wire pma_checker__entries_T_101; // @[TLB.scala:170:77] wire pma_checker__entries_T_100; // @[TLB.scala:170:77] wire pma_checker__entries_T_99; // @[TLB.scala:170:77] wire pma_checker__entries_T_98; // @[TLB.scala:170:77] wire pma_checker__entries_T_97; // @[TLB.scala:170:77] assign pma_checker__entries_T_97 = pma_checker__entries_WIRE_9[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_fragmented_superpage = pma_checker__entries_T_97; // @[TLB.scala:170:77] assign pma_checker__entries_T_98 = pma_checker__entries_WIRE_9[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_c = pma_checker__entries_T_98; // @[TLB.scala:170:77] assign pma_checker__entries_T_99 = pma_checker__entries_WIRE_9[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_eff = pma_checker__entries_T_99; // @[TLB.scala:170:77] assign pma_checker__entries_T_100 = pma_checker__entries_WIRE_9[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_paa = pma_checker__entries_T_100; // @[TLB.scala:170:77] assign pma_checker__entries_T_101 = pma_checker__entries_WIRE_9[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_pal = pma_checker__entries_T_101; // @[TLB.scala:170:77] assign pma_checker__entries_T_102 = pma_checker__entries_WIRE_9[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_ppp = pma_checker__entries_T_102; // @[TLB.scala:170:77] assign pma_checker__entries_T_103 = pma_checker__entries_WIRE_9[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_pr = pma_checker__entries_T_103; // @[TLB.scala:170:77] assign pma_checker__entries_T_104 = pma_checker__entries_WIRE_9[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_px = pma_checker__entries_T_104; // @[TLB.scala:170:77] assign pma_checker__entries_T_105 = pma_checker__entries_WIRE_9[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_pw = pma_checker__entries_T_105; // @[TLB.scala:170:77] assign pma_checker__entries_T_106 = pma_checker__entries_WIRE_9[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_hr = pma_checker__entries_T_106; // @[TLB.scala:170:77] assign pma_checker__entries_T_107 = pma_checker__entries_WIRE_9[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_hx = pma_checker__entries_T_107; // @[TLB.scala:170:77] assign pma_checker__entries_T_108 = pma_checker__entries_WIRE_9[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_hw = pma_checker__entries_T_108; // @[TLB.scala:170:77] assign pma_checker__entries_T_109 = pma_checker__entries_WIRE_9[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_sr = pma_checker__entries_T_109; // @[TLB.scala:170:77] assign pma_checker__entries_T_110 = pma_checker__entries_WIRE_9[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_sx = pma_checker__entries_T_110; // @[TLB.scala:170:77] assign pma_checker__entries_T_111 = pma_checker__entries_WIRE_9[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_sw = pma_checker__entries_T_111; // @[TLB.scala:170:77] assign pma_checker__entries_T_112 = pma_checker__entries_WIRE_9[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_gf = pma_checker__entries_T_112; // @[TLB.scala:170:77] assign pma_checker__entries_T_113 = pma_checker__entries_WIRE_9[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_pf = pma_checker__entries_T_113; // @[TLB.scala:170:77] assign pma_checker__entries_T_114 = pma_checker__entries_WIRE_9[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_ae_stage2 = pma_checker__entries_T_114; // @[TLB.scala:170:77] assign pma_checker__entries_T_115 = pma_checker__entries_WIRE_9[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_ae_final = pma_checker__entries_T_115; // @[TLB.scala:170:77] assign pma_checker__entries_T_116 = pma_checker__entries_WIRE_9[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_ae_ptw = pma_checker__entries_T_116; // @[TLB.scala:170:77] assign pma_checker__entries_T_117 = pma_checker__entries_WIRE_9[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_g = pma_checker__entries_T_117; // @[TLB.scala:170:77] assign pma_checker__entries_T_118 = pma_checker__entries_WIRE_9[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_8_u = pma_checker__entries_T_118; // @[TLB.scala:170:77] assign pma_checker__entries_T_119 = pma_checker__entries_WIRE_9[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_8_ppn = pma_checker__entries_T_119; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_143; // @[TLB.scala:170:77] wire pma_checker__entries_T_142; // @[TLB.scala:170:77] wire pma_checker__entries_T_141; // @[TLB.scala:170:77] wire pma_checker__entries_T_140; // @[TLB.scala:170:77] wire pma_checker__entries_T_139; // @[TLB.scala:170:77] wire pma_checker__entries_T_138; // @[TLB.scala:170:77] wire pma_checker__entries_T_137; // @[TLB.scala:170:77] wire pma_checker__entries_T_136; // @[TLB.scala:170:77] wire pma_checker__entries_T_135; // @[TLB.scala:170:77] wire pma_checker__entries_T_134; // @[TLB.scala:170:77] wire pma_checker__entries_T_133; // @[TLB.scala:170:77] wire pma_checker__entries_T_132; // @[TLB.scala:170:77] wire pma_checker__entries_T_131; // @[TLB.scala:170:77] wire pma_checker__entries_T_130; // @[TLB.scala:170:77] wire pma_checker__entries_T_129; // @[TLB.scala:170:77] wire pma_checker__entries_T_128; // @[TLB.scala:170:77] wire pma_checker__entries_T_127; // @[TLB.scala:170:77] wire pma_checker__entries_T_126; // @[TLB.scala:170:77] wire pma_checker__entries_T_125; // @[TLB.scala:170:77] wire pma_checker__entries_T_124; // @[TLB.scala:170:77] wire pma_checker__entries_T_123; // @[TLB.scala:170:77] wire pma_checker__entries_T_122; // @[TLB.scala:170:77] wire pma_checker__entries_T_121; // @[TLB.scala:170:77] assign pma_checker__entries_T_121 = pma_checker__entries_WIRE_11[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_fragmented_superpage = pma_checker__entries_T_121; // @[TLB.scala:170:77] assign pma_checker__entries_T_122 = pma_checker__entries_WIRE_11[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_c = pma_checker__entries_T_122; // @[TLB.scala:170:77] assign pma_checker__entries_T_123 = pma_checker__entries_WIRE_11[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_eff = pma_checker__entries_T_123; // @[TLB.scala:170:77] assign pma_checker__entries_T_124 = pma_checker__entries_WIRE_11[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_paa = pma_checker__entries_T_124; // @[TLB.scala:170:77] assign pma_checker__entries_T_125 = pma_checker__entries_WIRE_11[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_pal = pma_checker__entries_T_125; // @[TLB.scala:170:77] assign pma_checker__entries_T_126 = pma_checker__entries_WIRE_11[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_ppp = pma_checker__entries_T_126; // @[TLB.scala:170:77] assign pma_checker__entries_T_127 = pma_checker__entries_WIRE_11[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_pr = pma_checker__entries_T_127; // @[TLB.scala:170:77] assign pma_checker__entries_T_128 = pma_checker__entries_WIRE_11[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_px = pma_checker__entries_T_128; // @[TLB.scala:170:77] assign pma_checker__entries_T_129 = pma_checker__entries_WIRE_11[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_pw = pma_checker__entries_T_129; // @[TLB.scala:170:77] assign pma_checker__entries_T_130 = pma_checker__entries_WIRE_11[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_hr = pma_checker__entries_T_130; // @[TLB.scala:170:77] assign pma_checker__entries_T_131 = pma_checker__entries_WIRE_11[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_hx = pma_checker__entries_T_131; // @[TLB.scala:170:77] assign pma_checker__entries_T_132 = pma_checker__entries_WIRE_11[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_hw = pma_checker__entries_T_132; // @[TLB.scala:170:77] assign pma_checker__entries_T_133 = pma_checker__entries_WIRE_11[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_sr = pma_checker__entries_T_133; // @[TLB.scala:170:77] assign pma_checker__entries_T_134 = pma_checker__entries_WIRE_11[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_sx = pma_checker__entries_T_134; // @[TLB.scala:170:77] assign pma_checker__entries_T_135 = pma_checker__entries_WIRE_11[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_sw = pma_checker__entries_T_135; // @[TLB.scala:170:77] assign pma_checker__entries_T_136 = pma_checker__entries_WIRE_11[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_gf = pma_checker__entries_T_136; // @[TLB.scala:170:77] assign pma_checker__entries_T_137 = pma_checker__entries_WIRE_11[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_pf = pma_checker__entries_T_137; // @[TLB.scala:170:77] assign pma_checker__entries_T_138 = pma_checker__entries_WIRE_11[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_ae_stage2 = pma_checker__entries_T_138; // @[TLB.scala:170:77] assign pma_checker__entries_T_139 = pma_checker__entries_WIRE_11[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_ae_final = pma_checker__entries_T_139; // @[TLB.scala:170:77] assign pma_checker__entries_T_140 = pma_checker__entries_WIRE_11[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_ae_ptw = pma_checker__entries_T_140; // @[TLB.scala:170:77] assign pma_checker__entries_T_141 = pma_checker__entries_WIRE_11[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_g = pma_checker__entries_T_141; // @[TLB.scala:170:77] assign pma_checker__entries_T_142 = pma_checker__entries_WIRE_11[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_10_u = pma_checker__entries_T_142; // @[TLB.scala:170:77] assign pma_checker__entries_T_143 = pma_checker__entries_WIRE_11[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_10_ppn = pma_checker__entries_T_143; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_167; // @[TLB.scala:170:77] wire pma_checker__entries_T_166; // @[TLB.scala:170:77] wire pma_checker__entries_T_165; // @[TLB.scala:170:77] wire pma_checker__entries_T_164; // @[TLB.scala:170:77] wire pma_checker__entries_T_163; // @[TLB.scala:170:77] wire pma_checker__entries_T_162; // @[TLB.scala:170:77] wire pma_checker__entries_T_161; // @[TLB.scala:170:77] wire pma_checker__entries_T_160; // @[TLB.scala:170:77] wire pma_checker__entries_T_159; // @[TLB.scala:170:77] wire pma_checker__entries_T_158; // @[TLB.scala:170:77] wire pma_checker__entries_T_157; // @[TLB.scala:170:77] wire pma_checker__entries_T_156; // @[TLB.scala:170:77] wire pma_checker__entries_T_155; // @[TLB.scala:170:77] wire pma_checker__entries_T_154; // @[TLB.scala:170:77] wire pma_checker__entries_T_153; // @[TLB.scala:170:77] wire pma_checker__entries_T_152; // @[TLB.scala:170:77] wire pma_checker__entries_T_151; // @[TLB.scala:170:77] wire pma_checker__entries_T_150; // @[TLB.scala:170:77] wire pma_checker__entries_T_149; // @[TLB.scala:170:77] wire pma_checker__entries_T_148; // @[TLB.scala:170:77] wire pma_checker__entries_T_147; // @[TLB.scala:170:77] wire pma_checker__entries_T_146; // @[TLB.scala:170:77] wire pma_checker__entries_T_145; // @[TLB.scala:170:77] assign pma_checker__entries_T_145 = pma_checker__entries_WIRE_13[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_fragmented_superpage = pma_checker__entries_T_145; // @[TLB.scala:170:77] assign pma_checker__entries_T_146 = pma_checker__entries_WIRE_13[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_c = pma_checker__entries_T_146; // @[TLB.scala:170:77] assign pma_checker__entries_T_147 = pma_checker__entries_WIRE_13[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_eff = pma_checker__entries_T_147; // @[TLB.scala:170:77] assign pma_checker__entries_T_148 = pma_checker__entries_WIRE_13[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_paa = pma_checker__entries_T_148; // @[TLB.scala:170:77] assign pma_checker__entries_T_149 = pma_checker__entries_WIRE_13[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_pal = pma_checker__entries_T_149; // @[TLB.scala:170:77] assign pma_checker__entries_T_150 = pma_checker__entries_WIRE_13[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_ppp = pma_checker__entries_T_150; // @[TLB.scala:170:77] assign pma_checker__entries_T_151 = pma_checker__entries_WIRE_13[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_pr = pma_checker__entries_T_151; // @[TLB.scala:170:77] assign pma_checker__entries_T_152 = pma_checker__entries_WIRE_13[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_px = pma_checker__entries_T_152; // @[TLB.scala:170:77] assign pma_checker__entries_T_153 = pma_checker__entries_WIRE_13[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_pw = pma_checker__entries_T_153; // @[TLB.scala:170:77] assign pma_checker__entries_T_154 = pma_checker__entries_WIRE_13[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_hr = pma_checker__entries_T_154; // @[TLB.scala:170:77] assign pma_checker__entries_T_155 = pma_checker__entries_WIRE_13[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_hx = pma_checker__entries_T_155; // @[TLB.scala:170:77] assign pma_checker__entries_T_156 = pma_checker__entries_WIRE_13[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_hw = pma_checker__entries_T_156; // @[TLB.scala:170:77] assign pma_checker__entries_T_157 = pma_checker__entries_WIRE_13[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_sr = pma_checker__entries_T_157; // @[TLB.scala:170:77] assign pma_checker__entries_T_158 = pma_checker__entries_WIRE_13[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_sx = pma_checker__entries_T_158; // @[TLB.scala:170:77] assign pma_checker__entries_T_159 = pma_checker__entries_WIRE_13[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_sw = pma_checker__entries_T_159; // @[TLB.scala:170:77] assign pma_checker__entries_T_160 = pma_checker__entries_WIRE_13[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_gf = pma_checker__entries_T_160; // @[TLB.scala:170:77] assign pma_checker__entries_T_161 = pma_checker__entries_WIRE_13[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_pf = pma_checker__entries_T_161; // @[TLB.scala:170:77] assign pma_checker__entries_T_162 = pma_checker__entries_WIRE_13[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_ae_stage2 = pma_checker__entries_T_162; // @[TLB.scala:170:77] assign pma_checker__entries_T_163 = pma_checker__entries_WIRE_13[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_ae_final = pma_checker__entries_T_163; // @[TLB.scala:170:77] assign pma_checker__entries_T_164 = pma_checker__entries_WIRE_13[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_ae_ptw = pma_checker__entries_T_164; // @[TLB.scala:170:77] assign pma_checker__entries_T_165 = pma_checker__entries_WIRE_13[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_g = pma_checker__entries_T_165; // @[TLB.scala:170:77] assign pma_checker__entries_T_166 = pma_checker__entries_WIRE_13[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_12_u = pma_checker__entries_T_166; // @[TLB.scala:170:77] assign pma_checker__entries_T_167 = pma_checker__entries_WIRE_13[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_12_ppn = pma_checker__entries_T_167; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_191; // @[TLB.scala:170:77] wire pma_checker__entries_T_190; // @[TLB.scala:170:77] wire pma_checker__entries_T_189; // @[TLB.scala:170:77] wire pma_checker__entries_T_188; // @[TLB.scala:170:77] wire pma_checker__entries_T_187; // @[TLB.scala:170:77] wire pma_checker__entries_T_186; // @[TLB.scala:170:77] wire pma_checker__entries_T_185; // @[TLB.scala:170:77] wire pma_checker__entries_T_184; // @[TLB.scala:170:77] wire pma_checker__entries_T_183; // @[TLB.scala:170:77] wire pma_checker__entries_T_182; // @[TLB.scala:170:77] wire pma_checker__entries_T_181; // @[TLB.scala:170:77] wire pma_checker__entries_T_180; // @[TLB.scala:170:77] wire pma_checker__entries_T_179; // @[TLB.scala:170:77] wire pma_checker__entries_T_178; // @[TLB.scala:170:77] wire pma_checker__entries_T_177; // @[TLB.scala:170:77] wire pma_checker__entries_T_176; // @[TLB.scala:170:77] wire pma_checker__entries_T_175; // @[TLB.scala:170:77] wire pma_checker__entries_T_174; // @[TLB.scala:170:77] wire pma_checker__entries_T_173; // @[TLB.scala:170:77] wire pma_checker__entries_T_172; // @[TLB.scala:170:77] wire pma_checker__entries_T_171; // @[TLB.scala:170:77] wire pma_checker__entries_T_170; // @[TLB.scala:170:77] wire pma_checker__entries_T_169; // @[TLB.scala:170:77] assign pma_checker__entries_T_169 = pma_checker__entries_WIRE_15[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_fragmented_superpage = pma_checker__entries_T_169; // @[TLB.scala:170:77] assign pma_checker__entries_T_170 = pma_checker__entries_WIRE_15[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_c = pma_checker__entries_T_170; // @[TLB.scala:170:77] assign pma_checker__entries_T_171 = pma_checker__entries_WIRE_15[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_eff = pma_checker__entries_T_171; // @[TLB.scala:170:77] assign pma_checker__entries_T_172 = pma_checker__entries_WIRE_15[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_paa = pma_checker__entries_T_172; // @[TLB.scala:170:77] assign pma_checker__entries_T_173 = pma_checker__entries_WIRE_15[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_pal = pma_checker__entries_T_173; // @[TLB.scala:170:77] assign pma_checker__entries_T_174 = pma_checker__entries_WIRE_15[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_ppp = pma_checker__entries_T_174; // @[TLB.scala:170:77] assign pma_checker__entries_T_175 = pma_checker__entries_WIRE_15[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_pr = pma_checker__entries_T_175; // @[TLB.scala:170:77] assign pma_checker__entries_T_176 = pma_checker__entries_WIRE_15[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_px = pma_checker__entries_T_176; // @[TLB.scala:170:77] assign pma_checker__entries_T_177 = pma_checker__entries_WIRE_15[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_pw = pma_checker__entries_T_177; // @[TLB.scala:170:77] assign pma_checker__entries_T_178 = pma_checker__entries_WIRE_15[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_hr = pma_checker__entries_T_178; // @[TLB.scala:170:77] assign pma_checker__entries_T_179 = pma_checker__entries_WIRE_15[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_hx = pma_checker__entries_T_179; // @[TLB.scala:170:77] assign pma_checker__entries_T_180 = pma_checker__entries_WIRE_15[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_hw = pma_checker__entries_T_180; // @[TLB.scala:170:77] assign pma_checker__entries_T_181 = pma_checker__entries_WIRE_15[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_sr = pma_checker__entries_T_181; // @[TLB.scala:170:77] assign pma_checker__entries_T_182 = pma_checker__entries_WIRE_15[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_sx = pma_checker__entries_T_182; // @[TLB.scala:170:77] assign pma_checker__entries_T_183 = pma_checker__entries_WIRE_15[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_sw = pma_checker__entries_T_183; // @[TLB.scala:170:77] assign pma_checker__entries_T_184 = pma_checker__entries_WIRE_15[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_gf = pma_checker__entries_T_184; // @[TLB.scala:170:77] assign pma_checker__entries_T_185 = pma_checker__entries_WIRE_15[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_pf = pma_checker__entries_T_185; // @[TLB.scala:170:77] assign pma_checker__entries_T_186 = pma_checker__entries_WIRE_15[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_ae_stage2 = pma_checker__entries_T_186; // @[TLB.scala:170:77] assign pma_checker__entries_T_187 = pma_checker__entries_WIRE_15[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_ae_final = pma_checker__entries_T_187; // @[TLB.scala:170:77] assign pma_checker__entries_T_188 = pma_checker__entries_WIRE_15[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_ae_ptw = pma_checker__entries_T_188; // @[TLB.scala:170:77] assign pma_checker__entries_T_189 = pma_checker__entries_WIRE_15[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_g = pma_checker__entries_T_189; // @[TLB.scala:170:77] assign pma_checker__entries_T_190 = pma_checker__entries_WIRE_15[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_14_u = pma_checker__entries_T_190; // @[TLB.scala:170:77] assign pma_checker__entries_T_191 = pma_checker__entries_WIRE_15[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_14_ppn = pma_checker__entries_T_191; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_214; // @[TLB.scala:170:77] wire pma_checker__entries_T_213; // @[TLB.scala:170:77] wire pma_checker__entries_T_212; // @[TLB.scala:170:77] wire pma_checker__entries_T_211; // @[TLB.scala:170:77] wire pma_checker__entries_T_210; // @[TLB.scala:170:77] wire pma_checker__entries_T_209; // @[TLB.scala:170:77] wire pma_checker__entries_T_208; // @[TLB.scala:170:77] wire pma_checker__entries_T_207; // @[TLB.scala:170:77] wire pma_checker__entries_T_206; // @[TLB.scala:170:77] wire pma_checker__entries_T_205; // @[TLB.scala:170:77] wire pma_checker__entries_T_204; // @[TLB.scala:170:77] wire pma_checker__entries_T_203; // @[TLB.scala:170:77] wire pma_checker__entries_T_202; // @[TLB.scala:170:77] wire pma_checker__entries_T_201; // @[TLB.scala:170:77] wire pma_checker__entries_T_200; // @[TLB.scala:170:77] wire pma_checker__entries_T_199; // @[TLB.scala:170:77] wire pma_checker__entries_T_198; // @[TLB.scala:170:77] wire pma_checker__entries_T_197; // @[TLB.scala:170:77] wire pma_checker__entries_T_196; // @[TLB.scala:170:77] wire pma_checker__entries_T_195; // @[TLB.scala:170:77] wire pma_checker__entries_T_194; // @[TLB.scala:170:77] wire pma_checker__entries_T_193; // @[TLB.scala:170:77] wire pma_checker__entries_T_192; // @[TLB.scala:170:77] assign pma_checker__entries_T_192 = pma_checker__entries_WIRE_17[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_fragmented_superpage = pma_checker__entries_T_192; // @[TLB.scala:170:77] assign pma_checker__entries_T_193 = pma_checker__entries_WIRE_17[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_c = pma_checker__entries_T_193; // @[TLB.scala:170:77] assign pma_checker__entries_T_194 = pma_checker__entries_WIRE_17[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_eff = pma_checker__entries_T_194; // @[TLB.scala:170:77] assign pma_checker__entries_T_195 = pma_checker__entries_WIRE_17[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_paa = pma_checker__entries_T_195; // @[TLB.scala:170:77] assign pma_checker__entries_T_196 = pma_checker__entries_WIRE_17[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_pal = pma_checker__entries_T_196; // @[TLB.scala:170:77] assign pma_checker__entries_T_197 = pma_checker__entries_WIRE_17[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_ppp = pma_checker__entries_T_197; // @[TLB.scala:170:77] assign pma_checker__entries_T_198 = pma_checker__entries_WIRE_17[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_pr = pma_checker__entries_T_198; // @[TLB.scala:170:77] assign pma_checker__entries_T_199 = pma_checker__entries_WIRE_17[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_px = pma_checker__entries_T_199; // @[TLB.scala:170:77] assign pma_checker__entries_T_200 = pma_checker__entries_WIRE_17[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_pw = pma_checker__entries_T_200; // @[TLB.scala:170:77] assign pma_checker__entries_T_201 = pma_checker__entries_WIRE_17[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_hr = pma_checker__entries_T_201; // @[TLB.scala:170:77] assign pma_checker__entries_T_202 = pma_checker__entries_WIRE_17[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_hx = pma_checker__entries_T_202; // @[TLB.scala:170:77] assign pma_checker__entries_T_203 = pma_checker__entries_WIRE_17[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_hw = pma_checker__entries_T_203; // @[TLB.scala:170:77] assign pma_checker__entries_T_204 = pma_checker__entries_WIRE_17[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_sr = pma_checker__entries_T_204; // @[TLB.scala:170:77] assign pma_checker__entries_T_205 = pma_checker__entries_WIRE_17[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_sx = pma_checker__entries_T_205; // @[TLB.scala:170:77] assign pma_checker__entries_T_206 = pma_checker__entries_WIRE_17[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_sw = pma_checker__entries_T_206; // @[TLB.scala:170:77] assign pma_checker__entries_T_207 = pma_checker__entries_WIRE_17[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_gf = pma_checker__entries_T_207; // @[TLB.scala:170:77] assign pma_checker__entries_T_208 = pma_checker__entries_WIRE_17[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_pf = pma_checker__entries_T_208; // @[TLB.scala:170:77] assign pma_checker__entries_T_209 = pma_checker__entries_WIRE_17[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_ae_stage2 = pma_checker__entries_T_209; // @[TLB.scala:170:77] assign pma_checker__entries_T_210 = pma_checker__entries_WIRE_17[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_ae_final = pma_checker__entries_T_210; // @[TLB.scala:170:77] assign pma_checker__entries_T_211 = pma_checker__entries_WIRE_17[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_ae_ptw = pma_checker__entries_T_211; // @[TLB.scala:170:77] assign pma_checker__entries_T_212 = pma_checker__entries_WIRE_17[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_g = pma_checker__entries_T_212; // @[TLB.scala:170:77] assign pma_checker__entries_T_213 = pma_checker__entries_WIRE_17[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_16_u = pma_checker__entries_T_213; // @[TLB.scala:170:77] assign pma_checker__entries_T_214 = pma_checker__entries_WIRE_17[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_16_ppn = pma_checker__entries_T_214; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_237; // @[TLB.scala:170:77] wire pma_checker__entries_T_236; // @[TLB.scala:170:77] wire pma_checker__entries_T_235; // @[TLB.scala:170:77] wire pma_checker__entries_T_234; // @[TLB.scala:170:77] wire pma_checker__entries_T_233; // @[TLB.scala:170:77] wire pma_checker__entries_T_232; // @[TLB.scala:170:77] wire pma_checker__entries_T_231; // @[TLB.scala:170:77] wire pma_checker__entries_T_230; // @[TLB.scala:170:77] wire pma_checker__entries_T_229; // @[TLB.scala:170:77] wire pma_checker__entries_T_228; // @[TLB.scala:170:77] wire pma_checker__entries_T_227; // @[TLB.scala:170:77] wire pma_checker__entries_T_226; // @[TLB.scala:170:77] wire pma_checker__entries_T_225; // @[TLB.scala:170:77] wire pma_checker__entries_T_224; // @[TLB.scala:170:77] wire pma_checker__entries_T_223; // @[TLB.scala:170:77] wire pma_checker__entries_T_222; // @[TLB.scala:170:77] wire pma_checker__entries_T_221; // @[TLB.scala:170:77] wire pma_checker__entries_T_220; // @[TLB.scala:170:77] wire pma_checker__entries_T_219; // @[TLB.scala:170:77] wire pma_checker__entries_T_218; // @[TLB.scala:170:77] wire pma_checker__entries_T_217; // @[TLB.scala:170:77] wire pma_checker__entries_T_216; // @[TLB.scala:170:77] wire pma_checker__entries_T_215; // @[TLB.scala:170:77] assign pma_checker__entries_T_215 = pma_checker__entries_WIRE_19[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_fragmented_superpage = pma_checker__entries_T_215; // @[TLB.scala:170:77] assign pma_checker__entries_T_216 = pma_checker__entries_WIRE_19[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_c = pma_checker__entries_T_216; // @[TLB.scala:170:77] assign pma_checker__entries_T_217 = pma_checker__entries_WIRE_19[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_eff = pma_checker__entries_T_217; // @[TLB.scala:170:77] assign pma_checker__entries_T_218 = pma_checker__entries_WIRE_19[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_paa = pma_checker__entries_T_218; // @[TLB.scala:170:77] assign pma_checker__entries_T_219 = pma_checker__entries_WIRE_19[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_pal = pma_checker__entries_T_219; // @[TLB.scala:170:77] assign pma_checker__entries_T_220 = pma_checker__entries_WIRE_19[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_ppp = pma_checker__entries_T_220; // @[TLB.scala:170:77] assign pma_checker__entries_T_221 = pma_checker__entries_WIRE_19[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_pr = pma_checker__entries_T_221; // @[TLB.scala:170:77] assign pma_checker__entries_T_222 = pma_checker__entries_WIRE_19[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_px = pma_checker__entries_T_222; // @[TLB.scala:170:77] assign pma_checker__entries_T_223 = pma_checker__entries_WIRE_19[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_pw = pma_checker__entries_T_223; // @[TLB.scala:170:77] assign pma_checker__entries_T_224 = pma_checker__entries_WIRE_19[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_hr = pma_checker__entries_T_224; // @[TLB.scala:170:77] assign pma_checker__entries_T_225 = pma_checker__entries_WIRE_19[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_hx = pma_checker__entries_T_225; // @[TLB.scala:170:77] assign pma_checker__entries_T_226 = pma_checker__entries_WIRE_19[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_hw = pma_checker__entries_T_226; // @[TLB.scala:170:77] assign pma_checker__entries_T_227 = pma_checker__entries_WIRE_19[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_sr = pma_checker__entries_T_227; // @[TLB.scala:170:77] assign pma_checker__entries_T_228 = pma_checker__entries_WIRE_19[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_sx = pma_checker__entries_T_228; // @[TLB.scala:170:77] assign pma_checker__entries_T_229 = pma_checker__entries_WIRE_19[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_sw = pma_checker__entries_T_229; // @[TLB.scala:170:77] assign pma_checker__entries_T_230 = pma_checker__entries_WIRE_19[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_gf = pma_checker__entries_T_230; // @[TLB.scala:170:77] assign pma_checker__entries_T_231 = pma_checker__entries_WIRE_19[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_pf = pma_checker__entries_T_231; // @[TLB.scala:170:77] assign pma_checker__entries_T_232 = pma_checker__entries_WIRE_19[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_ae_stage2 = pma_checker__entries_T_232; // @[TLB.scala:170:77] assign pma_checker__entries_T_233 = pma_checker__entries_WIRE_19[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_ae_final = pma_checker__entries_T_233; // @[TLB.scala:170:77] assign pma_checker__entries_T_234 = pma_checker__entries_WIRE_19[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_ae_ptw = pma_checker__entries_T_234; // @[TLB.scala:170:77] assign pma_checker__entries_T_235 = pma_checker__entries_WIRE_19[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_g = pma_checker__entries_T_235; // @[TLB.scala:170:77] assign pma_checker__entries_T_236 = pma_checker__entries_WIRE_19[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_18_u = pma_checker__entries_T_236; // @[TLB.scala:170:77] assign pma_checker__entries_T_237 = pma_checker__entries_WIRE_19[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_18_ppn = pma_checker__entries_T_237; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_260; // @[TLB.scala:170:77] wire pma_checker__entries_T_259; // @[TLB.scala:170:77] wire pma_checker__entries_T_258; // @[TLB.scala:170:77] wire pma_checker__entries_T_257; // @[TLB.scala:170:77] wire pma_checker__entries_T_256; // @[TLB.scala:170:77] wire pma_checker__entries_T_255; // @[TLB.scala:170:77] wire pma_checker__entries_T_254; // @[TLB.scala:170:77] wire pma_checker__entries_T_253; // @[TLB.scala:170:77] wire pma_checker__entries_T_252; // @[TLB.scala:170:77] wire pma_checker__entries_T_251; // @[TLB.scala:170:77] wire pma_checker__entries_T_250; // @[TLB.scala:170:77] wire pma_checker__entries_T_249; // @[TLB.scala:170:77] wire pma_checker__entries_T_248; // @[TLB.scala:170:77] wire pma_checker__entries_T_247; // @[TLB.scala:170:77] wire pma_checker__entries_T_246; // @[TLB.scala:170:77] wire pma_checker__entries_T_245; // @[TLB.scala:170:77] wire pma_checker__entries_T_244; // @[TLB.scala:170:77] wire pma_checker__entries_T_243; // @[TLB.scala:170:77] wire pma_checker__entries_T_242; // @[TLB.scala:170:77] wire pma_checker__entries_T_241; // @[TLB.scala:170:77] wire pma_checker__entries_T_240; // @[TLB.scala:170:77] wire pma_checker__entries_T_239; // @[TLB.scala:170:77] wire pma_checker__entries_T_238; // @[TLB.scala:170:77] assign pma_checker__entries_T_238 = pma_checker__entries_WIRE_21[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_fragmented_superpage = pma_checker__entries_T_238; // @[TLB.scala:170:77] assign pma_checker__entries_T_239 = pma_checker__entries_WIRE_21[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_c = pma_checker__entries_T_239; // @[TLB.scala:170:77] assign pma_checker__entries_T_240 = pma_checker__entries_WIRE_21[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_eff = pma_checker__entries_T_240; // @[TLB.scala:170:77] assign pma_checker__entries_T_241 = pma_checker__entries_WIRE_21[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_paa = pma_checker__entries_T_241; // @[TLB.scala:170:77] assign pma_checker__entries_T_242 = pma_checker__entries_WIRE_21[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_pal = pma_checker__entries_T_242; // @[TLB.scala:170:77] assign pma_checker__entries_T_243 = pma_checker__entries_WIRE_21[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_ppp = pma_checker__entries_T_243; // @[TLB.scala:170:77] assign pma_checker__entries_T_244 = pma_checker__entries_WIRE_21[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_pr = pma_checker__entries_T_244; // @[TLB.scala:170:77] assign pma_checker__entries_T_245 = pma_checker__entries_WIRE_21[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_px = pma_checker__entries_T_245; // @[TLB.scala:170:77] assign pma_checker__entries_T_246 = pma_checker__entries_WIRE_21[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_pw = pma_checker__entries_T_246; // @[TLB.scala:170:77] assign pma_checker__entries_T_247 = pma_checker__entries_WIRE_21[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_hr = pma_checker__entries_T_247; // @[TLB.scala:170:77] assign pma_checker__entries_T_248 = pma_checker__entries_WIRE_21[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_hx = pma_checker__entries_T_248; // @[TLB.scala:170:77] assign pma_checker__entries_T_249 = pma_checker__entries_WIRE_21[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_hw = pma_checker__entries_T_249; // @[TLB.scala:170:77] assign pma_checker__entries_T_250 = pma_checker__entries_WIRE_21[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_sr = pma_checker__entries_T_250; // @[TLB.scala:170:77] assign pma_checker__entries_T_251 = pma_checker__entries_WIRE_21[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_sx = pma_checker__entries_T_251; // @[TLB.scala:170:77] assign pma_checker__entries_T_252 = pma_checker__entries_WIRE_21[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_sw = pma_checker__entries_T_252; // @[TLB.scala:170:77] assign pma_checker__entries_T_253 = pma_checker__entries_WIRE_21[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_gf = pma_checker__entries_T_253; // @[TLB.scala:170:77] assign pma_checker__entries_T_254 = pma_checker__entries_WIRE_21[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_pf = pma_checker__entries_T_254; // @[TLB.scala:170:77] assign pma_checker__entries_T_255 = pma_checker__entries_WIRE_21[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_ae_stage2 = pma_checker__entries_T_255; // @[TLB.scala:170:77] assign pma_checker__entries_T_256 = pma_checker__entries_WIRE_21[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_ae_final = pma_checker__entries_T_256; // @[TLB.scala:170:77] assign pma_checker__entries_T_257 = pma_checker__entries_WIRE_21[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_ae_ptw = pma_checker__entries_T_257; // @[TLB.scala:170:77] assign pma_checker__entries_T_258 = pma_checker__entries_WIRE_21[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_g = pma_checker__entries_T_258; // @[TLB.scala:170:77] assign pma_checker__entries_T_259 = pma_checker__entries_WIRE_21[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_20_u = pma_checker__entries_T_259; // @[TLB.scala:170:77] assign pma_checker__entries_T_260 = pma_checker__entries_WIRE_21[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_20_ppn = pma_checker__entries_T_260; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_283; // @[TLB.scala:170:77] wire pma_checker__entries_T_282; // @[TLB.scala:170:77] wire pma_checker__entries_T_281; // @[TLB.scala:170:77] wire pma_checker__entries_T_280; // @[TLB.scala:170:77] wire pma_checker__entries_T_279; // @[TLB.scala:170:77] wire pma_checker__entries_T_278; // @[TLB.scala:170:77] wire pma_checker__entries_T_277; // @[TLB.scala:170:77] wire pma_checker__entries_T_276; // @[TLB.scala:170:77] wire pma_checker__entries_T_275; // @[TLB.scala:170:77] wire pma_checker__entries_T_274; // @[TLB.scala:170:77] wire pma_checker__entries_T_273; // @[TLB.scala:170:77] wire pma_checker__entries_T_272; // @[TLB.scala:170:77] wire pma_checker__entries_T_271; // @[TLB.scala:170:77] wire pma_checker__entries_T_270; // @[TLB.scala:170:77] wire pma_checker__entries_T_269; // @[TLB.scala:170:77] wire pma_checker__entries_T_268; // @[TLB.scala:170:77] wire pma_checker__entries_T_267; // @[TLB.scala:170:77] wire pma_checker__entries_T_266; // @[TLB.scala:170:77] wire pma_checker__entries_T_265; // @[TLB.scala:170:77] wire pma_checker__entries_T_264; // @[TLB.scala:170:77] wire pma_checker__entries_T_263; // @[TLB.scala:170:77] wire pma_checker__entries_T_262; // @[TLB.scala:170:77] wire pma_checker__entries_T_261; // @[TLB.scala:170:77] assign pma_checker__entries_T_261 = pma_checker__entries_WIRE_23[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_fragmented_superpage = pma_checker__entries_T_261; // @[TLB.scala:170:77] assign pma_checker__entries_T_262 = pma_checker__entries_WIRE_23[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_c = pma_checker__entries_T_262; // @[TLB.scala:170:77] assign pma_checker__entries_T_263 = pma_checker__entries_WIRE_23[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_eff = pma_checker__entries_T_263; // @[TLB.scala:170:77] assign pma_checker__entries_T_264 = pma_checker__entries_WIRE_23[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_paa = pma_checker__entries_T_264; // @[TLB.scala:170:77] assign pma_checker__entries_T_265 = pma_checker__entries_WIRE_23[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_pal = pma_checker__entries_T_265; // @[TLB.scala:170:77] assign pma_checker__entries_T_266 = pma_checker__entries_WIRE_23[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_ppp = pma_checker__entries_T_266; // @[TLB.scala:170:77] assign pma_checker__entries_T_267 = pma_checker__entries_WIRE_23[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_pr = pma_checker__entries_T_267; // @[TLB.scala:170:77] assign pma_checker__entries_T_268 = pma_checker__entries_WIRE_23[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_px = pma_checker__entries_T_268; // @[TLB.scala:170:77] assign pma_checker__entries_T_269 = pma_checker__entries_WIRE_23[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_pw = pma_checker__entries_T_269; // @[TLB.scala:170:77] assign pma_checker__entries_T_270 = pma_checker__entries_WIRE_23[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_hr = pma_checker__entries_T_270; // @[TLB.scala:170:77] assign pma_checker__entries_T_271 = pma_checker__entries_WIRE_23[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_hx = pma_checker__entries_T_271; // @[TLB.scala:170:77] assign pma_checker__entries_T_272 = pma_checker__entries_WIRE_23[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_hw = pma_checker__entries_T_272; // @[TLB.scala:170:77] assign pma_checker__entries_T_273 = pma_checker__entries_WIRE_23[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_sr = pma_checker__entries_T_273; // @[TLB.scala:170:77] assign pma_checker__entries_T_274 = pma_checker__entries_WIRE_23[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_sx = pma_checker__entries_T_274; // @[TLB.scala:170:77] assign pma_checker__entries_T_275 = pma_checker__entries_WIRE_23[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_sw = pma_checker__entries_T_275; // @[TLB.scala:170:77] assign pma_checker__entries_T_276 = pma_checker__entries_WIRE_23[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_gf = pma_checker__entries_T_276; // @[TLB.scala:170:77] assign pma_checker__entries_T_277 = pma_checker__entries_WIRE_23[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_pf = pma_checker__entries_T_277; // @[TLB.scala:170:77] assign pma_checker__entries_T_278 = pma_checker__entries_WIRE_23[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_ae_stage2 = pma_checker__entries_T_278; // @[TLB.scala:170:77] assign pma_checker__entries_T_279 = pma_checker__entries_WIRE_23[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_ae_final = pma_checker__entries_T_279; // @[TLB.scala:170:77] assign pma_checker__entries_T_280 = pma_checker__entries_WIRE_23[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_ae_ptw = pma_checker__entries_T_280; // @[TLB.scala:170:77] assign pma_checker__entries_T_281 = pma_checker__entries_WIRE_23[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_g = pma_checker__entries_T_281; // @[TLB.scala:170:77] assign pma_checker__entries_T_282 = pma_checker__entries_WIRE_23[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_22_u = pma_checker__entries_T_282; // @[TLB.scala:170:77] assign pma_checker__entries_T_283 = pma_checker__entries_WIRE_23[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_22_ppn = pma_checker__entries_T_283; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_T_306; // @[TLB.scala:170:77] wire pma_checker__entries_T_305; // @[TLB.scala:170:77] wire pma_checker__entries_T_304; // @[TLB.scala:170:77] wire pma_checker__entries_T_303; // @[TLB.scala:170:77] wire pma_checker__entries_T_302; // @[TLB.scala:170:77] wire pma_checker__entries_T_301; // @[TLB.scala:170:77] wire pma_checker__entries_T_300; // @[TLB.scala:170:77] wire pma_checker__entries_T_299; // @[TLB.scala:170:77] wire pma_checker__entries_T_298; // @[TLB.scala:170:77] wire pma_checker__entries_T_297; // @[TLB.scala:170:77] wire pma_checker__entries_T_296; // @[TLB.scala:170:77] wire pma_checker__entries_T_295; // @[TLB.scala:170:77] wire pma_checker__entries_T_294; // @[TLB.scala:170:77] wire pma_checker__entries_T_293; // @[TLB.scala:170:77] wire pma_checker__entries_T_292; // @[TLB.scala:170:77] wire pma_checker__entries_T_291; // @[TLB.scala:170:77] wire pma_checker__entries_T_290; // @[TLB.scala:170:77] wire pma_checker__entries_T_289; // @[TLB.scala:170:77] wire pma_checker__entries_T_288; // @[TLB.scala:170:77] wire pma_checker__entries_T_287; // @[TLB.scala:170:77] wire pma_checker__entries_T_286; // @[TLB.scala:170:77] wire pma_checker__entries_T_285; // @[TLB.scala:170:77] wire pma_checker__entries_T_284; // @[TLB.scala:170:77] assign pma_checker__entries_T_284 = pma_checker__entries_WIRE_25[0]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_fragmented_superpage = pma_checker__entries_T_284; // @[TLB.scala:170:77] assign pma_checker__entries_T_285 = pma_checker__entries_WIRE_25[1]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_c = pma_checker__entries_T_285; // @[TLB.scala:170:77] assign pma_checker__entries_T_286 = pma_checker__entries_WIRE_25[2]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_eff = pma_checker__entries_T_286; // @[TLB.scala:170:77] assign pma_checker__entries_T_287 = pma_checker__entries_WIRE_25[3]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_paa = pma_checker__entries_T_287; // @[TLB.scala:170:77] assign pma_checker__entries_T_288 = pma_checker__entries_WIRE_25[4]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_pal = pma_checker__entries_T_288; // @[TLB.scala:170:77] assign pma_checker__entries_T_289 = pma_checker__entries_WIRE_25[5]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_ppp = pma_checker__entries_T_289; // @[TLB.scala:170:77] assign pma_checker__entries_T_290 = pma_checker__entries_WIRE_25[6]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_pr = pma_checker__entries_T_290; // @[TLB.scala:170:77] assign pma_checker__entries_T_291 = pma_checker__entries_WIRE_25[7]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_px = pma_checker__entries_T_291; // @[TLB.scala:170:77] assign pma_checker__entries_T_292 = pma_checker__entries_WIRE_25[8]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_pw = pma_checker__entries_T_292; // @[TLB.scala:170:77] assign pma_checker__entries_T_293 = pma_checker__entries_WIRE_25[9]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_hr = pma_checker__entries_T_293; // @[TLB.scala:170:77] assign pma_checker__entries_T_294 = pma_checker__entries_WIRE_25[10]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_hx = pma_checker__entries_T_294; // @[TLB.scala:170:77] assign pma_checker__entries_T_295 = pma_checker__entries_WIRE_25[11]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_hw = pma_checker__entries_T_295; // @[TLB.scala:170:77] assign pma_checker__entries_T_296 = pma_checker__entries_WIRE_25[12]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_sr = pma_checker__entries_T_296; // @[TLB.scala:170:77] assign pma_checker__entries_T_297 = pma_checker__entries_WIRE_25[13]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_sx = pma_checker__entries_T_297; // @[TLB.scala:170:77] assign pma_checker__entries_T_298 = pma_checker__entries_WIRE_25[14]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_sw = pma_checker__entries_T_298; // @[TLB.scala:170:77] assign pma_checker__entries_T_299 = pma_checker__entries_WIRE_25[15]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_gf = pma_checker__entries_T_299; // @[TLB.scala:170:77] assign pma_checker__entries_T_300 = pma_checker__entries_WIRE_25[16]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_pf = pma_checker__entries_T_300; // @[TLB.scala:170:77] assign pma_checker__entries_T_301 = pma_checker__entries_WIRE_25[17]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_ae_stage2 = pma_checker__entries_T_301; // @[TLB.scala:170:77] assign pma_checker__entries_T_302 = pma_checker__entries_WIRE_25[18]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_ae_final = pma_checker__entries_T_302; // @[TLB.scala:170:77] assign pma_checker__entries_T_303 = pma_checker__entries_WIRE_25[19]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_ae_ptw = pma_checker__entries_T_303; // @[TLB.scala:170:77] assign pma_checker__entries_T_304 = pma_checker__entries_WIRE_25[20]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_g = pma_checker__entries_T_304; // @[TLB.scala:170:77] assign pma_checker__entries_T_305 = pma_checker__entries_WIRE_25[21]; // @[TLB.scala:170:77] wire pma_checker__entries_WIRE_24_u = pma_checker__entries_T_305; // @[TLB.scala:170:77] assign pma_checker__entries_T_306 = pma_checker__entries_WIRE_25[41:22]; // @[TLB.scala:170:77] wire [19:0] pma_checker__entries_WIRE_24_ppn = pma_checker__entries_T_306; // @[TLB.scala:170:77] wire [1:0] pma_checker_ppn_res = _pma_checker_entries_barrier_8_io_y_ppn[19:18]; // @[package.scala:267:25] wire pma_checker_ppn_ignore = pma_checker__ppn_ignore_T; // @[TLB.scala:197:{28,34}] wire [26:0] pma_checker__ppn_T_1 = pma_checker_ppn_ignore ? pma_checker_vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] pma_checker__ppn_T_2 = {pma_checker__ppn_T_1[26:20], pma_checker__ppn_T_1[19:0] | _pma_checker_entries_barrier_8_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_3 = pma_checker__ppn_T_2[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] pma_checker__ppn_T_4 = {pma_checker_ppn_res, pma_checker__ppn_T_3}; // @[TLB.scala:195:26, :198:{18,58}] wire [26:0] pma_checker__ppn_T_6 = {pma_checker__ppn_T_5[26:20], pma_checker__ppn_T_5[19:0] | _pma_checker_entries_barrier_8_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_7 = pma_checker__ppn_T_6[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] pma_checker__ppn_T_8 = {pma_checker__ppn_T_4, pma_checker__ppn_T_7}; // @[TLB.scala:198:{18,58}] wire [1:0] pma_checker_ppn_res_1 = _pma_checker_entries_barrier_9_io_y_ppn[19:18]; // @[package.scala:267:25] wire pma_checker_ppn_ignore_2 = pma_checker__ppn_ignore_T_2; // @[TLB.scala:197:{28,34}] wire [26:0] pma_checker__ppn_T_9 = pma_checker_ppn_ignore_2 ? pma_checker_vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] pma_checker__ppn_T_10 = {pma_checker__ppn_T_9[26:20], pma_checker__ppn_T_9[19:0] | _pma_checker_entries_barrier_9_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_11 = pma_checker__ppn_T_10[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] pma_checker__ppn_T_12 = {pma_checker_ppn_res_1, pma_checker__ppn_T_11}; // @[TLB.scala:195:26, :198:{18,58}] wire [26:0] pma_checker__ppn_T_14 = {pma_checker__ppn_T_13[26:20], pma_checker__ppn_T_13[19:0] | _pma_checker_entries_barrier_9_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_15 = pma_checker__ppn_T_14[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] pma_checker__ppn_T_16 = {pma_checker__ppn_T_12, pma_checker__ppn_T_15}; // @[TLB.scala:198:{18,58}] wire [1:0] pma_checker_ppn_res_2 = _pma_checker_entries_barrier_10_io_y_ppn[19:18]; // @[package.scala:267:25] wire pma_checker_ppn_ignore_4 = pma_checker__ppn_ignore_T_4; // @[TLB.scala:197:{28,34}] wire [26:0] pma_checker__ppn_T_17 = pma_checker_ppn_ignore_4 ? pma_checker_vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] pma_checker__ppn_T_18 = {pma_checker__ppn_T_17[26:20], pma_checker__ppn_T_17[19:0] | _pma_checker_entries_barrier_10_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_19 = pma_checker__ppn_T_18[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] pma_checker__ppn_T_20 = {pma_checker_ppn_res_2, pma_checker__ppn_T_19}; // @[TLB.scala:195:26, :198:{18,58}] wire [26:0] pma_checker__ppn_T_22 = {pma_checker__ppn_T_21[26:20], pma_checker__ppn_T_21[19:0] | _pma_checker_entries_barrier_10_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_23 = pma_checker__ppn_T_22[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] pma_checker__ppn_T_24 = {pma_checker__ppn_T_20, pma_checker__ppn_T_23}; // @[TLB.scala:198:{18,58}] wire [1:0] pma_checker_ppn_res_3 = _pma_checker_entries_barrier_11_io_y_ppn[19:18]; // @[package.scala:267:25] wire pma_checker_ppn_ignore_6 = pma_checker__ppn_ignore_T_6; // @[TLB.scala:197:{28,34}] wire [26:0] pma_checker__ppn_T_25 = pma_checker_ppn_ignore_6 ? pma_checker_vpn : 27'h0; // @[TLB.scala:197:34, :198:28, :335:30] wire [26:0] pma_checker__ppn_T_26 = {pma_checker__ppn_T_25[26:20], pma_checker__ppn_T_25[19:0] | _pma_checker_entries_barrier_11_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_27 = pma_checker__ppn_T_26[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] pma_checker__ppn_T_28 = {pma_checker_ppn_res_3, pma_checker__ppn_T_27}; // @[TLB.scala:195:26, :198:{18,58}] wire [26:0] pma_checker__ppn_T_30 = {pma_checker__ppn_T_29[26:20], pma_checker__ppn_T_29[19:0] | _pma_checker_entries_barrier_11_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_31 = pma_checker__ppn_T_30[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] pma_checker__ppn_T_32 = {pma_checker__ppn_T_28, pma_checker__ppn_T_31}; // @[TLB.scala:198:{18,58}] wire [1:0] pma_checker_ppn_res_4 = _pma_checker_entries_barrier_12_io_y_ppn[19:18]; // @[package.scala:267:25] wire [26:0] pma_checker__ppn_T_34 = {pma_checker__ppn_T_33[26:20], pma_checker__ppn_T_33[19:0] | _pma_checker_entries_barrier_12_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_35 = pma_checker__ppn_T_34[17:9]; // @[TLB.scala:198:{47,58}] wire [10:0] pma_checker__ppn_T_36 = {pma_checker_ppn_res_4, pma_checker__ppn_T_35}; // @[TLB.scala:195:26, :198:{18,58}] wire [26:0] pma_checker__ppn_T_38 = {pma_checker__ppn_T_37[26:20], pma_checker__ppn_T_37[19:0] | _pma_checker_entries_barrier_12_io_y_ppn}; // @[package.scala:267:25] wire [8:0] pma_checker__ppn_T_39 = pma_checker__ppn_T_38[8:0]; // @[TLB.scala:198:{47,58}] wire [19:0] pma_checker__ppn_T_40 = {pma_checker__ppn_T_36, pma_checker__ppn_T_39}; // @[TLB.scala:198:{18,58}] wire [19:0] pma_checker__ppn_T_41 = pma_checker_vpn[19:0]; // @[TLB.scala:335:30, :502:125] wire [19:0] pma_checker__ppn_T_55 = pma_checker__ppn_T_41; // @[Mux.scala:30:73] wire [19:0] pma_checker__ppn_T_68 = pma_checker__ppn_T_55; // @[Mux.scala:30:73] wire [19:0] pma_checker_ppn = pma_checker__ppn_T_68; // @[Mux.scala:30:73] wire [1:0] pma_checker_ptw_ae_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_ae_ptw, _pma_checker_entries_barrier_1_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ptw_ae_array_lo_lo = {pma_checker_ptw_ae_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ptw_ae_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_ae_ptw, _pma_checker_entries_barrier_4_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ptw_ae_array_lo_hi = {pma_checker_ptw_ae_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_ptw_ae_array_lo = {pma_checker_ptw_ae_array_lo_hi, pma_checker_ptw_ae_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_ptw_ae_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_ae_ptw, _pma_checker_entries_barrier_7_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ptw_ae_array_hi_lo = {pma_checker_ptw_ae_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ptw_ae_array_hi_hi_lo = {_pma_checker_entries_barrier_10_io_y_ae_ptw, _pma_checker_entries_barrier_9_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ptw_ae_array_hi_hi_hi = {_pma_checker_entries_barrier_12_io_y_ae_ptw, _pma_checker_entries_barrier_11_io_y_ae_ptw}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_ptw_ae_array_hi_hi = {pma_checker_ptw_ae_array_hi_hi_hi, pma_checker_ptw_ae_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_ptw_ae_array_hi = {pma_checker_ptw_ae_array_hi_hi, pma_checker_ptw_ae_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__ptw_ae_array_T = {pma_checker_ptw_ae_array_hi, pma_checker_ptw_ae_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_ptw_ae_array = {1'h0, pma_checker__ptw_ae_array_T}; // @[package.scala:45:27] wire [1:0] pma_checker_final_ae_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_ae_final, _pma_checker_entries_barrier_1_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_final_ae_array_lo_lo = {pma_checker_final_ae_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_final_ae_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_ae_final, _pma_checker_entries_barrier_4_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_final_ae_array_lo_hi = {pma_checker_final_ae_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_final_ae_array_lo = {pma_checker_final_ae_array_lo_hi, pma_checker_final_ae_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_final_ae_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_ae_final, _pma_checker_entries_barrier_7_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_final_ae_array_hi_lo = {pma_checker_final_ae_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_final_ae_array_hi_hi_lo = {_pma_checker_entries_barrier_10_io_y_ae_final, _pma_checker_entries_barrier_9_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_final_ae_array_hi_hi_hi = {_pma_checker_entries_barrier_12_io_y_ae_final, _pma_checker_entries_barrier_11_io_y_ae_final}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_final_ae_array_hi_hi = {pma_checker_final_ae_array_hi_hi_hi, pma_checker_final_ae_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_final_ae_array_hi = {pma_checker_final_ae_array_hi_hi, pma_checker_final_ae_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__final_ae_array_T = {pma_checker_final_ae_array_hi, pma_checker_final_ae_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_final_ae_array = {1'h0, pma_checker__final_ae_array_T}; // @[package.scala:45:27] wire [1:0] pma_checker_ptw_pf_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_pf, _pma_checker_entries_barrier_1_io_y_pf}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ptw_pf_array_lo_lo = {pma_checker_ptw_pf_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_pf}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ptw_pf_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_pf, _pma_checker_entries_barrier_4_io_y_pf}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ptw_pf_array_lo_hi = {pma_checker_ptw_pf_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_pf}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_ptw_pf_array_lo = {pma_checker_ptw_pf_array_lo_hi, pma_checker_ptw_pf_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_ptw_pf_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_pf, _pma_checker_entries_barrier_7_io_y_pf}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ptw_pf_array_hi_lo = {pma_checker_ptw_pf_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_pf}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ptw_pf_array_hi_hi_lo = {_pma_checker_entries_barrier_10_io_y_pf, _pma_checker_entries_barrier_9_io_y_pf}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ptw_pf_array_hi_hi_hi = {_pma_checker_entries_barrier_12_io_y_pf, _pma_checker_entries_barrier_11_io_y_pf}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_ptw_pf_array_hi_hi = {pma_checker_ptw_pf_array_hi_hi_hi, pma_checker_ptw_pf_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_ptw_pf_array_hi = {pma_checker_ptw_pf_array_hi_hi, pma_checker_ptw_pf_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__ptw_pf_array_T = {pma_checker_ptw_pf_array_hi, pma_checker_ptw_pf_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_ptw_pf_array = {1'h0, pma_checker__ptw_pf_array_T}; // @[package.scala:45:27] wire [1:0] pma_checker_ptw_gf_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_gf, _pma_checker_entries_barrier_1_io_y_gf}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ptw_gf_array_lo_lo = {pma_checker_ptw_gf_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_gf}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ptw_gf_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_gf, _pma_checker_entries_barrier_4_io_y_gf}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ptw_gf_array_lo_hi = {pma_checker_ptw_gf_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_gf}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_ptw_gf_array_lo = {pma_checker_ptw_gf_array_lo_hi, pma_checker_ptw_gf_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_ptw_gf_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_gf, _pma_checker_entries_barrier_7_io_y_gf}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ptw_gf_array_hi_lo = {pma_checker_ptw_gf_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_gf}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ptw_gf_array_hi_hi_lo = {_pma_checker_entries_barrier_10_io_y_gf, _pma_checker_entries_barrier_9_io_y_gf}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ptw_gf_array_hi_hi_hi = {_pma_checker_entries_barrier_12_io_y_gf, _pma_checker_entries_barrier_11_io_y_gf}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_ptw_gf_array_hi_hi = {pma_checker_ptw_gf_array_hi_hi_hi, pma_checker_ptw_gf_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_ptw_gf_array_hi = {pma_checker_ptw_gf_array_hi_hi, pma_checker_ptw_gf_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__ptw_gf_array_T = {pma_checker_ptw_gf_array_hi, pma_checker_ptw_gf_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_ptw_gf_array = {1'h0, pma_checker__ptw_gf_array_T}; // @[package.scala:45:27] wire [13:0] pma_checker__gf_ld_array_T_3 = pma_checker_ptw_gf_array; // @[TLB.scala:509:25, :600:82] wire [13:0] pma_checker__gf_st_array_T_2 = pma_checker_ptw_gf_array; // @[TLB.scala:509:25, :601:63] wire [13:0] pma_checker__gf_inst_array_T_1 = pma_checker_ptw_gf_array; // @[TLB.scala:509:25, :602:46] wire pma_checker__priv_rw_ok_T = ~pma_checker_priv_s; // @[TLB.scala:370:20, :513:24] wire pma_checker__priv_rw_ok_T_1 = pma_checker__priv_rw_ok_T; // @[TLB.scala:513:{24,32}] wire [1:0] _GEN_6 = {_pma_checker_entries_barrier_2_io_y_u, _pma_checker_entries_barrier_1_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_priv_rw_ok_lo_lo_hi; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_lo_lo_hi = _GEN_6; // @[package.scala:45:27] wire [1:0] pma_checker_priv_rw_ok_lo_lo_hi_1; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_lo_lo_hi_1 = _GEN_6; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_lo_lo_hi; // @[package.scala:45:27] assign pma_checker_priv_x_ok_lo_lo_hi = _GEN_6; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_lo_lo_hi_1; // @[package.scala:45:27] assign pma_checker_priv_x_ok_lo_lo_hi_1 = _GEN_6; // @[package.scala:45:27] wire [2:0] pma_checker_priv_rw_ok_lo_lo = {pma_checker_priv_rw_ok_lo_lo_hi, _pma_checker_entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_7 = {_pma_checker_entries_barrier_5_io_y_u, _pma_checker_entries_barrier_4_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_priv_rw_ok_lo_hi_hi; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_lo_hi_hi = _GEN_7; // @[package.scala:45:27] wire [1:0] pma_checker_priv_rw_ok_lo_hi_hi_1; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_lo_hi_hi_1 = _GEN_7; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_lo_hi_hi; // @[package.scala:45:27] assign pma_checker_priv_x_ok_lo_hi_hi = _GEN_7; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_lo_hi_hi_1; // @[package.scala:45:27] assign pma_checker_priv_x_ok_lo_hi_hi_1 = _GEN_7; // @[package.scala:45:27] wire [2:0] pma_checker_priv_rw_ok_lo_hi = {pma_checker_priv_rw_ok_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_priv_rw_ok_lo = {pma_checker_priv_rw_ok_lo_hi, pma_checker_priv_rw_ok_lo_lo}; // @[package.scala:45:27] wire [1:0] _GEN_8 = {_pma_checker_entries_barrier_8_io_y_u, _pma_checker_entries_barrier_7_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_priv_rw_ok_hi_lo_hi; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_hi_lo_hi = _GEN_8; // @[package.scala:45:27] wire [1:0] pma_checker_priv_rw_ok_hi_lo_hi_1; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_hi_lo_hi_1 = _GEN_8; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_hi_lo_hi; // @[package.scala:45:27] assign pma_checker_priv_x_ok_hi_lo_hi = _GEN_8; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_hi_lo_hi_1; // @[package.scala:45:27] assign pma_checker_priv_x_ok_hi_lo_hi_1 = _GEN_8; // @[package.scala:45:27] wire [2:0] pma_checker_priv_rw_ok_hi_lo = {pma_checker_priv_rw_ok_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_9 = {_pma_checker_entries_barrier_10_io_y_u, _pma_checker_entries_barrier_9_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_priv_rw_ok_hi_hi_lo; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_hi_hi_lo = _GEN_9; // @[package.scala:45:27] wire [1:0] pma_checker_priv_rw_ok_hi_hi_lo_1; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_hi_hi_lo_1 = _GEN_9; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_hi_hi_lo; // @[package.scala:45:27] assign pma_checker_priv_x_ok_hi_hi_lo = _GEN_9; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_hi_hi_lo_1; // @[package.scala:45:27] assign pma_checker_priv_x_ok_hi_hi_lo_1 = _GEN_9; // @[package.scala:45:27] wire [1:0] _GEN_10 = {_pma_checker_entries_barrier_12_io_y_u, _pma_checker_entries_barrier_11_io_y_u}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_priv_rw_ok_hi_hi_hi; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_hi_hi_hi = _GEN_10; // @[package.scala:45:27] wire [1:0] pma_checker_priv_rw_ok_hi_hi_hi_1; // @[package.scala:45:27] assign pma_checker_priv_rw_ok_hi_hi_hi_1 = _GEN_10; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_hi_hi_hi; // @[package.scala:45:27] assign pma_checker_priv_x_ok_hi_hi_hi = _GEN_10; // @[package.scala:45:27] wire [1:0] pma_checker_priv_x_ok_hi_hi_hi_1; // @[package.scala:45:27] assign pma_checker_priv_x_ok_hi_hi_hi_1 = _GEN_10; // @[package.scala:45:27] wire [3:0] pma_checker_priv_rw_ok_hi_hi = {pma_checker_priv_rw_ok_hi_hi_hi, pma_checker_priv_rw_ok_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_priv_rw_ok_hi = {pma_checker_priv_rw_ok_hi_hi, pma_checker_priv_rw_ok_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__priv_rw_ok_T_2 = {pma_checker_priv_rw_ok_hi, pma_checker_priv_rw_ok_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__priv_rw_ok_T_3 = pma_checker__priv_rw_ok_T_1 ? pma_checker__priv_rw_ok_T_2 : 13'h0; // @[package.scala:45:27] wire [2:0] pma_checker_priv_rw_ok_lo_lo_1 = {pma_checker_priv_rw_ok_lo_lo_hi_1, _pma_checker_entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_priv_rw_ok_lo_hi_1 = {pma_checker_priv_rw_ok_lo_hi_hi_1, _pma_checker_entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_priv_rw_ok_lo_1 = {pma_checker_priv_rw_ok_lo_hi_1, pma_checker_priv_rw_ok_lo_lo_1}; // @[package.scala:45:27] wire [2:0] pma_checker_priv_rw_ok_hi_lo_1 = {pma_checker_priv_rw_ok_hi_lo_hi_1, _pma_checker_entries_barrier_6_io_y_u}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_priv_rw_ok_hi_hi_1 = {pma_checker_priv_rw_ok_hi_hi_hi_1, pma_checker_priv_rw_ok_hi_hi_lo_1}; // @[package.scala:45:27] wire [6:0] pma_checker_priv_rw_ok_hi_1 = {pma_checker_priv_rw_ok_hi_hi_1, pma_checker_priv_rw_ok_hi_lo_1}; // @[package.scala:45:27] wire [12:0] pma_checker__priv_rw_ok_T_4 = {pma_checker_priv_rw_ok_hi_1, pma_checker_priv_rw_ok_lo_1}; // @[package.scala:45:27] wire [12:0] pma_checker__priv_rw_ok_T_5 = ~pma_checker__priv_rw_ok_T_4; // @[package.scala:45:27] wire [12:0] pma_checker__priv_rw_ok_T_6 = pma_checker_priv_s ? pma_checker__priv_rw_ok_T_5 : 13'h0; // @[TLB.scala:370:20, :513:{75,84}] wire [12:0] pma_checker_priv_rw_ok = pma_checker__priv_rw_ok_T_3 | pma_checker__priv_rw_ok_T_6; // @[TLB.scala:513:{23,70,75}] wire [2:0] pma_checker_priv_x_ok_lo_lo = {pma_checker_priv_x_ok_lo_lo_hi, _pma_checker_entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_priv_x_ok_lo_hi = {pma_checker_priv_x_ok_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_priv_x_ok_lo = {pma_checker_priv_x_ok_lo_hi, pma_checker_priv_x_ok_lo_lo}; // @[package.scala:45:27] wire [2:0] pma_checker_priv_x_ok_hi_lo = {pma_checker_priv_x_ok_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_u}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_priv_x_ok_hi_hi = {pma_checker_priv_x_ok_hi_hi_hi, pma_checker_priv_x_ok_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_priv_x_ok_hi = {pma_checker_priv_x_ok_hi_hi, pma_checker_priv_x_ok_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__priv_x_ok_T = {pma_checker_priv_x_ok_hi, pma_checker_priv_x_ok_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__priv_x_ok_T_1 = ~pma_checker__priv_x_ok_T; // @[package.scala:45:27] wire [2:0] pma_checker_priv_x_ok_lo_lo_1 = {pma_checker_priv_x_ok_lo_lo_hi_1, _pma_checker_entries_barrier_io_y_u}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_priv_x_ok_lo_hi_1 = {pma_checker_priv_x_ok_lo_hi_hi_1, _pma_checker_entries_barrier_3_io_y_u}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_priv_x_ok_lo_1 = {pma_checker_priv_x_ok_lo_hi_1, pma_checker_priv_x_ok_lo_lo_1}; // @[package.scala:45:27] wire [2:0] pma_checker_priv_x_ok_hi_lo_1 = {pma_checker_priv_x_ok_hi_lo_hi_1, _pma_checker_entries_barrier_6_io_y_u}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_priv_x_ok_hi_hi_1 = {pma_checker_priv_x_ok_hi_hi_hi_1, pma_checker_priv_x_ok_hi_hi_lo_1}; // @[package.scala:45:27] wire [6:0] pma_checker_priv_x_ok_hi_1 = {pma_checker_priv_x_ok_hi_hi_1, pma_checker_priv_x_ok_hi_lo_1}; // @[package.scala:45:27] wire [12:0] pma_checker__priv_x_ok_T_2 = {pma_checker_priv_x_ok_hi_1, pma_checker_priv_x_ok_lo_1}; // @[package.scala:45:27] wire [12:0] pma_checker_priv_x_ok = pma_checker_priv_s ? pma_checker__priv_x_ok_T_1 : pma_checker__priv_x_ok_T_2; // @[package.scala:45:27] wire [1:0] pma_checker_stage1_bypass_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_ae_stage2, _pma_checker_entries_barrier_1_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_stage1_bypass_lo_lo = {pma_checker_stage1_bypass_lo_lo_hi, _pma_checker_entries_barrier_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_stage1_bypass_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_ae_stage2, _pma_checker_entries_barrier_4_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_stage1_bypass_lo_hi = {pma_checker_stage1_bypass_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_stage1_bypass_lo = {pma_checker_stage1_bypass_lo_hi, pma_checker_stage1_bypass_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_stage1_bypass_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_ae_stage2, _pma_checker_entries_barrier_7_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_stage1_bypass_hi_lo = {pma_checker_stage1_bypass_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_stage1_bypass_hi_hi_lo = {_pma_checker_entries_barrier_10_io_y_ae_stage2, _pma_checker_entries_barrier_9_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_stage1_bypass_hi_hi_hi = {_pma_checker_entries_barrier_12_io_y_ae_stage2, _pma_checker_entries_barrier_11_io_y_ae_stage2}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_stage1_bypass_hi_hi = {pma_checker_stage1_bypass_hi_hi_hi, pma_checker_stage1_bypass_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_stage1_bypass_hi = {pma_checker_stage1_bypass_hi_hi, pma_checker_stage1_bypass_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__stage1_bypass_T_3 = {pma_checker_stage1_bypass_hi, pma_checker_stage1_bypass_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_r_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_sr, _pma_checker_entries_barrier_1_io_y_sr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_r_array_lo_lo = {pma_checker_r_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_sr}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_r_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_sr, _pma_checker_entries_barrier_4_io_y_sr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_r_array_lo_hi = {pma_checker_r_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_sr}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_r_array_lo = {pma_checker_r_array_lo_hi, pma_checker_r_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_r_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_sr, _pma_checker_entries_barrier_7_io_y_sr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_r_array_hi_lo = {pma_checker_r_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_sr}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_r_array_hi_hi_lo = {_pma_checker_entries_barrier_10_io_y_sr, _pma_checker_entries_barrier_9_io_y_sr}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_r_array_hi_hi_hi = {_pma_checker_entries_barrier_12_io_y_sr, _pma_checker_entries_barrier_11_io_y_sr}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_r_array_hi_hi = {pma_checker_r_array_hi_hi_hi, pma_checker_r_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_r_array_hi = {pma_checker_r_array_hi_hi, pma_checker_r_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__r_array_T = {pma_checker_r_array_hi, pma_checker_r_array_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__r_array_T_3 = pma_checker__r_array_T; // @[package.scala:45:27] wire [1:0] _GEN_11 = {_pma_checker_entries_barrier_2_io_y_sx, _pma_checker_entries_barrier_1_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_r_array_lo_lo_hi_1; // @[package.scala:45:27] assign pma_checker_r_array_lo_lo_hi_1 = _GEN_11; // @[package.scala:45:27] wire [1:0] pma_checker_x_array_lo_lo_hi; // @[package.scala:45:27] assign pma_checker_x_array_lo_lo_hi = _GEN_11; // @[package.scala:45:27] wire [2:0] pma_checker_r_array_lo_lo_1 = {pma_checker_r_array_lo_lo_hi_1, _pma_checker_entries_barrier_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_12 = {_pma_checker_entries_barrier_5_io_y_sx, _pma_checker_entries_barrier_4_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_r_array_lo_hi_hi_1; // @[package.scala:45:27] assign pma_checker_r_array_lo_hi_hi_1 = _GEN_12; // @[package.scala:45:27] wire [1:0] pma_checker_x_array_lo_hi_hi; // @[package.scala:45:27] assign pma_checker_x_array_lo_hi_hi = _GEN_12; // @[package.scala:45:27] wire [2:0] pma_checker_r_array_lo_hi_1 = {pma_checker_r_array_lo_hi_hi_1, _pma_checker_entries_barrier_3_io_y_sx}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_r_array_lo_1 = {pma_checker_r_array_lo_hi_1, pma_checker_r_array_lo_lo_1}; // @[package.scala:45:27] wire [1:0] _GEN_13 = {_pma_checker_entries_barrier_8_io_y_sx, _pma_checker_entries_barrier_7_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_r_array_hi_lo_hi_1; // @[package.scala:45:27] assign pma_checker_r_array_hi_lo_hi_1 = _GEN_13; // @[package.scala:45:27] wire [1:0] pma_checker_x_array_hi_lo_hi; // @[package.scala:45:27] assign pma_checker_x_array_hi_lo_hi = _GEN_13; // @[package.scala:45:27] wire [2:0] pma_checker_r_array_hi_lo_1 = {pma_checker_r_array_hi_lo_hi_1, _pma_checker_entries_barrier_6_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_14 = {_pma_checker_entries_barrier_10_io_y_sx, _pma_checker_entries_barrier_9_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_r_array_hi_hi_lo_1; // @[package.scala:45:27] assign pma_checker_r_array_hi_hi_lo_1 = _GEN_14; // @[package.scala:45:27] wire [1:0] pma_checker_x_array_hi_hi_lo; // @[package.scala:45:27] assign pma_checker_x_array_hi_hi_lo = _GEN_14; // @[package.scala:45:27] wire [1:0] _GEN_15 = {_pma_checker_entries_barrier_12_io_y_sx, _pma_checker_entries_barrier_11_io_y_sx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_r_array_hi_hi_hi_1; // @[package.scala:45:27] assign pma_checker_r_array_hi_hi_hi_1 = _GEN_15; // @[package.scala:45:27] wire [1:0] pma_checker_x_array_hi_hi_hi; // @[package.scala:45:27] assign pma_checker_x_array_hi_hi_hi = _GEN_15; // @[package.scala:45:27] wire [3:0] pma_checker_r_array_hi_hi_1 = {pma_checker_r_array_hi_hi_hi_1, pma_checker_r_array_hi_hi_lo_1}; // @[package.scala:45:27] wire [6:0] pma_checker_r_array_hi_1 = {pma_checker_r_array_hi_hi_1, pma_checker_r_array_hi_lo_1}; // @[package.scala:45:27] wire [12:0] pma_checker__r_array_T_1 = {pma_checker_r_array_hi_1, pma_checker_r_array_lo_1}; // @[package.scala:45:27] wire [12:0] pma_checker__r_array_T_4 = pma_checker_priv_rw_ok & pma_checker__r_array_T_3; // @[TLB.scala:513:70, :520:{41,69}] wire [12:0] pma_checker__r_array_T_5 = pma_checker__r_array_T_4; // @[TLB.scala:520:{41,113}] wire [13:0] pma_checker_r_array = {1'h1, pma_checker__r_array_T_5}; // @[TLB.scala:520:{20,113}] wire [13:0] pma_checker__pf_ld_array_T = pma_checker_r_array; // @[TLB.scala:520:20, :597:41] wire [1:0] pma_checker_w_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_sw, _pma_checker_entries_barrier_1_io_y_sw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_w_array_lo_lo = {pma_checker_w_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_sw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_w_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_sw, _pma_checker_entries_barrier_4_io_y_sw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_w_array_lo_hi = {pma_checker_w_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_sw}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_w_array_lo = {pma_checker_w_array_lo_hi, pma_checker_w_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_w_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_sw, _pma_checker_entries_barrier_7_io_y_sw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_w_array_hi_lo = {pma_checker_w_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_sw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_w_array_hi_hi_lo = {_pma_checker_entries_barrier_10_io_y_sw, _pma_checker_entries_barrier_9_io_y_sw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_w_array_hi_hi_hi = {_pma_checker_entries_barrier_12_io_y_sw, _pma_checker_entries_barrier_11_io_y_sw}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_w_array_hi_hi = {pma_checker_w_array_hi_hi_hi, pma_checker_w_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_w_array_hi = {pma_checker_w_array_hi_hi, pma_checker_w_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__w_array_T = {pma_checker_w_array_hi, pma_checker_w_array_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__w_array_T_1 = pma_checker_priv_rw_ok & pma_checker__w_array_T; // @[package.scala:45:27] wire [12:0] pma_checker__w_array_T_2 = pma_checker__w_array_T_1; // @[TLB.scala:521:{41,69}] wire [13:0] pma_checker_w_array = {1'h1, pma_checker__w_array_T_2}; // @[TLB.scala:521:{20,69}] wire [2:0] pma_checker_x_array_lo_lo = {pma_checker_x_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_sx}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_x_array_lo_hi = {pma_checker_x_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_sx}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_x_array_lo = {pma_checker_x_array_lo_hi, pma_checker_x_array_lo_lo}; // @[package.scala:45:27] wire [2:0] pma_checker_x_array_hi_lo = {pma_checker_x_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_sx}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_x_array_hi_hi = {pma_checker_x_array_hi_hi_hi, pma_checker_x_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_x_array_hi = {pma_checker_x_array_hi_hi, pma_checker_x_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__x_array_T = {pma_checker_x_array_hi, pma_checker_x_array_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__x_array_T_1 = pma_checker_priv_x_ok & pma_checker__x_array_T; // @[package.scala:45:27] wire [12:0] pma_checker__x_array_T_2 = pma_checker__x_array_T_1; // @[TLB.scala:522:{40,68}] wire [13:0] pma_checker_x_array = {1'h1, pma_checker__x_array_T_2}; // @[TLB.scala:522:{20,68}] wire [1:0] pma_checker_hr_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_hr, _pma_checker_entries_barrier_1_io_y_hr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_hr_array_lo_lo = {pma_checker_hr_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_hr}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hr_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_hr, _pma_checker_entries_barrier_4_io_y_hr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_hr_array_lo_hi = {pma_checker_hr_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_hr}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_hr_array_lo = {pma_checker_hr_array_lo_hi, pma_checker_hr_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_hr_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_hr, _pma_checker_entries_barrier_7_io_y_hr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_hr_array_hi_lo = {pma_checker_hr_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_hr}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hr_array_hi_hi_lo = {_pma_checker_entries_barrier_10_io_y_hr, _pma_checker_entries_barrier_9_io_y_hr}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hr_array_hi_hi_hi = {_pma_checker_entries_barrier_12_io_y_hr, _pma_checker_entries_barrier_11_io_y_hr}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_hr_array_hi_hi = {pma_checker_hr_array_hi_hi_hi, pma_checker_hr_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_hr_array_hi = {pma_checker_hr_array_hi_hi, pma_checker_hr_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__hr_array_T = {pma_checker_hr_array_hi, pma_checker_hr_array_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__hr_array_T_3 = pma_checker__hr_array_T; // @[package.scala:45:27] wire [1:0] _GEN_16 = {_pma_checker_entries_barrier_2_io_y_hx, _pma_checker_entries_barrier_1_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hr_array_lo_lo_hi_1; // @[package.scala:45:27] assign pma_checker_hr_array_lo_lo_hi_1 = _GEN_16; // @[package.scala:45:27] wire [1:0] pma_checker_hx_array_lo_lo_hi; // @[package.scala:45:27] assign pma_checker_hx_array_lo_lo_hi = _GEN_16; // @[package.scala:45:27] wire [2:0] pma_checker_hr_array_lo_lo_1 = {pma_checker_hr_array_lo_lo_hi_1, _pma_checker_entries_barrier_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_17 = {_pma_checker_entries_barrier_5_io_y_hx, _pma_checker_entries_barrier_4_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hr_array_lo_hi_hi_1; // @[package.scala:45:27] assign pma_checker_hr_array_lo_hi_hi_1 = _GEN_17; // @[package.scala:45:27] wire [1:0] pma_checker_hx_array_lo_hi_hi; // @[package.scala:45:27] assign pma_checker_hx_array_lo_hi_hi = _GEN_17; // @[package.scala:45:27] wire [2:0] pma_checker_hr_array_lo_hi_1 = {pma_checker_hr_array_lo_hi_hi_1, _pma_checker_entries_barrier_3_io_y_hx}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_hr_array_lo_1 = {pma_checker_hr_array_lo_hi_1, pma_checker_hr_array_lo_lo_1}; // @[package.scala:45:27] wire [1:0] _GEN_18 = {_pma_checker_entries_barrier_8_io_y_hx, _pma_checker_entries_barrier_7_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hr_array_hi_lo_hi_1; // @[package.scala:45:27] assign pma_checker_hr_array_hi_lo_hi_1 = _GEN_18; // @[package.scala:45:27] wire [1:0] pma_checker_hx_array_hi_lo_hi; // @[package.scala:45:27] assign pma_checker_hx_array_hi_lo_hi = _GEN_18; // @[package.scala:45:27] wire [2:0] pma_checker_hr_array_hi_lo_1 = {pma_checker_hr_array_hi_lo_hi_1, _pma_checker_entries_barrier_6_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_19 = {_pma_checker_entries_barrier_10_io_y_hx, _pma_checker_entries_barrier_9_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hr_array_hi_hi_lo_1; // @[package.scala:45:27] assign pma_checker_hr_array_hi_hi_lo_1 = _GEN_19; // @[package.scala:45:27] wire [1:0] pma_checker_hx_array_hi_hi_lo; // @[package.scala:45:27] assign pma_checker_hx_array_hi_hi_lo = _GEN_19; // @[package.scala:45:27] wire [1:0] _GEN_20 = {_pma_checker_entries_barrier_12_io_y_hx, _pma_checker_entries_barrier_11_io_y_hx}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hr_array_hi_hi_hi_1; // @[package.scala:45:27] assign pma_checker_hr_array_hi_hi_hi_1 = _GEN_20; // @[package.scala:45:27] wire [1:0] pma_checker_hx_array_hi_hi_hi; // @[package.scala:45:27] assign pma_checker_hx_array_hi_hi_hi = _GEN_20; // @[package.scala:45:27] wire [3:0] pma_checker_hr_array_hi_hi_1 = {pma_checker_hr_array_hi_hi_hi_1, pma_checker_hr_array_hi_hi_lo_1}; // @[package.scala:45:27] wire [6:0] pma_checker_hr_array_hi_1 = {pma_checker_hr_array_hi_hi_1, pma_checker_hr_array_hi_lo_1}; // @[package.scala:45:27] wire [12:0] pma_checker__hr_array_T_1 = {pma_checker_hr_array_hi_1, pma_checker_hr_array_lo_1}; // @[package.scala:45:27] wire [1:0] pma_checker_hw_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_hw, _pma_checker_entries_barrier_1_io_y_hw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_hw_array_lo_lo = {pma_checker_hw_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_hw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hw_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_hw, _pma_checker_entries_barrier_4_io_y_hw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_hw_array_lo_hi = {pma_checker_hw_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_hw}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_hw_array_lo = {pma_checker_hw_array_lo_hi, pma_checker_hw_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_hw_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_hw, _pma_checker_entries_barrier_7_io_y_hw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_hw_array_hi_lo = {pma_checker_hw_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_hw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hw_array_hi_hi_lo = {_pma_checker_entries_barrier_10_io_y_hw, _pma_checker_entries_barrier_9_io_y_hw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_hw_array_hi_hi_hi = {_pma_checker_entries_barrier_12_io_y_hw, _pma_checker_entries_barrier_11_io_y_hw}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_hw_array_hi_hi = {pma_checker_hw_array_hi_hi_hi, pma_checker_hw_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_hw_array_hi = {pma_checker_hw_array_hi_hi, pma_checker_hw_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__hw_array_T = {pma_checker_hw_array_hi, pma_checker_hw_array_lo}; // @[package.scala:45:27] wire [2:0] pma_checker_hx_array_lo_lo = {pma_checker_hx_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_hx}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_hx_array_lo_hi = {pma_checker_hx_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_hx}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_hx_array_lo = {pma_checker_hx_array_lo_hi, pma_checker_hx_array_lo_lo}; // @[package.scala:45:27] wire [2:0] pma_checker_hx_array_hi_lo = {pma_checker_hx_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_hx}; // @[package.scala:45:27, :267:25] wire [3:0] pma_checker_hx_array_hi_hi = {pma_checker_hx_array_hi_hi_hi, pma_checker_hx_array_hi_hi_lo}; // @[package.scala:45:27] wire [6:0] pma_checker_hx_array_hi = {pma_checker_hx_array_hi_hi, pma_checker_hx_array_hi_lo}; // @[package.scala:45:27] wire [12:0] pma_checker__hx_array_T = {pma_checker_hx_array_hi, pma_checker_hx_array_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_pr_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_pr, _pma_checker_entries_barrier_1_io_y_pr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pr_array_lo_lo = {pma_checker_pr_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_pr}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_pr_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_pr, _pma_checker_entries_barrier_4_io_y_pr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pr_array_lo_hi = {pma_checker_pr_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_pr}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_pr_array_lo = {pma_checker_pr_array_lo_hi, pma_checker_pr_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_pr_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_pr, _pma_checker_entries_barrier_7_io_y_pr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pr_array_hi_lo = {pma_checker_pr_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_pr}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_pr_array_hi_hi_hi = {_pma_checker_entries_barrier_11_io_y_pr, _pma_checker_entries_barrier_10_io_y_pr}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pr_array_hi_hi = {pma_checker_pr_array_hi_hi_hi, _pma_checker_entries_barrier_9_io_y_pr}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_pr_array_hi = {pma_checker_pr_array_hi_hi, pma_checker_pr_array_hi_lo}; // @[package.scala:45:27] wire [11:0] pma_checker__pr_array_T_1 = {pma_checker_pr_array_hi, pma_checker_pr_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker__pr_array_T_2 = {2'h0, pma_checker__pr_array_T_1}; // @[package.scala:45:27] wire [13:0] _GEN_21 = pma_checker_ptw_ae_array | pma_checker_final_ae_array; // @[TLB.scala:506:25, :507:27, :529:104] wire [13:0] pma_checker__pr_array_T_3; // @[TLB.scala:529:104] assign pma_checker__pr_array_T_3 = _GEN_21; // @[TLB.scala:529:104] wire [13:0] pma_checker__pw_array_T_3; // @[TLB.scala:531:104] assign pma_checker__pw_array_T_3 = _GEN_21; // @[TLB.scala:529:104, :531:104] wire [13:0] pma_checker__px_array_T_3; // @[TLB.scala:533:104] assign pma_checker__px_array_T_3 = _GEN_21; // @[TLB.scala:529:104, :533:104] wire [13:0] pma_checker__pr_array_T_4 = ~pma_checker__pr_array_T_3; // @[TLB.scala:529:{89,104}] wire [13:0] pma_checker_pr_array = pma_checker__pr_array_T_2 & pma_checker__pr_array_T_4; // @[TLB.scala:529:{21,87,89}] wire [1:0] pma_checker_pw_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_pw, _pma_checker_entries_barrier_1_io_y_pw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pw_array_lo_lo = {pma_checker_pw_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_pw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_pw_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_pw, _pma_checker_entries_barrier_4_io_y_pw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pw_array_lo_hi = {pma_checker_pw_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_pw}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_pw_array_lo = {pma_checker_pw_array_lo_hi, pma_checker_pw_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_pw_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_pw, _pma_checker_entries_barrier_7_io_y_pw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pw_array_hi_lo = {pma_checker_pw_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_pw}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_pw_array_hi_hi_hi = {_pma_checker_entries_barrier_11_io_y_pw, _pma_checker_entries_barrier_10_io_y_pw}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pw_array_hi_hi = {pma_checker_pw_array_hi_hi_hi, _pma_checker_entries_barrier_9_io_y_pw}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_pw_array_hi = {pma_checker_pw_array_hi_hi, pma_checker_pw_array_hi_lo}; // @[package.scala:45:27] wire [11:0] pma_checker__pw_array_T_1 = {pma_checker_pw_array_hi, pma_checker_pw_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker__pw_array_T_2 = {2'h0, pma_checker__pw_array_T_1}; // @[package.scala:45:27] wire [13:0] pma_checker__pw_array_T_4 = ~pma_checker__pw_array_T_3; // @[TLB.scala:531:{89,104}] wire [13:0] pma_checker_pw_array = pma_checker__pw_array_T_2 & pma_checker__pw_array_T_4; // @[TLB.scala:531:{21,87,89}] wire [1:0] pma_checker_px_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_px, _pma_checker_entries_barrier_1_io_y_px}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_px_array_lo_lo = {pma_checker_px_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_px}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_px_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_px, _pma_checker_entries_barrier_4_io_y_px}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_px_array_lo_hi = {pma_checker_px_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_px}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_px_array_lo = {pma_checker_px_array_lo_hi, pma_checker_px_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_px_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_px, _pma_checker_entries_barrier_7_io_y_px}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_px_array_hi_lo = {pma_checker_px_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_px}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_px_array_hi_hi_hi = {_pma_checker_entries_barrier_11_io_y_px, _pma_checker_entries_barrier_10_io_y_px}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_px_array_hi_hi = {pma_checker_px_array_hi_hi_hi, _pma_checker_entries_barrier_9_io_y_px}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_px_array_hi = {pma_checker_px_array_hi_hi, pma_checker_px_array_hi_lo}; // @[package.scala:45:27] wire [11:0] pma_checker__px_array_T_1 = {pma_checker_px_array_hi, pma_checker_px_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker__px_array_T_2 = {2'h0, pma_checker__px_array_T_1}; // @[package.scala:45:27] wire [13:0] pma_checker__px_array_T_4 = ~pma_checker__px_array_T_3; // @[TLB.scala:533:{89,104}] wire [13:0] pma_checker_px_array = pma_checker__px_array_T_2 & pma_checker__px_array_T_4; // @[TLB.scala:533:{21,87,89}] wire [1:0] pma_checker__eff_array_T = {2{_pma_checker_pma_io_resp_eff}}; // @[TLB.scala:422:19, :535:27] wire [1:0] pma_checker_eff_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_eff, _pma_checker_entries_barrier_1_io_y_eff}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_eff_array_lo_lo = {pma_checker_eff_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_eff}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_eff_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_eff, _pma_checker_entries_barrier_4_io_y_eff}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_eff_array_lo_hi = {pma_checker_eff_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_eff}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_eff_array_lo = {pma_checker_eff_array_lo_hi, pma_checker_eff_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_eff_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_eff, _pma_checker_entries_barrier_7_io_y_eff}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_eff_array_hi_lo = {pma_checker_eff_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_eff}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_eff_array_hi_hi_hi = {_pma_checker_entries_barrier_11_io_y_eff, _pma_checker_entries_barrier_10_io_y_eff}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_eff_array_hi_hi = {pma_checker_eff_array_hi_hi_hi, _pma_checker_entries_barrier_9_io_y_eff}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_eff_array_hi = {pma_checker_eff_array_hi_hi, pma_checker_eff_array_hi_lo}; // @[package.scala:45:27] wire [11:0] pma_checker__eff_array_T_1 = {pma_checker_eff_array_hi, pma_checker_eff_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_eff_array = {pma_checker__eff_array_T, pma_checker__eff_array_T_1}; // @[package.scala:45:27] wire [1:0] pma_checker__c_array_T = {2{pma_checker_cacheable}}; // @[TLB.scala:425:41, :537:25] wire [1:0] _GEN_22 = {_pma_checker_entries_barrier_2_io_y_c, _pma_checker_entries_barrier_1_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_c_array_lo_lo_hi; // @[package.scala:45:27] assign pma_checker_c_array_lo_lo_hi = _GEN_22; // @[package.scala:45:27] wire [1:0] pma_checker_prefetchable_array_lo_lo_hi; // @[package.scala:45:27] assign pma_checker_prefetchable_array_lo_lo_hi = _GEN_22; // @[package.scala:45:27] wire [2:0] pma_checker_c_array_lo_lo = {pma_checker_c_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_23 = {_pma_checker_entries_barrier_5_io_y_c, _pma_checker_entries_barrier_4_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_c_array_lo_hi_hi; // @[package.scala:45:27] assign pma_checker_c_array_lo_hi_hi = _GEN_23; // @[package.scala:45:27] wire [1:0] pma_checker_prefetchable_array_lo_hi_hi; // @[package.scala:45:27] assign pma_checker_prefetchable_array_lo_hi_hi = _GEN_23; // @[package.scala:45:27] wire [2:0] pma_checker_c_array_lo_hi = {pma_checker_c_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_c}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_c_array_lo = {pma_checker_c_array_lo_hi, pma_checker_c_array_lo_lo}; // @[package.scala:45:27] wire [1:0] _GEN_24 = {_pma_checker_entries_barrier_8_io_y_c, _pma_checker_entries_barrier_7_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_c_array_hi_lo_hi; // @[package.scala:45:27] assign pma_checker_c_array_hi_lo_hi = _GEN_24; // @[package.scala:45:27] wire [1:0] pma_checker_prefetchable_array_hi_lo_hi; // @[package.scala:45:27] assign pma_checker_prefetchable_array_hi_lo_hi = _GEN_24; // @[package.scala:45:27] wire [2:0] pma_checker_c_array_hi_lo = {pma_checker_c_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] _GEN_25 = {_pma_checker_entries_barrier_11_io_y_c, _pma_checker_entries_barrier_10_io_y_c}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_c_array_hi_hi_hi; // @[package.scala:45:27] assign pma_checker_c_array_hi_hi_hi = _GEN_25; // @[package.scala:45:27] wire [1:0] pma_checker_prefetchable_array_hi_hi_hi; // @[package.scala:45:27] assign pma_checker_prefetchable_array_hi_hi_hi = _GEN_25; // @[package.scala:45:27] wire [2:0] pma_checker_c_array_hi_hi = {pma_checker_c_array_hi_hi_hi, _pma_checker_entries_barrier_9_io_y_c}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_c_array_hi = {pma_checker_c_array_hi_hi, pma_checker_c_array_hi_lo}; // @[package.scala:45:27] wire [11:0] pma_checker__c_array_T_1 = {pma_checker_c_array_hi, pma_checker_c_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_c_array = {pma_checker__c_array_T, pma_checker__c_array_T_1}; // @[package.scala:45:27] wire [13:0] pma_checker_lrscAllowed = pma_checker_c_array; // @[TLB.scala:537:20, :580:24] wire [1:0] pma_checker__ppp_array_T = {2{_pma_checker_pma_io_resp_pp}}; // @[TLB.scala:422:19, :539:27] wire [1:0] pma_checker_ppp_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_ppp, _pma_checker_entries_barrier_1_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ppp_array_lo_lo = {pma_checker_ppp_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ppp_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_ppp, _pma_checker_entries_barrier_4_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ppp_array_lo_hi = {pma_checker_ppp_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_ppp_array_lo = {pma_checker_ppp_array_lo_hi, pma_checker_ppp_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_ppp_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_ppp, _pma_checker_entries_barrier_7_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ppp_array_hi_lo = {pma_checker_ppp_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_ppp_array_hi_hi_hi = {_pma_checker_entries_barrier_11_io_y_ppp, _pma_checker_entries_barrier_10_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_ppp_array_hi_hi = {pma_checker_ppp_array_hi_hi_hi, _pma_checker_entries_barrier_9_io_y_ppp}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_ppp_array_hi = {pma_checker_ppp_array_hi_hi, pma_checker_ppp_array_hi_lo}; // @[package.scala:45:27] wire [11:0] pma_checker__ppp_array_T_1 = {pma_checker_ppp_array_hi, pma_checker_ppp_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_ppp_array = {pma_checker__ppp_array_T, pma_checker__ppp_array_T_1}; // @[package.scala:45:27] wire [1:0] pma_checker__paa_array_T = {2{_pma_checker_pma_io_resp_aa}}; // @[TLB.scala:422:19, :541:27] wire [1:0] pma_checker_paa_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_paa, _pma_checker_entries_barrier_1_io_y_paa}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_paa_array_lo_lo = {pma_checker_paa_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_paa}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_paa_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_paa, _pma_checker_entries_barrier_4_io_y_paa}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_paa_array_lo_hi = {pma_checker_paa_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_paa}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_paa_array_lo = {pma_checker_paa_array_lo_hi, pma_checker_paa_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_paa_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_paa, _pma_checker_entries_barrier_7_io_y_paa}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_paa_array_hi_lo = {pma_checker_paa_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_paa}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_paa_array_hi_hi_hi = {_pma_checker_entries_barrier_11_io_y_paa, _pma_checker_entries_barrier_10_io_y_paa}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_paa_array_hi_hi = {pma_checker_paa_array_hi_hi_hi, _pma_checker_entries_barrier_9_io_y_paa}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_paa_array_hi = {pma_checker_paa_array_hi_hi, pma_checker_paa_array_hi_lo}; // @[package.scala:45:27] wire [11:0] pma_checker__paa_array_T_1 = {pma_checker_paa_array_hi, pma_checker_paa_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_paa_array = {pma_checker__paa_array_T, pma_checker__paa_array_T_1}; // @[package.scala:45:27] wire [1:0] pma_checker__pal_array_T = {2{_pma_checker_pma_io_resp_al}}; // @[TLB.scala:422:19, :543:27] wire [1:0] pma_checker_pal_array_lo_lo_hi = {_pma_checker_entries_barrier_2_io_y_pal, _pma_checker_entries_barrier_1_io_y_pal}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pal_array_lo_lo = {pma_checker_pal_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_pal}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_pal_array_lo_hi_hi = {_pma_checker_entries_barrier_5_io_y_pal, _pma_checker_entries_barrier_4_io_y_pal}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pal_array_lo_hi = {pma_checker_pal_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_pal}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_pal_array_lo = {pma_checker_pal_array_lo_hi, pma_checker_pal_array_lo_lo}; // @[package.scala:45:27] wire [1:0] pma_checker_pal_array_hi_lo_hi = {_pma_checker_entries_barrier_8_io_y_pal, _pma_checker_entries_barrier_7_io_y_pal}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pal_array_hi_lo = {pma_checker_pal_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_pal}; // @[package.scala:45:27, :267:25] wire [1:0] pma_checker_pal_array_hi_hi_hi = {_pma_checker_entries_barrier_11_io_y_pal, _pma_checker_entries_barrier_10_io_y_pal}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_pal_array_hi_hi = {pma_checker_pal_array_hi_hi_hi, _pma_checker_entries_barrier_9_io_y_pal}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_pal_array_hi = {pma_checker_pal_array_hi_hi, pma_checker_pal_array_hi_lo}; // @[package.scala:45:27] wire [11:0] pma_checker__pal_array_T_1 = {pma_checker_pal_array_hi, pma_checker_pal_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_pal_array = {pma_checker__pal_array_T, pma_checker__pal_array_T_1}; // @[package.scala:45:27] wire [13:0] pma_checker_ppp_array_if_cached = pma_checker_ppp_array | pma_checker_c_array; // @[TLB.scala:537:20, :539:22, :544:39] wire [13:0] pma_checker_paa_array_if_cached = pma_checker_paa_array | pma_checker_c_array; // @[TLB.scala:537:20, :541:22, :545:39] wire [13:0] pma_checker_pal_array_if_cached = pma_checker_pal_array | pma_checker_c_array; // @[TLB.scala:537:20, :543:22, :546:39] wire pma_checker__prefetchable_array_T = pma_checker_cacheable & pma_checker_homogeneous; // @[TLBPermissions.scala:101:65] wire [1:0] pma_checker__prefetchable_array_T_1 = {pma_checker__prefetchable_array_T, 1'h0}; // @[TLB.scala:547:{43,59}] wire [2:0] pma_checker_prefetchable_array_lo_lo = {pma_checker_prefetchable_array_lo_lo_hi, _pma_checker_entries_barrier_io_y_c}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_prefetchable_array_lo_hi = {pma_checker_prefetchable_array_lo_hi_hi, _pma_checker_entries_barrier_3_io_y_c}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_prefetchable_array_lo = {pma_checker_prefetchable_array_lo_hi, pma_checker_prefetchable_array_lo_lo}; // @[package.scala:45:27] wire [2:0] pma_checker_prefetchable_array_hi_lo = {pma_checker_prefetchable_array_hi_lo_hi, _pma_checker_entries_barrier_6_io_y_c}; // @[package.scala:45:27, :267:25] wire [2:0] pma_checker_prefetchable_array_hi_hi = {pma_checker_prefetchable_array_hi_hi_hi, _pma_checker_entries_barrier_9_io_y_c}; // @[package.scala:45:27, :267:25] wire [5:0] pma_checker_prefetchable_array_hi = {pma_checker_prefetchable_array_hi_hi, pma_checker_prefetchable_array_hi_lo}; // @[package.scala:45:27] wire [11:0] pma_checker__prefetchable_array_T_2 = {pma_checker_prefetchable_array_hi, pma_checker_prefetchable_array_lo}; // @[package.scala:45:27] wire [13:0] pma_checker_prefetchable_array = {pma_checker__prefetchable_array_T_1, pma_checker__prefetchable_array_T_2}; // @[package.scala:45:27] wire [3:0] pma_checker__misaligned_T = 4'h1 << pma_checker_io_req_bits_size; // @[OneHot.scala:58:35] wire [4:0] pma_checker__misaligned_T_1 = {1'h0, pma_checker__misaligned_T} - 5'h1; // @[OneHot.scala:58:35] wire [3:0] pma_checker__misaligned_T_2 = pma_checker__misaligned_T_1[3:0]; // @[TLB.scala:550:69] wire [39:0] pma_checker__misaligned_T_3 = {36'h0, pma_checker_io_req_bits_vaddr[3:0] & pma_checker__misaligned_T_2}; // @[TLB.scala:550:{39,69}] wire pma_checker_misaligned = |pma_checker__misaligned_T_3; // @[TLB.scala:550:{39,77}] wire [39:0] pma_checker_bad_va_maskedVAddr = pma_checker_io_req_bits_vaddr & 40'hC000000000; // @[TLB.scala:559:43] wire pma_checker__bad_va_T_2 = pma_checker_bad_va_maskedVAddr == 40'h0; // @[TLB.scala:559:43, :560:51] wire pma_checker__bad_va_T_3 = pma_checker_bad_va_maskedVAddr == 40'hC000000000; // @[TLB.scala:559:43, :560:86] wire pma_checker__bad_va_T_4 = pma_checker__bad_va_T_3; // @[TLB.scala:560:{71,86}] wire pma_checker__bad_va_T_5 = pma_checker__bad_va_T_2 | pma_checker__bad_va_T_4; // @[TLB.scala:560:{51,59,71}] wire pma_checker__bad_va_T_6 = ~pma_checker__bad_va_T_5; // @[TLB.scala:560:{37,59}] wire pma_checker__bad_va_T_7 = pma_checker__bad_va_T_6; // @[TLB.scala:560:{34,37}] wire _GEN_26 = pma_checker_io_req_bits_cmd == 5'h6; // @[package.scala:16:47] wire pma_checker__cmd_lrsc_T; // @[package.scala:16:47] assign pma_checker__cmd_lrsc_T = _GEN_26; // @[package.scala:16:47] wire pma_checker__cmd_read_T_2; // @[package.scala:16:47] assign pma_checker__cmd_read_T_2 = _GEN_26; // @[package.scala:16:47] wire _GEN_27 = pma_checker_io_req_bits_cmd == 5'h7; // @[package.scala:16:47] wire pma_checker__cmd_lrsc_T_1; // @[package.scala:16:47] assign pma_checker__cmd_lrsc_T_1 = _GEN_27; // @[package.scala:16:47] wire pma_checker__cmd_read_T_3; // @[package.scala:16:47] assign pma_checker__cmd_read_T_3 = _GEN_27; // @[package.scala:16:47] wire pma_checker__cmd_write_T_3; // @[Consts.scala:90:66] assign pma_checker__cmd_write_T_3 = _GEN_27; // @[package.scala:16:47] wire pma_checker__cmd_lrsc_T_2 = pma_checker__cmd_lrsc_T | pma_checker__cmd_lrsc_T_1; // @[package.scala:16:47, :81:59] wire pma_checker_cmd_lrsc = pma_checker__cmd_lrsc_T_2; // @[package.scala:81:59] wire _GEN_28 = pma_checker_io_req_bits_cmd == 5'h4; // @[package.scala:16:47] wire pma_checker__cmd_amo_logical_T; // @[package.scala:16:47] assign pma_checker__cmd_amo_logical_T = _GEN_28; // @[package.scala:16:47] wire pma_checker__cmd_read_T_7; // @[package.scala:16:47] assign pma_checker__cmd_read_T_7 = _GEN_28; // @[package.scala:16:47] wire pma_checker__cmd_write_T_5; // @[package.scala:16:47] assign pma_checker__cmd_write_T_5 = _GEN_28; // @[package.scala:16:47] wire _GEN_29 = pma_checker_io_req_bits_cmd == 5'h9; // @[package.scala:16:47] wire pma_checker__cmd_amo_logical_T_1; // @[package.scala:16:47] assign pma_checker__cmd_amo_logical_T_1 = _GEN_29; // @[package.scala:16:47] wire pma_checker__cmd_read_T_8; // @[package.scala:16:47] assign pma_checker__cmd_read_T_8 = _GEN_29; // @[package.scala:16:47] wire pma_checker__cmd_write_T_6; // @[package.scala:16:47] assign pma_checker__cmd_write_T_6 = _GEN_29; // @[package.scala:16:47] wire _GEN_30 = pma_checker_io_req_bits_cmd == 5'hA; // @[package.scala:16:47] wire pma_checker__cmd_amo_logical_T_2; // @[package.scala:16:47] assign pma_checker__cmd_amo_logical_T_2 = _GEN_30; // @[package.scala:16:47] wire pma_checker__cmd_read_T_9; // @[package.scala:16:47] assign pma_checker__cmd_read_T_9 = _GEN_30; // @[package.scala:16:47] wire pma_checker__cmd_write_T_7; // @[package.scala:16:47] assign pma_checker__cmd_write_T_7 = _GEN_30; // @[package.scala:16:47] wire _GEN_31 = pma_checker_io_req_bits_cmd == 5'hB; // @[package.scala:16:47] wire pma_checker__cmd_amo_logical_T_3; // @[package.scala:16:47] assign pma_checker__cmd_amo_logical_T_3 = _GEN_31; // @[package.scala:16:47] wire pma_checker__cmd_read_T_10; // @[package.scala:16:47] assign pma_checker__cmd_read_T_10 = _GEN_31; // @[package.scala:16:47] wire pma_checker__cmd_write_T_8; // @[package.scala:16:47] assign pma_checker__cmd_write_T_8 = _GEN_31; // @[package.scala:16:47] wire pma_checker__cmd_amo_logical_T_4 = pma_checker__cmd_amo_logical_T | pma_checker__cmd_amo_logical_T_1; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_amo_logical_T_5 = pma_checker__cmd_amo_logical_T_4 | pma_checker__cmd_amo_logical_T_2; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_amo_logical_T_6 = pma_checker__cmd_amo_logical_T_5 | pma_checker__cmd_amo_logical_T_3; // @[package.scala:16:47, :81:59] wire pma_checker_cmd_amo_logical = pma_checker__cmd_amo_logical_T_6; // @[package.scala:81:59] wire _GEN_32 = pma_checker_io_req_bits_cmd == 5'h8; // @[package.scala:16:47] wire pma_checker__cmd_amo_arithmetic_T; // @[package.scala:16:47] assign pma_checker__cmd_amo_arithmetic_T = _GEN_32; // @[package.scala:16:47] wire pma_checker__cmd_read_T_14; // @[package.scala:16:47] assign pma_checker__cmd_read_T_14 = _GEN_32; // @[package.scala:16:47] wire pma_checker__cmd_write_T_12; // @[package.scala:16:47] assign pma_checker__cmd_write_T_12 = _GEN_32; // @[package.scala:16:47] wire _GEN_33 = pma_checker_io_req_bits_cmd == 5'hC; // @[package.scala:16:47] wire pma_checker__cmd_amo_arithmetic_T_1; // @[package.scala:16:47] assign pma_checker__cmd_amo_arithmetic_T_1 = _GEN_33; // @[package.scala:16:47] wire pma_checker__cmd_read_T_15; // @[package.scala:16:47] assign pma_checker__cmd_read_T_15 = _GEN_33; // @[package.scala:16:47] wire pma_checker__cmd_write_T_13; // @[package.scala:16:47] assign pma_checker__cmd_write_T_13 = _GEN_33; // @[package.scala:16:47] wire _GEN_34 = pma_checker_io_req_bits_cmd == 5'hD; // @[package.scala:16:47] wire pma_checker__cmd_amo_arithmetic_T_2; // @[package.scala:16:47] assign pma_checker__cmd_amo_arithmetic_T_2 = _GEN_34; // @[package.scala:16:47] wire pma_checker__cmd_read_T_16; // @[package.scala:16:47] assign pma_checker__cmd_read_T_16 = _GEN_34; // @[package.scala:16:47] wire pma_checker__cmd_write_T_14; // @[package.scala:16:47] assign pma_checker__cmd_write_T_14 = _GEN_34; // @[package.scala:16:47] wire _GEN_35 = pma_checker_io_req_bits_cmd == 5'hE; // @[package.scala:16:47] wire pma_checker__cmd_amo_arithmetic_T_3; // @[package.scala:16:47] assign pma_checker__cmd_amo_arithmetic_T_3 = _GEN_35; // @[package.scala:16:47] wire pma_checker__cmd_read_T_17; // @[package.scala:16:47] assign pma_checker__cmd_read_T_17 = _GEN_35; // @[package.scala:16:47] wire pma_checker__cmd_write_T_15; // @[package.scala:16:47] assign pma_checker__cmd_write_T_15 = _GEN_35; // @[package.scala:16:47] wire _GEN_36 = pma_checker_io_req_bits_cmd == 5'hF; // @[package.scala:16:47] wire pma_checker__cmd_amo_arithmetic_T_4; // @[package.scala:16:47] assign pma_checker__cmd_amo_arithmetic_T_4 = _GEN_36; // @[package.scala:16:47] wire pma_checker__cmd_read_T_18; // @[package.scala:16:47] assign pma_checker__cmd_read_T_18 = _GEN_36; // @[package.scala:16:47] wire pma_checker__cmd_write_T_16; // @[package.scala:16:47] assign pma_checker__cmd_write_T_16 = _GEN_36; // @[package.scala:16:47] wire pma_checker__cmd_amo_arithmetic_T_5 = pma_checker__cmd_amo_arithmetic_T | pma_checker__cmd_amo_arithmetic_T_1; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_amo_arithmetic_T_6 = pma_checker__cmd_amo_arithmetic_T_5 | pma_checker__cmd_amo_arithmetic_T_2; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_amo_arithmetic_T_7 = pma_checker__cmd_amo_arithmetic_T_6 | pma_checker__cmd_amo_arithmetic_T_3; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_amo_arithmetic_T_8 = pma_checker__cmd_amo_arithmetic_T_7 | pma_checker__cmd_amo_arithmetic_T_4; // @[package.scala:16:47, :81:59] wire pma_checker_cmd_amo_arithmetic = pma_checker__cmd_amo_arithmetic_T_8; // @[package.scala:81:59] wire _GEN_37 = pma_checker_io_req_bits_cmd == 5'h11; // @[TLB.scala:573:41] wire pma_checker_cmd_put_partial; // @[TLB.scala:573:41] assign pma_checker_cmd_put_partial = _GEN_37; // @[TLB.scala:573:41] wire pma_checker__cmd_write_T_1; // @[Consts.scala:90:49] assign pma_checker__cmd_write_T_1 = _GEN_37; // @[TLB.scala:573:41] wire pma_checker__cmd_read_T = pma_checker_io_req_bits_cmd == 5'h0; // @[package.scala:16:47] wire _GEN_38 = pma_checker_io_req_bits_cmd == 5'h10; // @[package.scala:16:47] wire pma_checker__cmd_read_T_1; // @[package.scala:16:47] assign pma_checker__cmd_read_T_1 = _GEN_38; // @[package.scala:16:47] wire pma_checker__cmd_readx_T; // @[TLB.scala:575:56] assign pma_checker__cmd_readx_T = _GEN_38; // @[package.scala:16:47] wire pma_checker__cmd_read_T_4 = pma_checker__cmd_read_T | pma_checker__cmd_read_T_1; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_5 = pma_checker__cmd_read_T_4 | pma_checker__cmd_read_T_2; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_6 = pma_checker__cmd_read_T_5 | pma_checker__cmd_read_T_3; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_11 = pma_checker__cmd_read_T_7 | pma_checker__cmd_read_T_8; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_12 = pma_checker__cmd_read_T_11 | pma_checker__cmd_read_T_9; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_13 = pma_checker__cmd_read_T_12 | pma_checker__cmd_read_T_10; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_19 = pma_checker__cmd_read_T_14 | pma_checker__cmd_read_T_15; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_20 = pma_checker__cmd_read_T_19 | pma_checker__cmd_read_T_16; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_21 = pma_checker__cmd_read_T_20 | pma_checker__cmd_read_T_17; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_22 = pma_checker__cmd_read_T_21 | pma_checker__cmd_read_T_18; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_read_T_23 = pma_checker__cmd_read_T_13 | pma_checker__cmd_read_T_22; // @[package.scala:81:59] wire pma_checker_cmd_read = pma_checker__cmd_read_T_6 | pma_checker__cmd_read_T_23; // @[package.scala:81:59] wire pma_checker__cmd_write_T = pma_checker_io_req_bits_cmd == 5'h1; // @[DCache.scala:120:32] wire pma_checker__cmd_write_T_2 = pma_checker__cmd_write_T | pma_checker__cmd_write_T_1; // @[Consts.scala:90:{32,42,49}] wire pma_checker__cmd_write_T_4 = pma_checker__cmd_write_T_2 | pma_checker__cmd_write_T_3; // @[Consts.scala:90:{42,59,66}] wire pma_checker__cmd_write_T_9 = pma_checker__cmd_write_T_5 | pma_checker__cmd_write_T_6; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_write_T_10 = pma_checker__cmd_write_T_9 | pma_checker__cmd_write_T_7; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_write_T_11 = pma_checker__cmd_write_T_10 | pma_checker__cmd_write_T_8; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_write_T_17 = pma_checker__cmd_write_T_12 | pma_checker__cmd_write_T_13; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_write_T_18 = pma_checker__cmd_write_T_17 | pma_checker__cmd_write_T_14; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_write_T_19 = pma_checker__cmd_write_T_18 | pma_checker__cmd_write_T_15; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_write_T_20 = pma_checker__cmd_write_T_19 | pma_checker__cmd_write_T_16; // @[package.scala:16:47, :81:59] wire pma_checker__cmd_write_T_21 = pma_checker__cmd_write_T_11 | pma_checker__cmd_write_T_20; // @[package.scala:81:59] wire pma_checker_cmd_write = pma_checker__cmd_write_T_4 | pma_checker__cmd_write_T_21; // @[Consts.scala:87:44, :90:{59,76}] wire pma_checker__cmd_write_perms_T = pma_checker_io_req_bits_cmd == 5'h5; // @[package.scala:16:47] wire pma_checker__cmd_write_perms_T_1 = pma_checker_io_req_bits_cmd == 5'h17; // @[package.scala:16:47] wire pma_checker__cmd_write_perms_T_2 = pma_checker__cmd_write_perms_T | pma_checker__cmd_write_perms_T_1; // @[package.scala:16:47, :81:59] wire pma_checker_cmd_write_perms = pma_checker_cmd_write | pma_checker__cmd_write_perms_T_2; // @[package.scala:81:59] wire [13:0] pma_checker__ae_array_T = pma_checker_misaligned ? pma_checker_eff_array : 14'h0; // @[TLB.scala:535:22, :550:77, :582:8] wire [13:0] pma_checker__ae_array_T_1 = ~pma_checker_lrscAllowed; // @[TLB.scala:580:24, :583:19] wire [13:0] pma_checker__ae_array_T_2 = pma_checker_cmd_lrsc ? pma_checker__ae_array_T_1 : 14'h0; // @[TLB.scala:570:33, :583:{8,19}] wire [13:0] pma_checker_ae_array = pma_checker__ae_array_T | pma_checker__ae_array_T_2; // @[TLB.scala:582:{8,37}, :583:8] wire [13:0] pma_checker__ae_ld_array_T = ~pma_checker_pr_array; // @[TLB.scala:529:87, :586:46] wire [13:0] pma_checker__ae_ld_array_T_1 = pma_checker_ae_array | pma_checker__ae_ld_array_T; // @[TLB.scala:582:37, :586:{44,46}] wire [13:0] pma_checker_ae_ld_array = pma_checker_cmd_read ? pma_checker__ae_ld_array_T_1 : 14'h0; // @[TLB.scala:586:{24,44}] wire [13:0] pma_checker__ae_st_array_T = ~pma_checker_pw_array; // @[TLB.scala:531:87, :588:37] wire [13:0] pma_checker__ae_st_array_T_1 = pma_checker_ae_array | pma_checker__ae_st_array_T; // @[TLB.scala:582:37, :588:{35,37}] wire [13:0] pma_checker__ae_st_array_T_2 = pma_checker_cmd_write_perms ? pma_checker__ae_st_array_T_1 : 14'h0; // @[TLB.scala:577:35, :588:{8,35}] wire [13:0] pma_checker__ae_st_array_T_3 = ~pma_checker_ppp_array_if_cached; // @[TLB.scala:544:39, :589:26] wire [13:0] pma_checker__ae_st_array_T_4 = pma_checker_cmd_put_partial ? pma_checker__ae_st_array_T_3 : 14'h0; // @[TLB.scala:573:41, :589:{8,26}] wire [13:0] pma_checker__ae_st_array_T_5 = pma_checker__ae_st_array_T_2 | pma_checker__ae_st_array_T_4; // @[TLB.scala:588:{8,53}, :589:8] wire [13:0] pma_checker__ae_st_array_T_6 = ~pma_checker_pal_array_if_cached; // @[TLB.scala:546:39, :590:26] wire [13:0] pma_checker__ae_st_array_T_7 = pma_checker_cmd_amo_logical ? pma_checker__ae_st_array_T_6 : 14'h0; // @[TLB.scala:571:40, :590:{8,26}] wire [13:0] pma_checker__ae_st_array_T_8 = pma_checker__ae_st_array_T_5 | pma_checker__ae_st_array_T_7; // @[TLB.scala:588:53, :589:53, :590:8] wire [13:0] pma_checker__ae_st_array_T_9 = ~pma_checker_paa_array_if_cached; // @[TLB.scala:545:39, :591:29] wire [13:0] pma_checker__ae_st_array_T_10 = pma_checker_cmd_amo_arithmetic ? pma_checker__ae_st_array_T_9 : 14'h0; // @[TLB.scala:572:43, :591:{8,29}] wire [13:0] pma_checker_ae_st_array = pma_checker__ae_st_array_T_8 | pma_checker__ae_st_array_T_10; // @[TLB.scala:589:53, :590:53, :591:8] wire [13:0] pma_checker__must_alloc_array_T = ~pma_checker_ppp_array; // @[TLB.scala:539:22, :593:26] wire [13:0] pma_checker__must_alloc_array_T_1 = pma_checker_cmd_put_partial ? pma_checker__must_alloc_array_T : 14'h0; // @[TLB.scala:573:41, :593:{8,26}] wire [13:0] pma_checker__must_alloc_array_T_2 = ~pma_checker_pal_array; // @[TLB.scala:543:22, :594:26] wire [13:0] pma_checker__must_alloc_array_T_3 = pma_checker_cmd_amo_logical ? pma_checker__must_alloc_array_T_2 : 14'h0; // @[TLB.scala:571:40, :594:{8,26}] wire [13:0] pma_checker__must_alloc_array_T_4 = pma_checker__must_alloc_array_T_1 | pma_checker__must_alloc_array_T_3; // @[TLB.scala:593:{8,43}, :594:8] wire [13:0] pma_checker__must_alloc_array_T_5 = ~pma_checker_paa_array; // @[TLB.scala:541:22, :595:29] wire [13:0] pma_checker__must_alloc_array_T_6 = pma_checker_cmd_amo_arithmetic ? pma_checker__must_alloc_array_T_5 : 14'h0; // @[TLB.scala:572:43, :595:{8,29}] wire [13:0] pma_checker__must_alloc_array_T_7 = pma_checker__must_alloc_array_T_4 | pma_checker__must_alloc_array_T_6; // @[TLB.scala:593:43, :594:43, :595:8] wire [13:0] pma_checker__must_alloc_array_T_9 = {14{pma_checker_cmd_lrsc}}; // @[TLB.scala:570:33, :596:8] wire [13:0] pma_checker_must_alloc_array = pma_checker__must_alloc_array_T_7 | pma_checker__must_alloc_array_T_9; // @[TLB.scala:594:43, :595:46, :596:8] wire [13:0] pma_checker__pf_ld_array_T_1 = ~pma_checker__pf_ld_array_T; // @[TLB.scala:597:{37,41}] wire [13:0] pma_checker__pf_ld_array_T_2 = ~pma_checker_ptw_ae_array; // @[TLB.scala:506:25, :597:73] wire [13:0] pma_checker__pf_ld_array_T_3 = pma_checker__pf_ld_array_T_1 & pma_checker__pf_ld_array_T_2; // @[TLB.scala:597:{37,71,73}] wire [13:0] pma_checker__pf_ld_array_T_4 = pma_checker__pf_ld_array_T_3 | pma_checker_ptw_pf_array; // @[TLB.scala:508:25, :597:{71,88}] wire [13:0] pma_checker__pf_ld_array_T_5 = ~pma_checker_ptw_gf_array; // @[TLB.scala:509:25, :597:106] wire [13:0] pma_checker__pf_ld_array_T_6 = pma_checker__pf_ld_array_T_4 & pma_checker__pf_ld_array_T_5; // @[TLB.scala:597:{88,104,106}] wire [13:0] pma_checker_pf_ld_array = pma_checker_cmd_read ? pma_checker__pf_ld_array_T_6 : 14'h0; // @[TLB.scala:597:{24,104}] wire [13:0] pma_checker__pf_st_array_T = ~pma_checker_w_array; // @[TLB.scala:521:20, :598:44] wire [13:0] pma_checker__pf_st_array_T_1 = ~pma_checker_ptw_ae_array; // @[TLB.scala:506:25, :597:73, :598:55] wire [13:0] pma_checker__pf_st_array_T_2 = pma_checker__pf_st_array_T & pma_checker__pf_st_array_T_1; // @[TLB.scala:598:{44,53,55}] wire [13:0] pma_checker__pf_st_array_T_3 = pma_checker__pf_st_array_T_2 | pma_checker_ptw_pf_array; // @[TLB.scala:508:25, :598:{53,70}] wire [13:0] pma_checker__pf_st_array_T_4 = ~pma_checker_ptw_gf_array; // @[TLB.scala:509:25, :597:106, :598:88] wire [13:0] pma_checker__pf_st_array_T_5 = pma_checker__pf_st_array_T_3 & pma_checker__pf_st_array_T_4; // @[TLB.scala:598:{70,86,88}] wire [13:0] pma_checker_pf_st_array = pma_checker_cmd_write_perms ? pma_checker__pf_st_array_T_5 : 14'h0; // @[TLB.scala:577:35, :598:{24,86}] wire [13:0] pma_checker__pf_inst_array_T = ~pma_checker_x_array; // @[TLB.scala:522:20, :599:25] wire [13:0] pma_checker__pf_inst_array_T_1 = ~pma_checker_ptw_ae_array; // @[TLB.scala:506:25, :597:73, :599:36] wire [13:0] pma_checker__pf_inst_array_T_2 = pma_checker__pf_inst_array_T & pma_checker__pf_inst_array_T_1; // @[TLB.scala:599:{25,34,36}] wire [13:0] pma_checker__pf_inst_array_T_3 = pma_checker__pf_inst_array_T_2 | pma_checker_ptw_pf_array; // @[TLB.scala:508:25, :599:{34,51}] wire [13:0] pma_checker__pf_inst_array_T_4 = ~pma_checker_ptw_gf_array; // @[TLB.scala:509:25, :597:106, :599:69] wire [13:0] pma_checker_pf_inst_array = pma_checker__pf_inst_array_T_3 & pma_checker__pf_inst_array_T_4; // @[TLB.scala:599:{51,67,69}] wire [13:0] pma_checker__gf_ld_array_T_4 = ~pma_checker_ptw_ae_array; // @[TLB.scala:506:25, :597:73, :600:100] wire [13:0] pma_checker__gf_ld_array_T_5 = pma_checker__gf_ld_array_T_3 & pma_checker__gf_ld_array_T_4; // @[TLB.scala:600:{82,98,100}] wire [13:0] pma_checker__gf_st_array_T_3 = ~pma_checker_ptw_ae_array; // @[TLB.scala:506:25, :597:73, :601:81] wire [13:0] pma_checker__gf_st_array_T_4 = pma_checker__gf_st_array_T_2 & pma_checker__gf_st_array_T_3; // @[TLB.scala:601:{63,79,81}] wire [13:0] pma_checker__gf_inst_array_T_2 = ~pma_checker_ptw_ae_array; // @[TLB.scala:506:25, :597:73, :602:64] wire [13:0] pma_checker__gf_inst_array_T_3 = pma_checker__gf_inst_array_T_1 & pma_checker__gf_inst_array_T_2; // @[TLB.scala:602:{46,62,64}] wire pma_checker__gpa_hits_hit_mask_T = pma_checker_vpn == 27'h0; // @[TLB.scala:335:30, :606:73] wire [13:0] pma_checker__io_resp_pf_ld_T_1 = pma_checker_pf_ld_array & 14'h2000; // @[TLB.scala:597:24, :633:57] wire pma_checker__io_resp_pf_ld_T_2 = |pma_checker__io_resp_pf_ld_T_1; // @[TLB.scala:633:{57,65}] assign pma_checker__io_resp_pf_ld_T_3 = pma_checker__io_resp_pf_ld_T_2; // @[TLB.scala:633:{41,65}] assign pma_checker_io_resp_pf_ld = pma_checker__io_resp_pf_ld_T_3; // @[TLB.scala:633:41] wire [13:0] pma_checker__io_resp_pf_st_T_1 = pma_checker_pf_st_array & 14'h2000; // @[TLB.scala:598:24, :634:64] wire pma_checker__io_resp_pf_st_T_2 = |pma_checker__io_resp_pf_st_T_1; // @[TLB.scala:634:{64,72}] assign pma_checker__io_resp_pf_st_T_3 = pma_checker__io_resp_pf_st_T_2; // @[TLB.scala:634:{48,72}] assign pma_checker_io_resp_pf_st = pma_checker__io_resp_pf_st_T_3; // @[TLB.scala:634:48] wire [13:0] pma_checker__io_resp_pf_inst_T = pma_checker_pf_inst_array & 14'h2000; // @[TLB.scala:599:67, :635:47] wire pma_checker__io_resp_pf_inst_T_1 = |pma_checker__io_resp_pf_inst_T; // @[TLB.scala:635:{47,55}] assign pma_checker__io_resp_pf_inst_T_2 = pma_checker__io_resp_pf_inst_T_1; // @[TLB.scala:635:{29,55}] assign pma_checker_io_resp_pf_inst = pma_checker__io_resp_pf_inst_T_2; // @[TLB.scala:635:29] wire [13:0] pma_checker__io_resp_ae_ld_T = pma_checker_ae_ld_array & 14'h2000; // @[TLB.scala:586:24, :641:33] assign pma_checker__io_resp_ae_ld_T_1 = |pma_checker__io_resp_ae_ld_T; // @[TLB.scala:641:{33,41}] assign pma_checker_io_resp_ae_ld = pma_checker__io_resp_ae_ld_T_1; // @[TLB.scala:641:41] wire [13:0] pma_checker__io_resp_ae_st_T = pma_checker_ae_st_array & 14'h2000; // @[TLB.scala:590:53, :642:33] assign pma_checker__io_resp_ae_st_T_1 = |pma_checker__io_resp_ae_st_T; // @[TLB.scala:642:{33,41}] assign pma_checker_io_resp_ae_st = pma_checker__io_resp_ae_st_T_1; // @[TLB.scala:642:41] wire [13:0] pma_checker__io_resp_ae_inst_T = ~pma_checker_px_array; // @[TLB.scala:533:87, :643:23] wire [13:0] pma_checker__io_resp_ae_inst_T_1 = pma_checker__io_resp_ae_inst_T & 14'h2000; // @[TLB.scala:643:{23,33}] assign pma_checker__io_resp_ae_inst_T_2 = |pma_checker__io_resp_ae_inst_T_1; // @[TLB.scala:643:{33,41}] assign pma_checker_io_resp_ae_inst = pma_checker__io_resp_ae_inst_T_2; // @[TLB.scala:643:41] assign pma_checker__io_resp_ma_ld_T = pma_checker_misaligned & pma_checker_cmd_read; // @[TLB.scala:550:77, :645:31] assign pma_checker_io_resp_ma_ld = pma_checker__io_resp_ma_ld_T; // @[TLB.scala:645:31] assign pma_checker__io_resp_ma_st_T = pma_checker_misaligned & pma_checker_cmd_write; // @[TLB.scala:550:77, :646:31] assign pma_checker_io_resp_ma_st = pma_checker__io_resp_ma_st_T; // @[TLB.scala:646:31] wire [13:0] pma_checker__io_resp_cacheable_T = pma_checker_c_array & 14'h2000; // @[TLB.scala:537:20, :648:33] assign pma_checker__io_resp_cacheable_T_1 = |pma_checker__io_resp_cacheable_T; // @[TLB.scala:648:{33,41}] assign pma_checker_io_resp_cacheable = pma_checker__io_resp_cacheable_T_1; // @[TLB.scala:648:41] wire [13:0] pma_checker__io_resp_must_alloc_T = pma_checker_must_alloc_array & 14'h2000; // @[TLB.scala:595:46, :649:43] assign pma_checker__io_resp_must_alloc_T_1 = |pma_checker__io_resp_must_alloc_T; // @[TLB.scala:649:{43,51}] assign pma_checker_io_resp_must_alloc = pma_checker__io_resp_must_alloc_T_1; // @[TLB.scala:649:51] wire [13:0] pma_checker__io_resp_prefetchable_T = pma_checker_prefetchable_array & 14'h2000; // @[TLB.scala:547:31, :650:47] wire pma_checker__io_resp_prefetchable_T_1 = |pma_checker__io_resp_prefetchable_T; // @[TLB.scala:650:{47,55}] assign pma_checker__io_resp_prefetchable_T_2 = pma_checker__io_resp_prefetchable_T_1; // @[TLB.scala:650:{55,59}] assign pma_checker_io_resp_prefetchable = pma_checker__io_resp_prefetchable_T_2; // @[TLB.scala:650:59] assign pma_checker__io_resp_paddr_T_1 = {pma_checker_ppn, pma_checker__io_resp_paddr_T}; // @[Mux.scala:30:73] assign pma_checker_io_resp_paddr = pma_checker__io_resp_paddr_T_1; // @[TLB.scala:652:23] wire [27:0] pma_checker__io_resp_gpa_page_T_1 = {1'h0, pma_checker_vpn}; // @[TLB.scala:335:30, :657:36] wire [27:0] pma_checker_io_resp_gpa_page = pma_checker__io_resp_gpa_page_T_1; // @[TLB.scala:657:{19,36}] wire [11:0] pma_checker_io_resp_gpa_offset = pma_checker__io_resp_gpa_offset_T_1; // @[TLB.scala:658:{21,82}] assign pma_checker__io_resp_gpa_T = {pma_checker_io_resp_gpa_page, pma_checker_io_resp_gpa_offset}; // @[TLB.scala:657:19, :658:21, :659:8] assign pma_checker_io_resp_gpa = pma_checker__io_resp_gpa_T; // @[TLB.scala:659:8] wire pma_checker_ignore_1 = pma_checker__ignore_T_1; // @[TLB.scala:182:{28,34}] wire pma_checker_ignore_4 = pma_checker__ignore_T_4; // @[TLB.scala:182:{28,34}] wire pma_checker_ignore_7 = pma_checker__ignore_T_7; // @[TLB.scala:182:{28,34}] wire pma_checker_ignore_10 = pma_checker__ignore_T_10; // @[TLB.scala:182:{28,34}] wire replace; // @[Replacement.scala:37:29] wire [1:0] lfsr_lo_lo_lo = {_lfsr_prng_io_out_1, _lfsr_prng_io_out_0}; // @[PRNG.scala:91:22, :95:17] wire [1:0] lfsr_lo_lo_hi = {_lfsr_prng_io_out_3, _lfsr_prng_io_out_2}; // @[PRNG.scala:91:22, :95:17] wire [3:0] lfsr_lo_lo = {lfsr_lo_lo_hi, lfsr_lo_lo_lo}; // @[PRNG.scala:95:17] wire [1:0] lfsr_lo_hi_lo = {_lfsr_prng_io_out_5, _lfsr_prng_io_out_4}; // @[PRNG.scala:91:22, :95:17] wire [1:0] lfsr_lo_hi_hi = {_lfsr_prng_io_out_7, _lfsr_prng_io_out_6}; // @[PRNG.scala:91:22, :95:17] wire [3:0] lfsr_lo_hi = {lfsr_lo_hi_hi, lfsr_lo_hi_lo}; // @[PRNG.scala:95:17] wire [7:0] lfsr_lo = {lfsr_lo_hi, lfsr_lo_lo}; // @[PRNG.scala:95:17] wire [1:0] lfsr_hi_lo_lo = {_lfsr_prng_io_out_9, _lfsr_prng_io_out_8}; // @[PRNG.scala:91:22, :95:17] wire [1:0] lfsr_hi_lo_hi = {_lfsr_prng_io_out_11, _lfsr_prng_io_out_10}; // @[PRNG.scala:91:22, :95:17] wire [3:0] lfsr_hi_lo = {lfsr_hi_lo_hi, lfsr_hi_lo_lo}; // @[PRNG.scala:95:17] wire [1:0] lfsr_hi_hi_lo = {_lfsr_prng_io_out_13, _lfsr_prng_io_out_12}; // @[PRNG.scala:91:22, :95:17] wire [1:0] lfsr_hi_hi_hi = {_lfsr_prng_io_out_15, _lfsr_prng_io_out_14}; // @[PRNG.scala:91:22, :95:17] wire [3:0] lfsr_hi_hi = {lfsr_hi_hi_hi, lfsr_hi_hi_lo}; // @[PRNG.scala:95:17] wire [7:0] lfsr_hi = {lfsr_hi_hi, lfsr_hi_lo}; // @[PRNG.scala:95:17] wire [15:0] lfsr = {lfsr_hi, lfsr_lo}; // @[PRNG.scala:95:17] wire metaArb__grant_T = metaArb_io_in_0_valid; // @[Arbiter.scala:45:68] wire [39:0] _metaArb_io_in_5_bits_addr_T_2; // @[DCache.scala:1018:36] wire [5:0] _metaArb_io_in_5_bits_idx_T; // @[DCache.scala:1017:44] wire metaArb__io_in_1_ready_T; // @[Arbiter.scala:153:19] wire [39:0] _metaArb_io_in_1_bits_addr_T_2; // @[DCache.scala:454:36] wire [5:0] _metaArb_io_in_1_bits_idx_T_2; // @[DCache.scala:453:35] wire [21:0] _metaArb_io_in_1_bits_data_T; // @[DCache.scala:458:14] wire metaArb__io_in_2_ready_T; // @[Arbiter.scala:153:19] wire _metaArb_io_in_2_valid_T; // @[DCache.scala:462:63] wire [39:0] _metaArb_io_in_2_bits_addr_T_2; // @[DCache.scala:466:36] wire [5:0] _metaArb_io_in_2_bits_idx_T; // @[DCache.scala:465:40] wire [7:0] s2_victim_or_hit_way; // @[DCache.scala:432:33] wire [21:0] _metaArb_io_in_2_bits_data_T_1; // @[DCache.scala:467:97] wire metaArb__io_in_3_ready_T; // @[Arbiter.scala:153:19] wire _metaArb_io_in_3_valid_T_2; // @[DCache.scala:741:53] wire [39:0] _metaArb_io_in_3_bits_addr_T_2; // @[DCache.scala:745:36] wire [5:0] _metaArb_io_in_3_bits_idx_T; // @[DCache.scala:744:40] wire [21:0] _metaArb_io_in_3_bits_data_T_18; // @[DCache.scala:746:134] wire metaArb__io_in_4_ready_T; // @[Arbiter.scala:153:19] wire _metaArb_io_in_4_valid_T_2; // @[package.scala:81:59] wire [39:0] _metaArb_io_in_4_bits_addr_T_2; // @[DCache.scala:912:36] wire [5:0] _metaArb_io_in_4_bits_idx_T; // @[DCache.scala:1200:47] wire [7:0] releaseWay; // @[DCache.scala:232:24] wire [21:0] _metaArb_io_in_4_bits_data_T_1; // @[DCache.scala:913:97] wire metaArb__io_in_5_ready_T; // @[Arbiter.scala:153:19] wire metaArb__io_in_6_ready_T; // @[Arbiter.scala:153:19] wire metaArb__io_in_7_ready_T; // @[Arbiter.scala:153:19] wire [5:0] _metaArb_io_in_7_bits_idx_T; // @[DCache.scala:263:58] wire metaArb__io_out_valid_T_1; // @[Arbiter.scala:154:31] wire [5:0] _s1_meta_WIRE = metaArb_io_out_bits_idx; // @[DCache.scala:135:28, :314:35] wire [39:0] metaArb_io_in_0_bits_addr; // @[DCache.scala:135:28] wire [5:0] metaArb_io_in_0_bits_idx; // @[DCache.scala:135:28] wire [39:0] metaArb_io_in_1_bits_addr; // @[DCache.scala:135:28] wire [5:0] metaArb_io_in_1_bits_idx; // @[DCache.scala:135:28] wire [21:0] metaArb_io_in_1_bits_data; // @[DCache.scala:135:28] wire metaArb_io_in_1_ready; // @[DCache.scala:135:28] wire [39:0] metaArb_io_in_2_bits_addr; // @[DCache.scala:135:28] wire [5:0] metaArb_io_in_2_bits_idx; // @[DCache.scala:135:28] wire [7:0] metaArb_io_in_2_bits_way_en; // @[DCache.scala:135:28] wire [21:0] metaArb_io_in_2_bits_data; // @[DCache.scala:135:28] wire metaArb_io_in_2_ready; // @[DCache.scala:135:28] wire metaArb_io_in_2_valid; // @[DCache.scala:135:28] wire [39:0] metaArb_io_in_3_bits_addr; // @[DCache.scala:135:28] wire [5:0] metaArb_io_in_3_bits_idx; // @[DCache.scala:135:28] wire [7:0] metaArb_io_in_3_bits_way_en; // @[DCache.scala:135:28] wire [21:0] metaArb_io_in_3_bits_data; // @[DCache.scala:135:28] wire metaArb_io_in_3_ready; // @[DCache.scala:135:28] wire metaArb_io_in_3_valid; // @[DCache.scala:135:28] wire [39:0] metaArb_io_in_4_bits_addr; // @[DCache.scala:135:28] wire [5:0] metaArb_io_in_4_bits_idx; // @[DCache.scala:135:28] wire [7:0] metaArb_io_in_4_bits_way_en; // @[DCache.scala:135:28] wire [21:0] metaArb_io_in_4_bits_data; // @[DCache.scala:135:28] wire metaArb_io_in_4_ready; // @[DCache.scala:135:28] wire metaArb_io_in_4_valid; // @[DCache.scala:135:28] wire [39:0] metaArb_io_in_5_bits_addr; // @[DCache.scala:135:28] wire [5:0] metaArb_io_in_5_bits_idx; // @[DCache.scala:135:28] wire [7:0] metaArb_io_in_5_bits_way_en; // @[DCache.scala:135:28] wire [21:0] metaArb_io_in_5_bits_data; // @[DCache.scala:135:28] wire metaArb_io_in_5_ready; // @[DCache.scala:135:28] wire [39:0] metaArb_io_in_6_bits_addr; // @[DCache.scala:135:28] wire [5:0] metaArb_io_in_6_bits_idx; // @[DCache.scala:135:28] wire [7:0] metaArb_io_in_6_bits_way_en; // @[DCache.scala:135:28] wire [21:0] metaArb_io_in_6_bits_data; // @[DCache.scala:135:28] wire metaArb_io_in_6_ready; // @[DCache.scala:135:28] wire metaArb_io_in_6_valid; // @[DCache.scala:135:28] wire [5:0] metaArb_io_in_7_bits_idx; // @[DCache.scala:135:28] wire [7:0] metaArb_io_in_7_bits_way_en; // @[DCache.scala:135:28] wire [21:0] metaArb_io_in_7_bits_data; // @[DCache.scala:135:28] wire metaArb_io_in_7_ready; // @[DCache.scala:135:28] wire metaArb_io_out_bits_write; // @[DCache.scala:135:28] wire [39:0] metaArb_io_out_bits_addr; // @[DCache.scala:135:28] wire [7:0] metaArb_io_out_bits_way_en; // @[DCache.scala:135:28] wire [21:0] metaArb_io_out_bits_data; // @[DCache.scala:135:28] wire metaArb_io_out_valid; // @[DCache.scala:135:28] wire [2:0] metaArb_io_chosen; // @[DCache.scala:135:28] assign metaArb_io_chosen = metaArb_io_in_0_valid ? 3'h0 : metaArb_io_in_2_valid ? 3'h2 : metaArb_io_in_3_valid ? 3'h3 : metaArb_io_in_4_valid ? 3'h4 : {2'h3, ~metaArb_io_in_6_valid}; // @[Arbiter.scala:142:13, :145:26, :146:17] assign metaArb_io_out_bits_write = metaArb_io_in_0_valid | metaArb_io_in_2_valid | metaArb_io_in_3_valid | metaArb_io_in_4_valid; // @[Arbiter.scala:145:26, :147:19] assign metaArb_io_out_bits_addr = metaArb_io_in_0_valid ? metaArb_io_in_0_bits_addr : metaArb_io_in_2_valid ? metaArb_io_in_2_bits_addr : metaArb_io_in_3_valid ? metaArb_io_in_3_bits_addr : metaArb_io_in_4_valid ? metaArb_io_in_4_bits_addr : metaArb_io_in_6_valid ? metaArb_io_in_6_bits_addr : metaArb_io_in_7_bits_addr; // @[Arbiter.scala:143:15, :145:26, :147:19] assign metaArb_io_out_bits_idx = metaArb_io_in_0_valid ? metaArb_io_in_0_bits_idx : metaArb_io_in_2_valid ? metaArb_io_in_2_bits_idx : metaArb_io_in_3_valid ? metaArb_io_in_3_bits_idx : metaArb_io_in_4_valid ? metaArb_io_in_4_bits_idx : metaArb_io_in_6_valid ? metaArb_io_in_6_bits_idx : metaArb_io_in_7_bits_idx; // @[Arbiter.scala:143:15, :145:26, :147:19] assign metaArb_io_out_bits_way_en = metaArb_io_in_0_valid ? 8'hFF : metaArb_io_in_2_valid ? metaArb_io_in_2_bits_way_en : metaArb_io_in_3_valid ? metaArb_io_in_3_bits_way_en : metaArb_io_in_4_valid ? metaArb_io_in_4_bits_way_en : metaArb_io_in_6_valid ? metaArb_io_in_6_bits_way_en : metaArb_io_in_7_bits_way_en; // @[Arbiter.scala:143:15, :145:26, :147:19] assign metaArb_io_out_bits_data = metaArb_io_in_0_valid ? 22'h0 : metaArb_io_in_2_valid ? metaArb_io_in_2_bits_data : metaArb_io_in_3_valid ? metaArb_io_in_3_bits_data : metaArb_io_in_4_valid ? metaArb_io_in_4_bits_data : metaArb_io_in_6_valid ? metaArb_io_in_6_bits_data : metaArb_io_in_7_bits_data; // @[Arbiter.scala:143:15, :145:26, :147:19] wire metaArb__grant_T_1 = metaArb__grant_T | metaArb_io_in_2_valid; // @[Arbiter.scala:45:68] wire metaArb__grant_T_2 = metaArb__grant_T_1 | metaArb_io_in_3_valid; // @[Arbiter.scala:45:68] wire metaArb__grant_T_3 = metaArb__grant_T_2 | metaArb_io_in_4_valid; // @[Arbiter.scala:45:68] wire metaArb__grant_T_4 = metaArb__grant_T_3; // @[Arbiter.scala:45:68] wire metaArb__grant_T_5 = metaArb__grant_T_4 | metaArb_io_in_6_valid; // @[Arbiter.scala:45:68] wire metaArb_grant_1 = ~metaArb_io_in_0_valid; // @[Arbiter.scala:45:78] assign metaArb__io_in_1_ready_T = metaArb_grant_1; // @[Arbiter.scala:45:78, :153:19] wire metaArb_grant_2 = ~metaArb__grant_T; // @[Arbiter.scala:45:{68,78}] assign metaArb__io_in_2_ready_T = metaArb_grant_2; // @[Arbiter.scala:45:78, :153:19] wire metaArb_grant_3 = ~metaArb__grant_T_1; // @[Arbiter.scala:45:{68,78}] assign metaArb__io_in_3_ready_T = metaArb_grant_3; // @[Arbiter.scala:45:78, :153:19] wire metaArb_grant_4 = ~metaArb__grant_T_2; // @[Arbiter.scala:45:{68,78}] assign metaArb__io_in_4_ready_T = metaArb_grant_4; // @[Arbiter.scala:45:78, :153:19] wire metaArb_grant_5 = ~metaArb__grant_T_3; // @[Arbiter.scala:45:{68,78}] assign metaArb__io_in_5_ready_T = metaArb_grant_5; // @[Arbiter.scala:45:78, :153:19] wire metaArb_grant_6 = ~metaArb__grant_T_4; // @[Arbiter.scala:45:{68,78}] assign metaArb__io_in_6_ready_T = metaArb_grant_6; // @[Arbiter.scala:45:78, :153:19] wire metaArb_grant_7 = ~metaArb__grant_T_5; // @[Arbiter.scala:45:{68,78}] assign metaArb__io_in_7_ready_T = metaArb_grant_7; // @[Arbiter.scala:45:78, :153:19] assign metaArb_io_in_1_ready = metaArb__io_in_1_ready_T; // @[Arbiter.scala:153:19] assign metaArb_io_in_2_ready = metaArb__io_in_2_ready_T; // @[Arbiter.scala:153:19] assign metaArb_io_in_3_ready = metaArb__io_in_3_ready_T; // @[Arbiter.scala:153:19] assign metaArb_io_in_4_ready = metaArb__io_in_4_ready_T; // @[Arbiter.scala:153:19] assign metaArb_io_in_5_ready = metaArb__io_in_5_ready_T; // @[Arbiter.scala:153:19] assign metaArb_io_in_6_ready = metaArb__io_in_6_ready_T; // @[Arbiter.scala:153:19] assign metaArb_io_in_7_ready = metaArb__io_in_7_ready_T; // @[Arbiter.scala:153:19] wire metaArb__io_out_valid_T = ~metaArb_grant_7; // @[Arbiter.scala:45:78, :154:19] assign metaArb__io_out_valid_T_1 = metaArb__io_out_valid_T | metaArb_io_in_7_valid; // @[Arbiter.scala:154:{19,31}] assign metaArb_io_out_valid = metaArb__io_out_valid_T_1; // @[Arbiter.scala:154:31] wire _s1_meta_T_1; // @[DCache.scala:314:59] wire wmask_0; // @[DCache.scala:311:74] wire wmask_1; // @[DCache.scala:311:74] wire wmask_2; // @[DCache.scala:311:74] wire wmask_3; // @[DCache.scala:311:74] wire wmask_4; // @[DCache.scala:311:74] wire wmask_5; // @[DCache.scala:311:74] wire wmask_6; // @[DCache.scala:311:74] wire wmask_7; // @[DCache.scala:311:74] wire [21:0] _s1_meta_uncorrected_WIRE = _rockettile_dcache_tag_array_RW0_rdata[21:0]; // @[DescribedSRAM.scala:17:26] wire [21:0] _s1_meta_uncorrected_WIRE_1 = _rockettile_dcache_tag_array_RW0_rdata[43:22]; // @[DescribedSRAM.scala:17:26] wire [21:0] _s1_meta_uncorrected_WIRE_2 = _rockettile_dcache_tag_array_RW0_rdata[65:44]; // @[DescribedSRAM.scala:17:26] wire [21:0] _s1_meta_uncorrected_WIRE_3 = _rockettile_dcache_tag_array_RW0_rdata[87:66]; // @[DescribedSRAM.scala:17:26] wire [21:0] _s1_meta_uncorrected_WIRE_4 = _rockettile_dcache_tag_array_RW0_rdata[109:88]; // @[DescribedSRAM.scala:17:26] wire [21:0] _s1_meta_uncorrected_WIRE_5 = _rockettile_dcache_tag_array_RW0_rdata[131:110]; // @[DescribedSRAM.scala:17:26] wire [21:0] _s1_meta_uncorrected_WIRE_6 = _rockettile_dcache_tag_array_RW0_rdata[153:132]; // @[DescribedSRAM.scala:17:26] wire [21:0] _s1_meta_uncorrected_WIRE_7 = _rockettile_dcache_tag_array_RW0_rdata[175:154]; // @[DescribedSRAM.scala:17:26] wire _dataArb_io_in_0_valid_T_12; // @[DCache.scala:516:27] wire pstore_drain; // @[DCache.scala:516:27] wire [63:0] _dataArb_io_in_0_bits_wdata_T_9; // @[package.scala:45:27] wire [7:0] _dataArb_io_in_0_bits_eccMask_T_17; // @[package.scala:45:27] wire [7:0] _dataArb_io_in_0_bits_way_en_T; // @[DCache.scala:550:38] wire dataArb__io_in_1_ready_T; // @[Arbiter.scala:153:19] wire [63:0] tl_d_data_encoded; // @[DCache.scala:324:31] wire dataArb__io_in_2_ready_T; // @[Arbiter.scala:153:19] wire _dataArb_io_in_2_valid_T_1; // @[DCache.scala:900:41] wire [11:0] _dataArb_io_in_2_bits_addr_T_4; // @[DCache.scala:903:72] wire dataArb__io_in_3_ready_T; // @[Arbiter.scala:153:19] wire _dataArb_io_in_3_valid_T_58; // @[DCache.scala:242:46] wire dataArb__io_out_valid_T_1; // @[Arbiter.scala:154:31] wire [11:0] dataArb_io_in_0_bits_addr; // @[DCache.scala:152:28] wire dataArb_io_in_0_bits_write; // @[DCache.scala:152:28] wire [63:0] dataArb_io_in_0_bits_wdata; // @[DCache.scala:152:28] wire dataArb_io_in_0_bits_wordMask; // @[DCache.scala:152:28] wire [7:0] dataArb_io_in_0_bits_eccMask; // @[DCache.scala:152:28] wire [7:0] dataArb_io_in_0_bits_way_en; // @[DCache.scala:152:28] wire dataArb_io_in_0_valid; // @[DCache.scala:152:28] wire [11:0] dataArb_io_in_1_bits_addr; // @[DCache.scala:152:28] wire dataArb_io_in_1_bits_write; // @[DCache.scala:152:28] wire [63:0] dataArb_io_in_1_bits_wdata; // @[DCache.scala:152:28] wire [7:0] dataArb_io_in_1_bits_way_en; // @[DCache.scala:152:28] wire dataArb_io_in_1_ready; // @[DCache.scala:152:28] wire dataArb_io_in_1_valid; // @[DCache.scala:152:28] wire [11:0] dataArb_io_in_2_bits_addr; // @[DCache.scala:152:28] wire [63:0] dataArb_io_in_2_bits_wdata; // @[DCache.scala:152:28] wire dataArb_io_in_2_ready; // @[DCache.scala:152:28] wire dataArb_io_in_2_valid; // @[DCache.scala:152:28] wire [11:0] dataArb_io_in_3_bits_addr; // @[DCache.scala:152:28] wire [63:0] dataArb_io_in_3_bits_wdata; // @[DCache.scala:152:28] wire dataArb_io_in_3_ready; // @[DCache.scala:152:28] wire dataArb_io_in_3_valid; // @[DCache.scala:152:28] wire [11:0] dataArb_io_out_bits_addr; // @[DCache.scala:152:28] wire dataArb_io_out_bits_write; // @[DCache.scala:152:28] wire [63:0] dataArb_io_out_bits_wdata; // @[DCache.scala:152:28] wire dataArb_io_out_bits_wordMask; // @[DCache.scala:152:28] wire [7:0] dataArb_io_out_bits_eccMask; // @[DCache.scala:152:28] wire [7:0] dataArb_io_out_bits_way_en; // @[DCache.scala:152:28] wire dataArb_io_out_valid; // @[DCache.scala:152:28] wire [1:0] dataArb_io_chosen; // @[DCache.scala:152:28] assign dataArb_io_chosen = dataArb_io_in_0_valid ? 2'h0 : dataArb_io_in_1_valid ? 2'h1 : {1'h1, ~dataArb_io_in_2_valid}; // @[Arbiter.scala:142:13, :145:26, :146:17] assign dataArb_io_out_bits_addr = dataArb_io_in_0_valid ? dataArb_io_in_0_bits_addr : dataArb_io_in_1_valid ? dataArb_io_in_1_bits_addr : dataArb_io_in_2_valid ? dataArb_io_in_2_bits_addr : dataArb_io_in_3_bits_addr; // @[Arbiter.scala:143:15, :145:26, :147:19] assign dataArb_io_out_bits_write = dataArb_io_in_0_valid ? dataArb_io_in_0_bits_write : dataArb_io_in_1_valid & dataArb_io_in_1_bits_write; // @[Arbiter.scala:145:26, :147:19] assign dataArb_io_out_bits_wdata = dataArb_io_in_0_valid ? dataArb_io_in_0_bits_wdata : dataArb_io_in_1_valid ? dataArb_io_in_1_bits_wdata : dataArb_io_in_2_valid ? dataArb_io_in_2_bits_wdata : dataArb_io_in_3_bits_wdata; // @[Arbiter.scala:143:15, :145:26, :147:19] assign dataArb_io_out_bits_wordMask = ~dataArb_io_in_0_valid | dataArb_io_in_0_bits_wordMask; // @[Arbiter.scala:145:26, :147:19] assign dataArb_io_out_bits_eccMask = dataArb_io_in_0_valid ? dataArb_io_in_0_bits_eccMask : 8'hFF; // @[Arbiter.scala:145:26, :147:19] assign dataArb_io_out_bits_way_en = dataArb_io_in_0_valid ? dataArb_io_in_0_bits_way_en : dataArb_io_in_1_valid ? dataArb_io_in_1_bits_way_en : 8'hFF; // @[Arbiter.scala:145:26, :147:19] wire dataArb__grant_T = dataArb_io_in_0_valid | dataArb_io_in_1_valid; // @[Arbiter.scala:45:68] wire dataArb__grant_T_1 = dataArb__grant_T | dataArb_io_in_2_valid; // @[Arbiter.scala:45:68] wire dataArb_grant_1 = ~dataArb_io_in_0_valid; // @[Arbiter.scala:45:78] assign dataArb__io_in_1_ready_T = dataArb_grant_1; // @[Arbiter.scala:45:78, :153:19] wire dataArb_grant_2 = ~dataArb__grant_T; // @[Arbiter.scala:45:{68,78}] assign dataArb__io_in_2_ready_T = dataArb_grant_2; // @[Arbiter.scala:45:78, :153:19] wire dataArb_grant_3 = ~dataArb__grant_T_1; // @[Arbiter.scala:45:{68,78}] assign dataArb__io_in_3_ready_T = dataArb_grant_3; // @[Arbiter.scala:45:78, :153:19] assign dataArb_io_in_1_ready = dataArb__io_in_1_ready_T; // @[Arbiter.scala:153:19] assign dataArb_io_in_2_ready = dataArb__io_in_2_ready_T; // @[Arbiter.scala:153:19] assign dataArb_io_in_3_ready = dataArb__io_in_3_ready_T; // @[Arbiter.scala:153:19] wire dataArb__io_out_valid_T = ~dataArb_grant_3; // @[Arbiter.scala:45:78, :154:19] assign dataArb__io_out_valid_T_1 = dataArb__io_out_valid_T | dataArb_io_in_3_valid; // @[Arbiter.scala:154:{19,31}] assign dataArb_io_out_valid = dataArb__io_out_valid_T_1; // @[Arbiter.scala:154:31] wire _tl_out_a_valid_T_14; // @[DCache.scala:603:37] assign nodeOut_a_deq_valid = tl_out_a_valid; // @[Decoupled.scala:356:21] wire [2:0] _tl_out_a_bits_T_9_opcode; // @[DCache.scala:608:23] assign nodeOut_a_deq_bits_opcode = tl_out_a_bits_opcode; // @[Decoupled.scala:356:21] wire [2:0] _tl_out_a_bits_T_9_param; // @[DCache.scala:608:23] assign nodeOut_a_deq_bits_param = tl_out_a_bits_param; // @[Decoupled.scala:356:21] wire [3:0] _tl_out_a_bits_T_9_size; // @[DCache.scala:608:23] assign nodeOut_a_deq_bits_size = tl_out_a_bits_size; // @[Decoupled.scala:356:21] wire _tl_out_a_bits_T_9_source; // @[DCache.scala:608:23] assign nodeOut_a_deq_bits_source = tl_out_a_bits_source; // @[Decoupled.scala:356:21] wire [31:0] _tl_out_a_bits_T_9_address; // @[DCache.scala:608:23] assign nodeOut_a_deq_bits_address = tl_out_a_bits_address; // @[Decoupled.scala:356:21] wire [7:0] _tl_out_a_bits_T_9_mask; // @[DCache.scala:608:23] assign nodeOut_a_deq_bits_mask = tl_out_a_bits_mask; // @[Decoupled.scala:356:21] wire [63:0] _tl_out_a_bits_T_9_data; // @[DCache.scala:608:23] assign nodeOut_a_deq_bits_data = tl_out_a_bits_data; // @[Decoupled.scala:356:21] wire tl_out_a_ready; // @[DCache.scala:159:22] assign tl_out_a_ready = nodeOut_a_deq_ready; // @[Decoupled.scala:356:21] assign nodeOut_a_valid = nodeOut_a_deq_valid; // @[Decoupled.scala:356:21] assign nodeOut_a_bits_opcode = nodeOut_a_deq_bits_opcode; // @[Decoupled.scala:356:21] assign nodeOut_a_bits_param = nodeOut_a_deq_bits_param; // @[Decoupled.scala:356:21] assign nodeOut_a_bits_size = nodeOut_a_deq_bits_size; // @[Decoupled.scala:356:21] assign nodeOut_a_bits_source = nodeOut_a_deq_bits_source; // @[Decoupled.scala:356:21] assign nodeOut_a_bits_address = nodeOut_a_deq_bits_address; // @[Decoupled.scala:356:21] assign nodeOut_a_bits_mask = nodeOut_a_deq_bits_mask; // @[Decoupled.scala:356:21] assign nodeOut_a_bits_data = nodeOut_a_deq_bits_data; // @[Decoupled.scala:356:21] wire _s1_valid_T = io_cpu_req_ready_0 & io_cpu_req_valid_0; // @[Decoupled.scala:51:35] reg s1_valid; // @[DCache.scala:182:25] wire _io_cpu_ordered_T_1 = s1_valid; // @[DCache.scala:182:25, :929:32] wire _GEN_39 = nodeOut_b_ready & nodeOut_b_valid; // @[Decoupled.scala:51:35] wire _s1_probe_T; // @[Decoupled.scala:51:35] assign _s1_probe_T = _GEN_39; // @[Decoupled.scala:51:35] wire _probe_bits_T; // @[Decoupled.scala:51:35] assign _probe_bits_T = _GEN_39; // @[Decoupled.scala:51:35] reg s1_probe; // @[DCache.scala:183:25] reg [2:0] probe_bits_opcode; // @[DCache.scala:184:29] reg [1:0] probe_bits_param; // @[DCache.scala:184:29] reg [3:0] probe_bits_size; // @[DCache.scala:184:29] wire [3:0] nackResponseMessage_size = probe_bits_size; // @[Edges.scala:416:17] wire [3:0] cleanReleaseMessage_size = probe_bits_size; // @[Edges.scala:416:17] wire [3:0] dirtyReleaseMessage_size = probe_bits_size; // @[Edges.scala:433:17] reg probe_bits_source; // @[DCache.scala:184:29] assign nodeOut_c_bits_source = probe_bits_source; // @[DCache.scala:184:29] wire nackResponseMessage_source = probe_bits_source; // @[Edges.scala:416:17] wire cleanReleaseMessage_source = probe_bits_source; // @[Edges.scala:416:17] wire dirtyReleaseMessage_source = probe_bits_source; // @[Edges.scala:433:17] reg [31:0] probe_bits_address; // @[DCache.scala:184:29] assign nodeOut_c_bits_address = probe_bits_address; // @[DCache.scala:184:29] wire [31:0] nackResponseMessage_address = probe_bits_address; // @[Edges.scala:416:17] wire [31:0] cleanReleaseMessage_address = probe_bits_address; // @[Edges.scala:416:17] wire [31:0] dirtyReleaseMessage_address = probe_bits_address; // @[Edges.scala:433:17] reg [7:0] probe_bits_mask; // @[DCache.scala:184:29] reg [63:0] probe_bits_data; // @[DCache.scala:184:29] reg probe_bits_corrupt; // @[DCache.scala:184:29] wire s1_nack; // @[DCache.scala:185:28] wire _s1_valid_masked_T = ~io_cpu_s1_kill_0; // @[DCache.scala:101:7, :186:37] wire s1_valid_masked = s1_valid & _s1_valid_masked_T; // @[DCache.scala:182:25, :186:{34,37}] wire _s1_valid_not_nacked_T = ~s1_nack; // @[DCache.scala:185:28, :187:41] wire s1_valid_not_nacked = s1_valid & _s1_valid_not_nacked_T; // @[DCache.scala:182:25, :187:{38,41}] wire _s0_clk_en_T = ~metaArb_io_out_bits_write; // @[DCache.scala:135:28, :190:43] wire s0_clk_en = metaArb_io_out_valid & _s0_clk_en_T; // @[DCache.scala:135:28, :190:{40,43}] wire _s1_tlb_req_T = s0_clk_en; // @[DCache.scala:190:40, :208:52] wire [39:0] _s0_req_addr_T_2; // @[DCache.scala:193:21] wire [39:0] s0_tlb_req_vaddr = s0_req_addr; // @[DCache.scala:192:24, :199:28] wire [4:0] s0_tlb_req_cmd = s0_req_cmd; // @[DCache.scala:192:24, :199:28] wire [1:0] s0_tlb_req_size = s0_req_size; // @[DCache.scala:192:24, :199:28] wire [1:0] s0_tlb_req_prv = s0_req_dprv; // @[DCache.scala:192:24, :199:28] wire s0_tlb_req_v = s0_req_dv; // @[DCache.scala:192:24, :199:28] wire s0_tlb_req_passthrough = s0_req_phys; // @[DCache.scala:192:24, :199:28] wire [33:0] _s0_req_addr_T = metaArb_io_out_bits_addr[39:6]; // @[DCache.scala:135:28, :193:47] wire [5:0] _s0_req_addr_T_1 = io_cpu_req_bits_addr_0[5:0]; // @[DCache.scala:101:7, :193:84] assign _s0_req_addr_T_2 = {_s0_req_addr_T, _s0_req_addr_T_1}; // @[DCache.scala:193:{21,47,84}] assign s0_req_addr = _s0_req_addr_T_2; // @[DCache.scala:192:24, :193:21] assign s0_req_phys = ~metaArb_io_in_7_ready | io_cpu_req_bits_phys_0; // @[DCache.scala:101:7, :135:28, :192:24, :195:{9,34,48}] reg [39:0] s1_req_addr; // @[DCache.scala:196:25] assign pma_checker_io_req_bits_vaddr = s1_req_addr; // @[DCache.scala:120:32, :196:25] reg [6:0] s1_req_tag; // @[DCache.scala:196:25] reg [4:0] s1_req_cmd; // @[DCache.scala:196:25] assign pma_checker_io_req_bits_cmd = s1_req_cmd; // @[DCache.scala:120:32, :196:25] reg [1:0] s1_req_size; // @[DCache.scala:196:25] assign pma_checker_io_req_bits_size = s1_req_size; // @[DCache.scala:120:32, :196:25] wire [1:0] s1_mask_xwr_size = s1_req_size; // @[DCache.scala:196:25] reg s1_req_signed; // @[DCache.scala:196:25] reg [1:0] s1_req_dprv; // @[DCache.scala:196:25] assign pma_checker_io_req_bits_prv = s1_req_dprv; // @[DCache.scala:120:32, :196:25] reg s1_req_dv; // @[DCache.scala:196:25] assign pma_checker_io_req_bits_v = s1_req_dv; // @[DCache.scala:120:32, :196:25] reg s1_req_phys; // @[DCache.scala:196:25] reg s1_req_no_resp; // @[DCache.scala:196:25] wire [27:0] _s1_vaddr_T = s1_req_addr[39:12]; // @[DCache.scala:196:25, :197:56] wire [11:0] _s1_vaddr_T_1 = s1_req_addr[11:0]; // @[DCache.scala:196:25, :197:78] wire [11:0] _s1_paddr_T_3 = s1_req_addr[11:0]; // @[DCache.scala:196:25, :197:78, :298:125] wire [39:0] s1_vaddr = {_s1_vaddr_T, _s1_vaddr_T_1}; // @[DCache.scala:197:{21,56,78}] reg [39:0] s1_tlb_req_vaddr; // @[DCache.scala:208:29] reg s1_tlb_req_passthrough; // @[DCache.scala:208:29] reg [1:0] s1_tlb_req_size; // @[DCache.scala:208:29] reg [4:0] s1_tlb_req_cmd; // @[DCache.scala:208:29] reg [1:0] s1_tlb_req_prv; // @[DCache.scala:208:29] reg s1_tlb_req_v; // @[DCache.scala:208:29] wire _GEN_40 = s1_req_cmd == 5'h0; // @[package.scala:16:47] wire _s1_read_T; // @[package.scala:16:47] assign _s1_read_T = _GEN_40; // @[package.scala:16:47] wire _pstore1_rmw_T; // @[package.scala:16:47] assign _pstore1_rmw_T = _GEN_40; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_1; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_1 = _GEN_40; // @[package.scala:16:47] wire _GEN_41 = s1_req_cmd == 5'h10; // @[package.scala:16:47] wire _s1_read_T_1; // @[package.scala:16:47] assign _s1_read_T_1 = _GEN_41; // @[package.scala:16:47] wire _pstore1_rmw_T_1; // @[package.scala:16:47] assign _pstore1_rmw_T_1 = _GEN_41; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_2; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_2 = _GEN_41; // @[package.scala:16:47] wire _GEN_42 = s1_req_cmd == 5'h6; // @[package.scala:16:47] wire _s1_read_T_2; // @[package.scala:16:47] assign _s1_read_T_2 = _GEN_42; // @[package.scala:16:47] wire _pstore1_rmw_T_2; // @[package.scala:16:47] assign _pstore1_rmw_T_2 = _GEN_42; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_3; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_3 = _GEN_42; // @[package.scala:16:47] wire _GEN_43 = s1_req_cmd == 5'h7; // @[package.scala:16:47] wire _s1_read_T_3; // @[package.scala:16:47] assign _s1_read_T_3 = _GEN_43; // @[package.scala:16:47] wire _s1_write_T_3; // @[Consts.scala:90:66] assign _s1_write_T_3 = _GEN_43; // @[package.scala:16:47] wire _pstore1_rmw_T_3; // @[package.scala:16:47] assign _pstore1_rmw_T_3 = _GEN_43; // @[package.scala:16:47] wire _pstore1_rmw_T_28; // @[Consts.scala:90:66] assign _pstore1_rmw_T_28 = _GEN_43; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_4; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_4 = _GEN_43; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_29; // @[Consts.scala:90:66] assign _io_cpu_perf_canAcceptLoadThenLoad_T_29 = _GEN_43; // @[package.scala:16:47] wire _s1_read_T_4 = _s1_read_T | _s1_read_T_1; // @[package.scala:16:47, :81:59] wire _s1_read_T_5 = _s1_read_T_4 | _s1_read_T_2; // @[package.scala:16:47, :81:59] wire _s1_read_T_6 = _s1_read_T_5 | _s1_read_T_3; // @[package.scala:16:47, :81:59] wire _GEN_44 = s1_req_cmd == 5'h4; // @[package.scala:16:47] wire _s1_read_T_7; // @[package.scala:16:47] assign _s1_read_T_7 = _GEN_44; // @[package.scala:16:47] wire _s1_write_T_5; // @[package.scala:16:47] assign _s1_write_T_5 = _GEN_44; // @[package.scala:16:47] wire _pstore1_rmw_T_7; // @[package.scala:16:47] assign _pstore1_rmw_T_7 = _GEN_44; // @[package.scala:16:47] wire _pstore1_rmw_T_30; // @[package.scala:16:47] assign _pstore1_rmw_T_30 = _GEN_44; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_8; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_8 = _GEN_44; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_31; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_31 = _GEN_44; // @[package.scala:16:47] wire _GEN_45 = s1_req_cmd == 5'h9; // @[package.scala:16:47] wire _s1_read_T_8; // @[package.scala:16:47] assign _s1_read_T_8 = _GEN_45; // @[package.scala:16:47] wire _s1_write_T_6; // @[package.scala:16:47] assign _s1_write_T_6 = _GEN_45; // @[package.scala:16:47] wire _pstore1_rmw_T_8; // @[package.scala:16:47] assign _pstore1_rmw_T_8 = _GEN_45; // @[package.scala:16:47] wire _pstore1_rmw_T_31; // @[package.scala:16:47] assign _pstore1_rmw_T_31 = _GEN_45; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_9; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_9 = _GEN_45; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_32; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_32 = _GEN_45; // @[package.scala:16:47] wire _GEN_46 = s1_req_cmd == 5'hA; // @[package.scala:16:47] wire _s1_read_T_9; // @[package.scala:16:47] assign _s1_read_T_9 = _GEN_46; // @[package.scala:16:47] wire _s1_write_T_7; // @[package.scala:16:47] assign _s1_write_T_7 = _GEN_46; // @[package.scala:16:47] wire _pstore1_rmw_T_9; // @[package.scala:16:47] assign _pstore1_rmw_T_9 = _GEN_46; // @[package.scala:16:47] wire _pstore1_rmw_T_32; // @[package.scala:16:47] assign _pstore1_rmw_T_32 = _GEN_46; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_10; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_10 = _GEN_46; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_33; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_33 = _GEN_46; // @[package.scala:16:47] wire _GEN_47 = s1_req_cmd == 5'hB; // @[package.scala:16:47] wire _s1_read_T_10; // @[package.scala:16:47] assign _s1_read_T_10 = _GEN_47; // @[package.scala:16:47] wire _s1_write_T_8; // @[package.scala:16:47] assign _s1_write_T_8 = _GEN_47; // @[package.scala:16:47] wire _pstore1_rmw_T_10; // @[package.scala:16:47] assign _pstore1_rmw_T_10 = _GEN_47; // @[package.scala:16:47] wire _pstore1_rmw_T_33; // @[package.scala:16:47] assign _pstore1_rmw_T_33 = _GEN_47; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_11; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_11 = _GEN_47; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_34; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_34 = _GEN_47; // @[package.scala:16:47] wire _s1_read_T_11 = _s1_read_T_7 | _s1_read_T_8; // @[package.scala:16:47, :81:59] wire _s1_read_T_12 = _s1_read_T_11 | _s1_read_T_9; // @[package.scala:16:47, :81:59] wire _s1_read_T_13 = _s1_read_T_12 | _s1_read_T_10; // @[package.scala:16:47, :81:59] wire _GEN_48 = s1_req_cmd == 5'h8; // @[package.scala:16:47] wire _s1_read_T_14; // @[package.scala:16:47] assign _s1_read_T_14 = _GEN_48; // @[package.scala:16:47] wire _s1_write_T_12; // @[package.scala:16:47] assign _s1_write_T_12 = _GEN_48; // @[package.scala:16:47] wire _pstore1_rmw_T_14; // @[package.scala:16:47] assign _pstore1_rmw_T_14 = _GEN_48; // @[package.scala:16:47] wire _pstore1_rmw_T_37; // @[package.scala:16:47] assign _pstore1_rmw_T_37 = _GEN_48; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_15; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_15 = _GEN_48; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_38; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_38 = _GEN_48; // @[package.scala:16:47] wire _GEN_49 = s1_req_cmd == 5'hC; // @[package.scala:16:47] wire _s1_read_T_15; // @[package.scala:16:47] assign _s1_read_T_15 = _GEN_49; // @[package.scala:16:47] wire _s1_write_T_13; // @[package.scala:16:47] assign _s1_write_T_13 = _GEN_49; // @[package.scala:16:47] wire _pstore1_rmw_T_15; // @[package.scala:16:47] assign _pstore1_rmw_T_15 = _GEN_49; // @[package.scala:16:47] wire _pstore1_rmw_T_38; // @[package.scala:16:47] assign _pstore1_rmw_T_38 = _GEN_49; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_16; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_16 = _GEN_49; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_39; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_39 = _GEN_49; // @[package.scala:16:47] wire _GEN_50 = s1_req_cmd == 5'hD; // @[package.scala:16:47] wire _s1_read_T_16; // @[package.scala:16:47] assign _s1_read_T_16 = _GEN_50; // @[package.scala:16:47] wire _s1_write_T_14; // @[package.scala:16:47] assign _s1_write_T_14 = _GEN_50; // @[package.scala:16:47] wire _pstore1_rmw_T_16; // @[package.scala:16:47] assign _pstore1_rmw_T_16 = _GEN_50; // @[package.scala:16:47] wire _pstore1_rmw_T_39; // @[package.scala:16:47] assign _pstore1_rmw_T_39 = _GEN_50; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_17; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_17 = _GEN_50; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_40; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_40 = _GEN_50; // @[package.scala:16:47] wire _GEN_51 = s1_req_cmd == 5'hE; // @[package.scala:16:47] wire _s1_read_T_17; // @[package.scala:16:47] assign _s1_read_T_17 = _GEN_51; // @[package.scala:16:47] wire _s1_write_T_15; // @[package.scala:16:47] assign _s1_write_T_15 = _GEN_51; // @[package.scala:16:47] wire _pstore1_rmw_T_17; // @[package.scala:16:47] assign _pstore1_rmw_T_17 = _GEN_51; // @[package.scala:16:47] wire _pstore1_rmw_T_40; // @[package.scala:16:47] assign _pstore1_rmw_T_40 = _GEN_51; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_18; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_18 = _GEN_51; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_41; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_41 = _GEN_51; // @[package.scala:16:47] wire _GEN_52 = s1_req_cmd == 5'hF; // @[package.scala:16:47] wire _s1_read_T_18; // @[package.scala:16:47] assign _s1_read_T_18 = _GEN_52; // @[package.scala:16:47] wire _s1_write_T_16; // @[package.scala:16:47] assign _s1_write_T_16 = _GEN_52; // @[package.scala:16:47] wire _pstore1_rmw_T_18; // @[package.scala:16:47] assign _pstore1_rmw_T_18 = _GEN_52; // @[package.scala:16:47] wire _pstore1_rmw_T_41; // @[package.scala:16:47] assign _pstore1_rmw_T_41 = _GEN_52; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_19; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_19 = _GEN_52; // @[package.scala:16:47] wire _io_cpu_perf_canAcceptLoadThenLoad_T_42; // @[package.scala:16:47] assign _io_cpu_perf_canAcceptLoadThenLoad_T_42 = _GEN_52; // @[package.scala:16:47] wire _s1_read_T_19 = _s1_read_T_14 | _s1_read_T_15; // @[package.scala:16:47, :81:59] wire _s1_read_T_20 = _s1_read_T_19 | _s1_read_T_16; // @[package.scala:16:47, :81:59] wire _s1_read_T_21 = _s1_read_T_20 | _s1_read_T_17; // @[package.scala:16:47, :81:59] wire _s1_read_T_22 = _s1_read_T_21 | _s1_read_T_18; // @[package.scala:16:47, :81:59] wire _s1_read_T_23 = _s1_read_T_13 | _s1_read_T_22; // @[package.scala:81:59] wire s1_read = _s1_read_T_6 | _s1_read_T_23; // @[package.scala:81:59] wire _GEN_53 = s1_req_cmd == 5'h1; // @[DCache.scala:196:25] wire _s1_write_T; // @[Consts.scala:90:32] assign _s1_write_T = _GEN_53; // @[Consts.scala:90:32] wire _pstore1_rmw_T_25; // @[Consts.scala:90:32] assign _pstore1_rmw_T_25 = _GEN_53; // @[Consts.scala:90:32] wire _io_cpu_perf_canAcceptLoadThenLoad_T_26; // @[Consts.scala:90:32] assign _io_cpu_perf_canAcceptLoadThenLoad_T_26 = _GEN_53; // @[Consts.scala:90:32] wire _T_20 = s1_req_cmd == 5'h11; // @[DCache.scala:196:25] wire _s1_write_T_1; // @[Consts.scala:90:49] assign _s1_write_T_1 = _T_20; // @[Consts.scala:90:49] wire _s1_mask_T; // @[DCache.scala:327:32] assign _s1_mask_T = _T_20; // @[DCache.scala:327:32] wire _pstore1_rmw_T_26; // @[Consts.scala:90:49] assign _pstore1_rmw_T_26 = _T_20; // @[Consts.scala:90:49] wire _pstore1_rmw_T_48; // @[DCache.scala:1191:35] assign _pstore1_rmw_T_48 = _T_20; // @[DCache.scala:1191:35] wire _io_cpu_perf_canAcceptLoadThenLoad_T_27; // @[Consts.scala:90:49] assign _io_cpu_perf_canAcceptLoadThenLoad_T_27 = _T_20; // @[Consts.scala:90:49] wire _io_cpu_perf_canAcceptLoadThenLoad_T_49; // @[DCache.scala:1191:35] assign _io_cpu_perf_canAcceptLoadThenLoad_T_49 = _T_20; // @[DCache.scala:1191:35] wire _s1_write_T_2 = _s1_write_T | _s1_write_T_1; // @[Consts.scala:90:{32,42,49}] wire _s1_write_T_4 = _s1_write_T_2 | _s1_write_T_3; // @[Consts.scala:90:{42,59,66}] wire _s1_write_T_9 = _s1_write_T_5 | _s1_write_T_6; // @[package.scala:16:47, :81:59] wire _s1_write_T_10 = _s1_write_T_9 | _s1_write_T_7; // @[package.scala:16:47, :81:59] wire _s1_write_T_11 = _s1_write_T_10 | _s1_write_T_8; // @[package.scala:16:47, :81:59] wire _s1_write_T_17 = _s1_write_T_12 | _s1_write_T_13; // @[package.scala:16:47, :81:59] wire _s1_write_T_18 = _s1_write_T_17 | _s1_write_T_14; // @[package.scala:16:47, :81:59] wire _s1_write_T_19 = _s1_write_T_18 | _s1_write_T_15; // @[package.scala:16:47, :81:59] wire _s1_write_T_20 = _s1_write_T_19 | _s1_write_T_16; // @[package.scala:16:47, :81:59] wire _s1_write_T_21 = _s1_write_T_11 | _s1_write_T_20; // @[package.scala:81:59] wire s1_write = _s1_write_T_4 | _s1_write_T_21; // @[Consts.scala:87:44, :90:{59,76}] wire s1_readwrite = s1_read | s1_write; // @[DCache.scala:212:30] wire _s1_sfence_T = s1_req_cmd == 5'h14; // @[DCache.scala:196:25, :213:30] wire _GEN_54 = s1_req_cmd == 5'h15; // @[DCache.scala:196:25, :213:57] wire _s1_sfence_T_1; // @[DCache.scala:213:57] assign _s1_sfence_T_1 = _GEN_54; // @[DCache.scala:213:57] wire _tlb_io_sfence_bits_hv_T; // @[DCache.scala:283:39] assign _tlb_io_sfence_bits_hv_T = _GEN_54; // @[DCache.scala:213:57, :283:39] wire _s1_sfence_T_2 = _s1_sfence_T | _s1_sfence_T_1; // @[DCache.scala:213:{30,43,57}] wire _GEN_55 = s1_req_cmd == 5'h16; // @[DCache.scala:196:25, :213:85] wire _s1_sfence_T_3; // @[DCache.scala:213:85] assign _s1_sfence_T_3 = _GEN_55; // @[DCache.scala:213:85] wire _tlb_io_sfence_bits_hg_T; // @[DCache.scala:284:39] assign _tlb_io_sfence_bits_hg_T = _GEN_55; // @[DCache.scala:213:85, :284:39] wire s1_sfence = _s1_sfence_T_2 | _s1_sfence_T_3; // @[DCache.scala:213:{43,71,85}] wire _s1_flush_line_T = s1_req_cmd == 5'h5; // @[DCache.scala:196:25, :214:34] wire _s1_flush_line_T_1 = s1_req_size[0]; // @[DCache.scala:196:25, :214:64] wire _tlb_io_sfence_bits_rs1_T = s1_req_size[0]; // @[DCache.scala:196:25, :214:64, :279:40] wire s1_flush_line = _s1_flush_line_T & _s1_flush_line_T_1; // @[DCache.scala:214:{34,50,64}] reg s1_flush_valid; // @[DCache.scala:215:27] reg cached_grant_wait; // @[DCache.scala:223:34] reg resetting; // @[DCache.scala:224:26] assign metaArb_io_in_0_valid = resetting; // @[DCache.scala:135:28, :224:26] reg [8:0] flushCounter; // @[DCache.scala:225:29] reg release_ack_wait; // @[DCache.scala:226:33] reg [31:0] release_ack_addr; // @[DCache.scala:227:29] reg [3:0] release_state; // @[DCache.scala:228:30] reg [7:0] refill_way; // @[DCache.scala:229:23] assign metaArb_io_in_3_bits_way_en = refill_way; // @[DCache.scala:135:28, :229:23] assign dataArb_io_in_1_bits_way_en = refill_way; // @[DCache.scala:152:28, :229:23] wire _any_pstore_valid_T; // @[DCache.scala:508:36] wire any_pstore_valid; // @[DCache.scala:230:30] wire _T_106 = release_state == 4'h1; // @[package.scala:16:47] wire _inWriteback_T; // @[package.scala:16:47] assign _inWriteback_T = _T_106; // @[package.scala:16:47] wire _canAcceptCachedGrant_T; // @[package.scala:16:47] assign _canAcceptCachedGrant_T = _T_106; // @[package.scala:16:47] wire _inWriteback_T_1 = release_state == 4'h2; // @[package.scala:16:47] wire inWriteback = _inWriteback_T | _inWriteback_T_1; // @[package.scala:16:47, :81:59] assign metaArb_io_in_4_bits_way_en = releaseWay; // @[DCache.scala:135:28, :232:24] assign metaArb_io_in_5_bits_way_en = releaseWay; // @[DCache.scala:135:28, :232:24] assign metaArb_io_in_6_bits_way_en = releaseWay; // @[DCache.scala:135:28, :232:24] assign metaArb_io_in_7_bits_way_en = releaseWay; // @[DCache.scala:135:28, :232:24] wire _io_cpu_req_ready_T = ~(|release_state); // @[DCache.scala:228:30, :233:38] wire _io_cpu_req_ready_T_1 = ~cached_grant_wait; // @[DCache.scala:223:34, :233:54] wire _io_cpu_req_ready_T_2 = _io_cpu_req_ready_T & _io_cpu_req_ready_T_1; // @[DCache.scala:233:{38,51,54}] wire _io_cpu_req_ready_T_3 = ~s1_nack; // @[DCache.scala:185:28, :187:41, :233:76] wire _io_cpu_req_ready_T_4 = _io_cpu_req_ready_T_2 & _io_cpu_req_ready_T_3; // @[DCache.scala:233:{51,73,76}] reg uncachedInFlight_0; // @[DCache.scala:236:33] wire _s2_valid_cached_miss_T_2 = uncachedInFlight_0; // @[DCache.scala:236:33, :425:88] wire _s2_valid_uncached_pending_T_1 = uncachedInFlight_0; // @[DCache.scala:236:33, :430:92] wire _io_cpu_ordered_T_6 = uncachedInFlight_0; // @[DCache.scala:236:33, :929:142] wire _io_cpu_store_pending_T_24 = uncachedInFlight_0; // @[DCache.scala:236:33, :930:97] wire _clock_en_reg_T_22 = uncachedInFlight_0; // @[DCache.scala:236:33, :1072:50] reg [39:0] uncachedReqs_0_addr; // @[DCache.scala:237:25] wire [39:0] uncachedResp_addr = uncachedReqs_0_addr; // @[DCache.scala:237:25, :238:30] reg [6:0] uncachedReqs_0_tag; // @[DCache.scala:237:25] wire [6:0] uncachedResp_tag = uncachedReqs_0_tag; // @[DCache.scala:237:25, :238:30] reg [4:0] uncachedReqs_0_cmd; // @[DCache.scala:237:25] wire [4:0] uncachedResp_cmd = uncachedReqs_0_cmd; // @[DCache.scala:237:25, :238:30] reg [1:0] uncachedReqs_0_size; // @[DCache.scala:237:25] wire [1:0] uncachedResp_size = uncachedReqs_0_size; // @[DCache.scala:237:25, :238:30] reg uncachedReqs_0_signed; // @[DCache.scala:237:25] wire uncachedResp_signed = uncachedReqs_0_signed; // @[DCache.scala:237:25, :238:30] reg [1:0] uncachedReqs_0_dprv; // @[DCache.scala:237:25] wire [1:0] uncachedResp_dprv = uncachedReqs_0_dprv; // @[DCache.scala:237:25, :238:30] reg uncachedReqs_0_dv; // @[DCache.scala:237:25] wire uncachedResp_dv = uncachedReqs_0_dv; // @[DCache.scala:237:25, :238:30] reg uncachedReqs_0_phys; // @[DCache.scala:237:25] wire uncachedResp_phys = uncachedReqs_0_phys; // @[DCache.scala:237:25, :238:30] reg uncachedReqs_0_no_resp; // @[DCache.scala:237:25] wire uncachedResp_no_resp = uncachedReqs_0_no_resp; // @[DCache.scala:237:25, :238:30] reg uncachedReqs_0_no_alloc; // @[DCache.scala:237:25] wire uncachedResp_no_alloc = uncachedReqs_0_no_alloc; // @[DCache.scala:237:25, :238:30] reg uncachedReqs_0_no_xcpt; // @[DCache.scala:237:25] wire uncachedResp_no_xcpt = uncachedReqs_0_no_xcpt; // @[DCache.scala:237:25, :238:30] reg [63:0] uncachedReqs_0_data; // @[DCache.scala:237:25] wire [63:0] uncachedResp_data = uncachedReqs_0_data; // @[DCache.scala:237:25, :238:30] reg [7:0] uncachedReqs_0_mask; // @[DCache.scala:237:25] wire [7:0] uncachedResp_mask = uncachedReqs_0_mask; // @[DCache.scala:237:25, :238:30] wire _GEN_56 = io_cpu_req_bits_cmd_0 == 5'h0; // @[package.scala:16:47] wire _s0_read_T; // @[package.scala:16:47] assign _s0_read_T = _GEN_56; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T = _GEN_56; // @[package.scala:16:47] wire _s1_did_read_T; // @[package.scala:16:47] assign _s1_did_read_T = _GEN_56; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T = _GEN_56; // @[package.scala:16:47] wire _GEN_57 = io_cpu_req_bits_cmd_0 == 5'h10; // @[package.scala:16:47] wire _s0_read_T_1; // @[package.scala:16:47] assign _s0_read_T_1 = _GEN_57; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_1; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_1 = _GEN_57; // @[package.scala:16:47] wire _s1_did_read_T_1; // @[package.scala:16:47] assign _s1_did_read_T_1 = _GEN_57; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_1; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_1 = _GEN_57; // @[package.scala:16:47] wire _GEN_58 = io_cpu_req_bits_cmd_0 == 5'h6; // @[package.scala:16:47] wire _s0_read_T_2; // @[package.scala:16:47] assign _s0_read_T_2 = _GEN_58; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_2; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_2 = _GEN_58; // @[package.scala:16:47] wire _s1_did_read_T_2; // @[package.scala:16:47] assign _s1_did_read_T_2 = _GEN_58; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_2; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_2 = _GEN_58; // @[package.scala:16:47] wire _GEN_59 = io_cpu_req_bits_cmd_0 == 5'h7; // @[package.scala:16:47] wire _s0_read_T_3; // @[package.scala:16:47] assign _s0_read_T_3 = _GEN_59; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_3; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_3 = _GEN_59; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_28; // @[Consts.scala:90:66] assign _dataArb_io_in_3_valid_T_28 = _GEN_59; // @[package.scala:16:47] wire _s1_did_read_T_3; // @[package.scala:16:47] assign _s1_did_read_T_3 = _GEN_59; // @[package.scala:16:47] wire _s1_did_read_T_28; // @[Consts.scala:90:66] assign _s1_did_read_T_28 = _GEN_59; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_3; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_3 = _GEN_59; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_28; // @[Consts.scala:90:66] assign _pstore_drain_opportunistic_T_28 = _GEN_59; // @[package.scala:16:47] wire _s0_read_T_4 = _s0_read_T | _s0_read_T_1; // @[package.scala:16:47, :81:59] wire _s0_read_T_5 = _s0_read_T_4 | _s0_read_T_2; // @[package.scala:16:47, :81:59] wire _s0_read_T_6 = _s0_read_T_5 | _s0_read_T_3; // @[package.scala:16:47, :81:59] wire _GEN_60 = io_cpu_req_bits_cmd_0 == 5'h4; // @[package.scala:16:47] wire _s0_read_T_7; // @[package.scala:16:47] assign _s0_read_T_7 = _GEN_60; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_7; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_7 = _GEN_60; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_30; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_30 = _GEN_60; // @[package.scala:16:47] wire _s1_did_read_T_7; // @[package.scala:16:47] assign _s1_did_read_T_7 = _GEN_60; // @[package.scala:16:47] wire _s1_did_read_T_30; // @[package.scala:16:47] assign _s1_did_read_T_30 = _GEN_60; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_7; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_7 = _GEN_60; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_30; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_30 = _GEN_60; // @[package.scala:16:47] wire _GEN_61 = io_cpu_req_bits_cmd_0 == 5'h9; // @[package.scala:16:47] wire _s0_read_T_8; // @[package.scala:16:47] assign _s0_read_T_8 = _GEN_61; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_8; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_8 = _GEN_61; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_31; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_31 = _GEN_61; // @[package.scala:16:47] wire _s1_did_read_T_8; // @[package.scala:16:47] assign _s1_did_read_T_8 = _GEN_61; // @[package.scala:16:47] wire _s1_did_read_T_31; // @[package.scala:16:47] assign _s1_did_read_T_31 = _GEN_61; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_8; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_8 = _GEN_61; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_31; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_31 = _GEN_61; // @[package.scala:16:47] wire _GEN_62 = io_cpu_req_bits_cmd_0 == 5'hA; // @[package.scala:16:47] wire _s0_read_T_9; // @[package.scala:16:47] assign _s0_read_T_9 = _GEN_62; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_9; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_9 = _GEN_62; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_32; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_32 = _GEN_62; // @[package.scala:16:47] wire _s1_did_read_T_9; // @[package.scala:16:47] assign _s1_did_read_T_9 = _GEN_62; // @[package.scala:16:47] wire _s1_did_read_T_32; // @[package.scala:16:47] assign _s1_did_read_T_32 = _GEN_62; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_9; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_9 = _GEN_62; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_32; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_32 = _GEN_62; // @[package.scala:16:47] wire _GEN_63 = io_cpu_req_bits_cmd_0 == 5'hB; // @[package.scala:16:47] wire _s0_read_T_10; // @[package.scala:16:47] assign _s0_read_T_10 = _GEN_63; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_10; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_10 = _GEN_63; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_33; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_33 = _GEN_63; // @[package.scala:16:47] wire _s1_did_read_T_10; // @[package.scala:16:47] assign _s1_did_read_T_10 = _GEN_63; // @[package.scala:16:47] wire _s1_did_read_T_33; // @[package.scala:16:47] assign _s1_did_read_T_33 = _GEN_63; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_10; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_10 = _GEN_63; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_33; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_33 = _GEN_63; // @[package.scala:16:47] wire _s0_read_T_11 = _s0_read_T_7 | _s0_read_T_8; // @[package.scala:16:47, :81:59] wire _s0_read_T_12 = _s0_read_T_11 | _s0_read_T_9; // @[package.scala:16:47, :81:59] wire _s0_read_T_13 = _s0_read_T_12 | _s0_read_T_10; // @[package.scala:16:47, :81:59] wire _GEN_64 = io_cpu_req_bits_cmd_0 == 5'h8; // @[package.scala:16:47] wire _s0_read_T_14; // @[package.scala:16:47] assign _s0_read_T_14 = _GEN_64; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_14; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_14 = _GEN_64; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_37; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_37 = _GEN_64; // @[package.scala:16:47] wire _s1_did_read_T_14; // @[package.scala:16:47] assign _s1_did_read_T_14 = _GEN_64; // @[package.scala:16:47] wire _s1_did_read_T_37; // @[package.scala:16:47] assign _s1_did_read_T_37 = _GEN_64; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_14; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_14 = _GEN_64; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_37; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_37 = _GEN_64; // @[package.scala:16:47] wire _GEN_65 = io_cpu_req_bits_cmd_0 == 5'hC; // @[package.scala:16:47] wire _s0_read_T_15; // @[package.scala:16:47] assign _s0_read_T_15 = _GEN_65; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_15; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_15 = _GEN_65; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_38; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_38 = _GEN_65; // @[package.scala:16:47] wire _s1_did_read_T_15; // @[package.scala:16:47] assign _s1_did_read_T_15 = _GEN_65; // @[package.scala:16:47] wire _s1_did_read_T_38; // @[package.scala:16:47] assign _s1_did_read_T_38 = _GEN_65; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_15; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_15 = _GEN_65; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_38; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_38 = _GEN_65; // @[package.scala:16:47] wire _GEN_66 = io_cpu_req_bits_cmd_0 == 5'hD; // @[package.scala:16:47] wire _s0_read_T_16; // @[package.scala:16:47] assign _s0_read_T_16 = _GEN_66; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_16; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_16 = _GEN_66; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_39; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_39 = _GEN_66; // @[package.scala:16:47] wire _s1_did_read_T_16; // @[package.scala:16:47] assign _s1_did_read_T_16 = _GEN_66; // @[package.scala:16:47] wire _s1_did_read_T_39; // @[package.scala:16:47] assign _s1_did_read_T_39 = _GEN_66; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_16; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_16 = _GEN_66; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_39; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_39 = _GEN_66; // @[package.scala:16:47] wire _GEN_67 = io_cpu_req_bits_cmd_0 == 5'hE; // @[package.scala:16:47] wire _s0_read_T_17; // @[package.scala:16:47] assign _s0_read_T_17 = _GEN_67; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_17; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_17 = _GEN_67; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_40; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_40 = _GEN_67; // @[package.scala:16:47] wire _s1_did_read_T_17; // @[package.scala:16:47] assign _s1_did_read_T_17 = _GEN_67; // @[package.scala:16:47] wire _s1_did_read_T_40; // @[package.scala:16:47] assign _s1_did_read_T_40 = _GEN_67; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_17; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_17 = _GEN_67; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_40; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_40 = _GEN_67; // @[package.scala:16:47] wire _GEN_68 = io_cpu_req_bits_cmd_0 == 5'hF; // @[package.scala:16:47] wire _s0_read_T_18; // @[package.scala:16:47] assign _s0_read_T_18 = _GEN_68; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_18; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_18 = _GEN_68; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_41; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_T_41 = _GEN_68; // @[package.scala:16:47] wire _s1_did_read_T_18; // @[package.scala:16:47] assign _s1_did_read_T_18 = _GEN_68; // @[package.scala:16:47] wire _s1_did_read_T_41; // @[package.scala:16:47] assign _s1_did_read_T_41 = _GEN_68; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_18; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_18 = _GEN_68; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_41; // @[package.scala:16:47] assign _pstore_drain_opportunistic_T_41 = _GEN_68; // @[package.scala:16:47] wire _s0_read_T_19 = _s0_read_T_14 | _s0_read_T_15; // @[package.scala:16:47, :81:59] wire _s0_read_T_20 = _s0_read_T_19 | _s0_read_T_16; // @[package.scala:16:47, :81:59] wire _s0_read_T_21 = _s0_read_T_20 | _s0_read_T_17; // @[package.scala:16:47, :81:59] wire _s0_read_T_22 = _s0_read_T_21 | _s0_read_T_18; // @[package.scala:16:47, :81:59] wire _s0_read_T_23 = _s0_read_T_13 | _s0_read_T_22; // @[package.scala:81:59] wire s0_read = _s0_read_T_6 | _s0_read_T_23; // @[package.scala:81:59] wire _GEN_69 = io_cpu_req_bits_cmd_0 == 5'h1; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_res_T; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_res_T = _GEN_69; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_T_25; // @[Consts.scala:90:32] assign _dataArb_io_in_3_valid_T_25 = _GEN_69; // @[package.scala:16:47] wire _s1_did_read_T_25; // @[Consts.scala:90:32] assign _s1_did_read_T_25 = _GEN_69; // @[package.scala:16:47] wire _pstore_drain_opportunistic_res_T; // @[package.scala:16:47] assign _pstore_drain_opportunistic_res_T = _GEN_69; // @[package.scala:16:47] wire _pstore_drain_opportunistic_T_25; // @[Consts.scala:90:32] assign _pstore_drain_opportunistic_T_25 = _GEN_69; // @[package.scala:16:47] wire _GEN_70 = io_cpu_req_bits_cmd_0 == 5'h3; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_res_T_1; // @[package.scala:16:47] assign _dataArb_io_in_3_valid_res_T_1 = _GEN_70; // @[package.scala:16:47] wire _pstore_drain_opportunistic_res_T_1; // @[package.scala:16:47] assign _pstore_drain_opportunistic_res_T_1 = _GEN_70; // @[package.scala:16:47] wire _dataArb_io_in_3_valid_res_T_2 = _dataArb_io_in_3_valid_res_T | _dataArb_io_in_3_valid_res_T_1; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_res_T_3 = ~_dataArb_io_in_3_valid_res_T_2; // @[package.scala:81:59] wire dataArb_io_in_3_valid_res = _dataArb_io_in_3_valid_res_T_3; // @[DCache.scala:1185:{15,46}] wire _dataArb_io_in_3_valid_T_4 = _dataArb_io_in_3_valid_T | _dataArb_io_in_3_valid_T_1; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_5 = _dataArb_io_in_3_valid_T_4 | _dataArb_io_in_3_valid_T_2; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_6 = _dataArb_io_in_3_valid_T_5 | _dataArb_io_in_3_valid_T_3; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_11 = _dataArb_io_in_3_valid_T_7 | _dataArb_io_in_3_valid_T_8; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_12 = _dataArb_io_in_3_valid_T_11 | _dataArb_io_in_3_valid_T_9; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_13 = _dataArb_io_in_3_valid_T_12 | _dataArb_io_in_3_valid_T_10; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_19 = _dataArb_io_in_3_valid_T_14 | _dataArb_io_in_3_valid_T_15; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_20 = _dataArb_io_in_3_valid_T_19 | _dataArb_io_in_3_valid_T_16; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_21 = _dataArb_io_in_3_valid_T_20 | _dataArb_io_in_3_valid_T_17; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_22 = _dataArb_io_in_3_valid_T_21 | _dataArb_io_in_3_valid_T_18; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_23 = _dataArb_io_in_3_valid_T_13 | _dataArb_io_in_3_valid_T_22; // @[package.scala:81:59] wire _dataArb_io_in_3_valid_T_24 = _dataArb_io_in_3_valid_T_6 | _dataArb_io_in_3_valid_T_23; // @[package.scala:81:59] wire _GEN_71 = io_cpu_req_bits_cmd_0 == 5'h11; // @[DCache.scala:101:7] wire _dataArb_io_in_3_valid_T_26; // @[Consts.scala:90:49] assign _dataArb_io_in_3_valid_T_26 = _GEN_71; // @[Consts.scala:90:49] wire _dataArb_io_in_3_valid_T_48; // @[DCache.scala:1191:35] assign _dataArb_io_in_3_valid_T_48 = _GEN_71; // @[DCache.scala:1191:35] wire _s1_did_read_T_26; // @[Consts.scala:90:49] assign _s1_did_read_T_26 = _GEN_71; // @[Consts.scala:90:49] wire _s1_did_read_T_48; // @[DCache.scala:1191:35] assign _s1_did_read_T_48 = _GEN_71; // @[DCache.scala:1191:35] wire _pstore_drain_opportunistic_T_26; // @[Consts.scala:90:49] assign _pstore_drain_opportunistic_T_26 = _GEN_71; // @[Consts.scala:90:49] wire _pstore_drain_opportunistic_T_48; // @[DCache.scala:1191:35] assign _pstore_drain_opportunistic_T_48 = _GEN_71; // @[DCache.scala:1191:35] wire _dataArb_io_in_3_valid_T_27 = _dataArb_io_in_3_valid_T_25 | _dataArb_io_in_3_valid_T_26; // @[Consts.scala:90:{32,42,49}] wire _dataArb_io_in_3_valid_T_29 = _dataArb_io_in_3_valid_T_27 | _dataArb_io_in_3_valid_T_28; // @[Consts.scala:90:{42,59,66}] wire _dataArb_io_in_3_valid_T_34 = _dataArb_io_in_3_valid_T_30 | _dataArb_io_in_3_valid_T_31; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_35 = _dataArb_io_in_3_valid_T_34 | _dataArb_io_in_3_valid_T_32; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_36 = _dataArb_io_in_3_valid_T_35 | _dataArb_io_in_3_valid_T_33; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_42 = _dataArb_io_in_3_valid_T_37 | _dataArb_io_in_3_valid_T_38; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_43 = _dataArb_io_in_3_valid_T_42 | _dataArb_io_in_3_valid_T_39; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_44 = _dataArb_io_in_3_valid_T_43 | _dataArb_io_in_3_valid_T_40; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_45 = _dataArb_io_in_3_valid_T_44 | _dataArb_io_in_3_valid_T_41; // @[package.scala:16:47, :81:59] wire _dataArb_io_in_3_valid_T_46 = _dataArb_io_in_3_valid_T_36 | _dataArb_io_in_3_valid_T_45; // @[package.scala:81:59] wire _dataArb_io_in_3_valid_T_47 = _dataArb_io_in_3_valid_T_29 | _dataArb_io_in_3_valid_T_46; // @[Consts.scala:87:44, :90:{59,76}] wire _dataArb_io_in_3_valid_T_50 = _dataArb_io_in_3_valid_T_48; // @[DCache.scala:1191:{35,45}] wire _dataArb_io_in_3_valid_T_51 = _dataArb_io_in_3_valid_T_47 & _dataArb_io_in_3_valid_T_50; // @[DCache.scala:1191:{23,45}] wire _dataArb_io_in_3_valid_T_52 = _dataArb_io_in_3_valid_T_24 | _dataArb_io_in_3_valid_T_51; // @[DCache.scala:1190:21, :1191:23] wire _dataArb_io_in_3_valid_T_53 = ~_dataArb_io_in_3_valid_T_52; // @[DCache.scala:1186:12, :1190:21] wire _dataArb_io_in_3_valid_T_54 = _dataArb_io_in_3_valid_T_53 | dataArb_io_in_3_valid_res; // @[DCache.scala:1185:46, :1186:{12,28}] wire _dataArb_io_in_3_valid_T_56 = ~_dataArb_io_in_3_valid_T_55; // @[DCache.scala:1186:11] wire _dataArb_io_in_3_valid_T_57 = ~_dataArb_io_in_3_valid_T_54; // @[DCache.scala:1186:{11,28}] assign _dataArb_io_in_3_valid_T_58 = io_cpu_req_valid_0 & dataArb_io_in_3_valid_res; // @[DCache.scala:101:7, :242:46, :1185:46] assign dataArb_io_in_3_valid = _dataArb_io_in_3_valid_T_58; // @[DCache.scala:152:28, :242:46] wire [27:0] _dataArb_io_in_3_bits_addr_T = io_cpu_req_bits_addr_0[39:12]; // @[DCache.scala:101:7, :245:89] wire [27:0] _metaArb_io_in_1_bits_addr_T = io_cpu_req_bits_addr_0[39:12]; // @[DCache.scala:101:7, :245:89, :454:58] wire [27:0] _metaArb_io_in_2_bits_addr_T = io_cpu_req_bits_addr_0[39:12]; // @[DCache.scala:101:7, :245:89, :466:58] wire [27:0] _metaArb_io_in_3_bits_addr_T = io_cpu_req_bits_addr_0[39:12]; // @[DCache.scala:101:7, :245:89, :745:58] wire [27:0] _metaArb_io_in_4_bits_addr_T = io_cpu_req_bits_addr_0[39:12]; // @[DCache.scala:101:7, :245:89, :912:58] wire [27:0] _metaArb_io_in_5_bits_addr_T = io_cpu_req_bits_addr_0[39:12]; // @[DCache.scala:101:7, :245:89, :1018:58] wire [11:0] _dataArb_io_in_3_bits_addr_T_1 = io_cpu_req_bits_addr_0[11:0]; // @[DCache.scala:101:7, :245:120] wire [39:0] _dataArb_io_in_3_bits_addr_T_2 = {_dataArb_io_in_3_bits_addr_T, _dataArb_io_in_3_bits_addr_T_1}; // @[DCache.scala:245:{36,89,120}] assign dataArb_io_in_3_bits_addr = _dataArb_io_in_3_bits_addr_T_2[11:0]; // @[DCache.scala:152:28, :245:{30,36}] wire _T_4 = ~dataArb_io_in_3_ready & s0_read; // @[DCache.scala:152:28, :258:{9,33}] wire _s1_did_read_T_4 = _s1_did_read_T | _s1_did_read_T_1; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_5 = _s1_did_read_T_4 | _s1_did_read_T_2; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_6 = _s1_did_read_T_5 | _s1_did_read_T_3; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_11 = _s1_did_read_T_7 | _s1_did_read_T_8; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_12 = _s1_did_read_T_11 | _s1_did_read_T_9; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_13 = _s1_did_read_T_12 | _s1_did_read_T_10; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_19 = _s1_did_read_T_14 | _s1_did_read_T_15; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_20 = _s1_did_read_T_19 | _s1_did_read_T_16; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_21 = _s1_did_read_T_20 | _s1_did_read_T_17; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_22 = _s1_did_read_T_21 | _s1_did_read_T_18; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_23 = _s1_did_read_T_13 | _s1_did_read_T_22; // @[package.scala:81:59] wire _s1_did_read_T_24 = _s1_did_read_T_6 | _s1_did_read_T_23; // @[package.scala:81:59] wire _s1_did_read_T_27 = _s1_did_read_T_25 | _s1_did_read_T_26; // @[Consts.scala:90:{32,42,49}] wire _s1_did_read_T_29 = _s1_did_read_T_27 | _s1_did_read_T_28; // @[Consts.scala:90:{42,59,66}] wire _s1_did_read_T_34 = _s1_did_read_T_30 | _s1_did_read_T_31; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_35 = _s1_did_read_T_34 | _s1_did_read_T_32; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_36 = _s1_did_read_T_35 | _s1_did_read_T_33; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_42 = _s1_did_read_T_37 | _s1_did_read_T_38; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_43 = _s1_did_read_T_42 | _s1_did_read_T_39; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_44 = _s1_did_read_T_43 | _s1_did_read_T_40; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_45 = _s1_did_read_T_44 | _s1_did_read_T_41; // @[package.scala:16:47, :81:59] wire _s1_did_read_T_46 = _s1_did_read_T_36 | _s1_did_read_T_45; // @[package.scala:81:59] wire _s1_did_read_T_47 = _s1_did_read_T_29 | _s1_did_read_T_46; // @[Consts.scala:87:44, :90:{59,76}] wire _s1_did_read_T_50 = _s1_did_read_T_48; // @[DCache.scala:1191:{35,45}] wire _s1_did_read_T_51 = _s1_did_read_T_47 & _s1_did_read_T_50; // @[DCache.scala:1191:{23,45}] wire _s1_did_read_T_52 = _s1_did_read_T_24 | _s1_did_read_T_51; // @[DCache.scala:1190:21, :1191:23] wire _s1_did_read_T_53 = io_cpu_req_valid_0 & _s1_did_read_T_52; // @[DCache.scala:101:7, :259:75, :1190:21] wire _s1_did_read_T_54 = dataArb_io_in_3_ready & _s1_did_read_T_53; // @[DCache.scala:152:28, :259:{54,75}] reg s1_did_read; // @[DCache.scala:259:30] wire _s2_data_word_en_T = s1_did_read; // @[DCache.scala:259:30, :367:63] assign _metaArb_io_in_7_bits_idx_T = _dataArb_io_in_3_bits_addr_T_2[11:6]; // @[DCache.scala:245:36, :263:58] assign metaArb_io_in_7_bits_idx = _metaArb_io_in_7_bits_idx_T; // @[DCache.scala:135:28, :263:58] wire _s1_cmd_uses_tlb_T = s1_readwrite | s1_flush_line; // @[DCache.scala:212:30, :214:50, :270:38] wire _s1_cmd_uses_tlb_T_1 = s1_req_cmd == 5'h17; // @[DCache.scala:196:25, :270:69] wire s1_cmd_uses_tlb = _s1_cmd_uses_tlb_T | _s1_cmd_uses_tlb_T_1; // @[DCache.scala:270:{38,55,69}] wire _tlb_io_req_valid_T = ~io_cpu_s1_kill_0; // @[DCache.scala:101:7, :186:37, :273:55] wire _tlb_io_req_valid_T_1 = s1_valid & _tlb_io_req_valid_T; // @[DCache.scala:182:25, :273:{52,55}] wire _tlb_io_req_valid_T_2 = _tlb_io_req_valid_T_1 & s1_cmd_uses_tlb; // @[DCache.scala:270:55, :273:{52,71}] wire _tlb_io_req_valid_T_3 = _tlb_io_req_valid_T_2; // @[DCache.scala:273:{40,71}] wire _s1_xcpt_valid_T_1 = _tlb_io_req_valid_T_3; // @[DCache.scala:273:40, :932:40] wire _T_10 = ~_tlb_io_req_ready & ~io_ptw_resp_valid_0 & ~io_cpu_req_bits_phys_0; // @[DCache.scala:101:7, :119:19, :275:{9,27,30,53,56}] wire _T_14 = s1_valid & s1_cmd_uses_tlb & _tlb_io_resp_miss; // @[DCache.scala:119:19, :182:25, :270:55, :276:{39,58}] wire _tlb_io_sfence_valid_T = ~io_cpu_s1_kill_0; // @[DCache.scala:101:7, :186:37, :278:38] wire _tlb_io_sfence_valid_T_1 = s1_valid & _tlb_io_sfence_valid_T; // @[DCache.scala:182:25, :278:{35,38}] wire _tlb_io_sfence_valid_T_2 = _tlb_io_sfence_valid_T_1 & s1_sfence; // @[DCache.scala:213:71, :278:{35,54}] wire _tlb_io_sfence_bits_rs2_T = s1_req_size[1]; // @[DCache.scala:196:25, :280:40] wire [19:0] _s1_paddr_T = s1_req_addr[31:12]; // @[DCache.scala:196:25, :298:55] wire [19:0] _s1_paddr_T_1 = _tlb_io_resp_paddr[31:12]; // @[DCache.scala:119:19, :298:99] wire [19:0] _s1_paddr_T_2 = _s1_paddr_T_1; // @[DCache.scala:298:{25,99}] wire [31:0] s1_paddr = {_s1_paddr_T_2, _s1_paddr_T_3}; // @[DCache.scala:298:{21,25,125}] wire [2:0] _s1_victim_way_T; // @[package.scala:163:13] wire [2:0] s1_victim_way; // @[DCache.scala:299:27] assign rockettile_dcache_tag_array_MPORT_en = metaArb_io_out_valid & metaArb_io_out_bits_write; // @[DCache.scala:135:28, :310:27] assign wmask_0 = metaArb_io_out_bits_way_en[0]; // @[DCache.scala:135:28, :311:74] assign wmask_1 = metaArb_io_out_bits_way_en[1]; // @[DCache.scala:135:28, :311:74] assign wmask_2 = metaArb_io_out_bits_way_en[2]; // @[DCache.scala:135:28, :311:74] assign wmask_3 = metaArb_io_out_bits_way_en[3]; // @[DCache.scala:135:28, :311:74] assign wmask_4 = metaArb_io_out_bits_way_en[4]; // @[DCache.scala:135:28, :311:74] assign wmask_5 = metaArb_io_out_bits_way_en[5]; // @[DCache.scala:135:28, :311:74] assign wmask_6 = metaArb_io_out_bits_way_en[6]; // @[DCache.scala:135:28, :311:74] assign wmask_7 = metaArb_io_out_bits_way_en[7]; // @[DCache.scala:135:28, :311:74] wire _s1_meta_T = ~metaArb_io_out_bits_write; // @[DCache.scala:135:28, :190:43, :314:62] assign _s1_meta_T_1 = metaArb_io_out_valid & _s1_meta_T; // @[DCache.scala:135:28, :314:{59,62}] wire [1:0] _s1_meta_uncorrected_T_1; // @[DCache.scala:315:80] wire [19:0] _s1_meta_uncorrected_T; // @[DCache.scala:315:80] wire [1:0] s1_meta_uncorrected_0_coh_state; // @[DCache.scala:315:80] wire [19:0] s1_meta_uncorrected_0_tag; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T = _s1_meta_uncorrected_WIRE[19:0]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_0_tag = _s1_meta_uncorrected_T; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_1 = _s1_meta_uncorrected_WIRE[21:20]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_0_coh_state = _s1_meta_uncorrected_T_1; // @[DCache.scala:315:80] wire [1:0] _s1_meta_uncorrected_T_3; // @[DCache.scala:315:80] wire [19:0] _s1_meta_uncorrected_T_2; // @[DCache.scala:315:80] wire [1:0] s1_meta_uncorrected_1_coh_state; // @[DCache.scala:315:80] wire [19:0] s1_meta_uncorrected_1_tag; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_2 = _s1_meta_uncorrected_WIRE_1[19:0]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_1_tag = _s1_meta_uncorrected_T_2; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_3 = _s1_meta_uncorrected_WIRE_1[21:20]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_1_coh_state = _s1_meta_uncorrected_T_3; // @[DCache.scala:315:80] wire [1:0] _s1_meta_uncorrected_T_5; // @[DCache.scala:315:80] wire [19:0] _s1_meta_uncorrected_T_4; // @[DCache.scala:315:80] wire [1:0] s1_meta_uncorrected_2_coh_state; // @[DCache.scala:315:80] wire [19:0] s1_meta_uncorrected_2_tag; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_4 = _s1_meta_uncorrected_WIRE_2[19:0]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_2_tag = _s1_meta_uncorrected_T_4; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_5 = _s1_meta_uncorrected_WIRE_2[21:20]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_2_coh_state = _s1_meta_uncorrected_T_5; // @[DCache.scala:315:80] wire [1:0] _s1_meta_uncorrected_T_7; // @[DCache.scala:315:80] wire [19:0] _s1_meta_uncorrected_T_6; // @[DCache.scala:315:80] wire [1:0] s1_meta_uncorrected_3_coh_state; // @[DCache.scala:315:80] wire [19:0] s1_meta_uncorrected_3_tag; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_6 = _s1_meta_uncorrected_WIRE_3[19:0]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_3_tag = _s1_meta_uncorrected_T_6; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_7 = _s1_meta_uncorrected_WIRE_3[21:20]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_3_coh_state = _s1_meta_uncorrected_T_7; // @[DCache.scala:315:80] wire [1:0] _s1_meta_uncorrected_T_9; // @[DCache.scala:315:80] wire [19:0] _s1_meta_uncorrected_T_8; // @[DCache.scala:315:80] wire [1:0] s1_meta_uncorrected_4_coh_state; // @[DCache.scala:315:80] wire [19:0] s1_meta_uncorrected_4_tag; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_8 = _s1_meta_uncorrected_WIRE_4[19:0]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_4_tag = _s1_meta_uncorrected_T_8; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_9 = _s1_meta_uncorrected_WIRE_4[21:20]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_4_coh_state = _s1_meta_uncorrected_T_9; // @[DCache.scala:315:80] wire [1:0] _s1_meta_uncorrected_T_11; // @[DCache.scala:315:80] wire [19:0] _s1_meta_uncorrected_T_10; // @[DCache.scala:315:80] wire [1:0] s1_meta_uncorrected_5_coh_state; // @[DCache.scala:315:80] wire [19:0] s1_meta_uncorrected_5_tag; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_10 = _s1_meta_uncorrected_WIRE_5[19:0]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_5_tag = _s1_meta_uncorrected_T_10; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_11 = _s1_meta_uncorrected_WIRE_5[21:20]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_5_coh_state = _s1_meta_uncorrected_T_11; // @[DCache.scala:315:80] wire [1:0] _s1_meta_uncorrected_T_13; // @[DCache.scala:315:80] wire [19:0] _s1_meta_uncorrected_T_12; // @[DCache.scala:315:80] wire [1:0] s1_meta_uncorrected_6_coh_state; // @[DCache.scala:315:80] wire [19:0] s1_meta_uncorrected_6_tag; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_12 = _s1_meta_uncorrected_WIRE_6[19:0]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_6_tag = _s1_meta_uncorrected_T_12; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_13 = _s1_meta_uncorrected_WIRE_6[21:20]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_6_coh_state = _s1_meta_uncorrected_T_13; // @[DCache.scala:315:80] wire [1:0] _s1_meta_uncorrected_T_15; // @[DCache.scala:315:80] wire [19:0] _s1_meta_uncorrected_T_14; // @[DCache.scala:315:80] wire [1:0] s1_meta_uncorrected_7_coh_state; // @[DCache.scala:315:80] wire [19:0] s1_meta_uncorrected_7_tag; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_14 = _s1_meta_uncorrected_WIRE_7[19:0]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_7_tag = _s1_meta_uncorrected_T_14; // @[DCache.scala:315:80] assign _s1_meta_uncorrected_T_15 = _s1_meta_uncorrected_WIRE_7[21:20]; // @[DCache.scala:315:80] assign s1_meta_uncorrected_7_coh_state = _s1_meta_uncorrected_T_15; // @[DCache.scala:315:80] wire [19:0] s1_tag = s1_paddr[31:12]; // @[DCache.scala:298:21, :316:29] wire _s1_meta_hit_way_T = |s1_meta_uncorrected_0_coh_state; // @[Metadata.scala:50:45] wire _GEN_72 = s1_meta_uncorrected_0_tag == s1_tag; // @[DCache.scala:315:80, :316:29, :317:83] wire _s1_meta_hit_way_T_1; // @[DCache.scala:317:83] assign _s1_meta_hit_way_T_1 = _GEN_72; // @[DCache.scala:317:83] wire _s1_meta_hit_state_T; // @[DCache.scala:319:48] assign _s1_meta_hit_state_T = _GEN_72; // @[DCache.scala:317:83, :319:48] wire _s1_meta_hit_way_T_2 = _s1_meta_hit_way_T & _s1_meta_hit_way_T_1; // @[Metadata.scala:50:45] wire _s1_meta_hit_way_T_3 = |s1_meta_uncorrected_1_coh_state; // @[Metadata.scala:50:45] wire _GEN_73 = s1_meta_uncorrected_1_tag == s1_tag; // @[DCache.scala:315:80, :316:29, :317:83] wire _s1_meta_hit_way_T_4; // @[DCache.scala:317:83] assign _s1_meta_hit_way_T_4 = _GEN_73; // @[DCache.scala:317:83] wire _s1_meta_hit_state_T_4; // @[DCache.scala:319:48] assign _s1_meta_hit_state_T_4 = _GEN_73; // @[DCache.scala:317:83, :319:48] wire _s1_meta_hit_way_T_5 = _s1_meta_hit_way_T_3 & _s1_meta_hit_way_T_4; // @[Metadata.scala:50:45] wire _s1_meta_hit_way_T_6 = |s1_meta_uncorrected_2_coh_state; // @[Metadata.scala:50:45] wire _GEN_74 = s1_meta_uncorrected_2_tag == s1_tag; // @[DCache.scala:315:80, :316:29, :317:83] wire _s1_meta_hit_way_T_7; // @[DCache.scala:317:83] assign _s1_meta_hit_way_T_7 = _GEN_74; // @[DCache.scala:317:83] wire _s1_meta_hit_state_T_8; // @[DCache.scala:319:48] assign _s1_meta_hit_state_T_8 = _GEN_74; // @[DCache.scala:317:83, :319:48] wire _s1_meta_hit_way_T_8 = _s1_meta_hit_way_T_6 & _s1_meta_hit_way_T_7; // @[Metadata.scala:50:45] wire _s1_meta_hit_way_T_9 = |s1_meta_uncorrected_3_coh_state; // @[Metadata.scala:50:45] wire _GEN_75 = s1_meta_uncorrected_3_tag == s1_tag; // @[DCache.scala:315:80, :316:29, :317:83] wire _s1_meta_hit_way_T_10; // @[DCache.scala:317:83] assign _s1_meta_hit_way_T_10 = _GEN_75; // @[DCache.scala:317:83] wire _s1_meta_hit_state_T_12; // @[DCache.scala:319:48] assign _s1_meta_hit_state_T_12 = _GEN_75; // @[DCache.scala:317:83, :319:48] wire _s1_meta_hit_way_T_11 = _s1_meta_hit_way_T_9 & _s1_meta_hit_way_T_10; // @[Metadata.scala:50:45] wire _s1_meta_hit_way_T_12 = |s1_meta_uncorrected_4_coh_state; // @[Metadata.scala:50:45] wire _GEN_76 = s1_meta_uncorrected_4_tag == s1_tag; // @[DCache.scala:315:80, :316:29, :317:83] wire _s1_meta_hit_way_T_13; // @[DCache.scala:317:83] assign _s1_meta_hit_way_T_13 = _GEN_76; // @[DCache.scala:317:83] wire _s1_meta_hit_state_T_16; // @[DCache.scala:319:48] assign _s1_meta_hit_state_T_16 = _GEN_76; // @[DCache.scala:317:83, :319:48] wire _s1_meta_hit_way_T_14 = _s1_meta_hit_way_T_12 & _s1_meta_hit_way_T_13; // @[Metadata.scala:50:45] wire _s1_meta_hit_way_T_15 = |s1_meta_uncorrected_5_coh_state; // @[Metadata.scala:50:45] wire _GEN_77 = s1_meta_uncorrected_5_tag == s1_tag; // @[DCache.scala:315:80, :316:29, :317:83] wire _s1_meta_hit_way_T_16; // @[DCache.scala:317:83] assign _s1_meta_hit_way_T_16 = _GEN_77; // @[DCache.scala:317:83] wire _s1_meta_hit_state_T_20; // @[DCache.scala:319:48] assign _s1_meta_hit_state_T_20 = _GEN_77; // @[DCache.scala:317:83, :319:48] wire _s1_meta_hit_way_T_17 = _s1_meta_hit_way_T_15 & _s1_meta_hit_way_T_16; // @[Metadata.scala:50:45] wire _s1_meta_hit_way_T_18 = |s1_meta_uncorrected_6_coh_state; // @[Metadata.scala:50:45] wire _GEN_78 = s1_meta_uncorrected_6_tag == s1_tag; // @[DCache.scala:315:80, :316:29, :317:83] wire _s1_meta_hit_way_T_19; // @[DCache.scala:317:83] assign _s1_meta_hit_way_T_19 = _GEN_78; // @[DCache.scala:317:83] wire _s1_meta_hit_state_T_24; // @[DCache.scala:319:48] assign _s1_meta_hit_state_T_24 = _GEN_78; // @[DCache.scala:317:83, :319:48] wire _s1_meta_hit_way_T_20 = _s1_meta_hit_way_T_18 & _s1_meta_hit_way_T_19; // @[Metadata.scala:50:45] wire _s1_meta_hit_way_T_21 = |s1_meta_uncorrected_7_coh_state; // @[Metadata.scala:50:45] wire _GEN_79 = s1_meta_uncorrected_7_tag == s1_tag; // @[DCache.scala:315:80, :316:29, :317:83] wire _s1_meta_hit_way_T_22; // @[DCache.scala:317:83] assign _s1_meta_hit_way_T_22 = _GEN_79; // @[DCache.scala:317:83] wire _s1_meta_hit_state_T_28; // @[DCache.scala:319:48] assign _s1_meta_hit_state_T_28 = _GEN_79; // @[DCache.scala:317:83, :319:48] wire _s1_meta_hit_way_T_23 = _s1_meta_hit_way_T_21 & _s1_meta_hit_way_T_22; // @[Metadata.scala:50:45] wire [1:0] s1_meta_hit_way_lo_lo = {_s1_meta_hit_way_T_5, _s1_meta_hit_way_T_2}; // @[package.scala:45:27] wire [1:0] s1_meta_hit_way_lo_hi = {_s1_meta_hit_way_T_11, _s1_meta_hit_way_T_8}; // @[package.scala:45:27] wire [3:0] s1_meta_hit_way_lo = {s1_meta_hit_way_lo_hi, s1_meta_hit_way_lo_lo}; // @[package.scala:45:27] wire [1:0] s1_meta_hit_way_hi_lo = {_s1_meta_hit_way_T_17, _s1_meta_hit_way_T_14}; // @[package.scala:45:27] wire [1:0] s1_meta_hit_way_hi_hi = {_s1_meta_hit_way_T_23, _s1_meta_hit_way_T_20}; // @[package.scala:45:27] wire [3:0] s1_meta_hit_way_hi = {s1_meta_hit_way_hi_hi, s1_meta_hit_way_hi_lo}; // @[package.scala:45:27] wire [7:0] s1_hit_way = {s1_meta_hit_way_hi, s1_meta_hit_way_lo}; // @[package.scala:45:27] wire _s1_meta_hit_state_T_1 = ~s1_flush_valid; // @[DCache.scala:215:27, :319:62] wire _s1_meta_hit_state_T_2 = _s1_meta_hit_state_T & _s1_meta_hit_state_T_1; // @[DCache.scala:319:{48,59,62}] wire [1:0] _s1_meta_hit_state_T_3 = _s1_meta_hit_state_T_2 ? s1_meta_uncorrected_0_coh_state : 2'h0; // @[DCache.scala:315:80, :319:{41,59}] wire _s1_meta_hit_state_T_5 = ~s1_flush_valid; // @[DCache.scala:215:27, :319:62] wire _s1_meta_hit_state_T_6 = _s1_meta_hit_state_T_4 & _s1_meta_hit_state_T_5; // @[DCache.scala:319:{48,59,62}] wire [1:0] _s1_meta_hit_state_T_7 = _s1_meta_hit_state_T_6 ? s1_meta_uncorrected_1_coh_state : 2'h0; // @[DCache.scala:315:80, :319:{41,59}] wire _s1_meta_hit_state_T_9 = ~s1_flush_valid; // @[DCache.scala:215:27, :319:62] wire _s1_meta_hit_state_T_10 = _s1_meta_hit_state_T_8 & _s1_meta_hit_state_T_9; // @[DCache.scala:319:{48,59,62}] wire [1:0] _s1_meta_hit_state_T_11 = _s1_meta_hit_state_T_10 ? s1_meta_uncorrected_2_coh_state : 2'h0; // @[DCache.scala:315:80, :319:{41,59}] wire _s1_meta_hit_state_T_13 = ~s1_flush_valid; // @[DCache.scala:215:27, :319:62] wire _s1_meta_hit_state_T_14 = _s1_meta_hit_state_T_12 & _s1_meta_hit_state_T_13; // @[DCache.scala:319:{48,59,62}] wire [1:0] _s1_meta_hit_state_T_15 = _s1_meta_hit_state_T_14 ? s1_meta_uncorrected_3_coh_state : 2'h0; // @[DCache.scala:315:80, :319:{41,59}] wire _s1_meta_hit_state_T_17 = ~s1_flush_valid; // @[DCache.scala:215:27, :319:62] wire _s1_meta_hit_state_T_18 = _s1_meta_hit_state_T_16 & _s1_meta_hit_state_T_17; // @[DCache.scala:319:{48,59,62}] wire [1:0] _s1_meta_hit_state_T_19 = _s1_meta_hit_state_T_18 ? s1_meta_uncorrected_4_coh_state : 2'h0; // @[DCache.scala:315:80, :319:{41,59}] wire _s1_meta_hit_state_T_21 = ~s1_flush_valid; // @[DCache.scala:215:27, :319:62] wire _s1_meta_hit_state_T_22 = _s1_meta_hit_state_T_20 & _s1_meta_hit_state_T_21; // @[DCache.scala:319:{48,59,62}] wire [1:0] _s1_meta_hit_state_T_23 = _s1_meta_hit_state_T_22 ? s1_meta_uncorrected_5_coh_state : 2'h0; // @[DCache.scala:315:80, :319:{41,59}] wire _s1_meta_hit_state_T_25 = ~s1_flush_valid; // @[DCache.scala:215:27, :319:62] wire _s1_meta_hit_state_T_26 = _s1_meta_hit_state_T_24 & _s1_meta_hit_state_T_25; // @[DCache.scala:319:{48,59,62}] wire [1:0] _s1_meta_hit_state_T_27 = _s1_meta_hit_state_T_26 ? s1_meta_uncorrected_6_coh_state : 2'h0; // @[DCache.scala:315:80, :319:{41,59}] wire _s1_meta_hit_state_T_29 = ~s1_flush_valid; // @[DCache.scala:215:27, :319:62] wire _s1_meta_hit_state_T_30 = _s1_meta_hit_state_T_28 & _s1_meta_hit_state_T_29; // @[DCache.scala:319:{48,59,62}] wire [1:0] _s1_meta_hit_state_T_31 = _s1_meta_hit_state_T_30 ? s1_meta_uncorrected_7_coh_state : 2'h0; // @[DCache.scala:315:80, :319:{41,59}] wire [1:0] _s1_meta_hit_state_T_32 = _s1_meta_hit_state_T_3 | _s1_meta_hit_state_T_7; // @[DCache.scala:319:41, :320:19] wire [1:0] _s1_meta_hit_state_T_33 = _s1_meta_hit_state_T_32 | _s1_meta_hit_state_T_11; // @[DCache.scala:319:41, :320:19] wire [1:0] _s1_meta_hit_state_T_34 = _s1_meta_hit_state_T_33 | _s1_meta_hit_state_T_15; // @[DCache.scala:319:41, :320:19] wire [1:0] _s1_meta_hit_state_T_35 = _s1_meta_hit_state_T_34 | _s1_meta_hit_state_T_19; // @[DCache.scala:319:41, :320:19] wire [1:0] _s1_meta_hit_state_T_36 = _s1_meta_hit_state_T_35 | _s1_meta_hit_state_T_23; // @[DCache.scala:319:41, :320:19] wire [1:0] _s1_meta_hit_state_T_37 = _s1_meta_hit_state_T_36 | _s1_meta_hit_state_T_27; // @[DCache.scala:319:41, :320:19] wire [1:0] _s1_meta_hit_state_T_38 = _s1_meta_hit_state_T_37 | _s1_meta_hit_state_T_31; // @[DCache.scala:319:41, :320:19] wire [1:0] _s1_meta_hit_state_WIRE = _s1_meta_hit_state_T_38; // @[DCache.scala:320:{19,32}] wire [1:0] _s1_meta_hit_state_T_39; // @[DCache.scala:320:32] wire [1:0] s1_hit_state_state; // @[DCache.scala:320:32] assign _s1_meta_hit_state_T_39 = _s1_meta_hit_state_WIRE; // @[DCache.scala:320:32] assign s1_hit_state_state = _s1_meta_hit_state_T_39; // @[DCache.scala:320:32] wire [7:0] _s1_data_way_T = inWriteback ? releaseWay : s1_hit_way; // @[package.scala:45:27, :81:59] wire [8:0] s1_data_way; // @[DCache.scala:323:32] wire [7:0] _tl_d_data_encoded_T = nodeOut_d_bits_data[7:0]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_14 = nodeOut_d_bits_data[7:0]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_1 = nodeOut_d_bits_data[15:8]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_15 = nodeOut_d_bits_data[15:8]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_2 = nodeOut_d_bits_data[23:16]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_16 = nodeOut_d_bits_data[23:16]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_3 = nodeOut_d_bits_data[31:24]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_17 = nodeOut_d_bits_data[31:24]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_4 = nodeOut_d_bits_data[39:32]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_18 = nodeOut_d_bits_data[39:32]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_5 = nodeOut_d_bits_data[47:40]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_19 = nodeOut_d_bits_data[47:40]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_6 = nodeOut_d_bits_data[55:48]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_20 = nodeOut_d_bits_data[55:48]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_7 = nodeOut_d_bits_data[63:56]; // @[package.scala:211:50] wire [7:0] _tl_d_data_encoded_T_21 = nodeOut_d_bits_data[63:56]; // @[package.scala:211:50] wire [15:0] tl_d_data_encoded_lo_lo = {_tl_d_data_encoded_T_1, _tl_d_data_encoded_T}; // @[package.scala:45:27, :211:50] wire [15:0] tl_d_data_encoded_lo_hi = {_tl_d_data_encoded_T_3, _tl_d_data_encoded_T_2}; // @[package.scala:45:27, :211:50] wire [31:0] tl_d_data_encoded_lo = {tl_d_data_encoded_lo_hi, tl_d_data_encoded_lo_lo}; // @[package.scala:45:27] wire [15:0] tl_d_data_encoded_hi_lo = {_tl_d_data_encoded_T_5, _tl_d_data_encoded_T_4}; // @[package.scala:45:27, :211:50] wire [15:0] tl_d_data_encoded_hi_hi = {_tl_d_data_encoded_T_7, _tl_d_data_encoded_T_6}; // @[package.scala:45:27, :211:50] wire [31:0] tl_d_data_encoded_hi = {tl_d_data_encoded_hi_hi, tl_d_data_encoded_hi_lo}; // @[package.scala:45:27] wire [63:0] _tl_d_data_encoded_T_8 = {tl_d_data_encoded_hi, tl_d_data_encoded_lo}; // @[package.scala:45:27] wire [63:0] _tl_d_data_encoded_T_22; // @[package.scala:45:27] assign dataArb_io_in_1_bits_wdata = tl_d_data_encoded; // @[DCache.scala:152:28, :324:31] assign dataArb_io_in_2_bits_wdata = tl_d_data_encoded; // @[DCache.scala:152:28, :324:31] assign dataArb_io_in_3_bits_wdata = tl_d_data_encoded; // @[DCache.scala:152:28, :324:31] wire [63:0] s1_all_data_ways_8 = tl_d_data_encoded; // @[DCache.scala:324:31, :325:33] wire [63:0] s2_data_s1_way_words_0_0 = s1_all_data_ways_0; // @[package.scala:211:50] wire [63:0] s2_data_s1_way_words_1_0 = s1_all_data_ways_1; // @[package.scala:211:50] wire [63:0] s2_data_s1_way_words_2_0 = s1_all_data_ways_2; // @[package.scala:211:50] wire [63:0] s2_data_s1_way_words_3_0 = s1_all_data_ways_3; // @[package.scala:211:50] wire [63:0] s2_data_s1_way_words_4_0 = s1_all_data_ways_4; // @[package.scala:211:50] wire [63:0] s2_data_s1_way_words_5_0 = s1_all_data_ways_5; // @[package.scala:211:50] wire [63:0] s2_data_s1_way_words_6_0 = s1_all_data_ways_6; // @[package.scala:211:50] wire [63:0] s2_data_s1_way_words_7_0 = s1_all_data_ways_7; // @[package.scala:211:50] wire [63:0] s2_data_s1_way_words_8_0 = s1_all_data_ways_8; // @[package.scala:211:50] wire _s1_mask_xwr_upper_T = s1_req_addr[0]; // @[DCache.scala:196:25] wire _s1_mask_xwr_lower_T = s1_req_addr[0]; // @[DCache.scala:196:25] wire _s1_mask_xwr_upper_T_1 = _s1_mask_xwr_upper_T; // @[AMOALU.scala:20:{22,27}] wire _s1_mask_xwr_upper_T_2 = |s1_mask_xwr_size; // @[AMOALU.scala:11:18, :20:53] wire _s1_mask_xwr_upper_T_3 = _s1_mask_xwr_upper_T_2; // @[AMOALU.scala:20:{47,53}] wire s1_mask_xwr_upper = _s1_mask_xwr_upper_T_1 | _s1_mask_xwr_upper_T_3; // @[AMOALU.scala:20:{22,42,47}] wire s1_mask_xwr_lower = ~_s1_mask_xwr_lower_T; // @[AMOALU.scala:21:{22,27}] wire [1:0] _s1_mask_xwr_T = {s1_mask_xwr_upper, s1_mask_xwr_lower}; // @[AMOALU.scala:20:42, :21:22, :22:16] wire _s1_mask_xwr_upper_T_4 = s1_req_addr[1]; // @[DCache.scala:196:25] wire _s1_mask_xwr_lower_T_1 = s1_req_addr[1]; // @[DCache.scala:196:25] wire [1:0] _s1_mask_xwr_upper_T_5 = _s1_mask_xwr_upper_T_4 ? _s1_mask_xwr_T : 2'h0; // @[AMOALU.scala:20:{22,27}, :22:16] wire _s1_mask_xwr_upper_T_6 = s1_mask_xwr_size[1]; // @[AMOALU.scala:11:18, :20:53] wire [1:0] _s1_mask_xwr_upper_T_7 = {2{_s1_mask_xwr_upper_T_6}}; // @[AMOALU.scala:20:{47,53}] wire [1:0] s1_mask_xwr_upper_1 = _s1_mask_xwr_upper_T_5 | _s1_mask_xwr_upper_T_7; // @[AMOALU.scala:20:{22,42,47}] wire [1:0] s1_mask_xwr_lower_1 = _s1_mask_xwr_lower_T_1 ? 2'h0 : _s1_mask_xwr_T; // @[AMOALU.scala:21:{22,27}, :22:16] wire [3:0] _s1_mask_xwr_T_1 = {s1_mask_xwr_upper_1, s1_mask_xwr_lower_1}; // @[AMOALU.scala:20:42, :21:22, :22:16] wire _s1_mask_xwr_upper_T_8 = s1_req_addr[2]; // @[DCache.scala:196:25] wire _s1_mask_xwr_lower_T_2 = s1_req_addr[2]; // @[DCache.scala:196:25] wire [3:0] _s1_mask_xwr_upper_T_9 = _s1_mask_xwr_upper_T_8 ? _s1_mask_xwr_T_1 : 4'h0; // @[AMOALU.scala:20:{22,27}, :22:16] wire _s1_mask_xwr_upper_T_10 = &s1_mask_xwr_size; // @[AMOALU.scala:11:18, :20:53] wire [3:0] _s1_mask_xwr_upper_T_11 = {4{_s1_mask_xwr_upper_T_10}}; // @[AMOALU.scala:20:{47,53}] wire [3:0] s1_mask_xwr_upper_2 = _s1_mask_xwr_upper_T_9 | _s1_mask_xwr_upper_T_11; // @[AMOALU.scala:20:{22,42,47}] wire [3:0] s1_mask_xwr_lower_2 = _s1_mask_xwr_lower_T_2 ? 4'h0 : _s1_mask_xwr_T_1; // @[AMOALU.scala:21:{22,27}, :22:16] wire [7:0] s1_mask_xwr = {s1_mask_xwr_upper_2, s1_mask_xwr_lower_2}; // @[AMOALU.scala:20:42, :21:22, :22:16] wire [7:0] s1_mask = _s1_mask_T ? io_cpu_s1_data_mask_0 : s1_mask_xwr; // @[DCache.scala:101:7, :327:{20,32}] wire _s2_valid_T = ~s1_sfence; // @[DCache.scala:213:71, :331:45] wire _s2_valid_T_1 = s1_valid_masked & _s2_valid_T; // @[DCache.scala:186:34, :331:{42,45}] reg s2_valid; // @[DCache.scala:331:25] wire [1:0] _s2_valid_no_xcpt_T = {io_cpu_s2_xcpt_ae_ld_0, io_cpu_s2_xcpt_ae_st_0}; // @[DCache.scala:101:7, :332:54] wire [1:0] _s2_valid_no_xcpt_T_2 = {io_cpu_s2_xcpt_pf_ld_0, io_cpu_s2_xcpt_pf_st_0}; // @[DCache.scala:101:7, :332:54] wire [1:0] _s2_valid_no_xcpt_T_3 = {io_cpu_s2_xcpt_ma_ld_0, io_cpu_s2_xcpt_ma_st_0}; // @[DCache.scala:101:7, :332:54] wire [3:0] s2_valid_no_xcpt_lo = {2'h0, _s2_valid_no_xcpt_T}; // @[DCache.scala:332:54] wire [3:0] s2_valid_no_xcpt_hi = {_s2_valid_no_xcpt_T_3, _s2_valid_no_xcpt_T_2}; // @[DCache.scala:332:54] wire [7:0] _s2_valid_no_xcpt_T_4 = {s2_valid_no_xcpt_hi, s2_valid_no_xcpt_lo}; // @[DCache.scala:332:54] wire _s2_valid_no_xcpt_T_5 = |_s2_valid_no_xcpt_T_4; // @[DCache.scala:332:{54,61}] wire _s2_valid_no_xcpt_T_6 = ~_s2_valid_no_xcpt_T_5; // @[DCache.scala:332:{38,61}] wire s2_valid_no_xcpt = s2_valid & _s2_valid_no_xcpt_T_6; // @[DCache.scala:331:25, :332:{35,38}] reg s2_probe; // @[DCache.scala:333:25] wire _releaseInFlight_T = s1_probe | s2_probe; // @[DCache.scala:183:25, :333:25, :334:34] wire _releaseInFlight_T_1 = |release_state; // @[DCache.scala:228:30, :233:38, :334:63] wire releaseInFlight = _releaseInFlight_T | _releaseInFlight_T_1; // @[DCache.scala:334:{34,46,63}] wire _s2_not_nacked_in_s1_T = ~s1_nack; // @[DCache.scala:185:28, :187:41, :335:37] reg s2_not_nacked_in_s1; // @[DCache.scala:335:36] wire s2_valid_not_nacked_in_s1 = s2_valid & s2_not_nacked_in_s1; // @[DCache.scala:331:25, :335:36, :336:44] wire s2_valid_masked = s2_valid_no_xcpt & s2_not_nacked_in_s1; // @[DCache.scala:332:35, :335:36, :337:42] wire s2_valid_not_killed = s2_valid_masked; // @[DCache.scala:337:42, :338:45] wire _s2_valid_hit_maybe_flush_pre_data_ecc_and_waw_T_1 = s2_valid_masked; // @[DCache.scala:337:42, :397:71] wire _s2_dont_nack_misc_T_1 = s2_valid_masked; // @[DCache.scala:337:42, :441:43] reg [39:0] s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _get_legal_T_14 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _put_legal_T_14 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _putpartial_legal_T_14 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _atomics_legal_T_4 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _atomics_legal_T_58 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _atomics_legal_T_112 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _atomics_legal_T_166 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _atomics_legal_T_220 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _atomics_legal_T_274 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _atomics_legal_T_328 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _atomics_legal_T_382 = s2_req_addr; // @[DCache.scala:339:19] wire [39:0] _atomics_legal_T_436 = s2_req_addr; // @[DCache.scala:339:19] reg [6:0] s2_req_tag; // @[DCache.scala:339:19] assign io_cpu_resp_bits_tag_0 = s2_req_tag; // @[DCache.scala:101:7, :339:19] reg [4:0] s2_req_cmd; // @[DCache.scala:339:19] assign io_cpu_resp_bits_cmd_0 = s2_req_cmd; // @[DCache.scala:101:7, :339:19] reg [1:0] s2_req_size; // @[DCache.scala:339:19] assign io_cpu_resp_bits_size_0 = s2_req_size; // @[DCache.scala:101:7, :339:19] wire [1:0] size = s2_req_size; // @[DCache.scala:339:19] reg s2_req_signed; // @[DCache.scala:339:19] assign io_cpu_resp_bits_signed_0 = s2_req_signed; // @[DCache.scala:101:7, :339:19] reg [1:0] s2_req_dprv; // @[DCache.scala:339:19] assign io_cpu_resp_bits_dprv_0 = s2_req_dprv; // @[DCache.scala:101:7, :339:19] reg s2_req_dv; // @[DCache.scala:339:19] assign io_cpu_resp_bits_dv_0 = s2_req_dv; // @[DCache.scala:101:7, :339:19] reg s2_req_phys; // @[DCache.scala:339:19] reg s2_req_no_resp; // @[DCache.scala:339:19] reg s2_req_no_alloc; // @[DCache.scala:339:19] reg s2_req_no_xcpt; // @[DCache.scala:339:19] reg [63:0] s2_req_data; // @[DCache.scala:339:19] reg [7:0] s2_req_mask; // @[DCache.scala:339:19] assign io_cpu_resp_bits_mask_0 = s2_req_mask; // @[DCache.scala:101:7, :339:19] wire _GEN_80 = s2_req_cmd == 5'h5; // @[DCache.scala:339:19, :340:37] wire _s2_cmd_flush_all_T; // @[DCache.scala:340:37] assign _s2_cmd_flush_all_T = _GEN_80; // @[DCache.scala:340:37] wire _s2_cmd_flush_line_T; // @[DCache.scala:341:38] assign _s2_cmd_flush_line_T = _GEN_80; // @[DCache.scala:340:37, :341:38] wire _s2_cmd_flush_all_T_1 = s2_req_size[0]; // @[DCache.scala:339:19, :340:68] wire _s2_cmd_flush_line_T_1 = s2_req_size[0]; // @[DCache.scala:339:19, :340:68, :341:68] wire _s2_cmd_flush_all_T_2 = ~_s2_cmd_flush_all_T_1; // @[DCache.scala:340:{56,68}] wire s2_cmd_flush_all = _s2_cmd_flush_all_T & _s2_cmd_flush_all_T_2; // @[DCache.scala:340:{37,53,56}] wire s2_cmd_flush_line = _s2_cmd_flush_line_T & _s2_cmd_flush_line_T_1; // @[DCache.scala:341:{38,54,68}] reg s2_tlb_xcpt_miss; // @[DCache.scala:342:24] reg [31:0] s2_tlb_xcpt_paddr; // @[DCache.scala:342:24] reg [39:0] s2_tlb_xcpt_gpa; // @[DCache.scala:342:24] assign io_cpu_s2_gpa_0 = s2_tlb_xcpt_gpa; // @[DCache.scala:101:7, :342:24] reg s2_tlb_xcpt_pf_ld; // @[DCache.scala:342:24] reg s2_tlb_xcpt_pf_st; // @[DCache.scala:342:24] reg s2_tlb_xcpt_pf_inst; // @[DCache.scala:342:24] reg s2_tlb_xcpt_ae_ld; // @[DCache.scala:342:24] reg s2_tlb_xcpt_ae_st; // @[DCache.scala:342:24] reg s2_tlb_xcpt_ae_inst; // @[DCache.scala:342:24] reg s2_tlb_xcpt_ma_ld; // @[DCache.scala:342:24] reg s2_tlb_xcpt_ma_st; // @[DCache.scala:342:24] reg s2_tlb_xcpt_cacheable; // @[DCache.scala:342:24] reg s2_tlb_xcpt_must_alloc; // @[DCache.scala:342:24] reg s2_tlb_xcpt_prefetchable; // @[DCache.scala:342:24] reg [1:0] s2_tlb_xcpt_size; // @[DCache.scala:342:24] reg [4:0] s2_tlb_xcpt_cmd; // @[DCache.scala:342:24] reg s2_pma_miss; // @[DCache.scala:343:19] reg [31:0] s2_pma_paddr; // @[DCache.scala:343:19] reg [39:0] s2_pma_gpa; // @[DCache.scala:343:19] reg s2_pma_pf_ld; // @[DCache.scala:343:19] reg s2_pma_pf_st; // @[DCache.scala:343:19] reg s2_pma_pf_inst; // @[DCache.scala:343:19] reg s2_pma_ae_ld; // @[DCache.scala:343:19] reg s2_pma_ae_st; // @[DCache.scala:343:19] reg s2_pma_ae_inst; // @[DCache.scala:343:19] reg s2_pma_ma_ld; // @[DCache.scala:343:19] reg s2_pma_ma_st; // @[DCache.scala:343:19] reg s2_pma_cacheable; // @[DCache.scala:343:19] reg s2_pma_must_alloc; // @[DCache.scala:343:19] reg s2_pma_prefetchable; // @[DCache.scala:343:19] reg [1:0] s2_pma_size; // @[DCache.scala:343:19] reg [4:0] s2_pma_cmd; // @[DCache.scala:343:19] reg [39:0] s2_uncached_resp_addr; // @[DCache.scala:344:34] wire _T_30 = s1_valid_not_nacked | s1_flush_valid; // @[DCache.scala:187:38, :215:27, :345:29] wire _s2_vaddr_T; // @[DCache.scala:351:62] assign _s2_vaddr_T = _T_30; // @[DCache.scala:345:29, :351:62] wire _s1_meta_clk_en_T; // @[DCache.scala:357:44] assign _s1_meta_clk_en_T = _T_30; // @[DCache.scala:345:29, :357:44] wire _s2_hit_state_T; // @[DCache.scala:386:66] assign _s2_hit_state_T = _T_30; // @[DCache.scala:345:29, :386:66] wire _s2_victim_way_T; // @[DCache.scala:431:77] assign _s2_victim_way_T = _T_30; // @[DCache.scala:345:29, :431:77] reg [39:0] s2_vaddr_r; // @[DCache.scala:351:31] wire [27:0] _s2_vaddr_T_1 = s2_vaddr_r[39:12]; // @[DCache.scala:351:{31,81}] wire [11:0] _s2_vaddr_T_2 = s2_req_addr[11:0]; // @[DCache.scala:339:19, :351:103] wire [39:0] s2_vaddr = {_s2_vaddr_T_1, _s2_vaddr_T_2}; // @[DCache.scala:351:{21,81,103}] wire _s2_read_T = s2_req_cmd == 5'h0; // @[package.scala:16:47] wire _s2_read_T_1 = s2_req_cmd == 5'h10; // @[package.scala:16:47] wire _GEN_81 = s2_req_cmd == 5'h6; // @[package.scala:16:47] wire _s2_read_T_2; // @[package.scala:16:47] assign _s2_read_T_2 = _GEN_81; // @[package.scala:16:47] wire _r_c_cat_T_48; // @[Consts.scala:91:71] assign _r_c_cat_T_48 = _GEN_81; // @[package.scala:16:47] wire _s2_lr_T; // @[DCache.scala:470:70] assign _s2_lr_T = _GEN_81; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_48; // @[Consts.scala:91:71] assign _metaArb_io_in_3_bits_data_c_cat_T_48 = _GEN_81; // @[package.scala:16:47] wire _GEN_82 = s2_req_cmd == 5'h7; // @[package.scala:16:47] wire _s2_read_T_3; // @[package.scala:16:47] assign _s2_read_T_3 = _GEN_82; // @[package.scala:16:47] wire _s2_write_T_3; // @[Consts.scala:90:66] assign _s2_write_T_3 = _GEN_82; // @[package.scala:16:47] wire _r_c_cat_T_3; // @[Consts.scala:90:66] assign _r_c_cat_T_3 = _GEN_82; // @[package.scala:16:47] wire _r_c_cat_T_26; // @[Consts.scala:90:66] assign _r_c_cat_T_26 = _GEN_82; // @[package.scala:16:47] wire _s2_sc_T; // @[DCache.scala:471:70] assign _s2_sc_T = _GEN_82; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_3; // @[Consts.scala:90:66] assign _metaArb_io_in_3_bits_data_c_cat_T_3 = _GEN_82; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_26; // @[Consts.scala:90:66] assign _metaArb_io_in_3_bits_data_c_cat_T_26 = _GEN_82; // @[package.scala:16:47] wire _io_cpu_store_pending_T_3; // @[Consts.scala:90:66] assign _io_cpu_store_pending_T_3 = _GEN_82; // @[package.scala:16:47] wire _s2_read_T_4 = _s2_read_T | _s2_read_T_1; // @[package.scala:16:47, :81:59] wire _s2_read_T_5 = _s2_read_T_4 | _s2_read_T_2; // @[package.scala:16:47, :81:59] wire _s2_read_T_6 = _s2_read_T_5 | _s2_read_T_3; // @[package.scala:16:47, :81:59] wire _GEN_83 = s2_req_cmd == 5'h4; // @[package.scala:16:47] wire _s2_read_T_7; // @[package.scala:16:47] assign _s2_read_T_7 = _GEN_83; // @[package.scala:16:47] wire _s2_write_T_5; // @[package.scala:16:47] assign _s2_write_T_5 = _GEN_83; // @[package.scala:16:47] wire _r_c_cat_T_5; // @[package.scala:16:47] assign _r_c_cat_T_5 = _GEN_83; // @[package.scala:16:47] wire _r_c_cat_T_28; // @[package.scala:16:47] assign _r_c_cat_T_28 = _GEN_83; // @[package.scala:16:47] wire _atomics_T; // @[DCache.scala:587:81] assign _atomics_T = _GEN_83; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_5; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_5 = _GEN_83; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_28; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_28 = _GEN_83; // @[package.scala:16:47] wire _io_cpu_store_pending_T_5; // @[package.scala:16:47] assign _io_cpu_store_pending_T_5 = _GEN_83; // @[package.scala:16:47] wire _GEN_84 = s2_req_cmd == 5'h9; // @[package.scala:16:47] wire _s2_read_T_8; // @[package.scala:16:47] assign _s2_read_T_8 = _GEN_84; // @[package.scala:16:47] wire _s2_write_T_6; // @[package.scala:16:47] assign _s2_write_T_6 = _GEN_84; // @[package.scala:16:47] wire _r_c_cat_T_6; // @[package.scala:16:47] assign _r_c_cat_T_6 = _GEN_84; // @[package.scala:16:47] wire _r_c_cat_T_29; // @[package.scala:16:47] assign _r_c_cat_T_29 = _GEN_84; // @[package.scala:16:47] wire _atomics_T_2; // @[DCache.scala:587:81] assign _atomics_T_2 = _GEN_84; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_6; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_6 = _GEN_84; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_29; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_29 = _GEN_84; // @[package.scala:16:47] wire _io_cpu_store_pending_T_6; // @[package.scala:16:47] assign _io_cpu_store_pending_T_6 = _GEN_84; // @[package.scala:16:47] wire _GEN_85 = s2_req_cmd == 5'hA; // @[package.scala:16:47] wire _s2_read_T_9; // @[package.scala:16:47] assign _s2_read_T_9 = _GEN_85; // @[package.scala:16:47] wire _s2_write_T_7; // @[package.scala:16:47] assign _s2_write_T_7 = _GEN_85; // @[package.scala:16:47] wire _r_c_cat_T_7; // @[package.scala:16:47] assign _r_c_cat_T_7 = _GEN_85; // @[package.scala:16:47] wire _r_c_cat_T_30; // @[package.scala:16:47] assign _r_c_cat_T_30 = _GEN_85; // @[package.scala:16:47] wire _atomics_T_4; // @[DCache.scala:587:81] assign _atomics_T_4 = _GEN_85; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_7; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_7 = _GEN_85; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_30; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_30 = _GEN_85; // @[package.scala:16:47] wire _io_cpu_store_pending_T_7; // @[package.scala:16:47] assign _io_cpu_store_pending_T_7 = _GEN_85; // @[package.scala:16:47] wire _GEN_86 = s2_req_cmd == 5'hB; // @[package.scala:16:47] wire _s2_read_T_10; // @[package.scala:16:47] assign _s2_read_T_10 = _GEN_86; // @[package.scala:16:47] wire _s2_write_T_8; // @[package.scala:16:47] assign _s2_write_T_8 = _GEN_86; // @[package.scala:16:47] wire _r_c_cat_T_8; // @[package.scala:16:47] assign _r_c_cat_T_8 = _GEN_86; // @[package.scala:16:47] wire _r_c_cat_T_31; // @[package.scala:16:47] assign _r_c_cat_T_31 = _GEN_86; // @[package.scala:16:47] wire _atomics_T_6; // @[DCache.scala:587:81] assign _atomics_T_6 = _GEN_86; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_8; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_8 = _GEN_86; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_31; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_31 = _GEN_86; // @[package.scala:16:47] wire _io_cpu_store_pending_T_8; // @[package.scala:16:47] assign _io_cpu_store_pending_T_8 = _GEN_86; // @[package.scala:16:47] wire _s2_read_T_11 = _s2_read_T_7 | _s2_read_T_8; // @[package.scala:16:47, :81:59] wire _s2_read_T_12 = _s2_read_T_11 | _s2_read_T_9; // @[package.scala:16:47, :81:59] wire _s2_read_T_13 = _s2_read_T_12 | _s2_read_T_10; // @[package.scala:16:47, :81:59] wire _GEN_87 = s2_req_cmd == 5'h8; // @[package.scala:16:47] wire _s2_read_T_14; // @[package.scala:16:47] assign _s2_read_T_14 = _GEN_87; // @[package.scala:16:47] wire _s2_write_T_12; // @[package.scala:16:47] assign _s2_write_T_12 = _GEN_87; // @[package.scala:16:47] wire _r_c_cat_T_12; // @[package.scala:16:47] assign _r_c_cat_T_12 = _GEN_87; // @[package.scala:16:47] wire _r_c_cat_T_35; // @[package.scala:16:47] assign _r_c_cat_T_35 = _GEN_87; // @[package.scala:16:47] wire _atomics_T_8; // @[DCache.scala:587:81] assign _atomics_T_8 = _GEN_87; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_12; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_12 = _GEN_87; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_35; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_35 = _GEN_87; // @[package.scala:16:47] wire _io_cpu_store_pending_T_12; // @[package.scala:16:47] assign _io_cpu_store_pending_T_12 = _GEN_87; // @[package.scala:16:47] wire _GEN_88 = s2_req_cmd == 5'hC; // @[package.scala:16:47] wire _s2_read_T_15; // @[package.scala:16:47] assign _s2_read_T_15 = _GEN_88; // @[package.scala:16:47] wire _s2_write_T_13; // @[package.scala:16:47] assign _s2_write_T_13 = _GEN_88; // @[package.scala:16:47] wire _r_c_cat_T_13; // @[package.scala:16:47] assign _r_c_cat_T_13 = _GEN_88; // @[package.scala:16:47] wire _r_c_cat_T_36; // @[package.scala:16:47] assign _r_c_cat_T_36 = _GEN_88; // @[package.scala:16:47] wire _atomics_T_10; // @[DCache.scala:587:81] assign _atomics_T_10 = _GEN_88; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_13; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_13 = _GEN_88; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_36; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_36 = _GEN_88; // @[package.scala:16:47] wire _io_cpu_store_pending_T_13; // @[package.scala:16:47] assign _io_cpu_store_pending_T_13 = _GEN_88; // @[package.scala:16:47] wire _GEN_89 = s2_req_cmd == 5'hD; // @[package.scala:16:47] wire _s2_read_T_16; // @[package.scala:16:47] assign _s2_read_T_16 = _GEN_89; // @[package.scala:16:47] wire _s2_write_T_14; // @[package.scala:16:47] assign _s2_write_T_14 = _GEN_89; // @[package.scala:16:47] wire _r_c_cat_T_14; // @[package.scala:16:47] assign _r_c_cat_T_14 = _GEN_89; // @[package.scala:16:47] wire _r_c_cat_T_37; // @[package.scala:16:47] assign _r_c_cat_T_37 = _GEN_89; // @[package.scala:16:47] wire _atomics_T_12; // @[DCache.scala:587:81] assign _atomics_T_12 = _GEN_89; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_14; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_14 = _GEN_89; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_37; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_37 = _GEN_89; // @[package.scala:16:47] wire _io_cpu_store_pending_T_14; // @[package.scala:16:47] assign _io_cpu_store_pending_T_14 = _GEN_89; // @[package.scala:16:47] wire _GEN_90 = s2_req_cmd == 5'hE; // @[package.scala:16:47] wire _s2_read_T_17; // @[package.scala:16:47] assign _s2_read_T_17 = _GEN_90; // @[package.scala:16:47] wire _s2_write_T_15; // @[package.scala:16:47] assign _s2_write_T_15 = _GEN_90; // @[package.scala:16:47] wire _r_c_cat_T_15; // @[package.scala:16:47] assign _r_c_cat_T_15 = _GEN_90; // @[package.scala:16:47] wire _r_c_cat_T_38; // @[package.scala:16:47] assign _r_c_cat_T_38 = _GEN_90; // @[package.scala:16:47] wire _atomics_T_14; // @[DCache.scala:587:81] assign _atomics_T_14 = _GEN_90; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_15; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_15 = _GEN_90; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_38; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_38 = _GEN_90; // @[package.scala:16:47] wire _io_cpu_store_pending_T_15; // @[package.scala:16:47] assign _io_cpu_store_pending_T_15 = _GEN_90; // @[package.scala:16:47] wire _GEN_91 = s2_req_cmd == 5'hF; // @[package.scala:16:47] wire _s2_read_T_18; // @[package.scala:16:47] assign _s2_read_T_18 = _GEN_91; // @[package.scala:16:47] wire _s2_write_T_16; // @[package.scala:16:47] assign _s2_write_T_16 = _GEN_91; // @[package.scala:16:47] wire _r_c_cat_T_16; // @[package.scala:16:47] assign _r_c_cat_T_16 = _GEN_91; // @[package.scala:16:47] wire _r_c_cat_T_39; // @[package.scala:16:47] assign _r_c_cat_T_39 = _GEN_91; // @[package.scala:16:47] wire _atomics_T_16; // @[DCache.scala:587:81] assign _atomics_T_16 = _GEN_91; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_16; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_16 = _GEN_91; // @[package.scala:16:47] wire _metaArb_io_in_3_bits_data_c_cat_T_39; // @[package.scala:16:47] assign _metaArb_io_in_3_bits_data_c_cat_T_39 = _GEN_91; // @[package.scala:16:47] wire _io_cpu_store_pending_T_16; // @[package.scala:16:47] assign _io_cpu_store_pending_T_16 = _GEN_91; // @[package.scala:16:47] wire _s2_read_T_19 = _s2_read_T_14 | _s2_read_T_15; // @[package.scala:16:47, :81:59] wire _s2_read_T_20 = _s2_read_T_19 | _s2_read_T_16; // @[package.scala:16:47, :81:59] wire _s2_read_T_21 = _s2_read_T_20 | _s2_read_T_17; // @[package.scala:16:47, :81:59] wire _s2_read_T_22 = _s2_read_T_21 | _s2_read_T_18; // @[package.scala:16:47, :81:59] wire _s2_read_T_23 = _s2_read_T_13 | _s2_read_T_22; // @[package.scala:81:59] assign s2_read = _s2_read_T_6 | _s2_read_T_23; // @[package.scala:81:59] assign io_cpu_resp_bits_has_data_0 = s2_read; // @[DCache.scala:101:7] wire _GEN_92 = s2_req_cmd == 5'h1; // @[DCache.scala:339:19] wire _s2_write_T; // @[Consts.scala:90:32] assign _s2_write_T = _GEN_92; // @[Consts.scala:90:32] wire _r_c_cat_T; // @[Consts.scala:90:32] assign _r_c_cat_T = _GEN_92; // @[Consts.scala:90:32] wire _r_c_cat_T_23; // @[Consts.scala:90:32] assign _r_c_cat_T_23 = _GEN_92; // @[Consts.scala:90:32] wire _metaArb_io_in_3_bits_data_c_cat_T; // @[Consts.scala:90:32] assign _metaArb_io_in_3_bits_data_c_cat_T = _GEN_92; // @[Consts.scala:90:32] wire _metaArb_io_in_3_bits_data_c_cat_T_23; // @[Consts.scala:90:32] assign _metaArb_io_in_3_bits_data_c_cat_T_23 = _GEN_92; // @[Consts.scala:90:32] wire _io_cpu_store_pending_T; // @[Consts.scala:90:32] assign _io_cpu_store_pending_T = _GEN_92; // @[Consts.scala:90:32] wire _GEN_93 = s2_req_cmd == 5'h11; // @[DCache.scala:339:19] wire _s2_write_T_1; // @[Consts.scala:90:49] assign _s2_write_T_1 = _GEN_93; // @[Consts.scala:90:49] wire _r_c_cat_T_1; // @[Consts.scala:90:49] assign _r_c_cat_T_1 = _GEN_93; // @[Consts.scala:90:49] wire _r_c_cat_T_24; // @[Consts.scala:90:49] assign _r_c_cat_T_24 = _GEN_93; // @[Consts.scala:90:49] wire _tl_out_a_bits_T_4; // @[DCache.scala:610:20] assign _tl_out_a_bits_T_4 = _GEN_93; // @[DCache.scala:610:20] wire _uncachedReqs_0_cmd_T; // @[DCache.scala:637:49] assign _uncachedReqs_0_cmd_T = _GEN_93; // @[DCache.scala:637:49] wire _metaArb_io_in_3_bits_data_c_cat_T_1; // @[Consts.scala:90:49] assign _metaArb_io_in_3_bits_data_c_cat_T_1 = _GEN_93; // @[Consts.scala:90:49] wire _metaArb_io_in_3_bits_data_c_cat_T_24; // @[Consts.scala:90:49] assign _metaArb_io_in_3_bits_data_c_cat_T_24 = _GEN_93; // @[Consts.scala:90:49] wire _io_cpu_store_pending_T_1; // @[Consts.scala:90:49] assign _io_cpu_store_pending_T_1 = _GEN_93; // @[Consts.scala:90:49] wire _s2_write_T_2 = _s2_write_T | _s2_write_T_1; // @[Consts.scala:90:{32,42,49}] wire _s2_write_T_4 = _s2_write_T_2 | _s2_write_T_3; // @[Consts.scala:90:{42,59,66}] wire _s2_write_T_9 = _s2_write_T_5 | _s2_write_T_6; // @[package.scala:16:47, :81:59] wire _s2_write_T_10 = _s2_write_T_9 | _s2_write_T_7; // @[package.scala:16:47, :81:59] wire _s2_write_T_11 = _s2_write_T_10 | _s2_write_T_8; // @[package.scala:16:47, :81:59] wire _s2_write_T_17 = _s2_write_T_12 | _s2_write_T_13; // @[package.scala:16:47, :81:59] wire _s2_write_T_18 = _s2_write_T_17 | _s2_write_T_14; // @[package.scala:16:47, :81:59] wire _s2_write_T_19 = _s2_write_T_18 | _s2_write_T_15; // @[package.scala:16:47, :81:59] wire _s2_write_T_20 = _s2_write_T_19 | _s2_write_T_16; // @[package.scala:16:47, :81:59] wire _s2_write_T_21 = _s2_write_T_11 | _s2_write_T_20; // @[package.scala:81:59] wire s2_write = _s2_write_T_4 | _s2_write_T_21; // @[Consts.scala:87:44, :90:{59,76}] wire s2_readwrite = s2_read | s2_write; // @[DCache.scala:354:30] reg s2_flush_valid_pre_tag_ecc; // @[DCache.scala:355:43] wire s2_flush_valid = s2_flush_valid_pre_tag_ecc; // @[DCache.scala:355:43, :363:51] wire s1_meta_clk_en = _s1_meta_clk_en_T | s1_probe; // @[DCache.scala:183:25, :357:{44,62}] reg [21:0] s2_meta_corrected_r; // @[DCache.scala:361:61] wire [21:0] _s2_meta_corrected_WIRE = s2_meta_corrected_r; // @[DCache.scala:361:{61,99}] wire [1:0] _s2_meta_corrected_T_1; // @[DCache.scala:361:99] wire [19:0] _s2_meta_corrected_T; // @[DCache.scala:361:99] wire [1:0] s2_meta_corrected_0_coh_state; // @[DCache.scala:361:99] wire [19:0] s2_meta_corrected_0_tag; // @[DCache.scala:361:99] assign _s2_meta_corrected_T = _s2_meta_corrected_WIRE[19:0]; // @[DCache.scala:361:99] assign s2_meta_corrected_0_tag = _s2_meta_corrected_T; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_1 = _s2_meta_corrected_WIRE[21:20]; // @[DCache.scala:361:99] assign s2_meta_corrected_0_coh_state = _s2_meta_corrected_T_1; // @[DCache.scala:361:99] reg [21:0] s2_meta_corrected_r_1; // @[DCache.scala:361:61] wire [21:0] _s2_meta_corrected_WIRE_1 = s2_meta_corrected_r_1; // @[DCache.scala:361:{61,99}] wire [1:0] _s2_meta_corrected_T_3; // @[DCache.scala:361:99] wire [19:0] _s2_meta_corrected_T_2; // @[DCache.scala:361:99] wire [1:0] s2_meta_corrected_1_coh_state; // @[DCache.scala:361:99] wire [19:0] s2_meta_corrected_1_tag; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_2 = _s2_meta_corrected_WIRE_1[19:0]; // @[DCache.scala:361:99] assign s2_meta_corrected_1_tag = _s2_meta_corrected_T_2; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_3 = _s2_meta_corrected_WIRE_1[21:20]; // @[DCache.scala:361:99] assign s2_meta_corrected_1_coh_state = _s2_meta_corrected_T_3; // @[DCache.scala:361:99] reg [21:0] s2_meta_corrected_r_2; // @[DCache.scala:361:61] wire [21:0] _s2_meta_corrected_WIRE_2 = s2_meta_corrected_r_2; // @[DCache.scala:361:{61,99}] wire [1:0] _s2_meta_corrected_T_5; // @[DCache.scala:361:99] wire [19:0] _s2_meta_corrected_T_4; // @[DCache.scala:361:99] wire [1:0] s2_meta_corrected_2_coh_state; // @[DCache.scala:361:99] wire [19:0] s2_meta_corrected_2_tag; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_4 = _s2_meta_corrected_WIRE_2[19:0]; // @[DCache.scala:361:99] assign s2_meta_corrected_2_tag = _s2_meta_corrected_T_4; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_5 = _s2_meta_corrected_WIRE_2[21:20]; // @[DCache.scala:361:99] assign s2_meta_corrected_2_coh_state = _s2_meta_corrected_T_5; // @[DCache.scala:361:99] reg [21:0] s2_meta_corrected_r_3; // @[DCache.scala:361:61] wire [21:0] _s2_meta_corrected_WIRE_3 = s2_meta_corrected_r_3; // @[DCache.scala:361:{61,99}] wire [1:0] _s2_meta_corrected_T_7; // @[DCache.scala:361:99] wire [19:0] _s2_meta_corrected_T_6; // @[DCache.scala:361:99] wire [1:0] s2_meta_corrected_3_coh_state; // @[DCache.scala:361:99] wire [19:0] s2_meta_corrected_3_tag; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_6 = _s2_meta_corrected_WIRE_3[19:0]; // @[DCache.scala:361:99] assign s2_meta_corrected_3_tag = _s2_meta_corrected_T_6; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_7 = _s2_meta_corrected_WIRE_3[21:20]; // @[DCache.scala:361:99] assign s2_meta_corrected_3_coh_state = _s2_meta_corrected_T_7; // @[DCache.scala:361:99] reg [21:0] s2_meta_corrected_r_4; // @[DCache.scala:361:61] wire [21:0] _s2_meta_corrected_WIRE_4 = s2_meta_corrected_r_4; // @[DCache.scala:361:{61,99}] wire [1:0] _s2_meta_corrected_T_9; // @[DCache.scala:361:99] wire [19:0] _s2_meta_corrected_T_8; // @[DCache.scala:361:99] wire [1:0] s2_meta_corrected_4_coh_state; // @[DCache.scala:361:99] wire [19:0] s2_meta_corrected_4_tag; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_8 = _s2_meta_corrected_WIRE_4[19:0]; // @[DCache.scala:361:99] assign s2_meta_corrected_4_tag = _s2_meta_corrected_T_8; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_9 = _s2_meta_corrected_WIRE_4[21:20]; // @[DCache.scala:361:99] assign s2_meta_corrected_4_coh_state = _s2_meta_corrected_T_9; // @[DCache.scala:361:99] reg [21:0] s2_meta_corrected_r_5; // @[DCache.scala:361:61] wire [21:0] _s2_meta_corrected_WIRE_5 = s2_meta_corrected_r_5; // @[DCache.scala:361:{61,99}] wire [1:0] _s2_meta_corrected_T_11; // @[DCache.scala:361:99] wire [19:0] _s2_meta_corrected_T_10; // @[DCache.scala:361:99] wire [1:0] s2_meta_corrected_5_coh_state; // @[DCache.scala:361:99] wire [19:0] s2_meta_corrected_5_tag; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_10 = _s2_meta_corrected_WIRE_5[19:0]; // @[DCache.scala:361:99] assign s2_meta_corrected_5_tag = _s2_meta_corrected_T_10; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_11 = _s2_meta_corrected_WIRE_5[21:20]; // @[DCache.scala:361:99] assign s2_meta_corrected_5_coh_state = _s2_meta_corrected_T_11; // @[DCache.scala:361:99] reg [21:0] s2_meta_corrected_r_6; // @[DCache.scala:361:61] wire [21:0] _s2_meta_corrected_WIRE_6 = s2_meta_corrected_r_6; // @[DCache.scala:361:{61,99}] wire [1:0] _s2_meta_corrected_T_13; // @[DCache.scala:361:99] wire [19:0] _s2_meta_corrected_T_12; // @[DCache.scala:361:99] wire [1:0] s2_meta_corrected_6_coh_state; // @[DCache.scala:361:99] wire [19:0] s2_meta_corrected_6_tag; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_12 = _s2_meta_corrected_WIRE_6[19:0]; // @[DCache.scala:361:99] assign s2_meta_corrected_6_tag = _s2_meta_corrected_T_12; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_13 = _s2_meta_corrected_WIRE_6[21:20]; // @[DCache.scala:361:99] assign s2_meta_corrected_6_coh_state = _s2_meta_corrected_T_13; // @[DCache.scala:361:99] reg [21:0] s2_meta_corrected_r_7; // @[DCache.scala:361:61] wire [21:0] _s2_meta_corrected_WIRE_7 = s2_meta_corrected_r_7; // @[DCache.scala:361:{61,99}] wire [1:0] _s2_meta_corrected_T_15; // @[DCache.scala:361:99] wire [19:0] _s2_meta_corrected_T_14; // @[DCache.scala:361:99] wire [1:0] _s2_first_meta_corrected_T_8_coh_state = s2_meta_corrected_7_coh_state; // @[Mux.scala:50:70] wire [19:0] _s2_first_meta_corrected_T_8_tag = s2_meta_corrected_7_tag; // @[Mux.scala:50:70] assign _s2_meta_corrected_T_14 = _s2_meta_corrected_WIRE_7[19:0]; // @[DCache.scala:361:99] assign s2_meta_corrected_7_tag = _s2_meta_corrected_T_14; // @[DCache.scala:361:99] assign _s2_meta_corrected_T_15 = _s2_meta_corrected_WIRE_7[21:20]; // @[DCache.scala:361:99] assign s2_meta_corrected_7_coh_state = _s2_meta_corrected_T_15; // @[DCache.scala:361:99] wire _s2_data_en_T = s1_valid | inWriteback; // @[package.scala:81:59] wire s2_data_en = _s2_data_en_T | io_cpu_replay_next_0; // @[DCache.scala:101:7, :366:{23,38}] wire s2_data_word_en = inWriteback | _s2_data_word_en_T; // @[package.scala:81:59] wire _s2_data_s1_word_en_T = ~io_cpu_replay_next_0; // @[DCache.scala:101:7, :377:28] wire s2_data_s1_word_en = ~_s2_data_s1_word_en_T | s2_data_word_en; // @[DCache.scala:367:22, :377:{27,28}] wire _s2_data_T = s2_data_s1_word_en; // @[DCache.scala:377:27, :379:39] wire [8:0] _s2_data_T_1 = _s2_data_T ? s1_data_way : 9'h0; // @[DCache.scala:323:32, :379:{28,39}] wire _s2_data_T_2 = _s2_data_T_1[0]; // @[Mux.scala:32:36] wire _s2_data_T_3 = _s2_data_T_1[1]; // @[Mux.scala:32:36] wire _s2_data_T_4 = _s2_data_T_1[2]; // @[Mux.scala:32:36] wire _s2_data_T_5 = _s2_data_T_1[3]; // @[Mux.scala:32:36] wire _s2_data_T_6 = _s2_data_T_1[4]; // @[Mux.scala:32:36] wire _s2_data_T_7 = _s2_data_T_1[5]; // @[Mux.scala:32:36] wire _s2_data_T_8 = _s2_data_T_1[6]; // @[Mux.scala:32:36] wire _s2_data_T_9 = _s2_data_T_1[7]; // @[Mux.scala:32:36] wire _s2_data_T_10 = _s2_data_T_1[8]; // @[Mux.scala:32:36] wire [63:0] _s2_data_T_11 = _s2_data_T_2 ? s2_data_s1_way_words_0_0 : 64'h0; // @[Mux.scala:30:73, :32:36] wire [63:0] _s2_data_T_12 = _s2_data_T_3 ? s2_data_s1_way_words_1_0 : 64'h0; // @[Mux.scala:30:73, :32:36] wire [63:0] _s2_data_T_13 = _s2_data_T_4 ? s2_data_s1_way_words_2_0 : 64'h0; // @[Mux.scala:30:73, :32:36] wire [63:0] _s2_data_T_14 = _s2_data_T_5 ? s2_data_s1_way_words_3_0 : 64'h0; // @[Mux.scala:30:73, :32:36] wire [63:0] _s2_data_T_15 = _s2_data_T_6 ? s2_data_s1_way_words_4_0 : 64'h0; // @[Mux.scala:30:73, :32:36] wire [63:0] _s2_data_T_16 = _s2_data_T_7 ? s2_data_s1_way_words_5_0 : 64'h0; // @[Mux.scala:30:73, :32:36] wire [63:0] _s2_data_T_17 = _s2_data_T_8 ? s2_data_s1_way_words_6_0 : 64'h0; // @[Mux.scala:30:73, :32:36] wire [63:0] _s2_data_T_18 = _s2_data_T_9 ? s2_data_s1_way_words_7_0 : 64'h0; // @[Mux.scala:30:73, :32:36] wire [63:0] _s2_data_T_19 = _s2_data_T_10 ? s2_data_s1_way_words_8_0 : 64'h0; // @[Mux.scala:30:73, :32:36] wire [63:0] _s2_data_T_20 = _s2_data_T_11 | _s2_data_T_12; // @[Mux.scala:30:73] wire [63:0] _s2_data_T_21 = _s2_data_T_20 | _s2_data_T_13; // @[Mux.scala:30:73] wire [63:0] _s2_data_T_22 = _s2_data_T_21 | _s2_data_T_14; // @[Mux.scala:30:73] wire [63:0] _s2_data_T_23 = _s2_data_T_22 | _s2_data_T_15; // @[Mux.scala:30:73] wire [63:0] _s2_data_T_24 = _s2_data_T_23 | _s2_data_T_16; // @[Mux.scala:30:73] wire [63:0] _s2_data_T_25 = _s2_data_T_24 | _s2_data_T_17; // @[Mux.scala:30:73] wire [63:0] _s2_data_T_26 = _s2_data_T_25 | _s2_data_T_18; // @[Mux.scala:30:73] wire [63:0] _s2_data_T_27 = _s2_data_T_26 | _s2_data_T_19; // @[Mux.scala:30:73] wire [63:0] _s2_data_WIRE = _s2_data_T_27; // @[Mux.scala:30:73] reg [63:0] s2_data; // @[DCache.scala:379:18] reg [7:0] s2_probe_way; // @[DCache.scala:383:31] reg [1:0] s2_probe_state_state; // @[DCache.scala:384:33] reg [7:0] s2_hit_way; // @[DCache.scala:385:29] reg [1:0] s2_hit_state_state; // @[DCache.scala:386:31] wire s2_hit_valid = |s2_hit_state_state; // @[Metadata.scala:50:45] wire _r_c_cat_T_2 = _r_c_cat_T | _r_c_cat_T_1; // @[Consts.scala:90:{32,42,49}] wire _r_c_cat_T_4 = _r_c_cat_T_2 | _r_c_cat_T_3; // @[Consts.scala:90:{42,59,66}] wire _r_c_cat_T_9 = _r_c_cat_T_5 | _r_c_cat_T_6; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_10 = _r_c_cat_T_9 | _r_c_cat_T_7; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_11 = _r_c_cat_T_10 | _r_c_cat_T_8; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_17 = _r_c_cat_T_12 | _r_c_cat_T_13; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_18 = _r_c_cat_T_17 | _r_c_cat_T_14; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_19 = _r_c_cat_T_18 | _r_c_cat_T_15; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_20 = _r_c_cat_T_19 | _r_c_cat_T_16; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_21 = _r_c_cat_T_11 | _r_c_cat_T_20; // @[package.scala:81:59] wire _r_c_cat_T_22 = _r_c_cat_T_4 | _r_c_cat_T_21; // @[Consts.scala:87:44, :90:{59,76}] wire _r_c_cat_T_25 = _r_c_cat_T_23 | _r_c_cat_T_24; // @[Consts.scala:90:{32,42,49}] wire _r_c_cat_T_27 = _r_c_cat_T_25 | _r_c_cat_T_26; // @[Consts.scala:90:{42,59,66}] wire _r_c_cat_T_32 = _r_c_cat_T_28 | _r_c_cat_T_29; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_33 = _r_c_cat_T_32 | _r_c_cat_T_30; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_34 = _r_c_cat_T_33 | _r_c_cat_T_31; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_40 = _r_c_cat_T_35 | _r_c_cat_T_36; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_41 = _r_c_cat_T_40 | _r_c_cat_T_37; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_42 = _r_c_cat_T_41 | _r_c_cat_T_38; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_43 = _r_c_cat_T_42 | _r_c_cat_T_39; // @[package.scala:16:47, :81:59] wire _r_c_cat_T_44 = _r_c_cat_T_34 | _r_c_cat_T_43; // @[package.scala:81:59] wire _r_c_cat_T_45 = _r_c_cat_T_27 | _r_c_cat_T_44; // @[Consts.scala:87:44, :90:{59,76}] wire _GEN_94 = s2_req_cmd == 5'h3; // @[DCache.scala:339:19] wire _r_c_cat_T_46; // @[Consts.scala:91:54] assign _r_c_cat_T_46 = _GEN_94; // @[Consts.scala:91:54] wire _metaArb_io_in_3_bits_data_c_cat_T_46; // @[Consts.scala:91:54] assign _metaArb_io_in_3_bits_data_c_cat_T_46 = _GEN_94; // @[Consts.scala:91:54] wire _r_c_cat_T_47 = _r_c_cat_T_45 | _r_c_cat_T_46; // @[Consts.scala:90:76, :91:{47,54}] wire _r_c_cat_T_49 = _r_c_cat_T_47 | _r_c_cat_T_48; // @[Consts.scala:91:{47,64,71}] wire [1:0] r_c = {_r_c_cat_T_22, _r_c_cat_T_49}; // @[Metadata.scala:29:18] wire [3:0] _r_T = {r_c, s2_hit_state_state}; // @[Metadata.scala:29:18, :58:19] wire _r_T_25 = _r_T == 4'hC; // @[Misc.scala:49:20] wire [1:0] _r_T_27 = {1'h0, _r_T_25}; // @[Misc.scala:35:36, :49:20] wire _r_T_28 = _r_T == 4'hD; // @[Misc.scala:49:20] wire [1:0] _r_T_30 = _r_T_28 ? 2'h2 : _r_T_27; // @[Misc.scala:35:36, :49:20] wire _r_T_31 = _r_T == 4'h4; // @[Misc.scala:49:20] wire [1:0] _r_T_33 = _r_T_31 ? 2'h1 : _r_T_30; // @[Misc.scala:35:36, :49:20] wire _r_T_34 = _r_T == 4'h5; // @[Misc.scala:49:20] wire [1:0] _r_T_36 = _r_T_34 ? 2'h2 : _r_T_33; // @[Misc.scala:35:36, :49:20] wire _r_T_37 = _r_T == 4'h0; // @[Misc.scala:49:20] wire [1:0] _r_T_39 = _r_T_37 ? 2'h0 : _r_T_36; // @[Misc.scala:35:36, :49:20] wire _r_T_40 = _r_T == 4'hE; // @[Misc.scala:49:20] wire _r_T_41 = _r_T_40; // @[Misc.scala:35:9, :49:20] wire [1:0] _r_T_42 = _r_T_40 ? 2'h3 : _r_T_39; // @[Misc.scala:35:36, :49:20] wire _r_T_43 = &_r_T; // @[Misc.scala:49:20] wire _r_T_44 = _r_T_43 | _r_T_41; // @[Misc.scala:35:9, :49:20] wire [1:0] _r_T_45 = _r_T_43 ? 2'h3 : _r_T_42; // @[Misc.scala:35:36, :49:20] wire _r_T_46 = _r_T == 4'h6; // @[Misc.scala:49:20] wire _r_T_47 = _r_T_46 | _r_T_44; // @[Misc.scala:35:9, :49:20] wire [1:0] _r_T_48 = _r_T_46 ? 2'h2 : _r_T_45; // @[Misc.scala:35:36, :49:20] wire _r_T_49 = _r_T == 4'h7; // @[Misc.scala:49:20] wire _r_T_50 = _r_T_49 | _r_T_47; // @[Misc.scala:35:9, :49:20] wire [1:0] _r_T_51 = _r_T_49 ? 2'h3 : _r_T_48; // @[Misc.scala:35:36, :49:20] wire _r_T_52 = _r_T == 4'h1; // @[Misc.scala:49:20] wire _r_T_53 = _r_T_52 | _r_T_50; // @[Misc.scala:35:9, :49:20] wire [1:0] _r_T_54 = _r_T_52 ? 2'h1 : _r_T_51; // @[Misc.scala:35:36, :49:20] wire _r_T_55 = _r_T == 4'h2; // @[Misc.scala:49:20] wire _r_T_56 = _r_T_55 | _r_T_53; // @[Misc.scala:35:9, :49:20] wire [1:0] _r_T_57 = _r_T_55 ? 2'h2 : _r_T_54; // @[Misc.scala:35:36, :49:20] wire _r_T_58 = _r_T == 4'h3; // @[Misc.scala:49:20] wire s2_hit = _r_T_58 | _r_T_56; // @[Misc.scala:35:9, :49:20] wire [1:0] s2_grow_param = _r_T_58 ? 2'h3 : _r_T_57; // @[Misc.scala:35:36, :49:20] wire [1:0] s2_new_hit_state_state = s2_grow_param; // @[Misc.scala:35:36] wire [1:0] metaArb_io_in_2_bits_data_meta_coh_state = s2_new_hit_state_state; // @[Metadata.scala:160:20] wire [15:0] s2_data_corrected_lo_lo = s2_data[15:0]; // @[package.scala:45:27] wire [15:0] s2_data_uncorrected_lo_lo = s2_data[15:0]; // @[package.scala:45:27] wire [15:0] s2_data_corrected_lo_hi = s2_data[31:16]; // @[package.scala:45:27] wire [15:0] s2_data_uncorrected_lo_hi = s2_data[31:16]; // @[package.scala:45:27] wire [31:0] s2_data_corrected_lo = {s2_data_corrected_lo_hi, s2_data_corrected_lo_lo}; // @[package.scala:45:27] wire [15:0] s2_data_corrected_hi_lo = s2_data[47:32]; // @[package.scala:45:27] wire [15:0] s2_data_uncorrected_hi_lo = s2_data[47:32]; // @[package.scala:45:27] wire [15:0] s2_data_corrected_hi_hi = s2_data[63:48]; // @[package.scala:45:27] wire [15:0] s2_data_uncorrected_hi_hi = s2_data[63:48]; // @[package.scala:45:27] wire [31:0] s2_data_corrected_hi = {s2_data_corrected_hi_hi, s2_data_corrected_hi_lo}; // @[package.scala:45:27] assign s2_data_corrected = {s2_data_corrected_hi, s2_data_corrected_lo}; // @[package.scala:45:27] assign nodeOut_c_bits_data = s2_data_corrected; // @[package.scala:45:27] wire [63:0] s2_data_word_corrected = s2_data_corrected; // @[package.scala:45:27] wire [31:0] s2_data_uncorrected_lo = {s2_data_uncorrected_lo_hi, s2_data_uncorrected_lo_lo}; // @[package.scala:45:27] wire [31:0] s2_data_uncorrected_hi = {s2_data_uncorrected_hi_hi, s2_data_uncorrected_hi_lo}; // @[package.scala:45:27] wire [63:0] s2_data_uncorrected = {s2_data_uncorrected_hi, s2_data_uncorrected_lo}; // @[package.scala:45:27] assign s2_data_word = s2_data_uncorrected; // @[package.scala:45:27] wire s2_valid_hit_maybe_flush_pre_data_ecc_and_waw = _s2_valid_hit_maybe_flush_pre_data_ecc_and_waw_T_1 & s2_hit; // @[Misc.scala:35:9] wire _s2_valid_hit_pre_data_ecc_and_waw_T = s2_valid_hit_maybe_flush_pre_data_ecc_and_waw & s2_readwrite; // @[DCache.scala:354:30, :397:89, :418:89] wire s2_valid_hit_pre_data_ecc_and_waw = _s2_valid_hit_pre_data_ecc_and_waw_T; // @[DCache.scala:418:{89,105}] wire s2_valid_hit_pre_data_ecc = s2_valid_hit_pre_data_ecc_and_waw; // @[DCache.scala:418:105, :420:69] wire s2_valid_flush_line = s2_valid_hit_maybe_flush_pre_data_ecc_and_waw & s2_cmd_flush_line; // @[DCache.scala:341:54, :397:89, :419:75] wire _s2_victim_tag_T = s2_valid_flush_line; // @[DCache.scala:419:75, :433:47] wire s2_valid_hit = s2_valid_hit_pre_data_ecc; // @[DCache.scala:420:69, :422:48] wire _s2_valid_miss_T = s2_valid_masked & s2_readwrite; // @[DCache.scala:337:42, :354:30, :423:39] wire _s2_valid_miss_T_2 = _s2_valid_miss_T; // @[DCache.scala:423:{39,55}] wire _s2_valid_miss_T_3 = ~s2_hit; // @[Misc.scala:35:9] wire s2_valid_miss = _s2_valid_miss_T_2 & _s2_valid_miss_T_3; // @[DCache.scala:423:{55,73,76}] wire _s2_uncached_T = ~s2_pma_cacheable; // @[DCache.scala:343:19, :424:21] wire _s2_uncached_T_1 = ~s2_pma_must_alloc; // @[DCache.scala:343:19, :424:61] wire _s2_uncached_T_2 = s2_req_no_alloc & _s2_uncached_T_1; // @[DCache.scala:339:19, :424:{58,61}] wire _s2_uncached_T_3 = ~s2_hit_valid; // @[Metadata.scala:50:45] wire _s2_uncached_T_4 = _s2_uncached_T_2 & _s2_uncached_T_3; // @[DCache.scala:424:{58,80,83}] wire s2_uncached = _s2_uncached_T | _s2_uncached_T_4; // @[DCache.scala:424:{21,39,80}] wire _s2_valid_cached_miss_T = ~s2_uncached; // @[DCache.scala:424:39, :425:47] wire _s2_valid_cached_miss_T_1 = s2_valid_miss & _s2_valid_cached_miss_T; // @[DCache.scala:423:73, :425:{44,47}] wire _s2_valid_cached_miss_T_3 = ~_s2_valid_cached_miss_T_2; // @[DCache.scala:425:{63,88}] wire s2_valid_cached_miss = _s2_valid_cached_miss_T_1 & _s2_valid_cached_miss_T_3; // @[DCache.scala:425:{44,60,63}] wire _s2_want_victimize_T = s2_valid_cached_miss | s2_valid_flush_line; // @[DCache.scala:419:75, :425:60, :427:77] wire _s2_want_victimize_T_1 = _s2_want_victimize_T; // @[DCache.scala:427:{77,100}] wire _s2_want_victimize_T_2 = _s2_want_victimize_T_1 | s2_flush_valid; // @[DCache.scala:363:51, :427:{100,123}] wire s2_want_victimize = _s2_want_victimize_T_2; // @[DCache.scala:427:{52,123}] wire s2_victimize = s2_want_victimize; // @[DCache.scala:427:52, :429:40] wire _s2_cannot_victimize_T = ~s2_flush_valid; // @[DCache.scala:363:51, :428:29] wire _s2_valid_uncached_pending_T = s2_valid_miss & s2_uncached; // @[DCache.scala:423:73, :424:39, :430:49] wire _s2_valid_uncached_pending_T_2 = ~_s2_valid_uncached_pending_T_1; // @[DCache.scala:430:{67,92}] wire s2_valid_uncached_pending = _s2_valid_uncached_pending_T & _s2_valid_uncached_pending_T_2; // @[DCache.scala:430:{49,64,67}] reg [2:0] s2_victim_way_r; // @[DCache.scala:431:41] wire [7:0] s2_victim_way = 8'h1 << s2_victim_way_r; // @[OneHot.scala:58:35] assign s2_victim_or_hit_way = s2_hit_valid ? s2_hit_way : s2_victim_way; // @[OneHot.scala:58:35] assign metaArb_io_in_2_bits_way_en = s2_victim_or_hit_way; // @[DCache.scala:135:28, :432:33] wire [19:0] _s2_victim_tag_T_1 = s2_req_addr[31:12]; // @[DCache.scala:339:19, :433:82] wire _s2_victim_tag_T_2 = s2_victim_way[0]; // @[OneHot.scala:58:35] wire _s2_victim_state_T = s2_victim_way[0]; // @[OneHot.scala:58:35] wire _s2_victim_tag_T_3 = s2_victim_way[1]; // @[OneHot.scala:58:35] wire _s2_victim_state_T_1 = s2_victim_way[1]; // @[OneHot.scala:58:35] wire _s2_victim_tag_T_4 = s2_victim_way[2]; // @[OneHot.scala:58:35] wire _s2_victim_state_T_2 = s2_victim_way[2]; // @[OneHot.scala:58:35] wire _s2_victim_tag_T_5 = s2_victim_way[3]; // @[OneHot.scala:58:35] wire _s2_victim_state_T_3 = s2_victim_way[3]; // @[OneHot.scala:58:35] wire _s2_victim_tag_T_6 = s2_victim_way[4]; // @[OneHot.scala:58:35] wire _s2_victim_state_T_4 = s2_victim_way[4]; // @[OneHot.scala:58:35] wire _s2_victim_tag_T_7 = s2_victim_way[5]; // @[OneHot.scala:58:35] wire _s2_victim_state_T_5 = s2_victim_way[5]; // @[OneHot.scala:58:35] wire _s2_victim_tag_T_8 = s2_victim_way[6]; // @[OneHot.scala:58:35] wire _s2_victim_state_T_6 = s2_victim_way[6]; // @[OneHot.scala:58:35] wire _s2_victim_tag_T_9 = s2_victim_way[7]; // @[OneHot.scala:58:35] wire _s2_victim_state_T_7 = s2_victim_way[7]; // @[OneHot.scala:58:35] wire [1:0] _s2_victim_tag_WIRE_2_state; // @[Mux.scala:30:73] wire [19:0] _s2_victim_tag_WIRE_1; // @[Mux.scala:30:73] wire [19:0] _s2_victim_tag_T_10 = _s2_victim_tag_T_2 ? s2_meta_corrected_0_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_tag_T_11 = _s2_victim_tag_T_3 ? s2_meta_corrected_1_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_tag_T_12 = _s2_victim_tag_T_4 ? s2_meta_corrected_2_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_tag_T_13 = _s2_victim_tag_T_5 ? s2_meta_corrected_3_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_tag_T_14 = _s2_victim_tag_T_6 ? s2_meta_corrected_4_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_tag_T_15 = _s2_victim_tag_T_7 ? s2_meta_corrected_5_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_tag_T_16 = _s2_victim_tag_T_8 ? s2_meta_corrected_6_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_tag_T_17 = _s2_victim_tag_T_9 ? s2_meta_corrected_7_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_tag_T_18 = _s2_victim_tag_T_10 | _s2_victim_tag_T_11; // @[Mux.scala:30:73] wire [19:0] _s2_victim_tag_T_19 = _s2_victim_tag_T_18 | _s2_victim_tag_T_12; // @[Mux.scala:30:73] wire [19:0] _s2_victim_tag_T_20 = _s2_victim_tag_T_19 | _s2_victim_tag_T_13; // @[Mux.scala:30:73] wire [19:0] _s2_victim_tag_T_21 = _s2_victim_tag_T_20 | _s2_victim_tag_T_14; // @[Mux.scala:30:73] wire [19:0] _s2_victim_tag_T_22 = _s2_victim_tag_T_21 | _s2_victim_tag_T_15; // @[Mux.scala:30:73] wire [19:0] _s2_victim_tag_T_23 = _s2_victim_tag_T_22 | _s2_victim_tag_T_16; // @[Mux.scala:30:73] wire [19:0] _s2_victim_tag_T_24 = _s2_victim_tag_T_23 | _s2_victim_tag_T_17; // @[Mux.scala:30:73] assign _s2_victim_tag_WIRE_1 = _s2_victim_tag_T_24; // @[Mux.scala:30:73] wire [19:0] _s2_victim_tag_WIRE_tag = _s2_victim_tag_WIRE_1; // @[Mux.scala:30:73] wire [1:0] _s2_victim_tag_WIRE_3; // @[Mux.scala:30:73] wire [1:0] _s2_victim_tag_WIRE_coh_state = _s2_victim_tag_WIRE_2_state; // @[Mux.scala:30:73] wire [1:0] _s2_victim_tag_T_25 = _s2_victim_tag_T_2 ? s2_meta_corrected_0_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_tag_T_26 = _s2_victim_tag_T_3 ? s2_meta_corrected_1_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_tag_T_27 = _s2_victim_tag_T_4 ? s2_meta_corrected_2_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_tag_T_28 = _s2_victim_tag_T_5 ? s2_meta_corrected_3_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_tag_T_29 = _s2_victim_tag_T_6 ? s2_meta_corrected_4_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_tag_T_30 = _s2_victim_tag_T_7 ? s2_meta_corrected_5_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_tag_T_31 = _s2_victim_tag_T_8 ? s2_meta_corrected_6_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_tag_T_32 = _s2_victim_tag_T_9 ? s2_meta_corrected_7_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_tag_T_33 = _s2_victim_tag_T_25 | _s2_victim_tag_T_26; // @[Mux.scala:30:73] wire [1:0] _s2_victim_tag_T_34 = _s2_victim_tag_T_33 | _s2_victim_tag_T_27; // @[Mux.scala:30:73] wire [1:0] _s2_victim_tag_T_35 = _s2_victim_tag_T_34 | _s2_victim_tag_T_28; // @[Mux.scala:30:73] wire [1:0] _s2_victim_tag_T_36 = _s2_victim_tag_T_35 | _s2_victim_tag_T_29; // @[Mux.scala:30:73] wire [1:0] _s2_victim_tag_T_37 = _s2_victim_tag_T_36 | _s2_victim_tag_T_30; // @[Mux.scala:30:73] wire [1:0] _s2_victim_tag_T_38 = _s2_victim_tag_T_37 | _s2_victim_tag_T_31; // @[Mux.scala:30:73] wire [1:0] _s2_victim_tag_T_39 = _s2_victim_tag_T_38 | _s2_victim_tag_T_32; // @[Mux.scala:30:73] assign _s2_victim_tag_WIRE_3 = _s2_victim_tag_T_39; // @[Mux.scala:30:73] assign _s2_victim_tag_WIRE_2_state = _s2_victim_tag_WIRE_3; // @[Mux.scala:30:73] wire [19:0] s2_victim_tag = _s2_victim_tag_T ? _s2_victim_tag_T_1 : _s2_victim_tag_WIRE_tag; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_WIRE_2_state; // @[Mux.scala:30:73] wire [19:0] _s2_victim_state_WIRE_1; // @[Mux.scala:30:73] wire [19:0] _s2_victim_state_T_8 = _s2_victim_state_T ? s2_meta_corrected_0_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_state_T_9 = _s2_victim_state_T_1 ? s2_meta_corrected_1_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_state_T_10 = _s2_victim_state_T_2 ? s2_meta_corrected_2_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_state_T_11 = _s2_victim_state_T_3 ? s2_meta_corrected_3_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_state_T_12 = _s2_victim_state_T_4 ? s2_meta_corrected_4_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_state_T_13 = _s2_victim_state_T_5 ? s2_meta_corrected_5_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_state_T_14 = _s2_victim_state_T_6 ? s2_meta_corrected_6_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_state_T_15 = _s2_victim_state_T_7 ? s2_meta_corrected_7_tag : 20'h0; // @[Mux.scala:30:73, :32:36] wire [19:0] _s2_victim_state_T_16 = _s2_victim_state_T_8 | _s2_victim_state_T_9; // @[Mux.scala:30:73] wire [19:0] _s2_victim_state_T_17 = _s2_victim_state_T_16 | _s2_victim_state_T_10; // @[Mux.scala:30:73] wire [19:0] _s2_victim_state_T_18 = _s2_victim_state_T_17 | _s2_victim_state_T_11; // @[Mux.scala:30:73] wire [19:0] _s2_victim_state_T_19 = _s2_victim_state_T_18 | _s2_victim_state_T_12; // @[Mux.scala:30:73] wire [19:0] _s2_victim_state_T_20 = _s2_victim_state_T_19 | _s2_victim_state_T_13; // @[Mux.scala:30:73] wire [19:0] _s2_victim_state_T_21 = _s2_victim_state_T_20 | _s2_victim_state_T_14; // @[Mux.scala:30:73] wire [19:0] _s2_victim_state_T_22 = _s2_victim_state_T_21 | _s2_victim_state_T_15; // @[Mux.scala:30:73] assign _s2_victim_state_WIRE_1 = _s2_victim_state_T_22; // @[Mux.scala:30:73] wire [19:0] _s2_victim_state_WIRE_tag = _s2_victim_state_WIRE_1; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_WIRE_3; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_WIRE_coh_state = _s2_victim_state_WIRE_2_state; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_T_23 = _s2_victim_state_T ? s2_meta_corrected_0_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_state_T_24 = _s2_victim_state_T_1 ? s2_meta_corrected_1_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_state_T_25 = _s2_victim_state_T_2 ? s2_meta_corrected_2_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_state_T_26 = _s2_victim_state_T_3 ? s2_meta_corrected_3_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_state_T_27 = _s2_victim_state_T_4 ? s2_meta_corrected_4_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_state_T_28 = _s2_victim_state_T_5 ? s2_meta_corrected_5_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_state_T_29 = _s2_victim_state_T_6 ? s2_meta_corrected_6_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_state_T_30 = _s2_victim_state_T_7 ? s2_meta_corrected_7_coh_state : 2'h0; // @[Mux.scala:30:73, :32:36] wire [1:0] _s2_victim_state_T_31 = _s2_victim_state_T_23 | _s2_victim_state_T_24; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_T_32 = _s2_victim_state_T_31 | _s2_victim_state_T_25; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_T_33 = _s2_victim_state_T_32 | _s2_victim_state_T_26; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_T_34 = _s2_victim_state_T_33 | _s2_victim_state_T_27; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_T_35 = _s2_victim_state_T_34 | _s2_victim_state_T_28; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_T_36 = _s2_victim_state_T_35 | _s2_victim_state_T_29; // @[Mux.scala:30:73] wire [1:0] _s2_victim_state_T_37 = _s2_victim_state_T_36 | _s2_victim_state_T_30; // @[Mux.scala:30:73] assign _s2_victim_state_WIRE_3 = _s2_victim_state_T_37; // @[Mux.scala:30:73] assign _s2_victim_state_WIRE_2_state = _s2_victim_state_WIRE_3; // @[Mux.scala:30:73] wire [1:0] s2_victim_state_state = s2_hit_valid ? s2_hit_state_state : _s2_victim_state_WIRE_coh_state; // @[Mux.scala:30:73] wire [3:0] _r_T_59 = {probe_bits_param, s2_probe_state_state}; // @[Metadata.scala:120:19] wire _r_T_72 = _r_T_59 == 4'h8; // @[Misc.scala:56:20] wire [2:0] _r_T_74 = _r_T_72 ? 3'h5 : 3'h0; // @[Misc.scala:38:36, :56:20] wire _r_T_76 = _r_T_59 == 4'h9; // @[Misc.scala:56:20] wire [2:0] _r_T_78 = _r_T_76 ? 3'h2 : _r_T_74; // @[Misc.scala:38:36, :56:20] wire _r_T_80 = _r_T_59 == 4'hA; // @[Misc.scala:56:20] wire [2:0] _r_T_82 = _r_T_80 ? 3'h1 : _r_T_78; // @[Misc.scala:38:36, :56:20] wire _r_T_84 = _r_T_59 == 4'hB; // @[Misc.scala:56:20] wire _r_T_85 = _r_T_84; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_86 = _r_T_84 ? 3'h1 : _r_T_82; // @[Misc.scala:38:36, :56:20] wire _r_T_88 = _r_T_59 == 4'h4; // @[Misc.scala:56:20] wire _r_T_89 = ~_r_T_88 & _r_T_85; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_90 = _r_T_88 ? 3'h5 : _r_T_86; // @[Misc.scala:38:36, :56:20] wire _r_T_92 = _r_T_59 == 4'h5; // @[Misc.scala:56:20] wire _r_T_93 = ~_r_T_92 & _r_T_89; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_94 = _r_T_92 ? 3'h4 : _r_T_90; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_95 = {1'h0, _r_T_92}; // @[Misc.scala:38:63, :56:20] wire _r_T_96 = _r_T_59 == 4'h6; // @[Misc.scala:56:20] wire _r_T_97 = ~_r_T_96 & _r_T_93; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_98 = _r_T_96 ? 3'h0 : _r_T_94; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_99 = _r_T_96 ? 2'h1 : _r_T_95; // @[Misc.scala:38:63, :56:20] wire _r_T_100 = _r_T_59 == 4'h7; // @[Misc.scala:56:20] wire _r_T_101 = _r_T_100 | _r_T_97; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_102 = _r_T_100 ? 3'h0 : _r_T_98; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_103 = _r_T_100 ? 2'h1 : _r_T_99; // @[Misc.scala:38:63, :56:20] wire _r_T_104 = _r_T_59 == 4'h0; // @[Misc.scala:56:20] wire _r_T_105 = ~_r_T_104 & _r_T_101; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_106 = _r_T_104 ? 3'h5 : _r_T_102; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_107 = _r_T_104 ? 2'h0 : _r_T_103; // @[Misc.scala:38:63, :56:20] wire _r_T_108 = _r_T_59 == 4'h1; // @[Misc.scala:56:20] wire _r_T_109 = ~_r_T_108 & _r_T_105; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_110 = _r_T_108 ? 3'h4 : _r_T_106; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_111 = _r_T_108 ? 2'h1 : _r_T_107; // @[Misc.scala:38:63, :56:20] wire _r_T_112 = _r_T_59 == 4'h2; // @[Misc.scala:56:20] wire _r_T_113 = ~_r_T_112 & _r_T_109; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_114 = _r_T_112 ? 3'h3 : _r_T_110; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_115 = _r_T_112 ? 2'h2 : _r_T_111; // @[Misc.scala:38:63, :56:20] wire _r_T_116 = _r_T_59 == 4'h3; // @[Misc.scala:56:20] wire s2_prb_ack_data = _r_T_116 | _r_T_113; // @[Misc.scala:38:9, :56:20] wire [2:0] s2_report_param = _r_T_116 ? 3'h3 : _r_T_114; // @[Misc.scala:38:36, :56:20] wire [2:0] cleanReleaseMessage_param = s2_report_param; // @[Misc.scala:38:36] wire [2:0] dirtyReleaseMessage_param = s2_report_param; // @[Misc.scala:38:36] wire [1:0] r_3 = _r_T_116 ? 2'h2 : _r_T_115; // @[Misc.scala:38:63, :56:20] wire [1:0] probeNewCoh_state = r_3; // @[Misc.scala:38:63] wire [3:0] _r_T_123 = {2'h2, s2_victim_state_state}; // @[Metadata.scala:120:19] wire _r_T_136 = _r_T_123 == 4'h8; // @[Misc.scala:56:20] wire [2:0] _r_T_138 = _r_T_136 ? 3'h5 : 3'h0; // @[Misc.scala:38:36, :56:20] wire _r_T_140 = _r_T_123 == 4'h9; // @[Misc.scala:56:20] wire [2:0] _r_T_142 = _r_T_140 ? 3'h2 : _r_T_138; // @[Misc.scala:38:36, :56:20] wire _r_T_144 = _r_T_123 == 4'hA; // @[Misc.scala:56:20] wire [2:0] _r_T_146 = _r_T_144 ? 3'h1 : _r_T_142; // @[Misc.scala:38:36, :56:20] wire _r_T_148 = _r_T_123 == 4'hB; // @[Misc.scala:56:20] wire _r_T_149 = _r_T_148; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_150 = _r_T_148 ? 3'h1 : _r_T_146; // @[Misc.scala:38:36, :56:20] wire _r_T_152 = _r_T_123 == 4'h4; // @[Misc.scala:56:20] wire _r_T_153 = ~_r_T_152 & _r_T_149; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_154 = _r_T_152 ? 3'h5 : _r_T_150; // @[Misc.scala:38:36, :56:20] wire _r_T_156 = _r_T_123 == 4'h5; // @[Misc.scala:56:20] wire _r_T_157 = ~_r_T_156 & _r_T_153; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_158 = _r_T_156 ? 3'h4 : _r_T_154; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_159 = {1'h0, _r_T_156}; // @[Misc.scala:38:63, :56:20] wire _r_T_160 = _r_T_123 == 4'h6; // @[Misc.scala:56:20] wire _r_T_161 = ~_r_T_160 & _r_T_157; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_162 = _r_T_160 ? 3'h0 : _r_T_158; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_163 = _r_T_160 ? 2'h1 : _r_T_159; // @[Misc.scala:38:63, :56:20] wire _r_T_164 = _r_T_123 == 4'h7; // @[Misc.scala:56:20] wire _r_T_165 = _r_T_164 | _r_T_161; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_166 = _r_T_164 ? 3'h0 : _r_T_162; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_167 = _r_T_164 ? 2'h1 : _r_T_163; // @[Misc.scala:38:63, :56:20] wire _r_T_168 = _r_T_123 == 4'h0; // @[Misc.scala:56:20] wire _r_T_169 = ~_r_T_168 & _r_T_165; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_170 = _r_T_168 ? 3'h5 : _r_T_166; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_171 = _r_T_168 ? 2'h0 : _r_T_167; // @[Misc.scala:38:63, :56:20] wire _r_T_172 = _r_T_123 == 4'h1; // @[Misc.scala:56:20] wire _r_T_173 = ~_r_T_172 & _r_T_169; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_174 = _r_T_172 ? 3'h4 : _r_T_170; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_175 = _r_T_172 ? 2'h1 : _r_T_171; // @[Misc.scala:38:63, :56:20] wire _r_T_176 = _r_T_123 == 4'h2; // @[Misc.scala:56:20] wire _r_T_177 = ~_r_T_176 & _r_T_173; // @[Misc.scala:38:9, :56:20] wire [2:0] _r_T_178 = _r_T_176 ? 3'h3 : _r_T_174; // @[Misc.scala:38:36, :56:20] wire [1:0] _r_T_179 = _r_T_176 ? 2'h2 : _r_T_175; // @[Misc.scala:38:63, :56:20] wire _r_T_180 = _r_T_123 == 4'h3; // @[Misc.scala:56:20] wire s2_victim_dirty = _r_T_180 | _r_T_177; // @[Misc.scala:38:9, :56:20] wire [2:0] s2_shrink_param = _r_T_180 ? 3'h3 : _r_T_178; // @[Misc.scala:38:36, :56:20] wire [2:0] nodeOut_c_bits_c_param = s2_shrink_param; // @[Misc.scala:38:36] wire [2:0] nodeOut_c_bits_c_1_param = s2_shrink_param; // @[Misc.scala:38:36] wire [1:0] r_3_1 = _r_T_180 ? 2'h2 : _r_T_179; // @[Misc.scala:38:63, :56:20] wire [1:0] voluntaryNewCoh_state = r_3_1; // @[Misc.scala:38:63] wire _s2_update_meta_T = s2_hit_state_state == s2_new_hit_state_state; // @[Metadata.scala:46:46, :160:20] wire s2_update_meta = ~_s2_update_meta_T; // @[Metadata.scala:46:46, :47:40] wire s2_dont_nack_uncached = s2_valid_uncached_pending & tl_out_a_ready; // @[DCache.scala:159:22, :430:64, :440:57] wire _s2_dont_nack_misc_T_7 = ~s2_hit; // @[Misc.scala:35:9] wire _s2_dont_nack_misc_T_10 = s2_req_cmd == 5'h17; // @[DCache.scala:339:19, :444:17] wire _s2_dont_nack_misc_T_11 = _s2_dont_nack_misc_T_10; // @[DCache.scala:443:55, :444:17] wire s2_dont_nack_misc = _s2_dont_nack_misc_T_1 & _s2_dont_nack_misc_T_11; // @[DCache.scala:441:{43,61}, :443:55] wire _io_cpu_s2_nack_T = ~s2_dont_nack_uncached; // @[DCache.scala:440:57, :445:41] wire _io_cpu_s2_nack_T_1 = s2_valid_no_xcpt & _io_cpu_s2_nack_T; // @[DCache.scala:332:35, :445:{38,41}] wire _io_cpu_s2_nack_T_2 = ~s2_dont_nack_misc; // @[DCache.scala:441:61, :445:67] wire _io_cpu_s2_nack_T_3 = _io_cpu_s2_nack_T_1 & _io_cpu_s2_nack_T_2; // @[DCache.scala:445:{38,64,67}] wire _io_cpu_s2_nack_T_4 = ~s2_valid_hit; // @[DCache.scala:422:48, :445:89] assign _io_cpu_s2_nack_T_5 = _io_cpu_s2_nack_T_3 & _io_cpu_s2_nack_T_4; // @[DCache.scala:445:{64,86,89}] assign io_cpu_s2_nack_0 = _io_cpu_s2_nack_T_5; // @[DCache.scala:101:7, :445:86] assign _metaArb_io_in_2_valid_T = s2_valid_hit_pre_data_ecc_and_waw & s2_update_meta; // @[Metadata.scala:47:40] wire _T_40 = io_cpu_s2_nack_0 | _metaArb_io_in_2_valid_T; // @[DCache.scala:101:7, :446:24, :462:63] wire [1:0] _s2_first_meta_corrected_T_9_coh_state = _s2_first_meta_corrected_T_8_coh_state; // @[Mux.scala:50:70] wire [19:0] _s2_first_meta_corrected_T_9_tag = _s2_first_meta_corrected_T_8_tag; // @[Mux.scala:50:70] wire [1:0] _s2_first_meta_corrected_T_10_coh_state = _s2_first_meta_corrected_T_9_coh_state; // @[Mux.scala:50:70] wire [19:0] _s2_first_meta_corrected_T_10_tag = _s2_first_meta_corrected_T_9_tag; // @[Mux.scala:50:70] wire [1:0] _s2_first_meta_corrected_T_11_coh_state = _s2_first_meta_corrected_T_10_coh_state; // @[Mux.scala:50:70] wire [19:0] _s2_first_meta_corrected_T_11_tag = _s2_first_meta_corrected_T_10_tag; // @[Mux.scala:50:70] wire [1:0] _s2_first_meta_corrected_T_12_coh_state = _s2_first_meta_corrected_T_11_coh_state; // @[Mux.scala:50:70] wire [19:0] _s2_first_meta_corrected_T_12_tag = _s2_first_meta_corrected_T_11_tag; // @[Mux.scala:50:70] wire [1:0] _s2_first_meta_corrected_T_13_coh_state = _s2_first_meta_corrected_T_12_coh_state; // @[Mux.scala:50:70] wire [19:0] _s2_first_meta_corrected_T_13_tag = _s2_first_meta_corrected_T_12_tag; // @[Mux.scala:50:70] wire [1:0] s2_first_meta_corrected_coh_state = _s2_first_meta_corrected_T_13_coh_state; // @[Mux.scala:50:70] wire [19:0] s2_first_meta_corrected_tag = _s2_first_meta_corrected_T_13_tag; // @[Mux.scala:50:70] wire [1:0] metaArb_io_in_1_bits_data_new_meta_coh_state = s2_first_meta_corrected_coh_state; // @[Mux.scala:50:70] wire [19:0] metaArb_io_in_1_bits_data_new_meta_tag = s2_first_meta_corrected_tag; // @[Mux.scala:50:70] wire _metaArb_io_in_1_valid_T = s2_valid_masked | s2_flush_valid_pre_tag_ecc; // @[DCache.scala:337:42, :355:43, :450:63] wire _metaArb_io_in_1_valid_T_1 = _metaArb_io_in_1_valid_T | s2_probe; // @[DCache.scala:333:25, :450:{63,93}] wire [5:0] _metaArb_io_in_1_bits_idx_T = probe_bits_address[11:6]; // @[DCache.scala:184:29, :1200:47] wire [5:0] _metaArb_io_in_6_bits_idx_T_1 = probe_bits_address[11:6]; // @[DCache.scala:184:29, :1200:47] wire [5:0] _dataArb_io_in_2_bits_addr_T = probe_bits_address[11:6]; // @[DCache.scala:184:29, :1200:47] assign _metaArb_io_in_4_bits_idx_T = probe_bits_address[11:6]; // @[DCache.scala:184:29, :1200:47] wire [5:0] _metaArb_io_in_1_bits_idx_T_1 = s2_vaddr[11:6]; // @[DCache.scala:351:21, :453:76] assign _metaArb_io_in_2_bits_idx_T = s2_vaddr[11:6]; // @[DCache.scala:351:21, :453:76, :465:40] assign _metaArb_io_in_3_bits_idx_T = s2_vaddr[11:6]; // @[DCache.scala:351:21, :453:76, :744:40] assign _metaArb_io_in_1_bits_idx_T_2 = s2_probe ? _metaArb_io_in_1_bits_idx_T : _metaArb_io_in_1_bits_idx_T_1; // @[DCache.scala:333:25, :453:{35,76}, :1200:47] assign metaArb_io_in_1_bits_idx = _metaArb_io_in_1_bits_idx_T_2; // @[DCache.scala:135:28, :453:35] wire [11:0] _metaArb_io_in_1_bits_addr_T_1 = {_metaArb_io_in_1_bits_idx_T_2, 6'h0}; // @[DCache.scala:453:35, :454:98] assign _metaArb_io_in_1_bits_addr_T_2 = {_metaArb_io_in_1_bits_addr_T, _metaArb_io_in_1_bits_addr_T_1}; // @[DCache.scala:454:{36,58,98}] assign metaArb_io_in_1_bits_addr = _metaArb_io_in_1_bits_addr_T_2; // @[DCache.scala:135:28, :454:36] assign _metaArb_io_in_1_bits_data_T = {metaArb_io_in_1_bits_data_new_meta_coh_state, metaArb_io_in_1_bits_data_new_meta_tag}; // @[DCache.scala:456:31, :458:14] assign metaArb_io_in_1_bits_data = _metaArb_io_in_1_bits_data_T; // @[DCache.scala:135:28, :458:14] assign metaArb_io_in_2_valid = _metaArb_io_in_2_valid_T; // @[DCache.scala:135:28, :462:63] assign metaArb_io_in_2_bits_idx = _metaArb_io_in_2_bits_idx_T; // @[DCache.scala:135:28, :465:40] wire [11:0] _metaArb_io_in_2_bits_addr_T_1 = s2_vaddr[11:0]; // @[DCache.scala:351:21, :466:80] wire [11:0] _metaArb_io_in_3_bits_addr_T_1 = s2_vaddr[11:0]; // @[DCache.scala:351:21, :466:80, :745:80] assign _metaArb_io_in_2_bits_addr_T_2 = {_metaArb_io_in_2_bits_addr_T, _metaArb_io_in_2_bits_addr_T_1}; // @[DCache.scala:466:{36,58,80}] assign metaArb_io_in_2_bits_addr = _metaArb_io_in_2_bits_addr_T_2; // @[DCache.scala:135:28, :466:36] wire [27:0] _metaArb_io_in_2_bits_data_T = s2_req_addr[39:12]; // @[DCache.scala:339:19, :467:68] wire [27:0] _metaArb_io_in_3_bits_data_T = s2_req_addr[39:12]; // @[DCache.scala:339:19, :467:68, :746:68] wire [19:0] metaArb_io_in_2_bits_data_meta_tag; // @[HellaCache.scala:305:20] assign metaArb_io_in_2_bits_data_meta_tag = _metaArb_io_in_2_bits_data_T[19:0]; // @[HellaCache.scala:305:20, :306:14] assign _metaArb_io_in_2_bits_data_T_1 = {metaArb_io_in_2_bits_data_meta_coh_state, metaArb_io_in_2_bits_data_meta_tag}; // @[HellaCache.scala:305:20] assign metaArb_io_in_2_bits_data = _metaArb_io_in_2_bits_data_T_1; // @[DCache.scala:135:28, :467:97] wire s2_lr = _s2_lr_T; // @[DCache.scala:470:{56,70}] wire s2_sc = _s2_sc_T; // @[DCache.scala:471:{56,70}] wire io_cpu_resp_bits_data_doZero_2 = s2_sc; // @[DCache.scala:471:56] reg [6:0] lrscCount; // @[DCache.scala:472:26] wire lrscValid = |(lrscCount[6:2]); // @[DCache.scala:472:26, :473:29] wire _lrscBackingOff_T = |lrscCount; // @[DCache.scala:472:26, :474:34] wire _lrscBackingOff_T_1 = ~lrscValid; // @[DCache.scala:473:29, :474:43] wire lrscBackingOff = _lrscBackingOff_T & _lrscBackingOff_T_1; // @[DCache.scala:474:{34,40,43}] reg [33:0] lrscAddr; // @[DCache.scala:475:21] wire [33:0] _lrscAddrMatch_T = s2_req_addr[39:6]; // @[DCache.scala:339:19, :476:49] wire [33:0] _lrscAddr_T = s2_req_addr[39:6]; // @[DCache.scala:339:19, :476:49, :480:29] wire [33:0] _acquire_address_T = s2_req_addr[39:6]; // @[DCache.scala:339:19, :476:49, :578:38] wire [33:0] _tl_out_a_bits_T_1 = s2_req_addr[39:6]; // @[DCache.scala:339:19, :476:49, :1210:39] wire [33:0] _io_errors_bus_bits_T = s2_req_addr[39:6]; // @[DCache.scala:339:19, :476:49, :1130:58] wire lrscAddrMatch = lrscAddr == _lrscAddrMatch_T; // @[DCache.scala:475:21, :476:{32,49}] wire _s2_sc_fail_T = lrscValid & lrscAddrMatch; // @[DCache.scala:473:29, :476:32, :477:41] wire _s2_sc_fail_T_1 = ~_s2_sc_fail_T; // @[DCache.scala:477:{29,41}] wire s2_sc_fail = s2_sc & _s2_sc_fail_T_1; // @[DCache.scala:471:56, :477:{26,29}] wire [6:0] _lrscCount_T = s2_hit ? 7'h4F : 7'h0; // @[Misc.scala:35:9] wire [7:0] _lrscCount_T_1 = {1'h0, lrscCount} - 8'h1; // @[DCache.scala:472:26, :482:51] wire [6:0] _lrscCount_T_2 = _lrscCount_T_1[6:0]; // @[DCache.scala:482:51] wire _s2_correct_T = ~any_pstore_valid; // @[DCache.scala:230:30, :487:37] wire _s2_correct_T_2 = any_pstore_valid | s2_valid; // @[DCache.scala:230:30, :331:25, :487:84] reg s2_correct_REG; // @[DCache.scala:487:66] wire _s2_correct_T_3 = ~s2_correct_REG; // @[DCache.scala:487:{58,66}] wire _GEN_95 = s1_valid_not_nacked & s1_write; // @[DCache.scala:187:38, :492:63] wire _pstore1_cmd_T; // @[DCache.scala:492:63] assign _pstore1_cmd_T = _GEN_95; // @[DCache.scala:492:63] wire _pstore1_addr_T; // @[DCache.scala:493:62] assign _pstore1_addr_T = _GEN_95; // @[DCache.scala:492:63, :493:62] wire _pstore1_data_T; // @[DCache.scala:494:73] assign _pstore1_data_T = _GEN_95; // @[DCache.scala:492:63, :494:73] wire _pstore1_way_T; // @[DCache.scala:495:63] assign _pstore1_way_T = _GEN_95; // @[DCache.scala:492:63, :495:63] wire _pstore1_mask_T; // @[DCache.scala:496:61] assign _pstore1_mask_T = _GEN_95; // @[DCache.scala:492:63, :496:61] wire _pstore1_rmw_T_53; // @[DCache.scala:498:84] assign _pstore1_rmw_T_53 = _GEN_95; // @[DCache.scala:492:63, :498:84] reg [4:0] pstore1_cmd; // @[DCache.scala:492:30] reg [39:0] pstore1_addr; // @[DCache.scala:493:31] wire [39:0] _pstore2_addr_T = pstore1_addr; // @[DCache.scala:493:31, :524:35] reg [63:0] pstore1_data; // @[DCache.scala:494:31] assign io_cpu_resp_bits_store_data_0 = pstore1_data; // @[DCache.scala:101:7, :494:31] wire [63:0] put_data = pstore1_data; // @[Edges.scala:480:17] wire [63:0] putpartial_data = pstore1_data; // @[Edges.scala:500:17] wire [63:0] atomics_a_data = pstore1_data; // @[Edges.scala:534:17] wire [63:0] atomics_a_1_data = pstore1_data; // @[Edges.scala:534:17] wire [63:0] atomics_a_2_data = pstore1_data; // @[Edges.scala:534:17] wire [63:0] atomics_a_3_data = pstore1_data; // @[Edges.scala:534:17] wire [63:0] atomics_a_4_data = pstore1_data; // @[Edges.scala:517:17] wire [63:0] atomics_a_5_data = pstore1_data; // @[Edges.scala:517:17] wire [63:0] atomics_a_6_data = pstore1_data; // @[Edges.scala:517:17] wire [63:0] atomics_a_7_data = pstore1_data; // @[Edges.scala:517:17] wire [63:0] atomics_a_8_data = pstore1_data; // @[Edges.scala:517:17] wire [63:0] _amoalu_io_rhs_T = pstore1_data; // @[DCache.scala:494:31, :986:37] reg [7:0] pstore1_way; // @[DCache.scala:495:30] wire [7:0] _pstore2_way_T = pstore1_way; // @[DCache.scala:495:30, :525:34] reg [7:0] pstore1_mask; // @[DCache.scala:496:31] wire [7:0] pstore2_storegen_mask_mergedMask = pstore1_mask; // @[DCache.scala:496:31, :533:37] wire [7:0] _amoalu_io_mask_T = pstore1_mask; // @[DCache.scala:496:31, :983:38] wire [63:0] pstore1_storegen_data; // @[DCache.scala:497:42] wire _pstore1_rmw_T_4 = _pstore1_rmw_T | _pstore1_rmw_T_1; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_5 = _pstore1_rmw_T_4 | _pstore1_rmw_T_2; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_6 = _pstore1_rmw_T_5 | _pstore1_rmw_T_3; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_11 = _pstore1_rmw_T_7 | _pstore1_rmw_T_8; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_12 = _pstore1_rmw_T_11 | _pstore1_rmw_T_9; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_13 = _pstore1_rmw_T_12 | _pstore1_rmw_T_10; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_19 = _pstore1_rmw_T_14 | _pstore1_rmw_T_15; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_20 = _pstore1_rmw_T_19 | _pstore1_rmw_T_16; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_21 = _pstore1_rmw_T_20 | _pstore1_rmw_T_17; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_22 = _pstore1_rmw_T_21 | _pstore1_rmw_T_18; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_23 = _pstore1_rmw_T_13 | _pstore1_rmw_T_22; // @[package.scala:81:59] wire _pstore1_rmw_T_24 = _pstore1_rmw_T_6 | _pstore1_rmw_T_23; // @[package.scala:81:59] wire _pstore1_rmw_T_27 = _pstore1_rmw_T_25 | _pstore1_rmw_T_26; // @[Consts.scala:90:{32,42,49}] wire _pstore1_rmw_T_29 = _pstore1_rmw_T_27 | _pstore1_rmw_T_28; // @[Consts.scala:90:{42,59,66}] wire _pstore1_rmw_T_34 = _pstore1_rmw_T_30 | _pstore1_rmw_T_31; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_35 = _pstore1_rmw_T_34 | _pstore1_rmw_T_32; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_36 = _pstore1_rmw_T_35 | _pstore1_rmw_T_33; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_42 = _pstore1_rmw_T_37 | _pstore1_rmw_T_38; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_43 = _pstore1_rmw_T_42 | _pstore1_rmw_T_39; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_44 = _pstore1_rmw_T_43 | _pstore1_rmw_T_40; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_45 = _pstore1_rmw_T_44 | _pstore1_rmw_T_41; // @[package.scala:16:47, :81:59] wire _pstore1_rmw_T_46 = _pstore1_rmw_T_36 | _pstore1_rmw_T_45; // @[package.scala:81:59] wire _pstore1_rmw_T_47 = _pstore1_rmw_T_29 | _pstore1_rmw_T_46; // @[Consts.scala:87:44, :90:{59,76}] wire _pstore1_rmw_T_50 = _pstore1_rmw_T_48; // @[DCache.scala:1191:{35,45}] wire _pstore1_rmw_T_51 = _pstore1_rmw_T_47 & _pstore1_rmw_T_50; // @[DCache.scala:1191:{23,45}] wire _pstore1_rmw_T_52 = _pstore1_rmw_T_24 | _pstore1_rmw_T_51; // @[DCache.scala:1190:21, :1191:23] reg pstore1_rmw_r; // @[DCache.scala:498:44] wire pstore1_rmw = pstore1_rmw_r; // @[DCache.scala:498:{32,44}] wire _pstore1_merge_likely_T = s2_valid_not_nacked_in_s1 & s2_write; // @[DCache.scala:336:44, :499:56] wire _GEN_96 = s2_valid_hit & s2_write; // @[DCache.scala:422:48, :490:46] wire _pstore1_merge_T; // @[DCache.scala:490:46] assign _pstore1_merge_T = _GEN_96; // @[DCache.scala:490:46] wire _pstore1_valid_T; // @[DCache.scala:490:46] assign _pstore1_valid_T = _GEN_96; // @[DCache.scala:490:46] wire _pstore1_held_T; // @[DCache.scala:490:46] assign _pstore1_held_T = _GEN_96; // @[DCache.scala:490:46] wire _pstore1_merge_T_1 = ~s2_sc_fail; // @[DCache.scala:477:26, :490:61] wire _pstore1_merge_T_2 = _pstore1_merge_T & _pstore1_merge_T_1; // @[DCache.scala:490:{46,58,61}] wire _pstore1_merge_T_4 = _pstore1_merge_T_2; // @[DCache.scala:490:58, :491:48] reg pstore2_valid; // @[DCache.scala:501:30] wire _pstore_drain_opportunistic_res_T_2 = _pstore_drain_opportunistic_res_T | _pstore_drain_opportunistic_res_T_1; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_res_T_3 = ~_pstore_drain_opportunistic_res_T_2; // @[package.scala:81:59] wire pstore_drain_opportunistic_res = _pstore_drain_opportunistic_res_T_3; // @[DCache.scala:1185:{15,46}] wire _pstore_drain_opportunistic_T_4 = _pstore_drain_opportunistic_T | _pstore_drain_opportunistic_T_1; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_5 = _pstore_drain_opportunistic_T_4 | _pstore_drain_opportunistic_T_2; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_6 = _pstore_drain_opportunistic_T_5 | _pstore_drain_opportunistic_T_3; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_11 = _pstore_drain_opportunistic_T_7 | _pstore_drain_opportunistic_T_8; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_12 = _pstore_drain_opportunistic_T_11 | _pstore_drain_opportunistic_T_9; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_13 = _pstore_drain_opportunistic_T_12 | _pstore_drain_opportunistic_T_10; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_19 = _pstore_drain_opportunistic_T_14 | _pstore_drain_opportunistic_T_15; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_20 = _pstore_drain_opportunistic_T_19 | _pstore_drain_opportunistic_T_16; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_21 = _pstore_drain_opportunistic_T_20 | _pstore_drain_opportunistic_T_17; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_22 = _pstore_drain_opportunistic_T_21 | _pstore_drain_opportunistic_T_18; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_23 = _pstore_drain_opportunistic_T_13 | _pstore_drain_opportunistic_T_22; // @[package.scala:81:59] wire _pstore_drain_opportunistic_T_24 = _pstore_drain_opportunistic_T_6 | _pstore_drain_opportunistic_T_23; // @[package.scala:81:59] wire _pstore_drain_opportunistic_T_27 = _pstore_drain_opportunistic_T_25 | _pstore_drain_opportunistic_T_26; // @[Consts.scala:90:{32,42,49}] wire _pstore_drain_opportunistic_T_29 = _pstore_drain_opportunistic_T_27 | _pstore_drain_opportunistic_T_28; // @[Consts.scala:90:{42,59,66}] wire _pstore_drain_opportunistic_T_34 = _pstore_drain_opportunistic_T_30 | _pstore_drain_opportunistic_T_31; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_35 = _pstore_drain_opportunistic_T_34 | _pstore_drain_opportunistic_T_32; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_36 = _pstore_drain_opportunistic_T_35 | _pstore_drain_opportunistic_T_33; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_42 = _pstore_drain_opportunistic_T_37 | _pstore_drain_opportunistic_T_38; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_43 = _pstore_drain_opportunistic_T_42 | _pstore_drain_opportunistic_T_39; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_44 = _pstore_drain_opportunistic_T_43 | _pstore_drain_opportunistic_T_40; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_45 = _pstore_drain_opportunistic_T_44 | _pstore_drain_opportunistic_T_41; // @[package.scala:16:47, :81:59] wire _pstore_drain_opportunistic_T_46 = _pstore_drain_opportunistic_T_36 | _pstore_drain_opportunistic_T_45; // @[package.scala:81:59] wire _pstore_drain_opportunistic_T_47 = _pstore_drain_opportunistic_T_29 | _pstore_drain_opportunistic_T_46; // @[Consts.scala:87:44, :90:{59,76}] wire _pstore_drain_opportunistic_T_50 = _pstore_drain_opportunistic_T_48; // @[DCache.scala:1191:{35,45}] wire _pstore_drain_opportunistic_T_51 = _pstore_drain_opportunistic_T_47 & _pstore_drain_opportunistic_T_50; // @[DCache.scala:1191:{23,45}] wire _pstore_drain_opportunistic_T_52 = _pstore_drain_opportunistic_T_24 | _pstore_drain_opportunistic_T_51; // @[DCache.scala:1190:21, :1191:23] wire _pstore_drain_opportunistic_T_53 = ~_pstore_drain_opportunistic_T_52; // @[DCache.scala:1186:12, :1190:21] wire _pstore_drain_opportunistic_T_54 = _pstore_drain_opportunistic_T_53 | pstore_drain_opportunistic_res; // @[DCache.scala:1185:46, :1186:{12,28}] wire _pstore_drain_opportunistic_T_56 = ~_pstore_drain_opportunistic_T_55; // @[DCache.scala:1186:11] wire _pstore_drain_opportunistic_T_57 = ~_pstore_drain_opportunistic_T_54; // @[DCache.scala:1186:{11,28}] wire _pstore_drain_opportunistic_T_58 = io_cpu_req_valid_0 & pstore_drain_opportunistic_res; // @[DCache.scala:101:7, :502:55, :1185:46] wire _pstore_drain_opportunistic_T_59 = ~_pstore_drain_opportunistic_T_58; // @[DCache.scala:502:{36,55}] wire pstore_drain_opportunistic = _pstore_drain_opportunistic_T_59; // @[DCache.scala:502:{36,92}] reg pstore_drain_on_miss_REG; // @[DCache.scala:503:56] wire pstore_drain_on_miss = releaseInFlight | pstore_drain_on_miss_REG; // @[DCache.scala:334:46, :503:{46,56}] reg pstore1_held; // @[DCache.scala:504:29] wire _GEN_97 = s2_valid & s2_write; // @[DCache.scala:331:25, :505:39] wire _pstore1_valid_likely_T; // @[DCache.scala:505:39] assign _pstore1_valid_likely_T = _GEN_97; // @[DCache.scala:505:39] wire _io_cpu_perf_storeBufferEmptyAfterLoad_T_1; // @[DCache.scala:1082:16] assign _io_cpu_perf_storeBufferEmptyAfterLoad_T_1 = _GEN_97; // @[DCache.scala:505:39, :1082:16] wire _io_cpu_perf_storeBufferEmptyAfterStore_T_1; // @[DCache.scala:1086:15] assign _io_cpu_perf_storeBufferEmptyAfterStore_T_1 = _GEN_97; // @[DCache.scala:505:39, :1086:15] wire _io_cpu_perf_storeBufferEmptyAfterStore_T_4; // @[DCache.scala:1087:16] assign _io_cpu_perf_storeBufferEmptyAfterStore_T_4 = _GEN_97; // @[DCache.scala:505:39, :1087:16] wire _io_cpu_perf_canAcceptStoreThenLoad_T; // @[DCache.scala:1089:16] assign _io_cpu_perf_canAcceptStoreThenLoad_T = _GEN_97; // @[DCache.scala:505:39, :1089:16] wire _io_cpu_perf_canAcceptLoadThenLoad_T_55; // @[DCache.scala:1092:100] assign _io_cpu_perf_canAcceptLoadThenLoad_T_55 = _GEN_97; // @[DCache.scala:505:39, :1092:100] wire pstore1_valid_likely = _pstore1_valid_likely_T | pstore1_held; // @[DCache.scala:504:29, :505:{39,51}] wire _pstore1_valid_T_1 = ~s2_sc_fail; // @[DCache.scala:477:26, :490:61] wire _pstore1_valid_T_2 = _pstore1_valid_T & _pstore1_valid_T_1; // @[DCache.scala:490:{46,58,61}] wire _pstore1_valid_T_4 = _pstore1_valid_T_2; // @[DCache.scala:490:58, :491:48] wire pstore1_valid = _pstore1_valid_T_4 | pstore1_held; // @[DCache.scala:491:48, :504:29, :507:38] wire _advance_pstore1_T = pstore1_valid; // @[DCache.scala:507:38, :522:40] assign _any_pstore_valid_T = pstore1_held | pstore2_valid; // @[DCache.scala:501:30, :504:29, :508:36] assign any_pstore_valid = _any_pstore_valid_T; // @[DCache.scala:230:30, :508:36] wire _GEN_98 = pstore1_valid_likely & pstore2_valid; // @[DCache.scala:501:30, :505:51, :509:54] wire _pstore_drain_structural_T; // @[DCache.scala:509:54] assign _pstore_drain_structural_T = _GEN_98; // @[DCache.scala:509:54] wire _io_cpu_perf_canAcceptStoreThenLoad_T_6; // @[DCache.scala:1090:20] assign _io_cpu_perf_canAcceptStoreThenLoad_T_6 = _GEN_98; // @[DCache.scala:509:54, :1090:20] wire _GEN_99 = s1_valid & s1_write; // @[DCache.scala:182:25, :509:85] wire _pstore_drain_structural_T_1; // @[DCache.scala:509:85] assign _pstore_drain_structural_T_1 = _GEN_99; // @[DCache.scala:509:85] wire _io_cpu_perf_storeBufferEmptyAfterLoad_T; // @[DCache.scala:1081:15] assign _io_cpu_perf_storeBufferEmptyAfterLoad_T = _GEN_99; // @[DCache.scala:509:85, :1081:15] wire _io_cpu_perf_storeBufferEmptyAfterStore_T; // @[DCache.scala:1085:15] assign _io_cpu_perf_storeBufferEmptyAfterStore_T = _GEN_99; // @[DCache.scala:509:85, :1085:15] wire _io_cpu_perf_canAcceptStoreThenLoad_T_2; // @[DCache.scala:1089:57] assign _io_cpu_perf_canAcceptStoreThenLoad_T_2 = _GEN_99; // @[DCache.scala:509:85, :1089:57] wire _io_cpu_perf_canAcceptStoreThenLoad_T_7; // @[DCache.scala:1090:57] assign _io_cpu_perf_canAcceptStoreThenLoad_T_7 = _GEN_99; // @[DCache.scala:509:85, :1090:57] wire _io_cpu_perf_canAcceptLoadThenLoad_T; // @[DCache.scala:1092:52] assign _io_cpu_perf_canAcceptLoadThenLoad_T = _GEN_99; // @[DCache.scala:509:85, :1092:52] wire _pstore_drain_structural_T_2 = _pstore_drain_structural_T_1 | pstore1_rmw; // @[DCache.scala:498:32, :509:{85,98}] wire pstore_drain_structural = _pstore_drain_structural_T & _pstore_drain_structural_T_2; // @[DCache.scala:509:{54,71,98}] wire _pstore_drain_T_1 = pstore_drain_structural; // @[DCache.scala:509:71, :517:17] wire _dataArb_io_in_0_valid_T_1 = pstore_drain_structural; // @[DCache.scala:509:71, :517:17] wire _T_49 = s2_valid_hit_pre_data_ecc & s2_write; // @[DCache.scala:420:69, :506:72] wire _pstore_drain_T_2; // @[DCache.scala:506:72] assign _pstore_drain_T_2 = _T_49; // @[DCache.scala:506:72] wire _dataArb_io_in_0_valid_T_2; // @[DCache.scala:506:72] assign _dataArb_io_in_0_valid_T_2 = _T_49; // @[DCache.scala:506:72] wire _pstore_drain_T_4 = _pstore_drain_T_2; // @[DCache.scala:506:{72,84}] wire _pstore_drain_T_5 = _pstore_drain_T_4 | pstore1_held; // @[DCache.scala:504:29, :506:{84,96}] wire _pstore_drain_T_6 = ~pstore1_rmw; // @[DCache.scala:498:32, :518:44] wire _pstore_drain_T_7 = _pstore_drain_T_5 & _pstore_drain_T_6; // @[DCache.scala:506:96, :518:{41,44}] wire _pstore_drain_T_8 = _pstore_drain_T_7 | pstore2_valid; // @[DCache.scala:501:30, :518:{41,58}] wire _GEN_100 = pstore_drain_opportunistic | pstore_drain_on_miss; // @[DCache.scala:502:92, :503:46, :518:107] wire _pstore_drain_T_9; // @[DCache.scala:518:107] assign _pstore_drain_T_9 = _GEN_100; // @[DCache.scala:518:107] wire _dataArb_io_in_0_valid_T_9; // @[DCache.scala:518:107] assign _dataArb_io_in_0_valid_T_9 = _GEN_100; // @[DCache.scala:518:107] wire _pstore_drain_T_10 = _pstore_drain_T_8 & _pstore_drain_T_9; // @[DCache.scala:518:{58,76,107}] wire _pstore_drain_T_11 = _pstore_drain_T_1 | _pstore_drain_T_10; // @[DCache.scala:517:{17,44}, :518:76] assign pstore_drain = _pstore_drain_T_11; // @[DCache.scala:516:27, :517:44] assign dataArb_io_in_0_bits_write = pstore_drain; // @[DCache.scala:152:28, :516:27] wire _pstore1_held_T_1 = ~s2_sc_fail; // @[DCache.scala:477:26, :490:61] wire _pstore1_held_T_2 = _pstore1_held_T & _pstore1_held_T_1; // @[DCache.scala:490:{46,58,61}] wire _pstore1_held_T_4 = _pstore1_held_T_2; // @[DCache.scala:490:58, :491:48] wire _pstore1_held_T_6 = _pstore1_held_T_4; // @[DCache.scala:491:48, :521:35] wire _pstore1_held_T_7 = _pstore1_held_T_6 | pstore1_held; // @[DCache.scala:504:29, :521:{35,54}] wire _pstore1_held_T_8 = _pstore1_held_T_7 & pstore2_valid; // @[DCache.scala:501:30, :521:{54,71}] wire _pstore1_held_T_9 = ~pstore_drain; // @[DCache.scala:516:27, :521:91] wire _pstore1_held_T_10 = _pstore1_held_T_8 & _pstore1_held_T_9; // @[DCache.scala:521:{71,88,91}] wire _advance_pstore1_T_1 = pstore2_valid == pstore_drain; // @[DCache.scala:501:30, :516:27, :522:79] wire advance_pstore1 = _advance_pstore1_T & _advance_pstore1_T_1; // @[DCache.scala:522:{40,61,79}] wire _pstore2_storegen_data_T_3 = advance_pstore1; // @[DCache.scala:522:61, :528:78] wire _pstore2_storegen_data_T_7 = advance_pstore1; // @[DCache.scala:522:61, :528:78] wire _pstore2_storegen_data_T_11 = advance_pstore1; // @[DCache.scala:522:61, :528:78] wire _pstore2_storegen_data_T_15 = advance_pstore1; // @[DCache.scala:522:61, :528:78] wire _pstore2_storegen_data_T_19 = advance_pstore1; // @[DCache.scala:522:61, :528:78] wire _pstore2_storegen_data_T_23 = advance_pstore1; // @[DCache.scala:522:61, :528:78] wire _pstore2_storegen_data_T_27 = advance_pstore1; // @[DCache.scala:522:61, :528:78] wire _pstore2_storegen_data_T_31 = advance_pstore1; // @[DCache.scala:522:61, :528:78] wire _pstore2_storegen_mask_T = advance_pstore1; // @[DCache.scala:522:61, :532:27] wire _pstore2_valid_T = ~pstore_drain; // @[DCache.scala:516:27, :521:91, :523:37] wire _pstore2_valid_T_1 = pstore2_valid & _pstore2_valid_T; // @[DCache.scala:501:30, :523:{34,37}] wire _pstore2_valid_T_2 = _pstore2_valid_T_1 | advance_pstore1; // @[DCache.scala:522:61, :523:{34,51}] reg [39:0] pstore2_addr; // @[DCache.scala:524:31] reg [7:0] pstore2_way; // @[DCache.scala:525:30] wire [7:0] _pstore2_storegen_data_T = pstore1_storegen_data[7:0]; // @[DCache.scala:497:42, :528:44] wire _pstore2_storegen_data_T_1 = pstore1_mask[0]; // @[DCache.scala:496:31, :528:110] wire _s1_hazard_T_3 = pstore1_mask[0]; // @[package.scala:211:50] reg [7:0] pstore2_storegen_data_r; // @[DCache.scala:528:22] wire [7:0] _pstore2_storegen_data_T_4 = pstore1_storegen_data[15:8]; // @[DCache.scala:497:42, :528:44] wire _pstore2_storegen_data_T_5 = pstore1_mask[1]; // @[DCache.scala:496:31, :528:110] wire _s1_hazard_T_4 = pstore1_mask[1]; // @[package.scala:211:50] reg [7:0] pstore2_storegen_data_r_1; // @[DCache.scala:528:22] wire [7:0] _pstore2_storegen_data_T_8 = pstore1_storegen_data[23:16]; // @[DCache.scala:497:42, :528:44] wire _pstore2_storegen_data_T_9 = pstore1_mask[2]; // @[DCache.scala:496:31, :528:110] wire _s1_hazard_T_5 = pstore1_mask[2]; // @[package.scala:211:50] reg [7:0] pstore2_storegen_data_r_2; // @[DCache.scala:528:22] wire [7:0] _pstore2_storegen_data_T_12 = pstore1_storegen_data[31:24]; // @[DCache.scala:497:42, :528:44] wire _pstore2_storegen_data_T_13 = pstore1_mask[3]; // @[DCache.scala:496:31, :528:110] wire _s1_hazard_T_6 = pstore1_mask[3]; // @[package.scala:211:50] reg [7:0] pstore2_storegen_data_r_3; // @[DCache.scala:528:22] wire [7:0] _pstore2_storegen_data_T_16 = pstore1_storegen_data[39:32]; // @[DCache.scala:497:42, :528:44] wire _pstore2_storegen_data_T_17 = pstore1_mask[4]; // @[DCache.scala:496:31, :528:110] wire _s1_hazard_T_7 = pstore1_mask[4]; // @[package.scala:211:50] reg [7:0] pstore2_storegen_data_r_4; // @[DCache.scala:528:22] wire [7:0] _pstore2_storegen_data_T_20 = pstore1_storegen_data[47:40]; // @[DCache.scala:497:42, :528:44] wire _pstore2_storegen_data_T_21 = pstore1_mask[5]; // @[DCache.scala:496:31, :528:110] wire _s1_hazard_T_8 = pstore1_mask[5]; // @[package.scala:211:50] reg [7:0] pstore2_storegen_data_r_5; // @[DCache.scala:528:22] wire [7:0] _pstore2_storegen_data_T_24 = pstore1_storegen_data[55:48]; // @[DCache.scala:497:42, :528:44] wire _pstore2_storegen_data_T_25 = pstore1_mask[6]; // @[DCache.scala:496:31, :528:110] wire _s1_hazard_T_9 = pstore1_mask[6]; // @[package.scala:211:50] reg [7:0] pstore2_storegen_data_r_6; // @[DCache.scala:528:22] wire [7:0] _pstore2_storegen_data_T_28 = pstore1_storegen_data[63:56]; // @[DCache.scala:497:42, :528:44] wire _pstore2_storegen_data_T_29 = pstore1_mask[7]; // @[DCache.scala:496:31, :528:110] wire _s1_hazard_T_10 = pstore1_mask[7]; // @[package.scala:211:50] reg [7:0] pstore2_storegen_data_r_7; // @[DCache.scala:528:22] wire [15:0] pstore2_storegen_data_lo_lo = {pstore2_storegen_data_r_1, pstore2_storegen_data_r}; // @[package.scala:45:27] wire [15:0] pstore2_storegen_data_lo_hi = {pstore2_storegen_data_r_3, pstore2_storegen_data_r_2}; // @[package.scala:45:27] wire [31:0] pstore2_storegen_data_lo = {pstore2_storegen_data_lo_hi, pstore2_storegen_data_lo_lo}; // @[package.scala:45:27] wire [15:0] pstore2_storegen_data_hi_lo = {pstore2_storegen_data_r_5, pstore2_storegen_data_r_4}; // @[package.scala:45:27] wire [15:0] pstore2_storegen_data_hi_hi = {pstore2_storegen_data_r_7, pstore2_storegen_data_r_6}; // @[package.scala:45:27] wire [31:0] pstore2_storegen_data_hi = {pstore2_storegen_data_hi_hi, pstore2_storegen_data_hi_lo}; // @[package.scala:45:27] wire [63:0] pstore2_storegen_data = {pstore2_storegen_data_hi, pstore2_storegen_data_lo}; // @[package.scala:45:27] reg [7:0] pstore2_storegen_mask; // @[DCache.scala:531:19] wire [7:0] _pstore2_storegen_mask_mask_T = ~pstore2_storegen_mask_mergedMask; // @[DCache.scala:533:37, :534:37] wire [7:0] _pstore2_storegen_mask_mask_T_1 = _pstore2_storegen_mask_mask_T; // @[DCache.scala:534:{19,37}] wire [7:0] _pstore2_storegen_mask_mask_T_2 = ~_pstore2_storegen_mask_mask_T_1; // @[DCache.scala:534:{15,19}] wire _dataArb_io_in_0_valid_T_4 = _dataArb_io_in_0_valid_T_2; // @[DCache.scala:506:{72,84}] wire _dataArb_io_in_0_valid_T_5 = _dataArb_io_in_0_valid_T_4 | pstore1_held; // @[DCache.scala:504:29, :506:{84,96}] wire _dataArb_io_in_0_valid_T_6 = ~pstore1_rmw; // @[DCache.scala:498:32, :518:44] wire _dataArb_io_in_0_valid_T_7 = _dataArb_io_in_0_valid_T_5 & _dataArb_io_in_0_valid_T_6; // @[DCache.scala:506:96, :518:{41,44}] wire _dataArb_io_in_0_valid_T_8 = _dataArb_io_in_0_valid_T_7 | pstore2_valid; // @[DCache.scala:501:30, :518:{41,58}] wire _dataArb_io_in_0_valid_T_10 = _dataArb_io_in_0_valid_T_8 & _dataArb_io_in_0_valid_T_9; // @[DCache.scala:518:{58,76,107}] wire _dataArb_io_in_0_valid_T_11 = _dataArb_io_in_0_valid_T_1 | _dataArb_io_in_0_valid_T_10; // @[DCache.scala:517:{17,44}, :518:76] assign _dataArb_io_in_0_valid_T_12 = _dataArb_io_in_0_valid_T_11; // @[DCache.scala:516:27, :517:44] assign dataArb_io_in_0_valid = _dataArb_io_in_0_valid_T_12; // @[DCache.scala:152:28, :516:27] wire [39:0] _GEN_101 = pstore2_valid ? pstore2_addr : pstore1_addr; // @[DCache.scala:493:31, :501:30, :524:31, :549:36] wire [39:0] _dataArb_io_in_0_bits_addr_T; // @[DCache.scala:549:36] assign _dataArb_io_in_0_bits_addr_T = _GEN_101; // @[DCache.scala:549:36] wire [39:0] _dataArb_io_in_0_bits_wordMask_wordMask_T; // @[DCache.scala:554:32] assign _dataArb_io_in_0_bits_wordMask_wordMask_T = _GEN_101; // @[DCache.scala:549:36, :554:32] assign dataArb_io_in_0_bits_addr = _dataArb_io_in_0_bits_addr_T[11:0]; // @[DCache.scala:152:28, :549:{30,36}] assign _dataArb_io_in_0_bits_way_en_T = pstore2_valid ? pstore2_way : pstore1_way; // @[DCache.scala:495:30, :501:30, :525:30, :550:38] assign dataArb_io_in_0_bits_way_en = _dataArb_io_in_0_bits_way_en_T; // @[DCache.scala:152:28, :550:38] wire [63:0] _dataArb_io_in_0_bits_wdata_T = pstore2_valid ? pstore2_storegen_data : pstore1_data; // @[package.scala:45:27] wire [7:0] _dataArb_io_in_0_bits_wdata_T_1 = _dataArb_io_in_0_bits_wdata_T[7:0]; // @[package.scala:211:50] wire [7:0] _dataArb_io_in_0_bits_wdata_T_2 = _dataArb_io_in_0_bits_wdata_T[15:8]; // @[package.scala:211:50] wire [7:0] _dataArb_io_in_0_bits_wdata_T_3 = _dataArb_io_in_0_bits_wdata_T[23:16]; // @[package.scala:211:50] wire [7:0] _dataArb_io_in_0_bits_wdata_T_4 = _dataArb_io_in_0_bits_wdata_T[31:24]; // @[package.scala:211:50] wire [7:0] _dataArb_io_in_0_bits_wdata_T_5 = _dataArb_io_in_0_bits_wdata_T[39:32]; // @[package.scala:211:50] wire [7:0] _dataArb_io_in_0_bits_wdata_T_6 = _dataArb_io_in_0_bits_wdata_T[47:40]; // @[package.scala:211:50] wire [7:0] _dataArb_io_in_0_bits_wdata_T_7 = _dataArb_io_in_0_bits_wdata_T[55:48]; // @[package.scala:211:50] wire [7:0] _dataArb_io_in_0_bits_wdata_T_8 = _dataArb_io_in_0_bits_wdata_T[63:56]; // @[package.scala:211:50] wire [15:0] dataArb_io_in_0_bits_wdata_lo_lo = {_dataArb_io_in_0_bits_wdata_T_2, _dataArb_io_in_0_bits_wdata_T_1}; // @[package.scala:45:27, :211:50] wire [15:0] dataArb_io_in_0_bits_wdata_lo_hi = {_dataArb_io_in_0_bits_wdata_T_4, _dataArb_io_in_0_bits_wdata_T_3}; // @[package.scala:45:27, :211:50] wire [31:0] dataArb_io_in_0_bits_wdata_lo = {dataArb_io_in_0_bits_wdata_lo_hi, dataArb_io_in_0_bits_wdata_lo_lo}; // @[package.scala:45:27] wire [15:0] dataArb_io_in_0_bits_wdata_hi_lo = {_dataArb_io_in_0_bits_wdata_T_6, _dataArb_io_in_0_bits_wdata_T_5}; // @[package.scala:45:27, :211:50] wire [15:0] dataArb_io_in_0_bits_wdata_hi_hi = {_dataArb_io_in_0_bits_wdata_T_8, _dataArb_io_in_0_bits_wdata_T_7}; // @[package.scala:45:27, :211:50] wire [31:0] dataArb_io_in_0_bits_wdata_hi = {dataArb_io_in_0_bits_wdata_hi_hi, dataArb_io_in_0_bits_wdata_hi_lo}; // @[package.scala:45:27] assign _dataArb_io_in_0_bits_wdata_T_9 = {dataArb_io_in_0_bits_wdata_hi, dataArb_io_in_0_bits_wdata_lo}; // @[package.scala:45:27] assign dataArb_io_in_0_bits_wdata = _dataArb_io_in_0_bits_wdata_T_9; // @[package.scala:45:27] wire _dataArb_io_in_0_bits_wordMask_eccMask_T = _dataArb_io_in_0_bits_eccMask_T_17[0]; // @[package.scala:45:27] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_1 = _dataArb_io_in_0_bits_eccMask_T_17[1]; // @[package.scala:45:27] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_2 = _dataArb_io_in_0_bits_eccMask_T_17[2]; // @[package.scala:45:27] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_3 = _dataArb_io_in_0_bits_eccMask_T_17[3]; // @[package.scala:45:27] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_4 = _dataArb_io_in_0_bits_eccMask_T_17[4]; // @[package.scala:45:27] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_5 = _dataArb_io_in_0_bits_eccMask_T_17[5]; // @[package.scala:45:27] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_6 = _dataArb_io_in_0_bits_eccMask_T_17[6]; // @[package.scala:45:27] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_7 = _dataArb_io_in_0_bits_eccMask_T_17[7]; // @[package.scala:45:27] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_8 = _dataArb_io_in_0_bits_wordMask_eccMask_T | _dataArb_io_in_0_bits_wordMask_eccMask_T_1; // @[package.scala:81:59] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_9 = _dataArb_io_in_0_bits_wordMask_eccMask_T_8 | _dataArb_io_in_0_bits_wordMask_eccMask_T_2; // @[package.scala:81:59] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_10 = _dataArb_io_in_0_bits_wordMask_eccMask_T_9 | _dataArb_io_in_0_bits_wordMask_eccMask_T_3; // @[package.scala:81:59] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_11 = _dataArb_io_in_0_bits_wordMask_eccMask_T_10 | _dataArb_io_in_0_bits_wordMask_eccMask_T_4; // @[package.scala:81:59] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_12 = _dataArb_io_in_0_bits_wordMask_eccMask_T_11 | _dataArb_io_in_0_bits_wordMask_eccMask_T_5; // @[package.scala:81:59] wire _dataArb_io_in_0_bits_wordMask_eccMask_T_13 = _dataArb_io_in_0_bits_wordMask_eccMask_T_12 | _dataArb_io_in_0_bits_wordMask_eccMask_T_6; // @[package.scala:81:59] wire dataArb_io_in_0_bits_wordMask_eccMask = _dataArb_io_in_0_bits_wordMask_eccMask_T_13 | _dataArb_io_in_0_bits_wordMask_eccMask_T_7; // @[package.scala:81:59] wire [1:0] _dataArb_io_in_0_bits_wordMask_T_3 = {1'h0, dataArb_io_in_0_bits_wordMask_eccMask}; // @[package.scala:81:59] assign dataArb_io_in_0_bits_wordMask = _dataArb_io_in_0_bits_wordMask_T_3[0]; // @[DCache.scala:152:28, :552:34, :555:55] wire [7:0] _dataArb_io_in_0_bits_eccMask_T = pstore2_valid ? pstore2_storegen_mask : pstore1_mask; // @[DCache.scala:496:31, :501:30, :531:19, :557:47] wire _dataArb_io_in_0_bits_eccMask_T_1 = _dataArb_io_in_0_bits_eccMask_T[0]; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_9 = _dataArb_io_in_0_bits_eccMask_T_1; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_2 = _dataArb_io_in_0_bits_eccMask_T[1]; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_10 = _dataArb_io_in_0_bits_eccMask_T_2; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_3 = _dataArb_io_in_0_bits_eccMask_T[2]; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_11 = _dataArb_io_in_0_bits_eccMask_T_3; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_4 = _dataArb_io_in_0_bits_eccMask_T[3]; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_12 = _dataArb_io_in_0_bits_eccMask_T_4; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_5 = _dataArb_io_in_0_bits_eccMask_T[4]; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_13 = _dataArb_io_in_0_bits_eccMask_T_5; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_6 = _dataArb_io_in_0_bits_eccMask_T[5]; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_14 = _dataArb_io_in_0_bits_eccMask_T_6; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_7 = _dataArb_io_in_0_bits_eccMask_T[6]; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_15 = _dataArb_io_in_0_bits_eccMask_T_7; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_8 = _dataArb_io_in_0_bits_eccMask_T[7]; // @[package.scala:211:50] wire _dataArb_io_in_0_bits_eccMask_T_16 = _dataArb_io_in_0_bits_eccMask_T_8; // @[package.scala:211:50] wire [1:0] dataArb_io_in_0_bits_eccMask_lo_lo = {_dataArb_io_in_0_bits_eccMask_T_10, _dataArb_io_in_0_bits_eccMask_T_9}; // @[package.scala:45:27] wire [1:0] dataArb_io_in_0_bits_eccMask_lo_hi = {_dataArb_io_in_0_bits_eccMask_T_12, _dataArb_io_in_0_bits_eccMask_T_11}; // @[package.scala:45:27] wire [3:0] dataArb_io_in_0_bits_eccMask_lo = {dataArb_io_in_0_bits_eccMask_lo_hi, dataArb_io_in_0_bits_eccMask_lo_lo}; // @[package.scala:45:27] wire [1:0] dataArb_io_in_0_bits_eccMask_hi_lo = {_dataArb_io_in_0_bits_eccMask_T_14, _dataArb_io_in_0_bits_eccMask_T_13}; // @[package.scala:45:27] wire [1:0] dataArb_io_in_0_bits_eccMask_hi_hi = {_dataArb_io_in_0_bits_eccMask_T_16, _dataArb_io_in_0_bits_eccMask_T_15}; // @[package.scala:45:27] wire [3:0] dataArb_io_in_0_bits_eccMask_hi = {dataArb_io_in_0_bits_eccMask_hi_hi, dataArb_io_in_0_bits_eccMask_hi_lo}; // @[package.scala:45:27] assign _dataArb_io_in_0_bits_eccMask_T_17 = {dataArb_io_in_0_bits_eccMask_hi, dataArb_io_in_0_bits_eccMask_lo}; // @[package.scala:45:27] assign dataArb_io_in_0_bits_eccMask = _dataArb_io_in_0_bits_eccMask_T_17; // @[package.scala:45:27] wire [8:0] _s1_hazard_T = pstore1_addr[11:3]; // @[DCache.scala:493:31, :561:9] wire [8:0] _s1_hazard_T_1 = s1_vaddr[11:3]; // @[DCache.scala:197:21, :561:43] wire [8:0] _s1_hazard_T_63 = s1_vaddr[11:3]; // @[DCache.scala:197:21, :561:43] wire _s1_hazard_T_2 = _s1_hazard_T == _s1_hazard_T_1; // @[DCache.scala:561:{9,31,43}] wire _s1_hazard_T_11 = _s1_hazard_T_3; // @[package.scala:211:50] wire _s1_hazard_T_12 = _s1_hazard_T_4; // @[package.scala:211:50] wire _s1_hazard_T_13 = _s1_hazard_T_5; // @[package.scala:211:50] wire _s1_hazard_T_14 = _s1_hazard_T_6; // @[package.scala:211:50] wire _s1_hazard_T_15 = _s1_hazard_T_7; // @[package.scala:211:50] wire _s1_hazard_T_16 = _s1_hazard_T_8; // @[package.scala:211:50] wire _s1_hazard_T_17 = _s1_hazard_T_9; // @[package.scala:211:50] wire _s1_hazard_T_18 = _s1_hazard_T_10; // @[package.scala:211:50] wire [1:0] s1_hazard_lo_lo = {_s1_hazard_T_12, _s1_hazard_T_11}; // @[package.scala:45:27] wire [1:0] s1_hazard_lo_hi = {_s1_hazard_T_14, _s1_hazard_T_13}; // @[package.scala:45:27] wire [3:0] s1_hazard_lo = {s1_hazard_lo_hi, s1_hazard_lo_lo}; // @[package.scala:45:27] wire [1:0] s1_hazard_hi_lo = {_s1_hazard_T_16, _s1_hazard_T_15}; // @[package.scala:45:27] wire [1:0] s1_hazard_hi_hi = {_s1_hazard_T_18, _s1_hazard_T_17}; // @[package.scala:45:27] wire [3:0] s1_hazard_hi = {s1_hazard_hi_hi, s1_hazard_hi_lo}; // @[package.scala:45:27] wire [7:0] _s1_hazard_T_19 = {s1_hazard_hi, s1_hazard_lo}; // @[package.scala:45:27] wire _s1_hazard_T_20 = _s1_hazard_T_19[0]; // @[package.scala:45:27] wire _s1_hazard_T_21 = _s1_hazard_T_19[1]; // @[package.scala:45:27] wire _s1_hazard_T_22 = _s1_hazard_T_19[2]; // @[package.scala:45:27] wire _s1_hazard_T_23 = _s1_hazard_T_19[3]; // @[package.scala:45:27] wire _s1_hazard_T_24 = _s1_hazard_T_19[4]; // @[package.scala:45:27] wire _s1_hazard_T_25 = _s1_hazard_T_19[5]; // @[package.scala:45:27] wire _s1_hazard_T_26 = _s1_hazard_T_19[6]; // @[package.scala:45:27] wire _s1_hazard_T_27 = _s1_hazard_T_19[7]; // @[package.scala:45:27] wire [1:0] s1_hazard_lo_lo_1 = {_s1_hazard_T_21, _s1_hazard_T_20}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_lo_hi_1 = {_s1_hazard_T_23, _s1_hazard_T_22}; // @[DCache.scala:1182:52] wire [3:0] s1_hazard_lo_1 = {s1_hazard_lo_hi_1, s1_hazard_lo_lo_1}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_hi_lo_1 = {_s1_hazard_T_25, _s1_hazard_T_24}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_hi_hi_1 = {_s1_hazard_T_27, _s1_hazard_T_26}; // @[DCache.scala:1182:52] wire [3:0] s1_hazard_hi_1 = {s1_hazard_hi_hi_1, s1_hazard_hi_lo_1}; // @[DCache.scala:1182:52] wire [7:0] _s1_hazard_T_28 = {s1_hazard_hi_1, s1_hazard_lo_1}; // @[DCache.scala:1182:52] wire _s1_hazard_T_29 = s1_mask_xwr[0]; // @[package.scala:211:50] wire _s1_hazard_T_91 = s1_mask_xwr[0]; // @[package.scala:211:50] wire _s1_hazard_T_37 = _s1_hazard_T_29; // @[package.scala:211:50] wire _s1_hazard_T_30 = s1_mask_xwr[1]; // @[package.scala:211:50] wire _s1_hazard_T_92 = s1_mask_xwr[1]; // @[package.scala:211:50] wire _s1_hazard_T_38 = _s1_hazard_T_30; // @[package.scala:211:50] wire _s1_hazard_T_31 = s1_mask_xwr[2]; // @[package.scala:211:50] wire _s1_hazard_T_93 = s1_mask_xwr[2]; // @[package.scala:211:50] wire _s1_hazard_T_39 = _s1_hazard_T_31; // @[package.scala:211:50] wire _s1_hazard_T_32 = s1_mask_xwr[3]; // @[package.scala:211:50] wire _s1_hazard_T_94 = s1_mask_xwr[3]; // @[package.scala:211:50] wire _s1_hazard_T_40 = _s1_hazard_T_32; // @[package.scala:211:50] wire _s1_hazard_T_33 = s1_mask_xwr[4]; // @[package.scala:211:50] wire _s1_hazard_T_95 = s1_mask_xwr[4]; // @[package.scala:211:50] wire _s1_hazard_T_41 = _s1_hazard_T_33; // @[package.scala:211:50] wire _s1_hazard_T_34 = s1_mask_xwr[5]; // @[package.scala:211:50] wire _s1_hazard_T_96 = s1_mask_xwr[5]; // @[package.scala:211:50] wire _s1_hazard_T_42 = _s1_hazard_T_34; // @[package.scala:211:50] wire _s1_hazard_T_35 = s1_mask_xwr[6]; // @[package.scala:211:50] wire _s1_hazard_T_97 = s1_mask_xwr[6]; // @[package.scala:211:50] wire _s1_hazard_T_43 = _s1_hazard_T_35; // @[package.scala:211:50] wire _s1_hazard_T_36 = s1_mask_xwr[7]; // @[package.scala:211:50] wire _s1_hazard_T_98 = s1_mask_xwr[7]; // @[package.scala:211:50] wire _s1_hazard_T_44 = _s1_hazard_T_36; // @[package.scala:211:50] wire [1:0] s1_hazard_lo_lo_2 = {_s1_hazard_T_38, _s1_hazard_T_37}; // @[package.scala:45:27] wire [1:0] s1_hazard_lo_hi_2 = {_s1_hazard_T_40, _s1_hazard_T_39}; // @[package.scala:45:27] wire [3:0] s1_hazard_lo_2 = {s1_hazard_lo_hi_2, s1_hazard_lo_lo_2}; // @[package.scala:45:27] wire [1:0] s1_hazard_hi_lo_2 = {_s1_hazard_T_42, _s1_hazard_T_41}; // @[package.scala:45:27] wire [1:0] s1_hazard_hi_hi_2 = {_s1_hazard_T_44, _s1_hazard_T_43}; // @[package.scala:45:27] wire [3:0] s1_hazard_hi_2 = {s1_hazard_hi_hi_2, s1_hazard_hi_lo_2}; // @[package.scala:45:27] wire [7:0] _s1_hazard_T_45 = {s1_hazard_hi_2, s1_hazard_lo_2}; // @[package.scala:45:27] wire _s1_hazard_T_46 = _s1_hazard_T_45[0]; // @[package.scala:45:27] wire _s1_hazard_T_47 = _s1_hazard_T_45[1]; // @[package.scala:45:27] wire _s1_hazard_T_48 = _s1_hazard_T_45[2]; // @[package.scala:45:27] wire _s1_hazard_T_49 = _s1_hazard_T_45[3]; // @[package.scala:45:27] wire _s1_hazard_T_50 = _s1_hazard_T_45[4]; // @[package.scala:45:27] wire _s1_hazard_T_51 = _s1_hazard_T_45[5]; // @[package.scala:45:27] wire _s1_hazard_T_52 = _s1_hazard_T_45[6]; // @[package.scala:45:27] wire _s1_hazard_T_53 = _s1_hazard_T_45[7]; // @[package.scala:45:27] wire [1:0] s1_hazard_lo_lo_3 = {_s1_hazard_T_47, _s1_hazard_T_46}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_lo_hi_3 = {_s1_hazard_T_49, _s1_hazard_T_48}; // @[DCache.scala:1182:52] wire [3:0] s1_hazard_lo_3 = {s1_hazard_lo_hi_3, s1_hazard_lo_lo_3}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_hi_lo_3 = {_s1_hazard_T_51, _s1_hazard_T_50}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_hi_hi_3 = {_s1_hazard_T_53, _s1_hazard_T_52}; // @[DCache.scala:1182:52] wire [3:0] s1_hazard_hi_3 = {s1_hazard_hi_hi_3, s1_hazard_hi_lo_3}; // @[DCache.scala:1182:52] wire [7:0] _s1_hazard_T_54 = {s1_hazard_hi_3, s1_hazard_lo_3}; // @[DCache.scala:1182:52] wire [7:0] _s1_hazard_T_55 = _s1_hazard_T_28 & _s1_hazard_T_54; // @[DCache.scala:562:38, :1182:52] wire _s1_hazard_T_56 = |_s1_hazard_T_55; // @[DCache.scala:562:{38,66}] wire [7:0] _s1_hazard_T_57 = pstore1_mask & s1_mask_xwr; // @[DCache.scala:496:31, :562:77] wire _s1_hazard_T_58 = |_s1_hazard_T_57; // @[DCache.scala:562:{77,92}] wire _s1_hazard_T_59 = s1_write ? _s1_hazard_T_56 : _s1_hazard_T_58; // @[DCache.scala:562:{8,66,92}] wire _s1_hazard_T_60 = _s1_hazard_T_2 & _s1_hazard_T_59; // @[DCache.scala:561:{31,65}, :562:8] wire _s1_hazard_T_61 = pstore1_valid_likely & _s1_hazard_T_60; // @[DCache.scala:505:51, :561:65, :564:27] wire [8:0] _s1_hazard_T_62 = pstore2_addr[11:3]; // @[DCache.scala:524:31, :561:9] wire _s1_hazard_T_64 = _s1_hazard_T_62 == _s1_hazard_T_63; // @[DCache.scala:561:{9,31,43}] wire _s1_hazard_T_65 = pstore2_storegen_mask[0]; // @[package.scala:211:50] wire _s1_hazard_T_73 = _s1_hazard_T_65; // @[package.scala:211:50] wire _s1_hazard_T_66 = pstore2_storegen_mask[1]; // @[package.scala:211:50] wire _s1_hazard_T_74 = _s1_hazard_T_66; // @[package.scala:211:50] wire _s1_hazard_T_67 = pstore2_storegen_mask[2]; // @[package.scala:211:50] wire _s1_hazard_T_75 = _s1_hazard_T_67; // @[package.scala:211:50] wire _s1_hazard_T_68 = pstore2_storegen_mask[3]; // @[package.scala:211:50] wire _s1_hazard_T_76 = _s1_hazard_T_68; // @[package.scala:211:50] wire _s1_hazard_T_69 = pstore2_storegen_mask[4]; // @[package.scala:211:50] wire _s1_hazard_T_77 = _s1_hazard_T_69; // @[package.scala:211:50] wire _s1_hazard_T_70 = pstore2_storegen_mask[5]; // @[package.scala:211:50] wire _s1_hazard_T_78 = _s1_hazard_T_70; // @[package.scala:211:50] wire _s1_hazard_T_71 = pstore2_storegen_mask[6]; // @[package.scala:211:50] wire _s1_hazard_T_79 = _s1_hazard_T_71; // @[package.scala:211:50] wire _s1_hazard_T_72 = pstore2_storegen_mask[7]; // @[package.scala:211:50] wire _s1_hazard_T_80 = _s1_hazard_T_72; // @[package.scala:211:50] wire [1:0] s1_hazard_lo_lo_4 = {_s1_hazard_T_74, _s1_hazard_T_73}; // @[package.scala:45:27] wire [1:0] s1_hazard_lo_hi_4 = {_s1_hazard_T_76, _s1_hazard_T_75}; // @[package.scala:45:27] wire [3:0] s1_hazard_lo_4 = {s1_hazard_lo_hi_4, s1_hazard_lo_lo_4}; // @[package.scala:45:27] wire [1:0] s1_hazard_hi_lo_4 = {_s1_hazard_T_78, _s1_hazard_T_77}; // @[package.scala:45:27] wire [1:0] s1_hazard_hi_hi_4 = {_s1_hazard_T_80, _s1_hazard_T_79}; // @[package.scala:45:27] wire [3:0] s1_hazard_hi_4 = {s1_hazard_hi_hi_4, s1_hazard_hi_lo_4}; // @[package.scala:45:27] wire [7:0] _s1_hazard_T_81 = {s1_hazard_hi_4, s1_hazard_lo_4}; // @[package.scala:45:27] wire _s1_hazard_T_82 = _s1_hazard_T_81[0]; // @[package.scala:45:27] wire _s1_hazard_T_83 = _s1_hazard_T_81[1]; // @[package.scala:45:27] wire _s1_hazard_T_84 = _s1_hazard_T_81[2]; // @[package.scala:45:27] wire _s1_hazard_T_85 = _s1_hazard_T_81[3]; // @[package.scala:45:27] wire _s1_hazard_T_86 = _s1_hazard_T_81[4]; // @[package.scala:45:27] wire _s1_hazard_T_87 = _s1_hazard_T_81[5]; // @[package.scala:45:27] wire _s1_hazard_T_88 = _s1_hazard_T_81[6]; // @[package.scala:45:27] wire _s1_hazard_T_89 = _s1_hazard_T_81[7]; // @[package.scala:45:27] wire [1:0] s1_hazard_lo_lo_5 = {_s1_hazard_T_83, _s1_hazard_T_82}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_lo_hi_5 = {_s1_hazard_T_85, _s1_hazard_T_84}; // @[DCache.scala:1182:52] wire [3:0] s1_hazard_lo_5 = {s1_hazard_lo_hi_5, s1_hazard_lo_lo_5}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_hi_lo_5 = {_s1_hazard_T_87, _s1_hazard_T_86}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_hi_hi_5 = {_s1_hazard_T_89, _s1_hazard_T_88}; // @[DCache.scala:1182:52] wire [3:0] s1_hazard_hi_5 = {s1_hazard_hi_hi_5, s1_hazard_hi_lo_5}; // @[DCache.scala:1182:52] wire [7:0] _s1_hazard_T_90 = {s1_hazard_hi_5, s1_hazard_lo_5}; // @[DCache.scala:1182:52] wire _s1_hazard_T_99 = _s1_hazard_T_91; // @[package.scala:211:50] wire _s1_hazard_T_100 = _s1_hazard_T_92; // @[package.scala:211:50] wire _s1_hazard_T_101 = _s1_hazard_T_93; // @[package.scala:211:50] wire _s1_hazard_T_102 = _s1_hazard_T_94; // @[package.scala:211:50] wire _s1_hazard_T_103 = _s1_hazard_T_95; // @[package.scala:211:50] wire _s1_hazard_T_104 = _s1_hazard_T_96; // @[package.scala:211:50] wire _s1_hazard_T_105 = _s1_hazard_T_97; // @[package.scala:211:50] wire _s1_hazard_T_106 = _s1_hazard_T_98; // @[package.scala:211:50] wire [1:0] s1_hazard_lo_lo_6 = {_s1_hazard_T_100, _s1_hazard_T_99}; // @[package.scala:45:27] wire [1:0] s1_hazard_lo_hi_6 = {_s1_hazard_T_102, _s1_hazard_T_101}; // @[package.scala:45:27] wire [3:0] s1_hazard_lo_6 = {s1_hazard_lo_hi_6, s1_hazard_lo_lo_6}; // @[package.scala:45:27] wire [1:0] s1_hazard_hi_lo_6 = {_s1_hazard_T_104, _s1_hazard_T_103}; // @[package.scala:45:27] wire [1:0] s1_hazard_hi_hi_6 = {_s1_hazard_T_106, _s1_hazard_T_105}; // @[package.scala:45:27] wire [3:0] s1_hazard_hi_6 = {s1_hazard_hi_hi_6, s1_hazard_hi_lo_6}; // @[package.scala:45:27] wire [7:0] _s1_hazard_T_107 = {s1_hazard_hi_6, s1_hazard_lo_6}; // @[package.scala:45:27] wire _s1_hazard_T_108 = _s1_hazard_T_107[0]; // @[package.scala:45:27] wire _s1_hazard_T_109 = _s1_hazard_T_107[1]; // @[package.scala:45:27] wire _s1_hazard_T_110 = _s1_hazard_T_107[2]; // @[package.scala:45:27] wire _s1_hazard_T_111 = _s1_hazard_T_107[3]; // @[package.scala:45:27] wire _s1_hazard_T_112 = _s1_hazard_T_107[4]; // @[package.scala:45:27] wire _s1_hazard_T_113 = _s1_hazard_T_107[5]; // @[package.scala:45:27] wire _s1_hazard_T_114 = _s1_hazard_T_107[6]; // @[package.scala:45:27] wire _s1_hazard_T_115 = _s1_hazard_T_107[7]; // @[package.scala:45:27] wire [1:0] s1_hazard_lo_lo_7 = {_s1_hazard_T_109, _s1_hazard_T_108}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_lo_hi_7 = {_s1_hazard_T_111, _s1_hazard_T_110}; // @[DCache.scala:1182:52] wire [3:0] s1_hazard_lo_7 = {s1_hazard_lo_hi_7, s1_hazard_lo_lo_7}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_hi_lo_7 = {_s1_hazard_T_113, _s1_hazard_T_112}; // @[DCache.scala:1182:52] wire [1:0] s1_hazard_hi_hi_7 = {_s1_hazard_T_115, _s1_hazard_T_114}; // @[DCache.scala:1182:52] wire [3:0] s1_hazard_hi_7 = {s1_hazard_hi_hi_7, s1_hazard_hi_lo_7}; // @[DCache.scala:1182:52] wire [7:0] _s1_hazard_T_116 = {s1_hazard_hi_7, s1_hazard_lo_7}; // @[DCache.scala:1182:52] wire [7:0] _s1_hazard_T_117 = _s1_hazard_T_90 & _s1_hazard_T_116; // @[DCache.scala:562:38, :1182:52] wire _s1_hazard_T_118 = |_s1_hazard_T_117; // @[DCache.scala:562:{38,66}] wire [7:0] _s1_hazard_T_119 = pstore2_storegen_mask & s1_mask_xwr; // @[DCache.scala:531:19, :562:77] wire _s1_hazard_T_120 = |_s1_hazard_T_119; // @[DCache.scala:562:{77,92}] wire _s1_hazard_T_121 = s1_write ? _s1_hazard_T_118 : _s1_hazard_T_120; // @[DCache.scala:562:{8,66,92}] wire _s1_hazard_T_122 = _s1_hazard_T_64 & _s1_hazard_T_121; // @[DCache.scala:561:{31,65}, :562:8] wire _s1_hazard_T_123 = pstore2_valid & _s1_hazard_T_122; // @[DCache.scala:501:30, :561:65, :565:21] wire s1_hazard = _s1_hazard_T_61 | _s1_hazard_T_123; // @[DCache.scala:564:{27,69}, :565:21] wire s1_raw_hazard = s1_read & s1_hazard; // @[DCache.scala:564:69, :566:31] wire _T_60 = s1_valid & s1_raw_hazard; // @[DCache.scala:182:25, :566:31, :571:18] reg io_cpu_s2_nack_cause_raw_REG; // @[DCache.scala:574:38] assign _io_cpu_s2_nack_cause_raw_T_3 = io_cpu_s2_nack_cause_raw_REG; // @[DCache.scala:574:{38,54}] assign io_cpu_s2_nack_cause_raw_0 = _io_cpu_s2_nack_cause_raw_T_3; // @[DCache.scala:101:7, :574:54] wire _a_source_T = ~uncachedInFlight_0; // @[DCache.scala:236:33, :577:34] wire [1:0] _a_source_T_1 = {_a_source_T, 1'h0}; // @[DCache.scala:577:{34,59}] wire _a_source_T_2 = _a_source_T_1[0]; // @[OneHot.scala:48:45] wire _a_source_T_3 = _a_source_T_1[1]; // @[OneHot.scala:48:45] wire a_source = ~_a_source_T_2; // @[OneHot.scala:48:45] wire get_source = a_source; // @[Mux.scala:50:70] wire put_source = a_source; // @[Mux.scala:50:70] wire putpartial_source = a_source; // @[Mux.scala:50:70] wire atomics_a_source = a_source; // @[Mux.scala:50:70] wire atomics_a_1_source = a_source; // @[Mux.scala:50:70] wire atomics_a_2_source = a_source; // @[Mux.scala:50:70] wire atomics_a_3_source = a_source; // @[Mux.scala:50:70] wire atomics_a_4_source = a_source; // @[Mux.scala:50:70] wire atomics_a_5_source = a_source; // @[Mux.scala:50:70] wire atomics_a_6_source = a_source; // @[Mux.scala:50:70] wire atomics_a_7_source = a_source; // @[Mux.scala:50:70] wire atomics_a_8_source = a_source; // @[Mux.scala:50:70] wire a_sel_shiftAmount = a_source; // @[OneHot.scala:64:49] wire [39:0] acquire_address = {_acquire_address_T, 6'h0}; // @[DCache.scala:578:{38,49}] wire [22:0] a_mask = {15'h0, pstore1_mask}; // @[DCache.scala:496:31, :582:29] wire [39:0] _GEN_102 = {s2_req_addr[39:14], s2_req_addr[13:0] ^ 14'h3000}; // @[DCache.scala:339:19] wire [39:0] _get_legal_T_4; // @[Parameters.scala:137:31] assign _get_legal_T_4 = _GEN_102; // @[Parameters.scala:137:31] wire [39:0] _put_legal_T_4; // @[Parameters.scala:137:31] assign _put_legal_T_4 = _GEN_102; // @[Parameters.scala:137:31] wire [39:0] _putpartial_legal_T_4; // @[Parameters.scala:137:31] assign _putpartial_legal_T_4 = _GEN_102; // @[Parameters.scala:137:31] wire [40:0] _get_legal_T_5 = {1'h0, _get_legal_T_4}; // @[Parameters.scala:137:{31,41}] wire [40:0] _get_legal_T_6 = _get_legal_T_5 & 41'h9A013000; // @[Parameters.scala:137:{41,46}] wire [40:0] _get_legal_T_7 = _get_legal_T_6; // @[Parameters.scala:137:46] wire _get_legal_T_8 = _get_legal_T_7 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _get_legal_T_9 = _get_legal_T_8; // @[Parameters.scala:684:54] wire _get_legal_T_62 = _get_legal_T_9; // @[Parameters.scala:684:54, :686:26] wire [40:0] _get_legal_T_15 = {1'h0, _get_legal_T_14}; // @[Parameters.scala:137:{31,41}] wire [40:0] _get_legal_T_16 = _get_legal_T_15 & 41'h9A012000; // @[Parameters.scala:137:{41,46}] wire [40:0] _get_legal_T_17 = _get_legal_T_16; // @[Parameters.scala:137:46] wire _get_legal_T_18 = _get_legal_T_17 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_103 = {s2_req_addr[39:17], s2_req_addr[16:0] ^ 17'h10000}; // @[DCache.scala:339:19] wire [39:0] _get_legal_T_19; // @[Parameters.scala:137:31] assign _get_legal_T_19 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _get_legal_T_24; // @[Parameters.scala:137:31] assign _get_legal_T_24 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _put_legal_T_63; // @[Parameters.scala:137:31] assign _put_legal_T_63 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _putpartial_legal_T_63; // @[Parameters.scala:137:31] assign _putpartial_legal_T_63 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_47; // @[Parameters.scala:137:31] assign _atomics_legal_T_47 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_101; // @[Parameters.scala:137:31] assign _atomics_legal_T_101 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_155; // @[Parameters.scala:137:31] assign _atomics_legal_T_155 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_209; // @[Parameters.scala:137:31] assign _atomics_legal_T_209 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_263; // @[Parameters.scala:137:31] assign _atomics_legal_T_263 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_317; // @[Parameters.scala:137:31] assign _atomics_legal_T_317 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_371; // @[Parameters.scala:137:31] assign _atomics_legal_T_371 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_425; // @[Parameters.scala:137:31] assign _atomics_legal_T_425 = _GEN_103; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_479; // @[Parameters.scala:137:31] assign _atomics_legal_T_479 = _GEN_103; // @[Parameters.scala:137:31] wire [40:0] _get_legal_T_20 = {1'h0, _get_legal_T_19}; // @[Parameters.scala:137:{31,41}] wire [40:0] _get_legal_T_21 = _get_legal_T_20 & 41'h98013000; // @[Parameters.scala:137:{41,46}] wire [40:0] _get_legal_T_22 = _get_legal_T_21; // @[Parameters.scala:137:46] wire _get_legal_T_23 = _get_legal_T_22 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _get_legal_T_25 = {1'h0, _get_legal_T_24}; // @[Parameters.scala:137:{31,41}] wire [40:0] _get_legal_T_26 = _get_legal_T_25 & 41'h9A010000; // @[Parameters.scala:137:{41,46}] wire [40:0] _get_legal_T_27 = _get_legal_T_26; // @[Parameters.scala:137:46] wire _get_legal_T_28 = _get_legal_T_27 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_104 = {s2_req_addr[39:26], s2_req_addr[25:0] ^ 26'h2000000}; // @[DCache.scala:339:19] wire [39:0] _get_legal_T_29; // @[Parameters.scala:137:31] assign _get_legal_T_29 = _GEN_104; // @[Parameters.scala:137:31] wire [39:0] _put_legal_T_24; // @[Parameters.scala:137:31] assign _put_legal_T_24 = _GEN_104; // @[Parameters.scala:137:31] wire [39:0] _putpartial_legal_T_24; // @[Parameters.scala:137:31] assign _putpartial_legal_T_24 = _GEN_104; // @[Parameters.scala:137:31] wire [40:0] _get_legal_T_30 = {1'h0, _get_legal_T_29}; // @[Parameters.scala:137:{31,41}] wire [40:0] _get_legal_T_31 = _get_legal_T_30 & 41'h9A010000; // @[Parameters.scala:137:{41,46}] wire [40:0] _get_legal_T_32 = _get_legal_T_31; // @[Parameters.scala:137:46] wire _get_legal_T_33 = _get_legal_T_32 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_105 = {s2_req_addr[39:28], s2_req_addr[27:0] ^ 28'h8000000}; // @[DCache.scala:339:19] wire [39:0] _get_legal_T_34; // @[Parameters.scala:137:31] assign _get_legal_T_34 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _get_legal_T_39; // @[Parameters.scala:137:31] assign _get_legal_T_39 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _put_legal_T_34; // @[Parameters.scala:137:31] assign _put_legal_T_34 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _put_legal_T_39; // @[Parameters.scala:137:31] assign _put_legal_T_39 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _putpartial_legal_T_34; // @[Parameters.scala:137:31] assign _putpartial_legal_T_34 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _putpartial_legal_T_39; // @[Parameters.scala:137:31] assign _putpartial_legal_T_39 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_19; // @[Parameters.scala:137:31] assign _atomics_legal_T_19 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_24; // @[Parameters.scala:137:31] assign _atomics_legal_T_24 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_73; // @[Parameters.scala:137:31] assign _atomics_legal_T_73 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_78; // @[Parameters.scala:137:31] assign _atomics_legal_T_78 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_127; // @[Parameters.scala:137:31] assign _atomics_legal_T_127 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_132; // @[Parameters.scala:137:31] assign _atomics_legal_T_132 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_181; // @[Parameters.scala:137:31] assign _atomics_legal_T_181 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_186; // @[Parameters.scala:137:31] assign _atomics_legal_T_186 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_235; // @[Parameters.scala:137:31] assign _atomics_legal_T_235 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_240; // @[Parameters.scala:137:31] assign _atomics_legal_T_240 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_289; // @[Parameters.scala:137:31] assign _atomics_legal_T_289 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_294; // @[Parameters.scala:137:31] assign _atomics_legal_T_294 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_343; // @[Parameters.scala:137:31] assign _atomics_legal_T_343 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_348; // @[Parameters.scala:137:31] assign _atomics_legal_T_348 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_397; // @[Parameters.scala:137:31] assign _atomics_legal_T_397 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_402; // @[Parameters.scala:137:31] assign _atomics_legal_T_402 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_451; // @[Parameters.scala:137:31] assign _atomics_legal_T_451 = _GEN_105; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_456; // @[Parameters.scala:137:31] assign _atomics_legal_T_456 = _GEN_105; // @[Parameters.scala:137:31] wire [40:0] _get_legal_T_35 = {1'h0, _get_legal_T_34}; // @[Parameters.scala:137:{31,41}] wire [40:0] _get_legal_T_36 = _get_legal_T_35 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _get_legal_T_37 = _get_legal_T_36; // @[Parameters.scala:137:46] wire _get_legal_T_38 = _get_legal_T_37 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _get_legal_T_40 = {1'h0, _get_legal_T_39}; // @[Parameters.scala:137:{31,41}] wire [40:0] _get_legal_T_41 = _get_legal_T_40 & 41'h9A010000; // @[Parameters.scala:137:{41,46}] wire [40:0] _get_legal_T_42 = _get_legal_T_41; // @[Parameters.scala:137:46] wire _get_legal_T_43 = _get_legal_T_42 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_106 = {s2_req_addr[39:29], s2_req_addr[28:0] ^ 29'h10000000}; // @[DCache.scala:339:19] wire [39:0] _get_legal_T_44; // @[Parameters.scala:137:31] assign _get_legal_T_44 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _put_legal_T_44; // @[Parameters.scala:137:31] assign _put_legal_T_44 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _putpartial_legal_T_44; // @[Parameters.scala:137:31] assign _putpartial_legal_T_44 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_29; // @[Parameters.scala:137:31] assign _atomics_legal_T_29 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_83; // @[Parameters.scala:137:31] assign _atomics_legal_T_83 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_137; // @[Parameters.scala:137:31] assign _atomics_legal_T_137 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_191; // @[Parameters.scala:137:31] assign _atomics_legal_T_191 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_245; // @[Parameters.scala:137:31] assign _atomics_legal_T_245 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_299; // @[Parameters.scala:137:31] assign _atomics_legal_T_299 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_353; // @[Parameters.scala:137:31] assign _atomics_legal_T_353 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_407; // @[Parameters.scala:137:31] assign _atomics_legal_T_407 = _GEN_106; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_461; // @[Parameters.scala:137:31] assign _atomics_legal_T_461 = _GEN_106; // @[Parameters.scala:137:31] wire [40:0] _get_legal_T_45 = {1'h0, _get_legal_T_44}; // @[Parameters.scala:137:{31,41}] wire [40:0] _get_legal_T_46 = _get_legal_T_45 & 41'h9A013000; // @[Parameters.scala:137:{41,46}] wire [40:0] _get_legal_T_47 = _get_legal_T_46; // @[Parameters.scala:137:46] wire _get_legal_T_48 = _get_legal_T_47 == 41'h0; // @[Parameters.scala:137:{46,59}] assign io_cpu_s2_paddr_0 = s2_req_addr[31:0]; // @[DCache.scala:101:7, :339:19] wire [31:0] get_address = s2_req_addr[31:0]; // @[Edges.scala:460:17] wire [31:0] put_address = s2_req_addr[31:0]; // @[Edges.scala:480:17] wire [31:0] putpartial_address = s2_req_addr[31:0]; // @[Edges.scala:500:17] wire [31:0] atomics_a_address = s2_req_addr[31:0]; // @[Edges.scala:534:17] wire [31:0] atomics_a_1_address = s2_req_addr[31:0]; // @[Edges.scala:534:17] wire [31:0] atomics_a_2_address = s2_req_addr[31:0]; // @[Edges.scala:534:17] wire [31:0] atomics_a_3_address = s2_req_addr[31:0]; // @[Edges.scala:534:17] wire [31:0] atomics_a_4_address = s2_req_addr[31:0]; // @[Edges.scala:517:17] wire [31:0] atomics_a_5_address = s2_req_addr[31:0]; // @[Edges.scala:517:17] wire [31:0] atomics_a_6_address = s2_req_addr[31:0]; // @[Edges.scala:517:17] wire [31:0] atomics_a_7_address = s2_req_addr[31:0]; // @[Edges.scala:517:17] wire [31:0] atomics_a_8_address = s2_req_addr[31:0]; // @[Edges.scala:517:17] wire [39:0] _GEN_107 = {s2_req_addr[39:32], s2_req_addr[31:0] ^ 32'h80000000}; // @[DCache.scala:339:19] wire [39:0] _get_legal_T_49; // @[Parameters.scala:137:31] assign _get_legal_T_49 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _put_legal_T_49; // @[Parameters.scala:137:31] assign _put_legal_T_49 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _putpartial_legal_T_49; // @[Parameters.scala:137:31] assign _putpartial_legal_T_49 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_34; // @[Parameters.scala:137:31] assign _atomics_legal_T_34 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_88; // @[Parameters.scala:137:31] assign _atomics_legal_T_88 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_142; // @[Parameters.scala:137:31] assign _atomics_legal_T_142 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_196; // @[Parameters.scala:137:31] assign _atomics_legal_T_196 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_250; // @[Parameters.scala:137:31] assign _atomics_legal_T_250 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_304; // @[Parameters.scala:137:31] assign _atomics_legal_T_304 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_358; // @[Parameters.scala:137:31] assign _atomics_legal_T_358 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_412; // @[Parameters.scala:137:31] assign _atomics_legal_T_412 = _GEN_107; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_466; // @[Parameters.scala:137:31] assign _atomics_legal_T_466 = _GEN_107; // @[Parameters.scala:137:31] wire [40:0] _get_legal_T_50 = {1'h0, _get_legal_T_49}; // @[Parameters.scala:137:{31,41}] wire [40:0] _get_legal_T_51 = _get_legal_T_50 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _get_legal_T_52 = _get_legal_T_51; // @[Parameters.scala:137:46] wire _get_legal_T_53 = _get_legal_T_52 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _get_legal_T_54 = _get_legal_T_18 | _get_legal_T_23; // @[Parameters.scala:685:42] wire _get_legal_T_55 = _get_legal_T_54 | _get_legal_T_28; // @[Parameters.scala:685:42] wire _get_legal_T_56 = _get_legal_T_55 | _get_legal_T_33; // @[Parameters.scala:685:42] wire _get_legal_T_57 = _get_legal_T_56 | _get_legal_T_38; // @[Parameters.scala:685:42] wire _get_legal_T_58 = _get_legal_T_57 | _get_legal_T_43; // @[Parameters.scala:685:42] wire _get_legal_T_59 = _get_legal_T_58 | _get_legal_T_48; // @[Parameters.scala:685:42] wire _get_legal_T_60 = _get_legal_T_59 | _get_legal_T_53; // @[Parameters.scala:685:42] wire _get_legal_T_61 = _get_legal_T_60; // @[Parameters.scala:684:54, :685:42] wire get_legal = _get_legal_T_62 | _get_legal_T_61; // @[Parameters.scala:684:54, :686:26] wire [7:0] _get_a_mask_T; // @[Misc.scala:222:10] wire [3:0] get_size; // @[Edges.scala:460:17] wire [7:0] get_mask; // @[Edges.scala:460:17] wire [3:0] _GEN_108 = {2'h0, s2_req_size}; // @[Edges.scala:463:15] assign get_size = _GEN_108; // @[Edges.scala:460:17, :463:15] wire [3:0] put_size; // @[Edges.scala:480:17] assign put_size = _GEN_108; // @[Edges.scala:463:15, :480:17] wire [3:0] putpartial_size; // @[Edges.scala:500:17] assign putpartial_size = _GEN_108; // @[Edges.scala:463:15, :500:17] wire [3:0] atomics_a_size; // @[Edges.scala:534:17] assign atomics_a_size = _GEN_108; // @[Edges.scala:463:15, :534:17] wire [3:0] atomics_a_1_size; // @[Edges.scala:534:17] assign atomics_a_1_size = _GEN_108; // @[Edges.scala:463:15, :534:17] wire [3:0] atomics_a_2_size; // @[Edges.scala:534:17] assign atomics_a_2_size = _GEN_108; // @[Edges.scala:463:15, :534:17] wire [3:0] atomics_a_3_size; // @[Edges.scala:534:17] assign atomics_a_3_size = _GEN_108; // @[Edges.scala:463:15, :534:17] wire [3:0] atomics_a_4_size; // @[Edges.scala:517:17] assign atomics_a_4_size = _GEN_108; // @[Edges.scala:463:15, :517:17] wire [3:0] atomics_a_5_size; // @[Edges.scala:517:17] assign atomics_a_5_size = _GEN_108; // @[Edges.scala:463:15, :517:17] wire [3:0] atomics_a_6_size; // @[Edges.scala:517:17] assign atomics_a_6_size = _GEN_108; // @[Edges.scala:463:15, :517:17] wire [3:0] atomics_a_7_size; // @[Edges.scala:517:17] assign atomics_a_7_size = _GEN_108; // @[Edges.scala:463:15, :517:17] wire [3:0] atomics_a_8_size; // @[Edges.scala:517:17] assign atomics_a_8_size = _GEN_108; // @[Edges.scala:463:15, :517:17] wire [2:0] _GEN_109 = {1'h0, s2_req_size}; // @[Misc.scala:202:34] wire [2:0] _get_a_mask_sizeOH_T; // @[Misc.scala:202:34] assign _get_a_mask_sizeOH_T = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _put_a_mask_sizeOH_T; // @[Misc.scala:202:34] assign _put_a_mask_sizeOH_T = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _atomics_a_mask_sizeOH_T; // @[Misc.scala:202:34] assign _atomics_a_mask_sizeOH_T = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _atomics_a_mask_sizeOH_T_3; // @[Misc.scala:202:34] assign _atomics_a_mask_sizeOH_T_3 = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _atomics_a_mask_sizeOH_T_6; // @[Misc.scala:202:34] assign _atomics_a_mask_sizeOH_T_6 = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _atomics_a_mask_sizeOH_T_9; // @[Misc.scala:202:34] assign _atomics_a_mask_sizeOH_T_9 = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _atomics_a_mask_sizeOH_T_12; // @[Misc.scala:202:34] assign _atomics_a_mask_sizeOH_T_12 = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _atomics_a_mask_sizeOH_T_15; // @[Misc.scala:202:34] assign _atomics_a_mask_sizeOH_T_15 = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _atomics_a_mask_sizeOH_T_18; // @[Misc.scala:202:34] assign _atomics_a_mask_sizeOH_T_18 = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _atomics_a_mask_sizeOH_T_21; // @[Misc.scala:202:34] assign _atomics_a_mask_sizeOH_T_21 = _GEN_109; // @[Misc.scala:202:34] wire [2:0] _atomics_a_mask_sizeOH_T_24; // @[Misc.scala:202:34] assign _atomics_a_mask_sizeOH_T_24 = _GEN_109; // @[Misc.scala:202:34] wire [1:0] get_a_mask_sizeOH_shiftAmount = _get_a_mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _get_a_mask_sizeOH_T_1 = 4'h1 << get_a_mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _get_a_mask_sizeOH_T_2 = _get_a_mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] get_a_mask_sizeOH = {_get_a_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire get_a_mask_sub_sub_sub_0_1 = &s2_req_size; // @[Misc.scala:206:21] wire get_a_mask_sub_sub_size = get_a_mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire get_a_mask_sub_sub_bit = s2_req_addr[2]; // @[Misc.scala:210:26] wire put_a_mask_sub_sub_bit = s2_req_addr[2]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_sub_bit = s2_req_addr[2]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_sub_bit_1 = s2_req_addr[2]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_sub_bit_2 = s2_req_addr[2]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_sub_bit_3 = s2_req_addr[2]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_sub_bit_4 = s2_req_addr[2]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_sub_bit_5 = s2_req_addr[2]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_sub_bit_6 = s2_req_addr[2]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_sub_bit_7 = s2_req_addr[2]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_sub_bit_8 = s2_req_addr[2]; // @[Misc.scala:210:26] wire _io_cpu_resp_bits_data_shifted_T = s2_req_addr[2]; // @[Misc.scala:210:26] wire _io_cpu_resp_bits_data_word_bypass_shifted_T = s2_req_addr[2]; // @[Misc.scala:210:26] wire get_a_mask_sub_sub_1_2 = get_a_mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire get_a_mask_sub_sub_nbit = ~get_a_mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire get_a_mask_sub_sub_0_2 = get_a_mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _get_a_mask_sub_sub_acc_T = get_a_mask_sub_sub_size & get_a_mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_sub_sub_0_1 = get_a_mask_sub_sub_sub_0_1 | _get_a_mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _get_a_mask_sub_sub_acc_T_1 = get_a_mask_sub_sub_size & get_a_mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_sub_sub_1_1 = get_a_mask_sub_sub_sub_0_1 | _get_a_mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire get_a_mask_sub_size = get_a_mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire get_a_mask_sub_bit = s2_req_addr[1]; // @[Misc.scala:210:26] wire put_a_mask_sub_bit = s2_req_addr[1]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_bit = s2_req_addr[1]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_bit_1 = s2_req_addr[1]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_bit_2 = s2_req_addr[1]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_bit_3 = s2_req_addr[1]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_bit_4 = s2_req_addr[1]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_bit_5 = s2_req_addr[1]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_bit_6 = s2_req_addr[1]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_bit_7 = s2_req_addr[1]; // @[Misc.scala:210:26] wire atomics_a_mask_sub_bit_8 = s2_req_addr[1]; // @[Misc.scala:210:26] wire _io_cpu_resp_bits_data_shifted_T_3 = s2_req_addr[1]; // @[Misc.scala:210:26] wire get_a_mask_sub_nbit = ~get_a_mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire get_a_mask_sub_0_2 = get_a_mask_sub_sub_0_2 & get_a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _get_a_mask_sub_acc_T = get_a_mask_sub_size & get_a_mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_sub_0_1 = get_a_mask_sub_sub_0_1 | _get_a_mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire get_a_mask_sub_1_2 = get_a_mask_sub_sub_0_2 & get_a_mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _get_a_mask_sub_acc_T_1 = get_a_mask_sub_size & get_a_mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_sub_1_1 = get_a_mask_sub_sub_0_1 | _get_a_mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire get_a_mask_sub_2_2 = get_a_mask_sub_sub_1_2 & get_a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _get_a_mask_sub_acc_T_2 = get_a_mask_sub_size & get_a_mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_sub_2_1 = get_a_mask_sub_sub_1_1 | _get_a_mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire get_a_mask_sub_3_2 = get_a_mask_sub_sub_1_2 & get_a_mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _get_a_mask_sub_acc_T_3 = get_a_mask_sub_size & get_a_mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_sub_3_1 = get_a_mask_sub_sub_1_1 | _get_a_mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire get_a_mask_size = get_a_mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire get_a_mask_bit = s2_req_addr[0]; // @[Misc.scala:210:26] wire put_a_mask_bit = s2_req_addr[0]; // @[Misc.scala:210:26] wire atomics_a_mask_bit = s2_req_addr[0]; // @[Misc.scala:210:26] wire atomics_a_mask_bit_1 = s2_req_addr[0]; // @[Misc.scala:210:26] wire atomics_a_mask_bit_2 = s2_req_addr[0]; // @[Misc.scala:210:26] wire atomics_a_mask_bit_3 = s2_req_addr[0]; // @[Misc.scala:210:26] wire atomics_a_mask_bit_4 = s2_req_addr[0]; // @[Misc.scala:210:26] wire atomics_a_mask_bit_5 = s2_req_addr[0]; // @[Misc.scala:210:26] wire atomics_a_mask_bit_6 = s2_req_addr[0]; // @[Misc.scala:210:26] wire atomics_a_mask_bit_7 = s2_req_addr[0]; // @[Misc.scala:210:26] wire atomics_a_mask_bit_8 = s2_req_addr[0]; // @[Misc.scala:210:26] wire _io_cpu_resp_bits_data_shifted_T_6 = s2_req_addr[0]; // @[Misc.scala:210:26] wire get_a_mask_nbit = ~get_a_mask_bit; // @[Misc.scala:210:26, :211:20] wire get_a_mask_eq = get_a_mask_sub_0_2 & get_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _get_a_mask_acc_T = get_a_mask_size & get_a_mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_acc = get_a_mask_sub_0_1 | _get_a_mask_acc_T; // @[Misc.scala:215:{29,38}] wire get_a_mask_eq_1 = get_a_mask_sub_0_2 & get_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _get_a_mask_acc_T_1 = get_a_mask_size & get_a_mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_acc_1 = get_a_mask_sub_0_1 | _get_a_mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire get_a_mask_eq_2 = get_a_mask_sub_1_2 & get_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _get_a_mask_acc_T_2 = get_a_mask_size & get_a_mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_acc_2 = get_a_mask_sub_1_1 | _get_a_mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire get_a_mask_eq_3 = get_a_mask_sub_1_2 & get_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _get_a_mask_acc_T_3 = get_a_mask_size & get_a_mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_acc_3 = get_a_mask_sub_1_1 | _get_a_mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire get_a_mask_eq_4 = get_a_mask_sub_2_2 & get_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _get_a_mask_acc_T_4 = get_a_mask_size & get_a_mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_acc_4 = get_a_mask_sub_2_1 | _get_a_mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire get_a_mask_eq_5 = get_a_mask_sub_2_2 & get_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _get_a_mask_acc_T_5 = get_a_mask_size & get_a_mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_acc_5 = get_a_mask_sub_2_1 | _get_a_mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire get_a_mask_eq_6 = get_a_mask_sub_3_2 & get_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _get_a_mask_acc_T_6 = get_a_mask_size & get_a_mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_acc_6 = get_a_mask_sub_3_1 | _get_a_mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire get_a_mask_eq_7 = get_a_mask_sub_3_2 & get_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _get_a_mask_acc_T_7 = get_a_mask_size & get_a_mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire get_a_mask_acc_7 = get_a_mask_sub_3_1 | _get_a_mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] get_a_mask_lo_lo = {get_a_mask_acc_1, get_a_mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] get_a_mask_lo_hi = {get_a_mask_acc_3, get_a_mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] get_a_mask_lo = {get_a_mask_lo_hi, get_a_mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] get_a_mask_hi_lo = {get_a_mask_acc_5, get_a_mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] get_a_mask_hi_hi = {get_a_mask_acc_7, get_a_mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] get_a_mask_hi = {get_a_mask_hi_hi, get_a_mask_hi_lo}; // @[Misc.scala:222:10] assign _get_a_mask_T = {get_a_mask_hi, get_a_mask_lo}; // @[Misc.scala:222:10] assign get_mask = _get_a_mask_T; // @[Misc.scala:222:10] wire [40:0] _put_legal_T_5 = {1'h0, _put_legal_T_4}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_6 = _put_legal_T_5 & 41'h9A113000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_7 = _put_legal_T_6; // @[Parameters.scala:137:46] wire _put_legal_T_8 = _put_legal_T_7 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _put_legal_T_9 = _put_legal_T_8; // @[Parameters.scala:684:54] wire _put_legal_T_69 = _put_legal_T_9; // @[Parameters.scala:684:54, :686:26] wire [40:0] _put_legal_T_15 = {1'h0, _put_legal_T_14}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_16 = _put_legal_T_15 & 41'h9A112000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_17 = _put_legal_T_16; // @[Parameters.scala:137:46] wire _put_legal_T_18 = _put_legal_T_17 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_110 = {s2_req_addr[39:21], s2_req_addr[20:0] ^ 21'h100000}; // @[DCache.scala:339:19] wire [39:0] _put_legal_T_19; // @[Parameters.scala:137:31] assign _put_legal_T_19 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _putpartial_legal_T_19; // @[Parameters.scala:137:31] assign _putpartial_legal_T_19 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_9; // @[Parameters.scala:137:31] assign _atomics_legal_T_9 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_63; // @[Parameters.scala:137:31] assign _atomics_legal_T_63 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_117; // @[Parameters.scala:137:31] assign _atomics_legal_T_117 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_171; // @[Parameters.scala:137:31] assign _atomics_legal_T_171 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_225; // @[Parameters.scala:137:31] assign _atomics_legal_T_225 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_279; // @[Parameters.scala:137:31] assign _atomics_legal_T_279 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_333; // @[Parameters.scala:137:31] assign _atomics_legal_T_333 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_387; // @[Parameters.scala:137:31] assign _atomics_legal_T_387 = _GEN_110; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_441; // @[Parameters.scala:137:31] assign _atomics_legal_T_441 = _GEN_110; // @[Parameters.scala:137:31] wire [40:0] _put_legal_T_20 = {1'h0, _put_legal_T_19}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_21 = _put_legal_T_20 & 41'h9A103000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_22 = _put_legal_T_21; // @[Parameters.scala:137:46] wire _put_legal_T_23 = _put_legal_T_22 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _put_legal_T_25 = {1'h0, _put_legal_T_24}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_26 = _put_legal_T_25 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_27 = _put_legal_T_26; // @[Parameters.scala:137:46] wire _put_legal_T_28 = _put_legal_T_27 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _GEN_111 = {s2_req_addr[39:26], s2_req_addr[25:0] ^ 26'h2010000}; // @[DCache.scala:339:19] wire [39:0] _put_legal_T_29; // @[Parameters.scala:137:31] assign _put_legal_T_29 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _putpartial_legal_T_29; // @[Parameters.scala:137:31] assign _putpartial_legal_T_29 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_14; // @[Parameters.scala:137:31] assign _atomics_legal_T_14 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_68; // @[Parameters.scala:137:31] assign _atomics_legal_T_68 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_122; // @[Parameters.scala:137:31] assign _atomics_legal_T_122 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_176; // @[Parameters.scala:137:31] assign _atomics_legal_T_176 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_230; // @[Parameters.scala:137:31] assign _atomics_legal_T_230 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_284; // @[Parameters.scala:137:31] assign _atomics_legal_T_284 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_338; // @[Parameters.scala:137:31] assign _atomics_legal_T_338 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_392; // @[Parameters.scala:137:31] assign _atomics_legal_T_392 = _GEN_111; // @[Parameters.scala:137:31] wire [39:0] _atomics_legal_T_446; // @[Parameters.scala:137:31] assign _atomics_legal_T_446 = _GEN_111; // @[Parameters.scala:137:31] wire [40:0] _put_legal_T_30 = {1'h0, _put_legal_T_29}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_31 = _put_legal_T_30 & 41'h9A113000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_32 = _put_legal_T_31; // @[Parameters.scala:137:46] wire _put_legal_T_33 = _put_legal_T_32 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _put_legal_T_35 = {1'h0, _put_legal_T_34}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_36 = _put_legal_T_35 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_37 = _put_legal_T_36; // @[Parameters.scala:137:46] wire _put_legal_T_38 = _put_legal_T_37 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _put_legal_T_40 = {1'h0, _put_legal_T_39}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_41 = _put_legal_T_40 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_42 = _put_legal_T_41; // @[Parameters.scala:137:46] wire _put_legal_T_43 = _put_legal_T_42 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _put_legal_T_45 = {1'h0, _put_legal_T_44}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_46 = _put_legal_T_45 & 41'h9A113000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_47 = _put_legal_T_46; // @[Parameters.scala:137:46] wire _put_legal_T_48 = _put_legal_T_47 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _put_legal_T_50 = {1'h0, _put_legal_T_49}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_51 = _put_legal_T_50 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_52 = _put_legal_T_51; // @[Parameters.scala:137:46] wire _put_legal_T_53 = _put_legal_T_52 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _put_legal_T_54 = _put_legal_T_18 | _put_legal_T_23; // @[Parameters.scala:685:42] wire _put_legal_T_55 = _put_legal_T_54 | _put_legal_T_28; // @[Parameters.scala:685:42] wire _put_legal_T_56 = _put_legal_T_55 | _put_legal_T_33; // @[Parameters.scala:685:42] wire _put_legal_T_57 = _put_legal_T_56 | _put_legal_T_38; // @[Parameters.scala:685:42] wire _put_legal_T_58 = _put_legal_T_57 | _put_legal_T_43; // @[Parameters.scala:685:42] wire _put_legal_T_59 = _put_legal_T_58 | _put_legal_T_48; // @[Parameters.scala:685:42] wire _put_legal_T_60 = _put_legal_T_59 | _put_legal_T_53; // @[Parameters.scala:685:42] wire _put_legal_T_61 = _put_legal_T_60; // @[Parameters.scala:684:54, :685:42] wire [40:0] _put_legal_T_64 = {1'h0, _put_legal_T_63}; // @[Parameters.scala:137:{31,41}] wire [40:0] _put_legal_T_65 = _put_legal_T_64 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _put_legal_T_66 = _put_legal_T_65; // @[Parameters.scala:137:46] wire _put_legal_T_67 = _put_legal_T_66 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _put_legal_T_70 = _put_legal_T_69 | _put_legal_T_61; // @[Parameters.scala:684:54, :686:26] wire put_legal = _put_legal_T_70; // @[Parameters.scala:686:26] wire [7:0] _put_a_mask_T; // @[Misc.scala:222:10] wire [7:0] put_mask; // @[Edges.scala:480:17] wire [1:0] put_a_mask_sizeOH_shiftAmount = _put_a_mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _put_a_mask_sizeOH_T_1 = 4'h1 << put_a_mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _put_a_mask_sizeOH_T_2 = _put_a_mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] put_a_mask_sizeOH = {_put_a_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire put_a_mask_sub_sub_sub_0_1 = &s2_req_size; // @[Misc.scala:206:21] wire put_a_mask_sub_sub_size = put_a_mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire put_a_mask_sub_sub_1_2 = put_a_mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire put_a_mask_sub_sub_nbit = ~put_a_mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire put_a_mask_sub_sub_0_2 = put_a_mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _put_a_mask_sub_sub_acc_T = put_a_mask_sub_sub_size & put_a_mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_sub_sub_0_1 = put_a_mask_sub_sub_sub_0_1 | _put_a_mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _put_a_mask_sub_sub_acc_T_1 = put_a_mask_sub_sub_size & put_a_mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_sub_sub_1_1 = put_a_mask_sub_sub_sub_0_1 | _put_a_mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire put_a_mask_sub_size = put_a_mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire put_a_mask_sub_nbit = ~put_a_mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire put_a_mask_sub_0_2 = put_a_mask_sub_sub_0_2 & put_a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _put_a_mask_sub_acc_T = put_a_mask_sub_size & put_a_mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_sub_0_1 = put_a_mask_sub_sub_0_1 | _put_a_mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire put_a_mask_sub_1_2 = put_a_mask_sub_sub_0_2 & put_a_mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _put_a_mask_sub_acc_T_1 = put_a_mask_sub_size & put_a_mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_sub_1_1 = put_a_mask_sub_sub_0_1 | _put_a_mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire put_a_mask_sub_2_2 = put_a_mask_sub_sub_1_2 & put_a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _put_a_mask_sub_acc_T_2 = put_a_mask_sub_size & put_a_mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_sub_2_1 = put_a_mask_sub_sub_1_1 | _put_a_mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire put_a_mask_sub_3_2 = put_a_mask_sub_sub_1_2 & put_a_mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _put_a_mask_sub_acc_T_3 = put_a_mask_sub_size & put_a_mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_sub_3_1 = put_a_mask_sub_sub_1_1 | _put_a_mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire put_a_mask_size = put_a_mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire put_a_mask_nbit = ~put_a_mask_bit; // @[Misc.scala:210:26, :211:20] wire put_a_mask_eq = put_a_mask_sub_0_2 & put_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _put_a_mask_acc_T = put_a_mask_size & put_a_mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_acc = put_a_mask_sub_0_1 | _put_a_mask_acc_T; // @[Misc.scala:215:{29,38}] wire put_a_mask_eq_1 = put_a_mask_sub_0_2 & put_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _put_a_mask_acc_T_1 = put_a_mask_size & put_a_mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_acc_1 = put_a_mask_sub_0_1 | _put_a_mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire put_a_mask_eq_2 = put_a_mask_sub_1_2 & put_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _put_a_mask_acc_T_2 = put_a_mask_size & put_a_mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_acc_2 = put_a_mask_sub_1_1 | _put_a_mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire put_a_mask_eq_3 = put_a_mask_sub_1_2 & put_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _put_a_mask_acc_T_3 = put_a_mask_size & put_a_mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_acc_3 = put_a_mask_sub_1_1 | _put_a_mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire put_a_mask_eq_4 = put_a_mask_sub_2_2 & put_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _put_a_mask_acc_T_4 = put_a_mask_size & put_a_mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_acc_4 = put_a_mask_sub_2_1 | _put_a_mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire put_a_mask_eq_5 = put_a_mask_sub_2_2 & put_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _put_a_mask_acc_T_5 = put_a_mask_size & put_a_mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_acc_5 = put_a_mask_sub_2_1 | _put_a_mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire put_a_mask_eq_6 = put_a_mask_sub_3_2 & put_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _put_a_mask_acc_T_6 = put_a_mask_size & put_a_mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_acc_6 = put_a_mask_sub_3_1 | _put_a_mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire put_a_mask_eq_7 = put_a_mask_sub_3_2 & put_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _put_a_mask_acc_T_7 = put_a_mask_size & put_a_mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire put_a_mask_acc_7 = put_a_mask_sub_3_1 | _put_a_mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] put_a_mask_lo_lo = {put_a_mask_acc_1, put_a_mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] put_a_mask_lo_hi = {put_a_mask_acc_3, put_a_mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] put_a_mask_lo = {put_a_mask_lo_hi, put_a_mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] put_a_mask_hi_lo = {put_a_mask_acc_5, put_a_mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] put_a_mask_hi_hi = {put_a_mask_acc_7, put_a_mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] put_a_mask_hi = {put_a_mask_hi_hi, put_a_mask_hi_lo}; // @[Misc.scala:222:10] assign _put_a_mask_T = {put_a_mask_hi, put_a_mask_lo}; // @[Misc.scala:222:10] assign put_mask = _put_a_mask_T; // @[Misc.scala:222:10] wire [40:0] _putpartial_legal_T_5 = {1'h0, _putpartial_legal_T_4}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_6 = _putpartial_legal_T_5 & 41'h9A113000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_7 = _putpartial_legal_T_6; // @[Parameters.scala:137:46] wire _putpartial_legal_T_8 = _putpartial_legal_T_7 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _putpartial_legal_T_9 = _putpartial_legal_T_8; // @[Parameters.scala:684:54] wire _putpartial_legal_T_69 = _putpartial_legal_T_9; // @[Parameters.scala:684:54, :686:26] wire [40:0] _putpartial_legal_T_15 = {1'h0, _putpartial_legal_T_14}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_16 = _putpartial_legal_T_15 & 41'h9A112000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_17 = _putpartial_legal_T_16; // @[Parameters.scala:137:46] wire _putpartial_legal_T_18 = _putpartial_legal_T_17 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _putpartial_legal_T_20 = {1'h0, _putpartial_legal_T_19}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_21 = _putpartial_legal_T_20 & 41'h9A103000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_22 = _putpartial_legal_T_21; // @[Parameters.scala:137:46] wire _putpartial_legal_T_23 = _putpartial_legal_T_22 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _putpartial_legal_T_25 = {1'h0, _putpartial_legal_T_24}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_26 = _putpartial_legal_T_25 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_27 = _putpartial_legal_T_26; // @[Parameters.scala:137:46] wire _putpartial_legal_T_28 = _putpartial_legal_T_27 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _putpartial_legal_T_30 = {1'h0, _putpartial_legal_T_29}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_31 = _putpartial_legal_T_30 & 41'h9A113000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_32 = _putpartial_legal_T_31; // @[Parameters.scala:137:46] wire _putpartial_legal_T_33 = _putpartial_legal_T_32 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _putpartial_legal_T_35 = {1'h0, _putpartial_legal_T_34}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_36 = _putpartial_legal_T_35 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_37 = _putpartial_legal_T_36; // @[Parameters.scala:137:46] wire _putpartial_legal_T_38 = _putpartial_legal_T_37 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _putpartial_legal_T_40 = {1'h0, _putpartial_legal_T_39}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_41 = _putpartial_legal_T_40 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_42 = _putpartial_legal_T_41; // @[Parameters.scala:137:46] wire _putpartial_legal_T_43 = _putpartial_legal_T_42 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _putpartial_legal_T_45 = {1'h0, _putpartial_legal_T_44}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_46 = _putpartial_legal_T_45 & 41'h9A113000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_47 = _putpartial_legal_T_46; // @[Parameters.scala:137:46] wire _putpartial_legal_T_48 = _putpartial_legal_T_47 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _putpartial_legal_T_50 = {1'h0, _putpartial_legal_T_49}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_51 = _putpartial_legal_T_50 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_52 = _putpartial_legal_T_51; // @[Parameters.scala:137:46] wire _putpartial_legal_T_53 = _putpartial_legal_T_52 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _putpartial_legal_T_54 = _putpartial_legal_T_18 | _putpartial_legal_T_23; // @[Parameters.scala:685:42] wire _putpartial_legal_T_55 = _putpartial_legal_T_54 | _putpartial_legal_T_28; // @[Parameters.scala:685:42] wire _putpartial_legal_T_56 = _putpartial_legal_T_55 | _putpartial_legal_T_33; // @[Parameters.scala:685:42] wire _putpartial_legal_T_57 = _putpartial_legal_T_56 | _putpartial_legal_T_38; // @[Parameters.scala:685:42] wire _putpartial_legal_T_58 = _putpartial_legal_T_57 | _putpartial_legal_T_43; // @[Parameters.scala:685:42] wire _putpartial_legal_T_59 = _putpartial_legal_T_58 | _putpartial_legal_T_48; // @[Parameters.scala:685:42] wire _putpartial_legal_T_60 = _putpartial_legal_T_59 | _putpartial_legal_T_53; // @[Parameters.scala:685:42] wire _putpartial_legal_T_61 = _putpartial_legal_T_60; // @[Parameters.scala:684:54, :685:42] wire [40:0] _putpartial_legal_T_64 = {1'h0, _putpartial_legal_T_63}; // @[Parameters.scala:137:{31,41}] wire [40:0] _putpartial_legal_T_65 = _putpartial_legal_T_64 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _putpartial_legal_T_66 = _putpartial_legal_T_65; // @[Parameters.scala:137:46] wire _putpartial_legal_T_67 = _putpartial_legal_T_66 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _putpartial_legal_T_70 = _putpartial_legal_T_69 | _putpartial_legal_T_61; // @[Parameters.scala:684:54, :686:26] wire putpartial_legal = _putpartial_legal_T_70; // @[Parameters.scala:686:26] wire [7:0] putpartial_mask; // @[Edges.scala:500:17] assign putpartial_mask = a_mask[7:0]; // @[Edges.scala:500:17, :508:15] wire [40:0] _atomics_legal_T_5 = {1'h0, _atomics_legal_T_4}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_6 = _atomics_legal_T_5 & 41'h98110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_7 = _atomics_legal_T_6; // @[Parameters.scala:137:46] wire _atomics_legal_T_8 = _atomics_legal_T_7 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_10 = {1'h0, _atomics_legal_T_9}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_11 = _atomics_legal_T_10 & 41'h9A101000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_12 = _atomics_legal_T_11; // @[Parameters.scala:137:46] wire _atomics_legal_T_13 = _atomics_legal_T_12 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_15 = {1'h0, _atomics_legal_T_14}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_16 = _atomics_legal_T_15 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_17 = _atomics_legal_T_16; // @[Parameters.scala:137:46] wire _atomics_legal_T_18 = _atomics_legal_T_17 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_20 = {1'h0, _atomics_legal_T_19}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_21 = _atomics_legal_T_20 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_22 = _atomics_legal_T_21; // @[Parameters.scala:137:46] wire _atomics_legal_T_23 = _atomics_legal_T_22 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_25 = {1'h0, _atomics_legal_T_24}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_26 = _atomics_legal_T_25 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_27 = _atomics_legal_T_26; // @[Parameters.scala:137:46] wire _atomics_legal_T_28 = _atomics_legal_T_27 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_30 = {1'h0, _atomics_legal_T_29}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_31 = _atomics_legal_T_30 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_32 = _atomics_legal_T_31; // @[Parameters.scala:137:46] wire _atomics_legal_T_33 = _atomics_legal_T_32 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_35 = {1'h0, _atomics_legal_T_34}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_36 = _atomics_legal_T_35 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_37 = _atomics_legal_T_36; // @[Parameters.scala:137:46] wire _atomics_legal_T_38 = _atomics_legal_T_37 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _atomics_legal_T_39 = _atomics_legal_T_8 | _atomics_legal_T_13; // @[Parameters.scala:685:42] wire _atomics_legal_T_40 = _atomics_legal_T_39 | _atomics_legal_T_18; // @[Parameters.scala:685:42] wire _atomics_legal_T_41 = _atomics_legal_T_40 | _atomics_legal_T_23; // @[Parameters.scala:685:42] wire _atomics_legal_T_42 = _atomics_legal_T_41 | _atomics_legal_T_28; // @[Parameters.scala:685:42] wire _atomics_legal_T_43 = _atomics_legal_T_42 | _atomics_legal_T_33; // @[Parameters.scala:685:42] wire _atomics_legal_T_44 = _atomics_legal_T_43 | _atomics_legal_T_38; // @[Parameters.scala:685:42] wire _atomics_legal_T_45 = _atomics_legal_T_44; // @[Parameters.scala:684:54, :685:42] wire _atomics_legal_T_53 = _atomics_legal_T_45; // @[Parameters.scala:684:54, :686:26] wire [40:0] _atomics_legal_T_48 = {1'h0, _atomics_legal_T_47}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_49 = _atomics_legal_T_48 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_50 = _atomics_legal_T_49; // @[Parameters.scala:137:46] wire _atomics_legal_T_51 = _atomics_legal_T_50 == 41'h0; // @[Parameters.scala:137:{46,59}] wire atomics_legal = _atomics_legal_T_53; // @[Parameters.scala:686:26] wire [7:0] _atomics_a_mask_T; // @[Misc.scala:222:10] wire [7:0] atomics_a_mask; // @[Edges.scala:534:17] wire [1:0] atomics_a_mask_sizeOH_shiftAmount = _atomics_a_mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _atomics_a_mask_sizeOH_T_1 = 4'h1 << atomics_a_mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _atomics_a_mask_sizeOH_T_2 = _atomics_a_mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] atomics_a_mask_sizeOH = {_atomics_a_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire atomics_a_mask_sub_sub_sub_0_1 = &s2_req_size; // @[Misc.scala:206:21] wire atomics_a_mask_sub_sub_size = atomics_a_mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_sub_1_2 = atomics_a_mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire atomics_a_mask_sub_sub_nbit = ~atomics_a_mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_sub_0_2 = atomics_a_mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_sub_acc_T = atomics_a_mask_sub_sub_size & atomics_a_mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_0_1 = atomics_a_mask_sub_sub_sub_0_1 | _atomics_a_mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _atomics_a_mask_sub_sub_acc_T_1 = atomics_a_mask_sub_sub_size & atomics_a_mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_1_1 = atomics_a_mask_sub_sub_sub_0_1 | _atomics_a_mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire atomics_a_mask_sub_size = atomics_a_mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_nbit = ~atomics_a_mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_0_2 = atomics_a_mask_sub_sub_0_2 & atomics_a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T = atomics_a_mask_sub_size & atomics_a_mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_0_1 = atomics_a_mask_sub_sub_0_1 | _atomics_a_mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_1_2 = atomics_a_mask_sub_sub_0_2 & atomics_a_mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_1 = atomics_a_mask_sub_size & atomics_a_mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_1_1 = atomics_a_mask_sub_sub_0_1 | _atomics_a_mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_2_2 = atomics_a_mask_sub_sub_1_2 & atomics_a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_2 = atomics_a_mask_sub_size & atomics_a_mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_2_1 = atomics_a_mask_sub_sub_1_1 | _atomics_a_mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_3_2 = atomics_a_mask_sub_sub_1_2 & atomics_a_mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_3 = atomics_a_mask_sub_size & atomics_a_mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_3_1 = atomics_a_mask_sub_sub_1_1 | _atomics_a_mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_size = atomics_a_mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_nbit = ~atomics_a_mask_bit; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_eq = atomics_a_mask_sub_0_2 & atomics_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T = atomics_a_mask_size & atomics_a_mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc = atomics_a_mask_sub_0_1 | _atomics_a_mask_acc_T; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_1 = atomics_a_mask_sub_0_2 & atomics_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_1 = atomics_a_mask_size & atomics_a_mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_1 = atomics_a_mask_sub_0_1 | _atomics_a_mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_2 = atomics_a_mask_sub_1_2 & atomics_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_2 = atomics_a_mask_size & atomics_a_mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_2 = atomics_a_mask_sub_1_1 | _atomics_a_mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_3 = atomics_a_mask_sub_1_2 & atomics_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_3 = atomics_a_mask_size & atomics_a_mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_3 = atomics_a_mask_sub_1_1 | _atomics_a_mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_4 = atomics_a_mask_sub_2_2 & atomics_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_4 = atomics_a_mask_size & atomics_a_mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_4 = atomics_a_mask_sub_2_1 | _atomics_a_mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_5 = atomics_a_mask_sub_2_2 & atomics_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_5 = atomics_a_mask_size & atomics_a_mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_5 = atomics_a_mask_sub_2_1 | _atomics_a_mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_6 = atomics_a_mask_sub_3_2 & atomics_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_6 = atomics_a_mask_size & atomics_a_mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_6 = atomics_a_mask_sub_3_1 | _atomics_a_mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_7 = atomics_a_mask_sub_3_2 & atomics_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_7 = atomics_a_mask_size & atomics_a_mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_7 = atomics_a_mask_sub_3_1 | _atomics_a_mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] atomics_a_mask_lo_lo = {atomics_a_mask_acc_1, atomics_a_mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_lo_hi = {atomics_a_mask_acc_3, atomics_a_mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_lo = {atomics_a_mask_lo_hi, atomics_a_mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] atomics_a_mask_hi_lo = {atomics_a_mask_acc_5, atomics_a_mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_hi_hi = {atomics_a_mask_acc_7, atomics_a_mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_hi = {atomics_a_mask_hi_hi, atomics_a_mask_hi_lo}; // @[Misc.scala:222:10] assign _atomics_a_mask_T = {atomics_a_mask_hi, atomics_a_mask_lo}; // @[Misc.scala:222:10] assign atomics_a_mask = _atomics_a_mask_T; // @[Misc.scala:222:10] wire [40:0] _atomics_legal_T_59 = {1'h0, _atomics_legal_T_58}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_60 = _atomics_legal_T_59 & 41'h98110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_61 = _atomics_legal_T_60; // @[Parameters.scala:137:46] wire _atomics_legal_T_62 = _atomics_legal_T_61 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_64 = {1'h0, _atomics_legal_T_63}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_65 = _atomics_legal_T_64 & 41'h9A101000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_66 = _atomics_legal_T_65; // @[Parameters.scala:137:46] wire _atomics_legal_T_67 = _atomics_legal_T_66 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_69 = {1'h0, _atomics_legal_T_68}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_70 = _atomics_legal_T_69 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_71 = _atomics_legal_T_70; // @[Parameters.scala:137:46] wire _atomics_legal_T_72 = _atomics_legal_T_71 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_74 = {1'h0, _atomics_legal_T_73}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_75 = _atomics_legal_T_74 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_76 = _atomics_legal_T_75; // @[Parameters.scala:137:46] wire _atomics_legal_T_77 = _atomics_legal_T_76 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_79 = {1'h0, _atomics_legal_T_78}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_80 = _atomics_legal_T_79 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_81 = _atomics_legal_T_80; // @[Parameters.scala:137:46] wire _atomics_legal_T_82 = _atomics_legal_T_81 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_84 = {1'h0, _atomics_legal_T_83}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_85 = _atomics_legal_T_84 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_86 = _atomics_legal_T_85; // @[Parameters.scala:137:46] wire _atomics_legal_T_87 = _atomics_legal_T_86 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_89 = {1'h0, _atomics_legal_T_88}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_90 = _atomics_legal_T_89 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_91 = _atomics_legal_T_90; // @[Parameters.scala:137:46] wire _atomics_legal_T_92 = _atomics_legal_T_91 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _atomics_legal_T_93 = _atomics_legal_T_62 | _atomics_legal_T_67; // @[Parameters.scala:685:42] wire _atomics_legal_T_94 = _atomics_legal_T_93 | _atomics_legal_T_72; // @[Parameters.scala:685:42] wire _atomics_legal_T_95 = _atomics_legal_T_94 | _atomics_legal_T_77; // @[Parameters.scala:685:42] wire _atomics_legal_T_96 = _atomics_legal_T_95 | _atomics_legal_T_82; // @[Parameters.scala:685:42] wire _atomics_legal_T_97 = _atomics_legal_T_96 | _atomics_legal_T_87; // @[Parameters.scala:685:42] wire _atomics_legal_T_98 = _atomics_legal_T_97 | _atomics_legal_T_92; // @[Parameters.scala:685:42] wire _atomics_legal_T_99 = _atomics_legal_T_98; // @[Parameters.scala:684:54, :685:42] wire _atomics_legal_T_107 = _atomics_legal_T_99; // @[Parameters.scala:684:54, :686:26] wire [40:0] _atomics_legal_T_102 = {1'h0, _atomics_legal_T_101}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_103 = _atomics_legal_T_102 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_104 = _atomics_legal_T_103; // @[Parameters.scala:137:46] wire _atomics_legal_T_105 = _atomics_legal_T_104 == 41'h0; // @[Parameters.scala:137:{46,59}] wire atomics_legal_1 = _atomics_legal_T_107; // @[Parameters.scala:686:26] wire [7:0] _atomics_a_mask_T_1; // @[Misc.scala:222:10] wire [7:0] atomics_a_1_mask; // @[Edges.scala:534:17] wire [1:0] atomics_a_mask_sizeOH_shiftAmount_1 = _atomics_a_mask_sizeOH_T_3[1:0]; // @[OneHot.scala:64:49] wire [3:0] _atomics_a_mask_sizeOH_T_4 = 4'h1 << atomics_a_mask_sizeOH_shiftAmount_1; // @[OneHot.scala:64:49, :65:12] wire [2:0] _atomics_a_mask_sizeOH_T_5 = _atomics_a_mask_sizeOH_T_4[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] atomics_a_mask_sizeOH_1 = {_atomics_a_mask_sizeOH_T_5[2:1], 1'h1}; // @[OneHot.scala:65:27] wire atomics_a_mask_sub_sub_sub_0_1_1 = &s2_req_size; // @[Misc.scala:206:21] wire atomics_a_mask_sub_sub_size_1 = atomics_a_mask_sizeOH_1[2]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_sub_1_2_1 = atomics_a_mask_sub_sub_bit_1; // @[Misc.scala:210:26, :214:27] wire atomics_a_mask_sub_sub_nbit_1 = ~atomics_a_mask_sub_sub_bit_1; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_sub_0_2_1 = atomics_a_mask_sub_sub_nbit_1; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_sub_acc_T_2 = atomics_a_mask_sub_sub_size_1 & atomics_a_mask_sub_sub_0_2_1; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_0_1_1 = atomics_a_mask_sub_sub_sub_0_1_1 | _atomics_a_mask_sub_sub_acc_T_2; // @[Misc.scala:206:21, :215:{29,38}] wire _atomics_a_mask_sub_sub_acc_T_3 = atomics_a_mask_sub_sub_size_1 & atomics_a_mask_sub_sub_1_2_1; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_1_1_1 = atomics_a_mask_sub_sub_sub_0_1_1 | _atomics_a_mask_sub_sub_acc_T_3; // @[Misc.scala:206:21, :215:{29,38}] wire atomics_a_mask_sub_size_1 = atomics_a_mask_sizeOH_1[1]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_nbit_1 = ~atomics_a_mask_sub_bit_1; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_0_2_1 = atomics_a_mask_sub_sub_0_2_1 & atomics_a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_4 = atomics_a_mask_sub_size_1 & atomics_a_mask_sub_0_2_1; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_0_1_1 = atomics_a_mask_sub_sub_0_1_1 | _atomics_a_mask_sub_acc_T_4; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_1_2_1 = atomics_a_mask_sub_sub_0_2_1 & atomics_a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_5 = atomics_a_mask_sub_size_1 & atomics_a_mask_sub_1_2_1; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_1_1_1 = atomics_a_mask_sub_sub_0_1_1 | _atomics_a_mask_sub_acc_T_5; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_2_2_1 = atomics_a_mask_sub_sub_1_2_1 & atomics_a_mask_sub_nbit_1; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_6 = atomics_a_mask_sub_size_1 & atomics_a_mask_sub_2_2_1; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_2_1_1 = atomics_a_mask_sub_sub_1_1_1 | _atomics_a_mask_sub_acc_T_6; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_3_2_1 = atomics_a_mask_sub_sub_1_2_1 & atomics_a_mask_sub_bit_1; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_7 = atomics_a_mask_sub_size_1 & atomics_a_mask_sub_3_2_1; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_3_1_1 = atomics_a_mask_sub_sub_1_1_1 | _atomics_a_mask_sub_acc_T_7; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_size_1 = atomics_a_mask_sizeOH_1[0]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_nbit_1 = ~atomics_a_mask_bit_1; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_eq_8 = atomics_a_mask_sub_0_2_1 & atomics_a_mask_nbit_1; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_8 = atomics_a_mask_size_1 & atomics_a_mask_eq_8; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_8 = atomics_a_mask_sub_0_1_1 | _atomics_a_mask_acc_T_8; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_9 = atomics_a_mask_sub_0_2_1 & atomics_a_mask_bit_1; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_9 = atomics_a_mask_size_1 & atomics_a_mask_eq_9; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_9 = atomics_a_mask_sub_0_1_1 | _atomics_a_mask_acc_T_9; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_10 = atomics_a_mask_sub_1_2_1 & atomics_a_mask_nbit_1; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_10 = atomics_a_mask_size_1 & atomics_a_mask_eq_10; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_10 = atomics_a_mask_sub_1_1_1 | _atomics_a_mask_acc_T_10; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_11 = atomics_a_mask_sub_1_2_1 & atomics_a_mask_bit_1; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_11 = atomics_a_mask_size_1 & atomics_a_mask_eq_11; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_11 = atomics_a_mask_sub_1_1_1 | _atomics_a_mask_acc_T_11; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_12 = atomics_a_mask_sub_2_2_1 & atomics_a_mask_nbit_1; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_12 = atomics_a_mask_size_1 & atomics_a_mask_eq_12; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_12 = atomics_a_mask_sub_2_1_1 | _atomics_a_mask_acc_T_12; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_13 = atomics_a_mask_sub_2_2_1 & atomics_a_mask_bit_1; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_13 = atomics_a_mask_size_1 & atomics_a_mask_eq_13; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_13 = atomics_a_mask_sub_2_1_1 | _atomics_a_mask_acc_T_13; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_14 = atomics_a_mask_sub_3_2_1 & atomics_a_mask_nbit_1; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_14 = atomics_a_mask_size_1 & atomics_a_mask_eq_14; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_14 = atomics_a_mask_sub_3_1_1 | _atomics_a_mask_acc_T_14; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_15 = atomics_a_mask_sub_3_2_1 & atomics_a_mask_bit_1; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_15 = atomics_a_mask_size_1 & atomics_a_mask_eq_15; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_15 = atomics_a_mask_sub_3_1_1 | _atomics_a_mask_acc_T_15; // @[Misc.scala:215:{29,38}] wire [1:0] atomics_a_mask_lo_lo_1 = {atomics_a_mask_acc_9, atomics_a_mask_acc_8}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_lo_hi_1 = {atomics_a_mask_acc_11, atomics_a_mask_acc_10}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_lo_1 = {atomics_a_mask_lo_hi_1, atomics_a_mask_lo_lo_1}; // @[Misc.scala:222:10] wire [1:0] atomics_a_mask_hi_lo_1 = {atomics_a_mask_acc_13, atomics_a_mask_acc_12}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_hi_hi_1 = {atomics_a_mask_acc_15, atomics_a_mask_acc_14}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_hi_1 = {atomics_a_mask_hi_hi_1, atomics_a_mask_hi_lo_1}; // @[Misc.scala:222:10] assign _atomics_a_mask_T_1 = {atomics_a_mask_hi_1, atomics_a_mask_lo_1}; // @[Misc.scala:222:10] assign atomics_a_1_mask = _atomics_a_mask_T_1; // @[Misc.scala:222:10] wire [40:0] _atomics_legal_T_113 = {1'h0, _atomics_legal_T_112}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_114 = _atomics_legal_T_113 & 41'h98110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_115 = _atomics_legal_T_114; // @[Parameters.scala:137:46] wire _atomics_legal_T_116 = _atomics_legal_T_115 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_118 = {1'h0, _atomics_legal_T_117}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_119 = _atomics_legal_T_118 & 41'h9A101000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_120 = _atomics_legal_T_119; // @[Parameters.scala:137:46] wire _atomics_legal_T_121 = _atomics_legal_T_120 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_123 = {1'h0, _atomics_legal_T_122}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_124 = _atomics_legal_T_123 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_125 = _atomics_legal_T_124; // @[Parameters.scala:137:46] wire _atomics_legal_T_126 = _atomics_legal_T_125 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_128 = {1'h0, _atomics_legal_T_127}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_129 = _atomics_legal_T_128 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_130 = _atomics_legal_T_129; // @[Parameters.scala:137:46] wire _atomics_legal_T_131 = _atomics_legal_T_130 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_133 = {1'h0, _atomics_legal_T_132}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_134 = _atomics_legal_T_133 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_135 = _atomics_legal_T_134; // @[Parameters.scala:137:46] wire _atomics_legal_T_136 = _atomics_legal_T_135 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_138 = {1'h0, _atomics_legal_T_137}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_139 = _atomics_legal_T_138 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_140 = _atomics_legal_T_139; // @[Parameters.scala:137:46] wire _atomics_legal_T_141 = _atomics_legal_T_140 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_143 = {1'h0, _atomics_legal_T_142}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_144 = _atomics_legal_T_143 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_145 = _atomics_legal_T_144; // @[Parameters.scala:137:46] wire _atomics_legal_T_146 = _atomics_legal_T_145 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _atomics_legal_T_147 = _atomics_legal_T_116 | _atomics_legal_T_121; // @[Parameters.scala:685:42] wire _atomics_legal_T_148 = _atomics_legal_T_147 | _atomics_legal_T_126; // @[Parameters.scala:685:42] wire _atomics_legal_T_149 = _atomics_legal_T_148 | _atomics_legal_T_131; // @[Parameters.scala:685:42] wire _atomics_legal_T_150 = _atomics_legal_T_149 | _atomics_legal_T_136; // @[Parameters.scala:685:42] wire _atomics_legal_T_151 = _atomics_legal_T_150 | _atomics_legal_T_141; // @[Parameters.scala:685:42] wire _atomics_legal_T_152 = _atomics_legal_T_151 | _atomics_legal_T_146; // @[Parameters.scala:685:42] wire _atomics_legal_T_153 = _atomics_legal_T_152; // @[Parameters.scala:684:54, :685:42] wire _atomics_legal_T_161 = _atomics_legal_T_153; // @[Parameters.scala:684:54, :686:26] wire [40:0] _atomics_legal_T_156 = {1'h0, _atomics_legal_T_155}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_157 = _atomics_legal_T_156 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_158 = _atomics_legal_T_157; // @[Parameters.scala:137:46] wire _atomics_legal_T_159 = _atomics_legal_T_158 == 41'h0; // @[Parameters.scala:137:{46,59}] wire atomics_legal_2 = _atomics_legal_T_161; // @[Parameters.scala:686:26] wire [7:0] _atomics_a_mask_T_2; // @[Misc.scala:222:10] wire [7:0] atomics_a_2_mask; // @[Edges.scala:534:17] wire [1:0] atomics_a_mask_sizeOH_shiftAmount_2 = _atomics_a_mask_sizeOH_T_6[1:0]; // @[OneHot.scala:64:49] wire [3:0] _atomics_a_mask_sizeOH_T_7 = 4'h1 << atomics_a_mask_sizeOH_shiftAmount_2; // @[OneHot.scala:64:49, :65:12] wire [2:0] _atomics_a_mask_sizeOH_T_8 = _atomics_a_mask_sizeOH_T_7[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] atomics_a_mask_sizeOH_2 = {_atomics_a_mask_sizeOH_T_8[2:1], 1'h1}; // @[OneHot.scala:65:27] wire atomics_a_mask_sub_sub_sub_0_1_2 = &s2_req_size; // @[Misc.scala:206:21] wire atomics_a_mask_sub_sub_size_2 = atomics_a_mask_sizeOH_2[2]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_sub_1_2_2 = atomics_a_mask_sub_sub_bit_2; // @[Misc.scala:210:26, :214:27] wire atomics_a_mask_sub_sub_nbit_2 = ~atomics_a_mask_sub_sub_bit_2; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_sub_0_2_2 = atomics_a_mask_sub_sub_nbit_2; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_sub_acc_T_4 = atomics_a_mask_sub_sub_size_2 & atomics_a_mask_sub_sub_0_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_0_1_2 = atomics_a_mask_sub_sub_sub_0_1_2 | _atomics_a_mask_sub_sub_acc_T_4; // @[Misc.scala:206:21, :215:{29,38}] wire _atomics_a_mask_sub_sub_acc_T_5 = atomics_a_mask_sub_sub_size_2 & atomics_a_mask_sub_sub_1_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_1_1_2 = atomics_a_mask_sub_sub_sub_0_1_2 | _atomics_a_mask_sub_sub_acc_T_5; // @[Misc.scala:206:21, :215:{29,38}] wire atomics_a_mask_sub_size_2 = atomics_a_mask_sizeOH_2[1]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_nbit_2 = ~atomics_a_mask_sub_bit_2; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_0_2_2 = atomics_a_mask_sub_sub_0_2_2 & atomics_a_mask_sub_nbit_2; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_8 = atomics_a_mask_sub_size_2 & atomics_a_mask_sub_0_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_0_1_2 = atomics_a_mask_sub_sub_0_1_2 | _atomics_a_mask_sub_acc_T_8; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_1_2_2 = atomics_a_mask_sub_sub_0_2_2 & atomics_a_mask_sub_bit_2; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_9 = atomics_a_mask_sub_size_2 & atomics_a_mask_sub_1_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_1_1_2 = atomics_a_mask_sub_sub_0_1_2 | _atomics_a_mask_sub_acc_T_9; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_2_2_2 = atomics_a_mask_sub_sub_1_2_2 & atomics_a_mask_sub_nbit_2; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_10 = atomics_a_mask_sub_size_2 & atomics_a_mask_sub_2_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_2_1_2 = atomics_a_mask_sub_sub_1_1_2 | _atomics_a_mask_sub_acc_T_10; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_3_2_2 = atomics_a_mask_sub_sub_1_2_2 & atomics_a_mask_sub_bit_2; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_11 = atomics_a_mask_sub_size_2 & atomics_a_mask_sub_3_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_3_1_2 = atomics_a_mask_sub_sub_1_1_2 | _atomics_a_mask_sub_acc_T_11; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_size_2 = atomics_a_mask_sizeOH_2[0]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_nbit_2 = ~atomics_a_mask_bit_2; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_eq_16 = atomics_a_mask_sub_0_2_2 & atomics_a_mask_nbit_2; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_16 = atomics_a_mask_size_2 & atomics_a_mask_eq_16; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_16 = atomics_a_mask_sub_0_1_2 | _atomics_a_mask_acc_T_16; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_17 = atomics_a_mask_sub_0_2_2 & atomics_a_mask_bit_2; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_17 = atomics_a_mask_size_2 & atomics_a_mask_eq_17; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_17 = atomics_a_mask_sub_0_1_2 | _atomics_a_mask_acc_T_17; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_18 = atomics_a_mask_sub_1_2_2 & atomics_a_mask_nbit_2; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_18 = atomics_a_mask_size_2 & atomics_a_mask_eq_18; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_18 = atomics_a_mask_sub_1_1_2 | _atomics_a_mask_acc_T_18; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_19 = atomics_a_mask_sub_1_2_2 & atomics_a_mask_bit_2; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_19 = atomics_a_mask_size_2 & atomics_a_mask_eq_19; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_19 = atomics_a_mask_sub_1_1_2 | _atomics_a_mask_acc_T_19; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_20 = atomics_a_mask_sub_2_2_2 & atomics_a_mask_nbit_2; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_20 = atomics_a_mask_size_2 & atomics_a_mask_eq_20; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_20 = atomics_a_mask_sub_2_1_2 | _atomics_a_mask_acc_T_20; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_21 = atomics_a_mask_sub_2_2_2 & atomics_a_mask_bit_2; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_21 = atomics_a_mask_size_2 & atomics_a_mask_eq_21; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_21 = atomics_a_mask_sub_2_1_2 | _atomics_a_mask_acc_T_21; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_22 = atomics_a_mask_sub_3_2_2 & atomics_a_mask_nbit_2; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_22 = atomics_a_mask_size_2 & atomics_a_mask_eq_22; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_22 = atomics_a_mask_sub_3_1_2 | _atomics_a_mask_acc_T_22; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_23 = atomics_a_mask_sub_3_2_2 & atomics_a_mask_bit_2; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_23 = atomics_a_mask_size_2 & atomics_a_mask_eq_23; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_23 = atomics_a_mask_sub_3_1_2 | _atomics_a_mask_acc_T_23; // @[Misc.scala:215:{29,38}] wire [1:0] atomics_a_mask_lo_lo_2 = {atomics_a_mask_acc_17, atomics_a_mask_acc_16}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_lo_hi_2 = {atomics_a_mask_acc_19, atomics_a_mask_acc_18}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_lo_2 = {atomics_a_mask_lo_hi_2, atomics_a_mask_lo_lo_2}; // @[Misc.scala:222:10] wire [1:0] atomics_a_mask_hi_lo_2 = {atomics_a_mask_acc_21, atomics_a_mask_acc_20}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_hi_hi_2 = {atomics_a_mask_acc_23, atomics_a_mask_acc_22}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_hi_2 = {atomics_a_mask_hi_hi_2, atomics_a_mask_hi_lo_2}; // @[Misc.scala:222:10] assign _atomics_a_mask_T_2 = {atomics_a_mask_hi_2, atomics_a_mask_lo_2}; // @[Misc.scala:222:10] assign atomics_a_2_mask = _atomics_a_mask_T_2; // @[Misc.scala:222:10] wire [40:0] _atomics_legal_T_167 = {1'h0, _atomics_legal_T_166}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_168 = _atomics_legal_T_167 & 41'h98110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_169 = _atomics_legal_T_168; // @[Parameters.scala:137:46] wire _atomics_legal_T_170 = _atomics_legal_T_169 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_172 = {1'h0, _atomics_legal_T_171}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_173 = _atomics_legal_T_172 & 41'h9A101000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_174 = _atomics_legal_T_173; // @[Parameters.scala:137:46] wire _atomics_legal_T_175 = _atomics_legal_T_174 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_177 = {1'h0, _atomics_legal_T_176}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_178 = _atomics_legal_T_177 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_179 = _atomics_legal_T_178; // @[Parameters.scala:137:46] wire _atomics_legal_T_180 = _atomics_legal_T_179 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_182 = {1'h0, _atomics_legal_T_181}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_183 = _atomics_legal_T_182 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_184 = _atomics_legal_T_183; // @[Parameters.scala:137:46] wire _atomics_legal_T_185 = _atomics_legal_T_184 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_187 = {1'h0, _atomics_legal_T_186}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_188 = _atomics_legal_T_187 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_189 = _atomics_legal_T_188; // @[Parameters.scala:137:46] wire _atomics_legal_T_190 = _atomics_legal_T_189 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_192 = {1'h0, _atomics_legal_T_191}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_193 = _atomics_legal_T_192 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_194 = _atomics_legal_T_193; // @[Parameters.scala:137:46] wire _atomics_legal_T_195 = _atomics_legal_T_194 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_197 = {1'h0, _atomics_legal_T_196}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_198 = _atomics_legal_T_197 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_199 = _atomics_legal_T_198; // @[Parameters.scala:137:46] wire _atomics_legal_T_200 = _atomics_legal_T_199 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _atomics_legal_T_201 = _atomics_legal_T_170 | _atomics_legal_T_175; // @[Parameters.scala:685:42] wire _atomics_legal_T_202 = _atomics_legal_T_201 | _atomics_legal_T_180; // @[Parameters.scala:685:42] wire _atomics_legal_T_203 = _atomics_legal_T_202 | _atomics_legal_T_185; // @[Parameters.scala:685:42] wire _atomics_legal_T_204 = _atomics_legal_T_203 | _atomics_legal_T_190; // @[Parameters.scala:685:42] wire _atomics_legal_T_205 = _atomics_legal_T_204 | _atomics_legal_T_195; // @[Parameters.scala:685:42] wire _atomics_legal_T_206 = _atomics_legal_T_205 | _atomics_legal_T_200; // @[Parameters.scala:685:42] wire _atomics_legal_T_207 = _atomics_legal_T_206; // @[Parameters.scala:684:54, :685:42] wire _atomics_legal_T_215 = _atomics_legal_T_207; // @[Parameters.scala:684:54, :686:26] wire [40:0] _atomics_legal_T_210 = {1'h0, _atomics_legal_T_209}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_211 = _atomics_legal_T_210 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_212 = _atomics_legal_T_211; // @[Parameters.scala:137:46] wire _atomics_legal_T_213 = _atomics_legal_T_212 == 41'h0; // @[Parameters.scala:137:{46,59}] wire atomics_legal_3 = _atomics_legal_T_215; // @[Parameters.scala:686:26] wire [7:0] _atomics_a_mask_T_3; // @[Misc.scala:222:10] wire [7:0] atomics_a_3_mask; // @[Edges.scala:534:17] wire [1:0] atomics_a_mask_sizeOH_shiftAmount_3 = _atomics_a_mask_sizeOH_T_9[1:0]; // @[OneHot.scala:64:49] wire [3:0] _atomics_a_mask_sizeOH_T_10 = 4'h1 << atomics_a_mask_sizeOH_shiftAmount_3; // @[OneHot.scala:64:49, :65:12] wire [2:0] _atomics_a_mask_sizeOH_T_11 = _atomics_a_mask_sizeOH_T_10[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] atomics_a_mask_sizeOH_3 = {_atomics_a_mask_sizeOH_T_11[2:1], 1'h1}; // @[OneHot.scala:65:27] wire atomics_a_mask_sub_sub_sub_0_1_3 = &s2_req_size; // @[Misc.scala:206:21] wire atomics_a_mask_sub_sub_size_3 = atomics_a_mask_sizeOH_3[2]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_sub_1_2_3 = atomics_a_mask_sub_sub_bit_3; // @[Misc.scala:210:26, :214:27] wire atomics_a_mask_sub_sub_nbit_3 = ~atomics_a_mask_sub_sub_bit_3; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_sub_0_2_3 = atomics_a_mask_sub_sub_nbit_3; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_sub_acc_T_6 = atomics_a_mask_sub_sub_size_3 & atomics_a_mask_sub_sub_0_2_3; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_0_1_3 = atomics_a_mask_sub_sub_sub_0_1_3 | _atomics_a_mask_sub_sub_acc_T_6; // @[Misc.scala:206:21, :215:{29,38}] wire _atomics_a_mask_sub_sub_acc_T_7 = atomics_a_mask_sub_sub_size_3 & atomics_a_mask_sub_sub_1_2_3; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_1_1_3 = atomics_a_mask_sub_sub_sub_0_1_3 | _atomics_a_mask_sub_sub_acc_T_7; // @[Misc.scala:206:21, :215:{29,38}] wire atomics_a_mask_sub_size_3 = atomics_a_mask_sizeOH_3[1]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_nbit_3 = ~atomics_a_mask_sub_bit_3; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_0_2_3 = atomics_a_mask_sub_sub_0_2_3 & atomics_a_mask_sub_nbit_3; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_12 = atomics_a_mask_sub_size_3 & atomics_a_mask_sub_0_2_3; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_0_1_3 = atomics_a_mask_sub_sub_0_1_3 | _atomics_a_mask_sub_acc_T_12; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_1_2_3 = atomics_a_mask_sub_sub_0_2_3 & atomics_a_mask_sub_bit_3; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_13 = atomics_a_mask_sub_size_3 & atomics_a_mask_sub_1_2_3; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_1_1_3 = atomics_a_mask_sub_sub_0_1_3 | _atomics_a_mask_sub_acc_T_13; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_2_2_3 = atomics_a_mask_sub_sub_1_2_3 & atomics_a_mask_sub_nbit_3; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_14 = atomics_a_mask_sub_size_3 & atomics_a_mask_sub_2_2_3; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_2_1_3 = atomics_a_mask_sub_sub_1_1_3 | _atomics_a_mask_sub_acc_T_14; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_3_2_3 = atomics_a_mask_sub_sub_1_2_3 & atomics_a_mask_sub_bit_3; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_15 = atomics_a_mask_sub_size_3 & atomics_a_mask_sub_3_2_3; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_3_1_3 = atomics_a_mask_sub_sub_1_1_3 | _atomics_a_mask_sub_acc_T_15; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_size_3 = atomics_a_mask_sizeOH_3[0]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_nbit_3 = ~atomics_a_mask_bit_3; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_eq_24 = atomics_a_mask_sub_0_2_3 & atomics_a_mask_nbit_3; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_24 = atomics_a_mask_size_3 & atomics_a_mask_eq_24; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_24 = atomics_a_mask_sub_0_1_3 | _atomics_a_mask_acc_T_24; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_25 = atomics_a_mask_sub_0_2_3 & atomics_a_mask_bit_3; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_25 = atomics_a_mask_size_3 & atomics_a_mask_eq_25; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_25 = atomics_a_mask_sub_0_1_3 | _atomics_a_mask_acc_T_25; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_26 = atomics_a_mask_sub_1_2_3 & atomics_a_mask_nbit_3; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_26 = atomics_a_mask_size_3 & atomics_a_mask_eq_26; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_26 = atomics_a_mask_sub_1_1_3 | _atomics_a_mask_acc_T_26; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_27 = atomics_a_mask_sub_1_2_3 & atomics_a_mask_bit_3; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_27 = atomics_a_mask_size_3 & atomics_a_mask_eq_27; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_27 = atomics_a_mask_sub_1_1_3 | _atomics_a_mask_acc_T_27; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_28 = atomics_a_mask_sub_2_2_3 & atomics_a_mask_nbit_3; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_28 = atomics_a_mask_size_3 & atomics_a_mask_eq_28; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_28 = atomics_a_mask_sub_2_1_3 | _atomics_a_mask_acc_T_28; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_29 = atomics_a_mask_sub_2_2_3 & atomics_a_mask_bit_3; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_29 = atomics_a_mask_size_3 & atomics_a_mask_eq_29; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_29 = atomics_a_mask_sub_2_1_3 | _atomics_a_mask_acc_T_29; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_30 = atomics_a_mask_sub_3_2_3 & atomics_a_mask_nbit_3; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_30 = atomics_a_mask_size_3 & atomics_a_mask_eq_30; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_30 = atomics_a_mask_sub_3_1_3 | _atomics_a_mask_acc_T_30; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_31 = atomics_a_mask_sub_3_2_3 & atomics_a_mask_bit_3; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_31 = atomics_a_mask_size_3 & atomics_a_mask_eq_31; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_31 = atomics_a_mask_sub_3_1_3 | _atomics_a_mask_acc_T_31; // @[Misc.scala:215:{29,38}] wire [1:0] atomics_a_mask_lo_lo_3 = {atomics_a_mask_acc_25, atomics_a_mask_acc_24}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_lo_hi_3 = {atomics_a_mask_acc_27, atomics_a_mask_acc_26}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_lo_3 = {atomics_a_mask_lo_hi_3, atomics_a_mask_lo_lo_3}; // @[Misc.scala:222:10] wire [1:0] atomics_a_mask_hi_lo_3 = {atomics_a_mask_acc_29, atomics_a_mask_acc_28}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_hi_hi_3 = {atomics_a_mask_acc_31, atomics_a_mask_acc_30}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_hi_3 = {atomics_a_mask_hi_hi_3, atomics_a_mask_hi_lo_3}; // @[Misc.scala:222:10] assign _atomics_a_mask_T_3 = {atomics_a_mask_hi_3, atomics_a_mask_lo_3}; // @[Misc.scala:222:10] assign atomics_a_3_mask = _atomics_a_mask_T_3; // @[Misc.scala:222:10] wire [40:0] _atomics_legal_T_221 = {1'h0, _atomics_legal_T_220}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_222 = _atomics_legal_T_221 & 41'h98110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_223 = _atomics_legal_T_222; // @[Parameters.scala:137:46] wire _atomics_legal_T_224 = _atomics_legal_T_223 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_226 = {1'h0, _atomics_legal_T_225}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_227 = _atomics_legal_T_226 & 41'h9A101000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_228 = _atomics_legal_T_227; // @[Parameters.scala:137:46] wire _atomics_legal_T_229 = _atomics_legal_T_228 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_231 = {1'h0, _atomics_legal_T_230}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_232 = _atomics_legal_T_231 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_233 = _atomics_legal_T_232; // @[Parameters.scala:137:46] wire _atomics_legal_T_234 = _atomics_legal_T_233 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_236 = {1'h0, _atomics_legal_T_235}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_237 = _atomics_legal_T_236 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_238 = _atomics_legal_T_237; // @[Parameters.scala:137:46] wire _atomics_legal_T_239 = _atomics_legal_T_238 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_241 = {1'h0, _atomics_legal_T_240}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_242 = _atomics_legal_T_241 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_243 = _atomics_legal_T_242; // @[Parameters.scala:137:46] wire _atomics_legal_T_244 = _atomics_legal_T_243 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_246 = {1'h0, _atomics_legal_T_245}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_247 = _atomics_legal_T_246 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_248 = _atomics_legal_T_247; // @[Parameters.scala:137:46] wire _atomics_legal_T_249 = _atomics_legal_T_248 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_251 = {1'h0, _atomics_legal_T_250}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_252 = _atomics_legal_T_251 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_253 = _atomics_legal_T_252; // @[Parameters.scala:137:46] wire _atomics_legal_T_254 = _atomics_legal_T_253 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _atomics_legal_T_255 = _atomics_legal_T_224 | _atomics_legal_T_229; // @[Parameters.scala:685:42] wire _atomics_legal_T_256 = _atomics_legal_T_255 | _atomics_legal_T_234; // @[Parameters.scala:685:42] wire _atomics_legal_T_257 = _atomics_legal_T_256 | _atomics_legal_T_239; // @[Parameters.scala:685:42] wire _atomics_legal_T_258 = _atomics_legal_T_257 | _atomics_legal_T_244; // @[Parameters.scala:685:42] wire _atomics_legal_T_259 = _atomics_legal_T_258 | _atomics_legal_T_249; // @[Parameters.scala:685:42] wire _atomics_legal_T_260 = _atomics_legal_T_259 | _atomics_legal_T_254; // @[Parameters.scala:685:42] wire _atomics_legal_T_261 = _atomics_legal_T_260; // @[Parameters.scala:684:54, :685:42] wire _atomics_legal_T_269 = _atomics_legal_T_261; // @[Parameters.scala:684:54, :686:26] wire [40:0] _atomics_legal_T_264 = {1'h0, _atomics_legal_T_263}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_265 = _atomics_legal_T_264 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_266 = _atomics_legal_T_265; // @[Parameters.scala:137:46] wire _atomics_legal_T_267 = _atomics_legal_T_266 == 41'h0; // @[Parameters.scala:137:{46,59}] wire atomics_legal_4 = _atomics_legal_T_269; // @[Parameters.scala:686:26] wire [7:0] _atomics_a_mask_T_4; // @[Misc.scala:222:10] wire [7:0] atomics_a_4_mask; // @[Edges.scala:517:17] wire [1:0] atomics_a_mask_sizeOH_shiftAmount_4 = _atomics_a_mask_sizeOH_T_12[1:0]; // @[OneHot.scala:64:49] wire [3:0] _atomics_a_mask_sizeOH_T_13 = 4'h1 << atomics_a_mask_sizeOH_shiftAmount_4; // @[OneHot.scala:64:49, :65:12] wire [2:0] _atomics_a_mask_sizeOH_T_14 = _atomics_a_mask_sizeOH_T_13[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] atomics_a_mask_sizeOH_4 = {_atomics_a_mask_sizeOH_T_14[2:1], 1'h1}; // @[OneHot.scala:65:27] wire atomics_a_mask_sub_sub_sub_0_1_4 = &s2_req_size; // @[Misc.scala:206:21] wire atomics_a_mask_sub_sub_size_4 = atomics_a_mask_sizeOH_4[2]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_sub_1_2_4 = atomics_a_mask_sub_sub_bit_4; // @[Misc.scala:210:26, :214:27] wire atomics_a_mask_sub_sub_nbit_4 = ~atomics_a_mask_sub_sub_bit_4; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_sub_0_2_4 = atomics_a_mask_sub_sub_nbit_4; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_sub_acc_T_8 = atomics_a_mask_sub_sub_size_4 & atomics_a_mask_sub_sub_0_2_4; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_0_1_4 = atomics_a_mask_sub_sub_sub_0_1_4 | _atomics_a_mask_sub_sub_acc_T_8; // @[Misc.scala:206:21, :215:{29,38}] wire _atomics_a_mask_sub_sub_acc_T_9 = atomics_a_mask_sub_sub_size_4 & atomics_a_mask_sub_sub_1_2_4; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_1_1_4 = atomics_a_mask_sub_sub_sub_0_1_4 | _atomics_a_mask_sub_sub_acc_T_9; // @[Misc.scala:206:21, :215:{29,38}] wire atomics_a_mask_sub_size_4 = atomics_a_mask_sizeOH_4[1]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_nbit_4 = ~atomics_a_mask_sub_bit_4; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_0_2_4 = atomics_a_mask_sub_sub_0_2_4 & atomics_a_mask_sub_nbit_4; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_16 = atomics_a_mask_sub_size_4 & atomics_a_mask_sub_0_2_4; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_0_1_4 = atomics_a_mask_sub_sub_0_1_4 | _atomics_a_mask_sub_acc_T_16; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_1_2_4 = atomics_a_mask_sub_sub_0_2_4 & atomics_a_mask_sub_bit_4; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_17 = atomics_a_mask_sub_size_4 & atomics_a_mask_sub_1_2_4; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_1_1_4 = atomics_a_mask_sub_sub_0_1_4 | _atomics_a_mask_sub_acc_T_17; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_2_2_4 = atomics_a_mask_sub_sub_1_2_4 & atomics_a_mask_sub_nbit_4; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_18 = atomics_a_mask_sub_size_4 & atomics_a_mask_sub_2_2_4; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_2_1_4 = atomics_a_mask_sub_sub_1_1_4 | _atomics_a_mask_sub_acc_T_18; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_3_2_4 = atomics_a_mask_sub_sub_1_2_4 & atomics_a_mask_sub_bit_4; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_19 = atomics_a_mask_sub_size_4 & atomics_a_mask_sub_3_2_4; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_3_1_4 = atomics_a_mask_sub_sub_1_1_4 | _atomics_a_mask_sub_acc_T_19; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_size_4 = atomics_a_mask_sizeOH_4[0]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_nbit_4 = ~atomics_a_mask_bit_4; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_eq_32 = atomics_a_mask_sub_0_2_4 & atomics_a_mask_nbit_4; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_32 = atomics_a_mask_size_4 & atomics_a_mask_eq_32; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_32 = atomics_a_mask_sub_0_1_4 | _atomics_a_mask_acc_T_32; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_33 = atomics_a_mask_sub_0_2_4 & atomics_a_mask_bit_4; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_33 = atomics_a_mask_size_4 & atomics_a_mask_eq_33; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_33 = atomics_a_mask_sub_0_1_4 | _atomics_a_mask_acc_T_33; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_34 = atomics_a_mask_sub_1_2_4 & atomics_a_mask_nbit_4; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_34 = atomics_a_mask_size_4 & atomics_a_mask_eq_34; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_34 = atomics_a_mask_sub_1_1_4 | _atomics_a_mask_acc_T_34; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_35 = atomics_a_mask_sub_1_2_4 & atomics_a_mask_bit_4; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_35 = atomics_a_mask_size_4 & atomics_a_mask_eq_35; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_35 = atomics_a_mask_sub_1_1_4 | _atomics_a_mask_acc_T_35; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_36 = atomics_a_mask_sub_2_2_4 & atomics_a_mask_nbit_4; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_36 = atomics_a_mask_size_4 & atomics_a_mask_eq_36; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_36 = atomics_a_mask_sub_2_1_4 | _atomics_a_mask_acc_T_36; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_37 = atomics_a_mask_sub_2_2_4 & atomics_a_mask_bit_4; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_37 = atomics_a_mask_size_4 & atomics_a_mask_eq_37; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_37 = atomics_a_mask_sub_2_1_4 | _atomics_a_mask_acc_T_37; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_38 = atomics_a_mask_sub_3_2_4 & atomics_a_mask_nbit_4; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_38 = atomics_a_mask_size_4 & atomics_a_mask_eq_38; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_38 = atomics_a_mask_sub_3_1_4 | _atomics_a_mask_acc_T_38; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_39 = atomics_a_mask_sub_3_2_4 & atomics_a_mask_bit_4; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_39 = atomics_a_mask_size_4 & atomics_a_mask_eq_39; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_39 = atomics_a_mask_sub_3_1_4 | _atomics_a_mask_acc_T_39; // @[Misc.scala:215:{29,38}] wire [1:0] atomics_a_mask_lo_lo_4 = {atomics_a_mask_acc_33, atomics_a_mask_acc_32}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_lo_hi_4 = {atomics_a_mask_acc_35, atomics_a_mask_acc_34}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_lo_4 = {atomics_a_mask_lo_hi_4, atomics_a_mask_lo_lo_4}; // @[Misc.scala:222:10] wire [1:0] atomics_a_mask_hi_lo_4 = {atomics_a_mask_acc_37, atomics_a_mask_acc_36}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_hi_hi_4 = {atomics_a_mask_acc_39, atomics_a_mask_acc_38}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_hi_4 = {atomics_a_mask_hi_hi_4, atomics_a_mask_hi_lo_4}; // @[Misc.scala:222:10] assign _atomics_a_mask_T_4 = {atomics_a_mask_hi_4, atomics_a_mask_lo_4}; // @[Misc.scala:222:10] assign atomics_a_4_mask = _atomics_a_mask_T_4; // @[Misc.scala:222:10] wire [40:0] _atomics_legal_T_275 = {1'h0, _atomics_legal_T_274}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_276 = _atomics_legal_T_275 & 41'h98110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_277 = _atomics_legal_T_276; // @[Parameters.scala:137:46] wire _atomics_legal_T_278 = _atomics_legal_T_277 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_280 = {1'h0, _atomics_legal_T_279}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_281 = _atomics_legal_T_280 & 41'h9A101000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_282 = _atomics_legal_T_281; // @[Parameters.scala:137:46] wire _atomics_legal_T_283 = _atomics_legal_T_282 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_285 = {1'h0, _atomics_legal_T_284}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_286 = _atomics_legal_T_285 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_287 = _atomics_legal_T_286; // @[Parameters.scala:137:46] wire _atomics_legal_T_288 = _atomics_legal_T_287 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_290 = {1'h0, _atomics_legal_T_289}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_291 = _atomics_legal_T_290 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_292 = _atomics_legal_T_291; // @[Parameters.scala:137:46] wire _atomics_legal_T_293 = _atomics_legal_T_292 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_295 = {1'h0, _atomics_legal_T_294}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_296 = _atomics_legal_T_295 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_297 = _atomics_legal_T_296; // @[Parameters.scala:137:46] wire _atomics_legal_T_298 = _atomics_legal_T_297 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_300 = {1'h0, _atomics_legal_T_299}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_301 = _atomics_legal_T_300 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_302 = _atomics_legal_T_301; // @[Parameters.scala:137:46] wire _atomics_legal_T_303 = _atomics_legal_T_302 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_305 = {1'h0, _atomics_legal_T_304}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_306 = _atomics_legal_T_305 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_307 = _atomics_legal_T_306; // @[Parameters.scala:137:46] wire _atomics_legal_T_308 = _atomics_legal_T_307 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _atomics_legal_T_309 = _atomics_legal_T_278 | _atomics_legal_T_283; // @[Parameters.scala:685:42] wire _atomics_legal_T_310 = _atomics_legal_T_309 | _atomics_legal_T_288; // @[Parameters.scala:685:42] wire _atomics_legal_T_311 = _atomics_legal_T_310 | _atomics_legal_T_293; // @[Parameters.scala:685:42] wire _atomics_legal_T_312 = _atomics_legal_T_311 | _atomics_legal_T_298; // @[Parameters.scala:685:42] wire _atomics_legal_T_313 = _atomics_legal_T_312 | _atomics_legal_T_303; // @[Parameters.scala:685:42] wire _atomics_legal_T_314 = _atomics_legal_T_313 | _atomics_legal_T_308; // @[Parameters.scala:685:42] wire _atomics_legal_T_315 = _atomics_legal_T_314; // @[Parameters.scala:684:54, :685:42] wire _atomics_legal_T_323 = _atomics_legal_T_315; // @[Parameters.scala:684:54, :686:26] wire [40:0] _atomics_legal_T_318 = {1'h0, _atomics_legal_T_317}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_319 = _atomics_legal_T_318 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_320 = _atomics_legal_T_319; // @[Parameters.scala:137:46] wire _atomics_legal_T_321 = _atomics_legal_T_320 == 41'h0; // @[Parameters.scala:137:{46,59}] wire atomics_legal_5 = _atomics_legal_T_323; // @[Parameters.scala:686:26] wire [7:0] _atomics_a_mask_T_5; // @[Misc.scala:222:10] wire [7:0] atomics_a_5_mask; // @[Edges.scala:517:17] wire [1:0] atomics_a_mask_sizeOH_shiftAmount_5 = _atomics_a_mask_sizeOH_T_15[1:0]; // @[OneHot.scala:64:49] wire [3:0] _atomics_a_mask_sizeOH_T_16 = 4'h1 << atomics_a_mask_sizeOH_shiftAmount_5; // @[OneHot.scala:64:49, :65:12] wire [2:0] _atomics_a_mask_sizeOH_T_17 = _atomics_a_mask_sizeOH_T_16[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] atomics_a_mask_sizeOH_5 = {_atomics_a_mask_sizeOH_T_17[2:1], 1'h1}; // @[OneHot.scala:65:27] wire atomics_a_mask_sub_sub_sub_0_1_5 = &s2_req_size; // @[Misc.scala:206:21] wire atomics_a_mask_sub_sub_size_5 = atomics_a_mask_sizeOH_5[2]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_sub_1_2_5 = atomics_a_mask_sub_sub_bit_5; // @[Misc.scala:210:26, :214:27] wire atomics_a_mask_sub_sub_nbit_5 = ~atomics_a_mask_sub_sub_bit_5; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_sub_0_2_5 = atomics_a_mask_sub_sub_nbit_5; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_sub_acc_T_10 = atomics_a_mask_sub_sub_size_5 & atomics_a_mask_sub_sub_0_2_5; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_0_1_5 = atomics_a_mask_sub_sub_sub_0_1_5 | _atomics_a_mask_sub_sub_acc_T_10; // @[Misc.scala:206:21, :215:{29,38}] wire _atomics_a_mask_sub_sub_acc_T_11 = atomics_a_mask_sub_sub_size_5 & atomics_a_mask_sub_sub_1_2_5; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_1_1_5 = atomics_a_mask_sub_sub_sub_0_1_5 | _atomics_a_mask_sub_sub_acc_T_11; // @[Misc.scala:206:21, :215:{29,38}] wire atomics_a_mask_sub_size_5 = atomics_a_mask_sizeOH_5[1]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_nbit_5 = ~atomics_a_mask_sub_bit_5; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_0_2_5 = atomics_a_mask_sub_sub_0_2_5 & atomics_a_mask_sub_nbit_5; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_20 = atomics_a_mask_sub_size_5 & atomics_a_mask_sub_0_2_5; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_0_1_5 = atomics_a_mask_sub_sub_0_1_5 | _atomics_a_mask_sub_acc_T_20; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_1_2_5 = atomics_a_mask_sub_sub_0_2_5 & atomics_a_mask_sub_bit_5; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_21 = atomics_a_mask_sub_size_5 & atomics_a_mask_sub_1_2_5; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_1_1_5 = atomics_a_mask_sub_sub_0_1_5 | _atomics_a_mask_sub_acc_T_21; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_2_2_5 = atomics_a_mask_sub_sub_1_2_5 & atomics_a_mask_sub_nbit_5; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_22 = atomics_a_mask_sub_size_5 & atomics_a_mask_sub_2_2_5; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_2_1_5 = atomics_a_mask_sub_sub_1_1_5 | _atomics_a_mask_sub_acc_T_22; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_3_2_5 = atomics_a_mask_sub_sub_1_2_5 & atomics_a_mask_sub_bit_5; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_23 = atomics_a_mask_sub_size_5 & atomics_a_mask_sub_3_2_5; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_3_1_5 = atomics_a_mask_sub_sub_1_1_5 | _atomics_a_mask_sub_acc_T_23; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_size_5 = atomics_a_mask_sizeOH_5[0]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_nbit_5 = ~atomics_a_mask_bit_5; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_eq_40 = atomics_a_mask_sub_0_2_5 & atomics_a_mask_nbit_5; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_40 = atomics_a_mask_size_5 & atomics_a_mask_eq_40; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_40 = atomics_a_mask_sub_0_1_5 | _atomics_a_mask_acc_T_40; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_41 = atomics_a_mask_sub_0_2_5 & atomics_a_mask_bit_5; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_41 = atomics_a_mask_size_5 & atomics_a_mask_eq_41; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_41 = atomics_a_mask_sub_0_1_5 | _atomics_a_mask_acc_T_41; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_42 = atomics_a_mask_sub_1_2_5 & atomics_a_mask_nbit_5; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_42 = atomics_a_mask_size_5 & atomics_a_mask_eq_42; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_42 = atomics_a_mask_sub_1_1_5 | _atomics_a_mask_acc_T_42; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_43 = atomics_a_mask_sub_1_2_5 & atomics_a_mask_bit_5; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_43 = atomics_a_mask_size_5 & atomics_a_mask_eq_43; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_43 = atomics_a_mask_sub_1_1_5 | _atomics_a_mask_acc_T_43; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_44 = atomics_a_mask_sub_2_2_5 & atomics_a_mask_nbit_5; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_44 = atomics_a_mask_size_5 & atomics_a_mask_eq_44; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_44 = atomics_a_mask_sub_2_1_5 | _atomics_a_mask_acc_T_44; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_45 = atomics_a_mask_sub_2_2_5 & atomics_a_mask_bit_5; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_45 = atomics_a_mask_size_5 & atomics_a_mask_eq_45; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_45 = atomics_a_mask_sub_2_1_5 | _atomics_a_mask_acc_T_45; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_46 = atomics_a_mask_sub_3_2_5 & atomics_a_mask_nbit_5; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_46 = atomics_a_mask_size_5 & atomics_a_mask_eq_46; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_46 = atomics_a_mask_sub_3_1_5 | _atomics_a_mask_acc_T_46; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_47 = atomics_a_mask_sub_3_2_5 & atomics_a_mask_bit_5; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_47 = atomics_a_mask_size_5 & atomics_a_mask_eq_47; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_47 = atomics_a_mask_sub_3_1_5 | _atomics_a_mask_acc_T_47; // @[Misc.scala:215:{29,38}] wire [1:0] atomics_a_mask_lo_lo_5 = {atomics_a_mask_acc_41, atomics_a_mask_acc_40}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_lo_hi_5 = {atomics_a_mask_acc_43, atomics_a_mask_acc_42}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_lo_5 = {atomics_a_mask_lo_hi_5, atomics_a_mask_lo_lo_5}; // @[Misc.scala:222:10] wire [1:0] atomics_a_mask_hi_lo_5 = {atomics_a_mask_acc_45, atomics_a_mask_acc_44}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_hi_hi_5 = {atomics_a_mask_acc_47, atomics_a_mask_acc_46}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_hi_5 = {atomics_a_mask_hi_hi_5, atomics_a_mask_hi_lo_5}; // @[Misc.scala:222:10] assign _atomics_a_mask_T_5 = {atomics_a_mask_hi_5, atomics_a_mask_lo_5}; // @[Misc.scala:222:10] assign atomics_a_5_mask = _atomics_a_mask_T_5; // @[Misc.scala:222:10] wire [40:0] _atomics_legal_T_329 = {1'h0, _atomics_legal_T_328}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_330 = _atomics_legal_T_329 & 41'h98110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_331 = _atomics_legal_T_330; // @[Parameters.scala:137:46] wire _atomics_legal_T_332 = _atomics_legal_T_331 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_334 = {1'h0, _atomics_legal_T_333}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_335 = _atomics_legal_T_334 & 41'h9A101000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_336 = _atomics_legal_T_335; // @[Parameters.scala:137:46] wire _atomics_legal_T_337 = _atomics_legal_T_336 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_339 = {1'h0, _atomics_legal_T_338}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_340 = _atomics_legal_T_339 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_341 = _atomics_legal_T_340; // @[Parameters.scala:137:46] wire _atomics_legal_T_342 = _atomics_legal_T_341 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_344 = {1'h0, _atomics_legal_T_343}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_345 = _atomics_legal_T_344 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_346 = _atomics_legal_T_345; // @[Parameters.scala:137:46] wire _atomics_legal_T_347 = _atomics_legal_T_346 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_349 = {1'h0, _atomics_legal_T_348}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_350 = _atomics_legal_T_349 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_351 = _atomics_legal_T_350; // @[Parameters.scala:137:46] wire _atomics_legal_T_352 = _atomics_legal_T_351 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_354 = {1'h0, _atomics_legal_T_353}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_355 = _atomics_legal_T_354 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_356 = _atomics_legal_T_355; // @[Parameters.scala:137:46] wire _atomics_legal_T_357 = _atomics_legal_T_356 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_359 = {1'h0, _atomics_legal_T_358}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_360 = _atomics_legal_T_359 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_361 = _atomics_legal_T_360; // @[Parameters.scala:137:46] wire _atomics_legal_T_362 = _atomics_legal_T_361 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _atomics_legal_T_363 = _atomics_legal_T_332 | _atomics_legal_T_337; // @[Parameters.scala:685:42] wire _atomics_legal_T_364 = _atomics_legal_T_363 | _atomics_legal_T_342; // @[Parameters.scala:685:42] wire _atomics_legal_T_365 = _atomics_legal_T_364 | _atomics_legal_T_347; // @[Parameters.scala:685:42] wire _atomics_legal_T_366 = _atomics_legal_T_365 | _atomics_legal_T_352; // @[Parameters.scala:685:42] wire _atomics_legal_T_367 = _atomics_legal_T_366 | _atomics_legal_T_357; // @[Parameters.scala:685:42] wire _atomics_legal_T_368 = _atomics_legal_T_367 | _atomics_legal_T_362; // @[Parameters.scala:685:42] wire _atomics_legal_T_369 = _atomics_legal_T_368; // @[Parameters.scala:684:54, :685:42] wire _atomics_legal_T_377 = _atomics_legal_T_369; // @[Parameters.scala:684:54, :686:26] wire [40:0] _atomics_legal_T_372 = {1'h0, _atomics_legal_T_371}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_373 = _atomics_legal_T_372 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_374 = _atomics_legal_T_373; // @[Parameters.scala:137:46] wire _atomics_legal_T_375 = _atomics_legal_T_374 == 41'h0; // @[Parameters.scala:137:{46,59}] wire atomics_legal_6 = _atomics_legal_T_377; // @[Parameters.scala:686:26] wire [7:0] _atomics_a_mask_T_6; // @[Misc.scala:222:10] wire [7:0] atomics_a_6_mask; // @[Edges.scala:517:17] wire [1:0] atomics_a_mask_sizeOH_shiftAmount_6 = _atomics_a_mask_sizeOH_T_18[1:0]; // @[OneHot.scala:64:49] wire [3:0] _atomics_a_mask_sizeOH_T_19 = 4'h1 << atomics_a_mask_sizeOH_shiftAmount_6; // @[OneHot.scala:64:49, :65:12] wire [2:0] _atomics_a_mask_sizeOH_T_20 = _atomics_a_mask_sizeOH_T_19[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] atomics_a_mask_sizeOH_6 = {_atomics_a_mask_sizeOH_T_20[2:1], 1'h1}; // @[OneHot.scala:65:27] wire atomics_a_mask_sub_sub_sub_0_1_6 = &s2_req_size; // @[Misc.scala:206:21] wire atomics_a_mask_sub_sub_size_6 = atomics_a_mask_sizeOH_6[2]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_sub_1_2_6 = atomics_a_mask_sub_sub_bit_6; // @[Misc.scala:210:26, :214:27] wire atomics_a_mask_sub_sub_nbit_6 = ~atomics_a_mask_sub_sub_bit_6; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_sub_0_2_6 = atomics_a_mask_sub_sub_nbit_6; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_sub_acc_T_12 = atomics_a_mask_sub_sub_size_6 & atomics_a_mask_sub_sub_0_2_6; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_0_1_6 = atomics_a_mask_sub_sub_sub_0_1_6 | _atomics_a_mask_sub_sub_acc_T_12; // @[Misc.scala:206:21, :215:{29,38}] wire _atomics_a_mask_sub_sub_acc_T_13 = atomics_a_mask_sub_sub_size_6 & atomics_a_mask_sub_sub_1_2_6; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_1_1_6 = atomics_a_mask_sub_sub_sub_0_1_6 | _atomics_a_mask_sub_sub_acc_T_13; // @[Misc.scala:206:21, :215:{29,38}] wire atomics_a_mask_sub_size_6 = atomics_a_mask_sizeOH_6[1]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_nbit_6 = ~atomics_a_mask_sub_bit_6; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_0_2_6 = atomics_a_mask_sub_sub_0_2_6 & atomics_a_mask_sub_nbit_6; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_24 = atomics_a_mask_sub_size_6 & atomics_a_mask_sub_0_2_6; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_0_1_6 = atomics_a_mask_sub_sub_0_1_6 | _atomics_a_mask_sub_acc_T_24; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_1_2_6 = atomics_a_mask_sub_sub_0_2_6 & atomics_a_mask_sub_bit_6; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_25 = atomics_a_mask_sub_size_6 & atomics_a_mask_sub_1_2_6; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_1_1_6 = atomics_a_mask_sub_sub_0_1_6 | _atomics_a_mask_sub_acc_T_25; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_2_2_6 = atomics_a_mask_sub_sub_1_2_6 & atomics_a_mask_sub_nbit_6; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_26 = atomics_a_mask_sub_size_6 & atomics_a_mask_sub_2_2_6; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_2_1_6 = atomics_a_mask_sub_sub_1_1_6 | _atomics_a_mask_sub_acc_T_26; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_3_2_6 = atomics_a_mask_sub_sub_1_2_6 & atomics_a_mask_sub_bit_6; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_27 = atomics_a_mask_sub_size_6 & atomics_a_mask_sub_3_2_6; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_3_1_6 = atomics_a_mask_sub_sub_1_1_6 | _atomics_a_mask_sub_acc_T_27; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_size_6 = atomics_a_mask_sizeOH_6[0]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_nbit_6 = ~atomics_a_mask_bit_6; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_eq_48 = atomics_a_mask_sub_0_2_6 & atomics_a_mask_nbit_6; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_48 = atomics_a_mask_size_6 & atomics_a_mask_eq_48; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_48 = atomics_a_mask_sub_0_1_6 | _atomics_a_mask_acc_T_48; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_49 = atomics_a_mask_sub_0_2_6 & atomics_a_mask_bit_6; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_49 = atomics_a_mask_size_6 & atomics_a_mask_eq_49; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_49 = atomics_a_mask_sub_0_1_6 | _atomics_a_mask_acc_T_49; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_50 = atomics_a_mask_sub_1_2_6 & atomics_a_mask_nbit_6; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_50 = atomics_a_mask_size_6 & atomics_a_mask_eq_50; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_50 = atomics_a_mask_sub_1_1_6 | _atomics_a_mask_acc_T_50; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_51 = atomics_a_mask_sub_1_2_6 & atomics_a_mask_bit_6; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_51 = atomics_a_mask_size_6 & atomics_a_mask_eq_51; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_51 = atomics_a_mask_sub_1_1_6 | _atomics_a_mask_acc_T_51; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_52 = atomics_a_mask_sub_2_2_6 & atomics_a_mask_nbit_6; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_52 = atomics_a_mask_size_6 & atomics_a_mask_eq_52; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_52 = atomics_a_mask_sub_2_1_6 | _atomics_a_mask_acc_T_52; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_53 = atomics_a_mask_sub_2_2_6 & atomics_a_mask_bit_6; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_53 = atomics_a_mask_size_6 & atomics_a_mask_eq_53; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_53 = atomics_a_mask_sub_2_1_6 | _atomics_a_mask_acc_T_53; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_54 = atomics_a_mask_sub_3_2_6 & atomics_a_mask_nbit_6; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_54 = atomics_a_mask_size_6 & atomics_a_mask_eq_54; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_54 = atomics_a_mask_sub_3_1_6 | _atomics_a_mask_acc_T_54; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_55 = atomics_a_mask_sub_3_2_6 & atomics_a_mask_bit_6; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_55 = atomics_a_mask_size_6 & atomics_a_mask_eq_55; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_55 = atomics_a_mask_sub_3_1_6 | _atomics_a_mask_acc_T_55; // @[Misc.scala:215:{29,38}] wire [1:0] atomics_a_mask_lo_lo_6 = {atomics_a_mask_acc_49, atomics_a_mask_acc_48}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_lo_hi_6 = {atomics_a_mask_acc_51, atomics_a_mask_acc_50}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_lo_6 = {atomics_a_mask_lo_hi_6, atomics_a_mask_lo_lo_6}; // @[Misc.scala:222:10] wire [1:0] atomics_a_mask_hi_lo_6 = {atomics_a_mask_acc_53, atomics_a_mask_acc_52}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_hi_hi_6 = {atomics_a_mask_acc_55, atomics_a_mask_acc_54}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_hi_6 = {atomics_a_mask_hi_hi_6, atomics_a_mask_hi_lo_6}; // @[Misc.scala:222:10] assign _atomics_a_mask_T_6 = {atomics_a_mask_hi_6, atomics_a_mask_lo_6}; // @[Misc.scala:222:10] assign atomics_a_6_mask = _atomics_a_mask_T_6; // @[Misc.scala:222:10] wire [40:0] _atomics_legal_T_383 = {1'h0, _atomics_legal_T_382}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_384 = _atomics_legal_T_383 & 41'h98110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_385 = _atomics_legal_T_384; // @[Parameters.scala:137:46] wire _atomics_legal_T_386 = _atomics_legal_T_385 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_388 = {1'h0, _atomics_legal_T_387}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_389 = _atomics_legal_T_388 & 41'h9A101000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_390 = _atomics_legal_T_389; // @[Parameters.scala:137:46] wire _atomics_legal_T_391 = _atomics_legal_T_390 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_393 = {1'h0, _atomics_legal_T_392}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_394 = _atomics_legal_T_393 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_395 = _atomics_legal_T_394; // @[Parameters.scala:137:46] wire _atomics_legal_T_396 = _atomics_legal_T_395 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_398 = {1'h0, _atomics_legal_T_397}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_399 = _atomics_legal_T_398 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_400 = _atomics_legal_T_399; // @[Parameters.scala:137:46] wire _atomics_legal_T_401 = _atomics_legal_T_400 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_403 = {1'h0, _atomics_legal_T_402}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_404 = _atomics_legal_T_403 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_405 = _atomics_legal_T_404; // @[Parameters.scala:137:46] wire _atomics_legal_T_406 = _atomics_legal_T_405 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_408 = {1'h0, _atomics_legal_T_407}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_409 = _atomics_legal_T_408 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_410 = _atomics_legal_T_409; // @[Parameters.scala:137:46] wire _atomics_legal_T_411 = _atomics_legal_T_410 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_413 = {1'h0, _atomics_legal_T_412}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_414 = _atomics_legal_T_413 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_415 = _atomics_legal_T_414; // @[Parameters.scala:137:46] wire _atomics_legal_T_416 = _atomics_legal_T_415 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _atomics_legal_T_417 = _atomics_legal_T_386 | _atomics_legal_T_391; // @[Parameters.scala:685:42] wire _atomics_legal_T_418 = _atomics_legal_T_417 | _atomics_legal_T_396; // @[Parameters.scala:685:42] wire _atomics_legal_T_419 = _atomics_legal_T_418 | _atomics_legal_T_401; // @[Parameters.scala:685:42] wire _atomics_legal_T_420 = _atomics_legal_T_419 | _atomics_legal_T_406; // @[Parameters.scala:685:42] wire _atomics_legal_T_421 = _atomics_legal_T_420 | _atomics_legal_T_411; // @[Parameters.scala:685:42] wire _atomics_legal_T_422 = _atomics_legal_T_421 | _atomics_legal_T_416; // @[Parameters.scala:685:42] wire _atomics_legal_T_423 = _atomics_legal_T_422; // @[Parameters.scala:684:54, :685:42] wire _atomics_legal_T_431 = _atomics_legal_T_423; // @[Parameters.scala:684:54, :686:26] wire [40:0] _atomics_legal_T_426 = {1'h0, _atomics_legal_T_425}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_427 = _atomics_legal_T_426 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_428 = _atomics_legal_T_427; // @[Parameters.scala:137:46] wire _atomics_legal_T_429 = _atomics_legal_T_428 == 41'h0; // @[Parameters.scala:137:{46,59}] wire atomics_legal_7 = _atomics_legal_T_431; // @[Parameters.scala:686:26] wire [7:0] _atomics_a_mask_T_7; // @[Misc.scala:222:10] wire [7:0] atomics_a_7_mask; // @[Edges.scala:517:17] wire [1:0] atomics_a_mask_sizeOH_shiftAmount_7 = _atomics_a_mask_sizeOH_T_21[1:0]; // @[OneHot.scala:64:49] wire [3:0] _atomics_a_mask_sizeOH_T_22 = 4'h1 << atomics_a_mask_sizeOH_shiftAmount_7; // @[OneHot.scala:64:49, :65:12] wire [2:0] _atomics_a_mask_sizeOH_T_23 = _atomics_a_mask_sizeOH_T_22[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] atomics_a_mask_sizeOH_7 = {_atomics_a_mask_sizeOH_T_23[2:1], 1'h1}; // @[OneHot.scala:65:27] wire atomics_a_mask_sub_sub_sub_0_1_7 = &s2_req_size; // @[Misc.scala:206:21] wire atomics_a_mask_sub_sub_size_7 = atomics_a_mask_sizeOH_7[2]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_sub_1_2_7 = atomics_a_mask_sub_sub_bit_7; // @[Misc.scala:210:26, :214:27] wire atomics_a_mask_sub_sub_nbit_7 = ~atomics_a_mask_sub_sub_bit_7; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_sub_0_2_7 = atomics_a_mask_sub_sub_nbit_7; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_sub_acc_T_14 = atomics_a_mask_sub_sub_size_7 & atomics_a_mask_sub_sub_0_2_7; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_0_1_7 = atomics_a_mask_sub_sub_sub_0_1_7 | _atomics_a_mask_sub_sub_acc_T_14; // @[Misc.scala:206:21, :215:{29,38}] wire _atomics_a_mask_sub_sub_acc_T_15 = atomics_a_mask_sub_sub_size_7 & atomics_a_mask_sub_sub_1_2_7; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_1_1_7 = atomics_a_mask_sub_sub_sub_0_1_7 | _atomics_a_mask_sub_sub_acc_T_15; // @[Misc.scala:206:21, :215:{29,38}] wire atomics_a_mask_sub_size_7 = atomics_a_mask_sizeOH_7[1]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_nbit_7 = ~atomics_a_mask_sub_bit_7; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_0_2_7 = atomics_a_mask_sub_sub_0_2_7 & atomics_a_mask_sub_nbit_7; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_28 = atomics_a_mask_sub_size_7 & atomics_a_mask_sub_0_2_7; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_0_1_7 = atomics_a_mask_sub_sub_0_1_7 | _atomics_a_mask_sub_acc_T_28; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_1_2_7 = atomics_a_mask_sub_sub_0_2_7 & atomics_a_mask_sub_bit_7; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_29 = atomics_a_mask_sub_size_7 & atomics_a_mask_sub_1_2_7; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_1_1_7 = atomics_a_mask_sub_sub_0_1_7 | _atomics_a_mask_sub_acc_T_29; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_2_2_7 = atomics_a_mask_sub_sub_1_2_7 & atomics_a_mask_sub_nbit_7; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_30 = atomics_a_mask_sub_size_7 & atomics_a_mask_sub_2_2_7; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_2_1_7 = atomics_a_mask_sub_sub_1_1_7 | _atomics_a_mask_sub_acc_T_30; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_3_2_7 = atomics_a_mask_sub_sub_1_2_7 & atomics_a_mask_sub_bit_7; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_31 = atomics_a_mask_sub_size_7 & atomics_a_mask_sub_3_2_7; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_3_1_7 = atomics_a_mask_sub_sub_1_1_7 | _atomics_a_mask_sub_acc_T_31; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_size_7 = atomics_a_mask_sizeOH_7[0]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_nbit_7 = ~atomics_a_mask_bit_7; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_eq_56 = atomics_a_mask_sub_0_2_7 & atomics_a_mask_nbit_7; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_56 = atomics_a_mask_size_7 & atomics_a_mask_eq_56; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_56 = atomics_a_mask_sub_0_1_7 | _atomics_a_mask_acc_T_56; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_57 = atomics_a_mask_sub_0_2_7 & atomics_a_mask_bit_7; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_57 = atomics_a_mask_size_7 & atomics_a_mask_eq_57; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_57 = atomics_a_mask_sub_0_1_7 | _atomics_a_mask_acc_T_57; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_58 = atomics_a_mask_sub_1_2_7 & atomics_a_mask_nbit_7; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_58 = atomics_a_mask_size_7 & atomics_a_mask_eq_58; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_58 = atomics_a_mask_sub_1_1_7 | _atomics_a_mask_acc_T_58; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_59 = atomics_a_mask_sub_1_2_7 & atomics_a_mask_bit_7; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_59 = atomics_a_mask_size_7 & atomics_a_mask_eq_59; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_59 = atomics_a_mask_sub_1_1_7 | _atomics_a_mask_acc_T_59; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_60 = atomics_a_mask_sub_2_2_7 & atomics_a_mask_nbit_7; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_60 = atomics_a_mask_size_7 & atomics_a_mask_eq_60; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_60 = atomics_a_mask_sub_2_1_7 | _atomics_a_mask_acc_T_60; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_61 = atomics_a_mask_sub_2_2_7 & atomics_a_mask_bit_7; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_61 = atomics_a_mask_size_7 & atomics_a_mask_eq_61; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_61 = atomics_a_mask_sub_2_1_7 | _atomics_a_mask_acc_T_61; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_62 = atomics_a_mask_sub_3_2_7 & atomics_a_mask_nbit_7; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_62 = atomics_a_mask_size_7 & atomics_a_mask_eq_62; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_62 = atomics_a_mask_sub_3_1_7 | _atomics_a_mask_acc_T_62; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_63 = atomics_a_mask_sub_3_2_7 & atomics_a_mask_bit_7; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_63 = atomics_a_mask_size_7 & atomics_a_mask_eq_63; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_63 = atomics_a_mask_sub_3_1_7 | _atomics_a_mask_acc_T_63; // @[Misc.scala:215:{29,38}] wire [1:0] atomics_a_mask_lo_lo_7 = {atomics_a_mask_acc_57, atomics_a_mask_acc_56}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_lo_hi_7 = {atomics_a_mask_acc_59, atomics_a_mask_acc_58}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_lo_7 = {atomics_a_mask_lo_hi_7, atomics_a_mask_lo_lo_7}; // @[Misc.scala:222:10] wire [1:0] atomics_a_mask_hi_lo_7 = {atomics_a_mask_acc_61, atomics_a_mask_acc_60}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_hi_hi_7 = {atomics_a_mask_acc_63, atomics_a_mask_acc_62}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_hi_7 = {atomics_a_mask_hi_hi_7, atomics_a_mask_hi_lo_7}; // @[Misc.scala:222:10] assign _atomics_a_mask_T_7 = {atomics_a_mask_hi_7, atomics_a_mask_lo_7}; // @[Misc.scala:222:10] assign atomics_a_7_mask = _atomics_a_mask_T_7; // @[Misc.scala:222:10] wire [40:0] _atomics_legal_T_437 = {1'h0, _atomics_legal_T_436}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_438 = _atomics_legal_T_437 & 41'h98110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_439 = _atomics_legal_T_438; // @[Parameters.scala:137:46] wire _atomics_legal_T_440 = _atomics_legal_T_439 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_442 = {1'h0, _atomics_legal_T_441}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_443 = _atomics_legal_T_442 & 41'h9A101000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_444 = _atomics_legal_T_443; // @[Parameters.scala:137:46] wire _atomics_legal_T_445 = _atomics_legal_T_444 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_447 = {1'h0, _atomics_legal_T_446}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_448 = _atomics_legal_T_447 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_449 = _atomics_legal_T_448; // @[Parameters.scala:137:46] wire _atomics_legal_T_450 = _atomics_legal_T_449 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_452 = {1'h0, _atomics_legal_T_451}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_453 = _atomics_legal_T_452 & 41'h98000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_454 = _atomics_legal_T_453; // @[Parameters.scala:137:46] wire _atomics_legal_T_455 = _atomics_legal_T_454 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_457 = {1'h0, _atomics_legal_T_456}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_458 = _atomics_legal_T_457 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_459 = _atomics_legal_T_458; // @[Parameters.scala:137:46] wire _atomics_legal_T_460 = _atomics_legal_T_459 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_462 = {1'h0, _atomics_legal_T_461}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_463 = _atomics_legal_T_462 & 41'h9A111000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_464 = _atomics_legal_T_463; // @[Parameters.scala:137:46] wire _atomics_legal_T_465 = _atomics_legal_T_464 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [40:0] _atomics_legal_T_467 = {1'h0, _atomics_legal_T_466}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_468 = _atomics_legal_T_467 & 41'h90000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_469 = _atomics_legal_T_468; // @[Parameters.scala:137:46] wire _atomics_legal_T_470 = _atomics_legal_T_469 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _atomics_legal_T_471 = _atomics_legal_T_440 | _atomics_legal_T_445; // @[Parameters.scala:685:42] wire _atomics_legal_T_472 = _atomics_legal_T_471 | _atomics_legal_T_450; // @[Parameters.scala:685:42] wire _atomics_legal_T_473 = _atomics_legal_T_472 | _atomics_legal_T_455; // @[Parameters.scala:685:42] wire _atomics_legal_T_474 = _atomics_legal_T_473 | _atomics_legal_T_460; // @[Parameters.scala:685:42] wire _atomics_legal_T_475 = _atomics_legal_T_474 | _atomics_legal_T_465; // @[Parameters.scala:685:42] wire _atomics_legal_T_476 = _atomics_legal_T_475 | _atomics_legal_T_470; // @[Parameters.scala:685:42] wire _atomics_legal_T_477 = _atomics_legal_T_476; // @[Parameters.scala:684:54, :685:42] wire _atomics_legal_T_485 = _atomics_legal_T_477; // @[Parameters.scala:684:54, :686:26] wire [40:0] _atomics_legal_T_480 = {1'h0, _atomics_legal_T_479}; // @[Parameters.scala:137:{31,41}] wire [40:0] _atomics_legal_T_481 = _atomics_legal_T_480 & 41'h9A110000; // @[Parameters.scala:137:{41,46}] wire [40:0] _atomics_legal_T_482 = _atomics_legal_T_481; // @[Parameters.scala:137:46] wire _atomics_legal_T_483 = _atomics_legal_T_482 == 41'h0; // @[Parameters.scala:137:{46,59}] wire atomics_legal_8 = _atomics_legal_T_485; // @[Parameters.scala:686:26] wire [7:0] _atomics_a_mask_T_8; // @[Misc.scala:222:10] wire [7:0] atomics_a_8_mask; // @[Edges.scala:517:17] wire [1:0] atomics_a_mask_sizeOH_shiftAmount_8 = _atomics_a_mask_sizeOH_T_24[1:0]; // @[OneHot.scala:64:49] wire [3:0] _atomics_a_mask_sizeOH_T_25 = 4'h1 << atomics_a_mask_sizeOH_shiftAmount_8; // @[OneHot.scala:64:49, :65:12] wire [2:0] _atomics_a_mask_sizeOH_T_26 = _atomics_a_mask_sizeOH_T_25[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] atomics_a_mask_sizeOH_8 = {_atomics_a_mask_sizeOH_T_26[2:1], 1'h1}; // @[OneHot.scala:65:27] wire atomics_a_mask_sub_sub_sub_0_1_8 = &s2_req_size; // @[Misc.scala:206:21] wire atomics_a_mask_sub_sub_size_8 = atomics_a_mask_sizeOH_8[2]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_sub_1_2_8 = atomics_a_mask_sub_sub_bit_8; // @[Misc.scala:210:26, :214:27] wire atomics_a_mask_sub_sub_nbit_8 = ~atomics_a_mask_sub_sub_bit_8; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_sub_0_2_8 = atomics_a_mask_sub_sub_nbit_8; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_sub_acc_T_16 = atomics_a_mask_sub_sub_size_8 & atomics_a_mask_sub_sub_0_2_8; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_0_1_8 = atomics_a_mask_sub_sub_sub_0_1_8 | _atomics_a_mask_sub_sub_acc_T_16; // @[Misc.scala:206:21, :215:{29,38}] wire _atomics_a_mask_sub_sub_acc_T_17 = atomics_a_mask_sub_sub_size_8 & atomics_a_mask_sub_sub_1_2_8; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_sub_1_1_8 = atomics_a_mask_sub_sub_sub_0_1_8 | _atomics_a_mask_sub_sub_acc_T_17; // @[Misc.scala:206:21, :215:{29,38}] wire atomics_a_mask_sub_size_8 = atomics_a_mask_sizeOH_8[1]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_sub_nbit_8 = ~atomics_a_mask_sub_bit_8; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_sub_0_2_8 = atomics_a_mask_sub_sub_0_2_8 & atomics_a_mask_sub_nbit_8; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_32 = atomics_a_mask_sub_size_8 & atomics_a_mask_sub_0_2_8; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_0_1_8 = atomics_a_mask_sub_sub_0_1_8 | _atomics_a_mask_sub_acc_T_32; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_1_2_8 = atomics_a_mask_sub_sub_0_2_8 & atomics_a_mask_sub_bit_8; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_33 = atomics_a_mask_sub_size_8 & atomics_a_mask_sub_1_2_8; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_1_1_8 = atomics_a_mask_sub_sub_0_1_8 | _atomics_a_mask_sub_acc_T_33; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_2_2_8 = atomics_a_mask_sub_sub_1_2_8 & atomics_a_mask_sub_nbit_8; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_sub_acc_T_34 = atomics_a_mask_sub_size_8 & atomics_a_mask_sub_2_2_8; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_2_1_8 = atomics_a_mask_sub_sub_1_1_8 | _atomics_a_mask_sub_acc_T_34; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_sub_3_2_8 = atomics_a_mask_sub_sub_1_2_8 & atomics_a_mask_sub_bit_8; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_sub_acc_T_35 = atomics_a_mask_sub_size_8 & atomics_a_mask_sub_3_2_8; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_sub_3_1_8 = atomics_a_mask_sub_sub_1_1_8 | _atomics_a_mask_sub_acc_T_35; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_size_8 = atomics_a_mask_sizeOH_8[0]; // @[Misc.scala:202:81, :209:26] wire atomics_a_mask_nbit_8 = ~atomics_a_mask_bit_8; // @[Misc.scala:210:26, :211:20] wire atomics_a_mask_eq_64 = atomics_a_mask_sub_0_2_8 & atomics_a_mask_nbit_8; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_64 = atomics_a_mask_size_8 & atomics_a_mask_eq_64; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_64 = atomics_a_mask_sub_0_1_8 | _atomics_a_mask_acc_T_64; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_65 = atomics_a_mask_sub_0_2_8 & atomics_a_mask_bit_8; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_65 = atomics_a_mask_size_8 & atomics_a_mask_eq_65; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_65 = atomics_a_mask_sub_0_1_8 | _atomics_a_mask_acc_T_65; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_66 = atomics_a_mask_sub_1_2_8 & atomics_a_mask_nbit_8; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_66 = atomics_a_mask_size_8 & atomics_a_mask_eq_66; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_66 = atomics_a_mask_sub_1_1_8 | _atomics_a_mask_acc_T_66; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_67 = atomics_a_mask_sub_1_2_8 & atomics_a_mask_bit_8; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_67 = atomics_a_mask_size_8 & atomics_a_mask_eq_67; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_67 = atomics_a_mask_sub_1_1_8 | _atomics_a_mask_acc_T_67; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_68 = atomics_a_mask_sub_2_2_8 & atomics_a_mask_nbit_8; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_68 = atomics_a_mask_size_8 & atomics_a_mask_eq_68; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_68 = atomics_a_mask_sub_2_1_8 | _atomics_a_mask_acc_T_68; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_69 = atomics_a_mask_sub_2_2_8 & atomics_a_mask_bit_8; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_69 = atomics_a_mask_size_8 & atomics_a_mask_eq_69; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_69 = atomics_a_mask_sub_2_1_8 | _atomics_a_mask_acc_T_69; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_70 = atomics_a_mask_sub_3_2_8 & atomics_a_mask_nbit_8; // @[Misc.scala:211:20, :214:27] wire _atomics_a_mask_acc_T_70 = atomics_a_mask_size_8 & atomics_a_mask_eq_70; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_70 = atomics_a_mask_sub_3_1_8 | _atomics_a_mask_acc_T_70; // @[Misc.scala:215:{29,38}] wire atomics_a_mask_eq_71 = atomics_a_mask_sub_3_2_8 & atomics_a_mask_bit_8; // @[Misc.scala:210:26, :214:27] wire _atomics_a_mask_acc_T_71 = atomics_a_mask_size_8 & atomics_a_mask_eq_71; // @[Misc.scala:209:26, :214:27, :215:38] wire atomics_a_mask_acc_71 = atomics_a_mask_sub_3_1_8 | _atomics_a_mask_acc_T_71; // @[Misc.scala:215:{29,38}] wire [1:0] atomics_a_mask_lo_lo_8 = {atomics_a_mask_acc_65, atomics_a_mask_acc_64}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_lo_hi_8 = {atomics_a_mask_acc_67, atomics_a_mask_acc_66}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_lo_8 = {atomics_a_mask_lo_hi_8, atomics_a_mask_lo_lo_8}; // @[Misc.scala:222:10] wire [1:0] atomics_a_mask_hi_lo_8 = {atomics_a_mask_acc_69, atomics_a_mask_acc_68}; // @[Misc.scala:215:29, :222:10] wire [1:0] atomics_a_mask_hi_hi_8 = {atomics_a_mask_acc_71, atomics_a_mask_acc_70}; // @[Misc.scala:215:29, :222:10] wire [3:0] atomics_a_mask_hi_8 = {atomics_a_mask_hi_hi_8, atomics_a_mask_hi_lo_8}; // @[Misc.scala:222:10] assign _atomics_a_mask_T_8 = {atomics_a_mask_hi_8, atomics_a_mask_lo_8}; // @[Misc.scala:222:10] assign atomics_a_8_mask = _atomics_a_mask_T_8; // @[Misc.scala:222:10] wire [2:0] _GEN_112 = _atomics_T ? 3'h3 : 3'h0; // @[DCache.scala:587:81] wire [2:0] _atomics_T_1_opcode; // @[DCache.scala:587:81] assign _atomics_T_1_opcode = _GEN_112; // @[DCache.scala:587:81] wire [2:0] _atomics_T_1_param; // @[DCache.scala:587:81] assign _atomics_T_1_param = _GEN_112; // @[DCache.scala:587:81] wire [3:0] _atomics_T_1_size = _atomics_T ? atomics_a_size : 4'h0; // @[Edges.scala:534:17] wire _atomics_T_1_source = _atomics_T & atomics_a_source; // @[Edges.scala:534:17] wire [31:0] _atomics_T_1_address = _atomics_T ? atomics_a_address : 32'h0; // @[Edges.scala:534:17] wire [7:0] _atomics_T_1_mask = _atomics_T ? atomics_a_mask : 8'h0; // @[Edges.scala:534:17] wire [63:0] _atomics_T_1_data = _atomics_T ? atomics_a_data : 64'h0; // @[Edges.scala:534:17] wire [2:0] _atomics_T_3_opcode = _atomics_T_2 ? 3'h3 : _atomics_T_1_opcode; // @[DCache.scala:587:81] wire [2:0] _atomics_T_3_param = _atomics_T_2 ? 3'h0 : _atomics_T_1_param; // @[DCache.scala:587:81] wire [3:0] _atomics_T_3_size = _atomics_T_2 ? atomics_a_1_size : _atomics_T_1_size; // @[Edges.scala:534:17] wire _atomics_T_3_source = _atomics_T_2 ? atomics_a_1_source : _atomics_T_1_source; // @[Edges.scala:534:17] wire [31:0] _atomics_T_3_address = _atomics_T_2 ? atomics_a_1_address : _atomics_T_1_address; // @[Edges.scala:534:17] wire [7:0] _atomics_T_3_mask = _atomics_T_2 ? atomics_a_1_mask : _atomics_T_1_mask; // @[Edges.scala:534:17] wire [63:0] _atomics_T_3_data = _atomics_T_2 ? atomics_a_1_data : _atomics_T_1_data; // @[Edges.scala:534:17] wire [2:0] _atomics_T_5_opcode = _atomics_T_4 ? 3'h3 : _atomics_T_3_opcode; // @[DCache.scala:587:81] wire [2:0] _atomics_T_5_param = _atomics_T_4 ? 3'h1 : _atomics_T_3_param; // @[DCache.scala:587:81] wire [3:0] _atomics_T_5_size = _atomics_T_4 ? atomics_a_2_size : _atomics_T_3_size; // @[Edges.scala:534:17] wire _atomics_T_5_source = _atomics_T_4 ? atomics_a_2_source : _atomics_T_3_source; // @[Edges.scala:534:17] wire [31:0] _atomics_T_5_address = _atomics_T_4 ? atomics_a_2_address : _atomics_T_3_address; // @[Edges.scala:534:17] wire [7:0] _atomics_T_5_mask = _atomics_T_4 ? atomics_a_2_mask : _atomics_T_3_mask; // @[Edges.scala:534:17] wire [63:0] _atomics_T_5_data = _atomics_T_4 ? atomics_a_2_data : _atomics_T_3_data; // @[Edges.scala:534:17] wire [2:0] _atomics_T_7_opcode = _atomics_T_6 ? 3'h3 : _atomics_T_5_opcode; // @[DCache.scala:587:81] wire [2:0] _atomics_T_7_param = _atomics_T_6 ? 3'h2 : _atomics_T_5_param; // @[DCache.scala:587:81] wire [3:0] _atomics_T_7_size = _atomics_T_6 ? atomics_a_3_size : _atomics_T_5_size; // @[Edges.scala:534:17] wire _atomics_T_7_source = _atomics_T_6 ? atomics_a_3_source : _atomics_T_5_source; // @[Edges.scala:534:17] wire [31:0] _atomics_T_7_address = _atomics_T_6 ? atomics_a_3_address : _atomics_T_5_address; // @[Edges.scala:534:17] wire [7:0] _atomics_T_7_mask = _atomics_T_6 ? atomics_a_3_mask : _atomics_T_5_mask; // @[Edges.scala:534:17] wire [63:0] _atomics_T_7_data = _atomics_T_6 ? atomics_a_3_data : _atomics_T_5_data; // @[Edges.scala:534:17] wire [2:0] _atomics_T_9_opcode = _atomics_T_8 ? 3'h2 : _atomics_T_7_opcode; // @[DCache.scala:587:81] wire [2:0] _atomics_T_9_param = _atomics_T_8 ? 3'h4 : _atomics_T_7_param; // @[DCache.scala:587:81] wire [3:0] _atomics_T_9_size = _atomics_T_8 ? atomics_a_4_size : _atomics_T_7_size; // @[Edges.scala:517:17] wire _atomics_T_9_source = _atomics_T_8 ? atomics_a_4_source : _atomics_T_7_source; // @[Edges.scala:517:17] wire [31:0] _atomics_T_9_address = _atomics_T_8 ? atomics_a_4_address : _atomics_T_7_address; // @[Edges.scala:517:17] wire [7:0] _atomics_T_9_mask = _atomics_T_8 ? atomics_a_4_mask : _atomics_T_7_mask; // @[Edges.scala:517:17] wire [63:0] _atomics_T_9_data = _atomics_T_8 ? atomics_a_4_data : _atomics_T_7_data; // @[Edges.scala:517:17] wire [2:0] _atomics_T_11_opcode = _atomics_T_10 ? 3'h2 : _atomics_T_9_opcode; // @[DCache.scala:587:81] wire [2:0] _atomics_T_11_param = _atomics_T_10 ? 3'h0 : _atomics_T_9_param; // @[DCache.scala:587:81] wire [3:0] _atomics_T_11_size = _atomics_T_10 ? atomics_a_5_size : _atomics_T_9_size; // @[Edges.scala:517:17] wire _atomics_T_11_source = _atomics_T_10 ? atomics_a_5_source : _atomics_T_9_source; // @[Edges.scala:517:17] wire [31:0] _atomics_T_11_address = _atomics_T_10 ? atomics_a_5_address : _atomics_T_9_address; // @[Edges.scala:517:17] wire [7:0] _atomics_T_11_mask = _atomics_T_10 ? atomics_a_5_mask : _atomics_T_9_mask; // @[Edges.scala:517:17] wire [63:0] _atomics_T_11_data = _atomics_T_10 ? atomics_a_5_data : _atomics_T_9_data; // @[Edges.scala:517:17] wire [2:0] _atomics_T_13_opcode = _atomics_T_12 ? 3'h2 : _atomics_T_11_opcode; // @[DCache.scala:587:81] wire [2:0] _atomics_T_13_param = _atomics_T_12 ? 3'h1 : _atomics_T_11_param; // @[DCache.scala:587:81] wire [3:0] _atomics_T_13_size = _atomics_T_12 ? atomics_a_6_size : _atomics_T_11_size; // @[Edges.scala:517:17] wire _atomics_T_13_source = _atomics_T_12 ? atomics_a_6_source : _atomics_T_11_source; // @[Edges.scala:517:17] wire [31:0] _atomics_T_13_address = _atomics_T_12 ? atomics_a_6_address : _atomics_T_11_address; // @[Edges.scala:517:17] wire [7:0] _atomics_T_13_mask = _atomics_T_12 ? atomics_a_6_mask : _atomics_T_11_mask; // @[Edges.scala:517:17] wire [63:0] _atomics_T_13_data = _atomics_T_12 ? atomics_a_6_data : _atomics_T_11_data; // @[Edges.scala:517:17] wire [2:0] _atomics_T_15_opcode = _atomics_T_14 ? 3'h2 : _atomics_T_13_opcode; // @[DCache.scala:587:81] wire [2:0] _atomics_T_15_param = _atomics_T_14 ? 3'h2 : _atomics_T_13_param; // @[DCache.scala:587:81] wire [3:0] _atomics_T_15_size = _atomics_T_14 ? atomics_a_7_size : _atomics_T_13_size; // @[Edges.scala:517:17] wire _atomics_T_15_source = _atomics_T_14 ? atomics_a_7_source : _atomics_T_13_source; // @[Edges.scala:517:17] wire [31:0] _atomics_T_15_address = _atomics_T_14 ? atomics_a_7_address : _atomics_T_13_address; // @[Edges.scala:517:17] wire [7:0] _atomics_T_15_mask = _atomics_T_14 ? atomics_a_7_mask : _atomics_T_13_mask; // @[Edges.scala:517:17] wire [63:0] _atomics_T_15_data = _atomics_T_14 ? atomics_a_7_data : _atomics_T_13_data; // @[Edges.scala:517:17] wire [2:0] atomics_opcode = _atomics_T_16 ? 3'h2 : _atomics_T_15_opcode; // @[DCache.scala:587:81] wire [2:0] atomics_param = _atomics_T_16 ? 3'h3 : _atomics_T_15_param; // @[DCache.scala:587:81] wire [3:0] atomics_size = _atomics_T_16 ? atomics_a_8_size : _atomics_T_15_size; // @[Edges.scala:517:17] wire atomics_source = _atomics_T_16 ? atomics_a_8_source : _atomics_T_15_source; // @[Edges.scala:517:17] wire [31:0] atomics_address = _atomics_T_16 ? atomics_a_8_address : _atomics_T_15_address; // @[Edges.scala:517:17] wire [7:0] atomics_mask = _atomics_T_16 ? atomics_a_8_mask : _atomics_T_15_mask; // @[Edges.scala:517:17] wire [63:0] atomics_data = _atomics_T_16 ? atomics_a_8_data : _atomics_T_15_data; // @[Edges.scala:517:17] wire [39:0] _tl_out_a_valid_T_1 = {s2_req_addr[39:32], s2_req_addr[31:0] ^ release_ack_addr}; // @[DCache.scala:227:29, :339:19, :606:43] wire [14:0] _tl_out_a_valid_T_2 = _tl_out_a_valid_T_1[20:6]; // @[DCache.scala:606:{43,62}] wire _tl_out_a_valid_T_3 = _tl_out_a_valid_T_2 == 15'h0; // @[DCache.scala:582:29, :606:{62,118}] wire _tl_out_a_valid_T_4 = release_ack_wait & _tl_out_a_valid_T_3; // @[DCache.scala:226:33, :606:{27,118}] wire _tl_out_a_valid_T_5 = ~_tl_out_a_valid_T_4; // @[DCache.scala:606:{8,27}] wire _tl_out_a_valid_T_6 = s2_valid_cached_miss & _tl_out_a_valid_T_5; // @[DCache.scala:425:60, :605:29, :606:8] wire _tl_out_a_valid_T_7 = ~release_ack_wait; // @[DCache.scala:226:33, :607:47] wire _tl_out_a_valid_T_10 = ~s2_victim_dirty; // @[Misc.scala:38:9] wire _tl_out_a_valid_T_11 = _tl_out_a_valid_T_10; // @[DCache.scala:607:{88,91}] wire _tl_out_a_valid_T_12 = _tl_out_a_valid_T_6 & _tl_out_a_valid_T_11; // @[DCache.scala:605:29, :606:127, :607:88] wire _tl_out_a_valid_T_13 = s2_valid_uncached_pending | _tl_out_a_valid_T_12; // @[DCache.scala:430:64, :604:32, :606:127] assign _tl_out_a_valid_T_14 = _tl_out_a_valid_T_13; // @[DCache.scala:603:37, :604:32] assign tl_out_a_valid = _tl_out_a_valid_T_14; // @[DCache.scala:159:22, :603:37] wire _tl_out_a_bits_T = ~s2_uncached; // @[DCache.scala:424:39, :425:47, :608:24] wire [39:0] _tl_out_a_bits_T_2 = {_tl_out_a_bits_T_1, 6'h0}; // @[DCache.scala:1210:{39,60}] wire [39:0] _tl_out_a_bits_legal_T_1 = _tl_out_a_bits_T_2; // @[DCache.scala:1210:60] wire [40:0] _tl_out_a_bits_legal_T_2 = {1'h0, _tl_out_a_bits_legal_T_1}; // @[Parameters.scala:137:{31,41}] wire [40:0] _tl_out_a_bits_legal_T_3 = _tl_out_a_bits_legal_T_2 & 41'h8C000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _tl_out_a_bits_legal_T_4 = _tl_out_a_bits_legal_T_3; // @[Parameters.scala:137:46] wire _tl_out_a_bits_legal_T_5 = _tl_out_a_bits_legal_T_4 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _tl_out_a_bits_legal_T_6 = {_tl_out_a_bits_T_2[39:17], _tl_out_a_bits_T_2[16:0] ^ 17'h10000}; // @[DCache.scala:1210:60] wire [40:0] _tl_out_a_bits_legal_T_7 = {1'h0, _tl_out_a_bits_legal_T_6}; // @[Parameters.scala:137:{31,41}] wire [40:0] _tl_out_a_bits_legal_T_8 = _tl_out_a_bits_legal_T_7 & 41'h8C011000; // @[Parameters.scala:137:{41,46}] wire [40:0] _tl_out_a_bits_legal_T_9 = _tl_out_a_bits_legal_T_8; // @[Parameters.scala:137:46] wire _tl_out_a_bits_legal_T_10 = _tl_out_a_bits_legal_T_9 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [39:0] _tl_out_a_bits_legal_T_11 = {_tl_out_a_bits_T_2[39:28], _tl_out_a_bits_T_2[27:0] ^ 28'hC000000}; // @[DCache.scala:1210:60] wire [40:0] _tl_out_a_bits_legal_T_12 = {1'h0, _tl_out_a_bits_legal_T_11}; // @[Parameters.scala:137:{31,41}] wire [40:0] _tl_out_a_bits_legal_T_13 = _tl_out_a_bits_legal_T_12 & 41'h8C000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _tl_out_a_bits_legal_T_14 = _tl_out_a_bits_legal_T_13; // @[Parameters.scala:137:46] wire _tl_out_a_bits_legal_T_15 = _tl_out_a_bits_legal_T_14 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _tl_out_a_bits_legal_T_16 = _tl_out_a_bits_legal_T_5 | _tl_out_a_bits_legal_T_10; // @[Parameters.scala:685:42] wire _tl_out_a_bits_legal_T_17 = _tl_out_a_bits_legal_T_16 | _tl_out_a_bits_legal_T_15; // @[Parameters.scala:685:42] wire [39:0] _tl_out_a_bits_legal_T_21 = {_tl_out_a_bits_T_2[39:28], _tl_out_a_bits_T_2[27:0] ^ 28'h8000000}; // @[DCache.scala:1210:60] wire [40:0] _tl_out_a_bits_legal_T_22 = {1'h0, _tl_out_a_bits_legal_T_21}; // @[Parameters.scala:137:{31,41}] wire [40:0] _tl_out_a_bits_legal_T_23 = _tl_out_a_bits_legal_T_22 & 41'h8C010000; // @[Parameters.scala:137:{41,46}] wire [40:0] _tl_out_a_bits_legal_T_24 = _tl_out_a_bits_legal_T_23; // @[Parameters.scala:137:46] wire _tl_out_a_bits_legal_T_25 = _tl_out_a_bits_legal_T_24 == 41'h0; // @[Parameters.scala:137:{46,59}] wire [31:0] tl_out_a_bits_a_address = _tl_out_a_bits_T_2[31:0]; // @[Edges.scala:346:17] wire [39:0] _tl_out_a_bits_legal_T_26 = {_tl_out_a_bits_T_2[39:32], tl_out_a_bits_a_address ^ 32'h80000000}; // @[Edges.scala:346:17] wire [40:0] _tl_out_a_bits_legal_T_27 = {1'h0, _tl_out_a_bits_legal_T_26}; // @[Parameters.scala:137:{31,41}] wire [40:0] _tl_out_a_bits_legal_T_28 = _tl_out_a_bits_legal_T_27 & 41'h80000000; // @[Parameters.scala:137:{41,46}] wire [40:0] _tl_out_a_bits_legal_T_29 = _tl_out_a_bits_legal_T_28; // @[Parameters.scala:137:46] wire _tl_out_a_bits_legal_T_30 = _tl_out_a_bits_legal_T_29 == 41'h0; // @[Parameters.scala:137:{46,59}] wire _tl_out_a_bits_legal_T_31 = _tl_out_a_bits_legal_T_25 | _tl_out_a_bits_legal_T_30; // @[Parameters.scala:685:42] wire _tl_out_a_bits_legal_T_32 = _tl_out_a_bits_legal_T_31; // @[Parameters.scala:684:54, :685:42] wire tl_out_a_bits_legal = _tl_out_a_bits_legal_T_32; // @[Parameters.scala:684:54, :686:26] wire [2:0] tl_out_a_bits_a_param; // @[Edges.scala:346:17] assign tl_out_a_bits_a_param = {1'h0, s2_grow_param}; // @[Misc.scala:35:36] wire tl_out_a_bits_a_mask_sub_sub_bit = _tl_out_a_bits_T_2[2]; // @[Misc.scala:210:26] wire tl_out_a_bits_a_mask_sub_sub_1_2 = tl_out_a_bits_a_mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire tl_out_a_bits_a_mask_sub_sub_nbit = ~tl_out_a_bits_a_mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire tl_out_a_bits_a_mask_sub_sub_0_2 = tl_out_a_bits_a_mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _tl_out_a_bits_a_mask_sub_sub_acc_T = tl_out_a_bits_a_mask_sub_sub_0_2; // @[Misc.scala:214:27, :215:38] wire _tl_out_a_bits_a_mask_sub_sub_acc_T_1 = tl_out_a_bits_a_mask_sub_sub_1_2; // @[Misc.scala:214:27, :215:38] wire tl_out_a_bits_a_mask_sub_bit = _tl_out_a_bits_T_2[1]; // @[Misc.scala:210:26] wire tl_out_a_bits_a_mask_sub_nbit = ~tl_out_a_bits_a_mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire tl_out_a_bits_a_mask_sub_0_2 = tl_out_a_bits_a_mask_sub_sub_0_2 & tl_out_a_bits_a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire tl_out_a_bits_a_mask_sub_1_2 = tl_out_a_bits_a_mask_sub_sub_0_2 & tl_out_a_bits_a_mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire tl_out_a_bits_a_mask_sub_2_2 = tl_out_a_bits_a_mask_sub_sub_1_2 & tl_out_a_bits_a_mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire tl_out_a_bits_a_mask_sub_3_2 = tl_out_a_bits_a_mask_sub_sub_1_2 & tl_out_a_bits_a_mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire tl_out_a_bits_a_mask_bit = _tl_out_a_bits_T_2[0]; // @[Misc.scala:210:26] wire tl_out_a_bits_a_mask_nbit = ~tl_out_a_bits_a_mask_bit; // @[Misc.scala:210:26, :211:20] wire tl_out_a_bits_a_mask_eq = tl_out_a_bits_a_mask_sub_0_2 & tl_out_a_bits_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _tl_out_a_bits_a_mask_acc_T = tl_out_a_bits_a_mask_eq; // @[Misc.scala:214:27, :215:38] wire tl_out_a_bits_a_mask_eq_1 = tl_out_a_bits_a_mask_sub_0_2 & tl_out_a_bits_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _tl_out_a_bits_a_mask_acc_T_1 = tl_out_a_bits_a_mask_eq_1; // @[Misc.scala:214:27, :215:38] wire tl_out_a_bits_a_mask_eq_2 = tl_out_a_bits_a_mask_sub_1_2 & tl_out_a_bits_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _tl_out_a_bits_a_mask_acc_T_2 = tl_out_a_bits_a_mask_eq_2; // @[Misc.scala:214:27, :215:38] wire tl_out_a_bits_a_mask_eq_3 = tl_out_a_bits_a_mask_sub_1_2 & tl_out_a_bits_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _tl_out_a_bits_a_mask_acc_T_3 = tl_out_a_bits_a_mask_eq_3; // @[Misc.scala:214:27, :215:38] wire tl_out_a_bits_a_mask_eq_4 = tl_out_a_bits_a_mask_sub_2_2 & tl_out_a_bits_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _tl_out_a_bits_a_mask_acc_T_4 = tl_out_a_bits_a_mask_eq_4; // @[Misc.scala:214:27, :215:38] wire tl_out_a_bits_a_mask_eq_5 = tl_out_a_bits_a_mask_sub_2_2 & tl_out_a_bits_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _tl_out_a_bits_a_mask_acc_T_5 = tl_out_a_bits_a_mask_eq_5; // @[Misc.scala:214:27, :215:38] wire tl_out_a_bits_a_mask_eq_6 = tl_out_a_bits_a_mask_sub_3_2 & tl_out_a_bits_a_mask_nbit; // @[Misc.scala:211:20, :214:27] wire _tl_out_a_bits_a_mask_acc_T_6 = tl_out_a_bits_a_mask_eq_6; // @[Misc.scala:214:27, :215:38] wire tl_out_a_bits_a_mask_eq_7 = tl_out_a_bits_a_mask_sub_3_2 & tl_out_a_bits_a_mask_bit; // @[Misc.scala:210:26, :214:27] wire _tl_out_a_bits_a_mask_acc_T_7 = tl_out_a_bits_a_mask_eq_7; // @[Misc.scala:214:27, :215:38] wire _tl_out_a_bits_T_3 = ~s2_write; // @[DCache.scala:609:9] wire _tl_out_a_bits_T_5 = ~s2_read; // @[DCache.scala:611:9] wire [2:0] _tl_out_a_bits_T_6_opcode = _tl_out_a_bits_T_5 ? 3'h0 : atomics_opcode; // @[DCache.scala:587:81, :611:{8,9}] wire [2:0] _tl_out_a_bits_T_6_param = _tl_out_a_bits_T_5 ? 3'h0 : atomics_param; // @[DCache.scala:587:81, :611:{8,9}] wire [3:0] _tl_out_a_bits_T_6_size = _tl_out_a_bits_T_5 ? put_size : atomics_size; // @[Edges.scala:480:17] wire _tl_out_a_bits_T_6_source = _tl_out_a_bits_T_5 ? put_source : atomics_source; // @[Edges.scala:480:17] wire [31:0] _tl_out_a_bits_T_6_address = _tl_out_a_bits_T_5 ? put_address : atomics_address; // @[Edges.scala:480:17] wire [7:0] _tl_out_a_bits_T_6_mask = _tl_out_a_bits_T_5 ? put_mask : atomics_mask; // @[Edges.scala:480:17] wire [63:0] _tl_out_a_bits_T_6_data = _tl_out_a_bits_T_5 ? put_data : atomics_data; // @[Edges.scala:480:17] wire [2:0] _tl_out_a_bits_T_7_opcode = _tl_out_a_bits_T_4 ? 3'h1 : _tl_out_a_bits_T_6_opcode; // @[DCache.scala:610:{8,20}, :611:8] wire [2:0] _tl_out_a_bits_T_7_param = _tl_out_a_bits_T_4 ? 3'h0 : _tl_out_a_bits_T_6_param; // @[DCache.scala:610:{8,20}, :611:8] wire [3:0] _tl_out_a_bits_T_7_size = _tl_out_a_bits_T_4 ? putpartial_size : _tl_out_a_bits_T_6_size; // @[Edges.scala:500:17] wire _tl_out_a_bits_T_7_source = _tl_out_a_bits_T_4 ? putpartial_source : _tl_out_a_bits_T_6_source; // @[Edges.scala:500:17] wire [31:0] _tl_out_a_bits_T_7_address = _tl_out_a_bits_T_4 ? putpartial_address : _tl_out_a_bits_T_6_address; // @[Edges.scala:500:17] wire [7:0] _tl_out_a_bits_T_7_mask = _tl_out_a_bits_T_4 ? putpartial_mask : _tl_out_a_bits_T_6_mask; // @[Edges.scala:500:17] wire [63:0] _tl_out_a_bits_T_7_data = _tl_out_a_bits_T_4 ? putpartial_data : _tl_out_a_bits_T_6_data; // @[Edges.scala:500:17] wire [2:0] _tl_out_a_bits_T_8_opcode = _tl_out_a_bits_T_3 ? 3'h4 : _tl_out_a_bits_T_7_opcode; // @[DCache.scala:609:{8,9}, :610:8] wire [2:0] _tl_out_a_bits_T_8_param = _tl_out_a_bits_T_3 ? 3'h0 : _tl_out_a_bits_T_7_param; // @[DCache.scala:609:{8,9}, :610:8] wire [3:0] _tl_out_a_bits_T_8_size = _tl_out_a_bits_T_3 ? get_size : _tl_out_a_bits_T_7_size; // @[Edges.scala:460:17] wire _tl_out_a_bits_T_8_source = _tl_out_a_bits_T_3 ? get_source : _tl_out_a_bits_T_7_source; // @[Edges.scala:460:17] wire [31:0] _tl_out_a_bits_T_8_address = _tl_out_a_bits_T_3 ? get_address : _tl_out_a_bits_T_7_address; // @[Edges.scala:460:17] wire [7:0] _tl_out_a_bits_T_8_mask = _tl_out_a_bits_T_3 ? get_mask : _tl_out_a_bits_T_7_mask; // @[Edges.scala:460:17] wire [63:0] _tl_out_a_bits_T_8_data = _tl_out_a_bits_T_3 ? 64'h0 : _tl_out_a_bits_T_7_data; // @[DCache.scala:609:{8,9}, :610:8] assign _tl_out_a_bits_T_9_opcode = _tl_out_a_bits_T ? 3'h6 : _tl_out_a_bits_T_8_opcode; // @[DCache.scala:608:{23,24}, :609:8] assign _tl_out_a_bits_T_9_param = _tl_out_a_bits_T ? tl_out_a_bits_a_param : _tl_out_a_bits_T_8_param; // @[Edges.scala:346:17] assign _tl_out_a_bits_T_9_size = _tl_out_a_bits_T ? 4'h6 : _tl_out_a_bits_T_8_size; // @[DCache.scala:608:{23,24}, :609:8] assign _tl_out_a_bits_T_9_source = ~_tl_out_a_bits_T & _tl_out_a_bits_T_8_source; // @[DCache.scala:608:{23,24}, :609:8] assign _tl_out_a_bits_T_9_address = _tl_out_a_bits_T ? tl_out_a_bits_a_address : _tl_out_a_bits_T_8_address; // @[Edges.scala:346:17] assign _tl_out_a_bits_T_9_mask = _tl_out_a_bits_T ? 8'hFF : _tl_out_a_bits_T_8_mask; // @[DCache.scala:608:{23,24}, :609:8] assign _tl_out_a_bits_T_9_data = _tl_out_a_bits_T ? 64'h0 : _tl_out_a_bits_T_8_data; // @[DCache.scala:608:{23,24}, :609:8] assign tl_out_a_bits_opcode = _tl_out_a_bits_T_9_opcode; // @[DCache.scala:159:22, :608:23] assign tl_out_a_bits_param = _tl_out_a_bits_T_9_param; // @[DCache.scala:159:22, :608:23] assign tl_out_a_bits_size = _tl_out_a_bits_T_9_size; // @[DCache.scala:159:22, :608:23] assign tl_out_a_bits_source = _tl_out_a_bits_T_9_source; // @[DCache.scala:159:22, :608:23] assign tl_out_a_bits_address = _tl_out_a_bits_T_9_address; // @[DCache.scala:159:22, :608:23] assign tl_out_a_bits_mask = _tl_out_a_bits_T_9_mask; // @[DCache.scala:159:22, :608:23] assign tl_out_a_bits_data = _tl_out_a_bits_T_9_data; // @[DCache.scala:159:22, :608:23] wire [1:0] _a_sel_T = 2'h1 << a_sel_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [1:0] _a_sel_T_1 = _a_sel_T; // @[OneHot.scala:65:{12,27}] wire a_sel = _a_sel_T_1[1]; // @[OneHot.scala:65:27] wire _io_cpu_perf_acquire_T = tl_out_a_ready & tl_out_a_valid; // @[Decoupled.scala:51:35] wire [4:0] _uncachedReqs_0_cmd_T_1 = {_uncachedReqs_0_cmd_T, 4'h1}; // @[DCache.scala:637:{37,49}] wire [4:0] _uncachedReqs_0_cmd_T_2 = s2_write ? _uncachedReqs_0_cmd_T_1 : 5'h0; // @[DCache.scala:637:{23,37}] wire _T_82 = nodeOut_d_ready & nodeOut_d_valid; // @[Decoupled.scala:51:35] wire _io_cpu_replay_next_T; // @[Decoupled.scala:51:35] assign _io_cpu_replay_next_T = _T_82; // @[Decoupled.scala:51:35] wire _io_cpu_perf_blocked_near_end_of_refill_T; // @[Decoupled.scala:51:35] assign _io_cpu_perf_blocked_near_end_of_refill_T = _T_82; // @[Decoupled.scala:51:35] wire _io_errors_bus_valid_T; // @[Decoupled.scala:51:35] assign _io_errors_bus_valid_T = _T_82; // @[Decoupled.scala:51:35] wire [26:0] _r_beats1_decode_T = 27'hFFF << nodeOut_d_bits_size; // @[package.scala:243:71] wire [11:0] _r_beats1_decode_T_1 = _r_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _r_beats1_decode_T_2 = ~_r_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] r_beats1_decode = _r_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire r_beats1_opdata = nodeOut_d_bits_opcode[0]; // @[Edges.scala:106:36] wire [8:0] r_beats1 = r_beats1_opdata ? r_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] r_counter; // @[Edges.scala:229:27] wire [9:0] _r_counter1_T = {1'h0, r_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] r_counter1 = _r_counter1_T[8:0]; // @[Edges.scala:230:28] wire d_first = r_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _r_last_T = r_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _r_last_T_1 = r_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_last = _r_last_T | _r_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_done = d_last & _T_82; // @[Decoupled.scala:51:35] wire [8:0] _r_count_T = ~r_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] r_4 = r_beats1 & _r_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _r_counter_T = d_first ? r_beats1 : r_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [11:0] d_address_inc = {r_4, 3'h0}; // @[Edges.scala:234:25, :269:29] wire grantIsUncachedData = nodeOut_d_bits_opcode == 3'h1; // @[package.scala:16:47] wire grantIsUncached = grantIsUncachedData | nodeOut_d_bits_opcode == 3'h0 | nodeOut_d_bits_opcode == 3'h2; // @[package.scala:16:47, :81:59] wire _tl_d_data_encoded_T_9 = io_ptw_customCSRs_csrs_0_value_0[9]; // @[CustomCSRs.scala:47:65] wire _tl_d_data_encoded_T_10 = ~_tl_d_data_encoded_T_9; // @[CustomCSRs.scala:47:65] wire _tl_d_data_encoded_T_11 = nodeOut_d_bits_corrupt & _tl_d_data_encoded_T_10; // @[DCache.scala:663:{77,80}] wire _tl_d_data_encoded_T_12 = ~grantIsUncached; // @[package.scala:81:59] wire _tl_d_data_encoded_T_13 = _tl_d_data_encoded_T_11 & _tl_d_data_encoded_T_12; // @[DCache.scala:663:{77,126,129}] wire [15:0] tl_d_data_encoded_lo_lo_1 = {_tl_d_data_encoded_T_15, _tl_d_data_encoded_T_14}; // @[package.scala:45:27, :211:50] wire [15:0] tl_d_data_encoded_lo_hi_1 = {_tl_d_data_encoded_T_17, _tl_d_data_encoded_T_16}; // @[package.scala:45:27, :211:50] wire [31:0] tl_d_data_encoded_lo_1 = {tl_d_data_encoded_lo_hi_1, tl_d_data_encoded_lo_lo_1}; // @[package.scala:45:27] wire [15:0] tl_d_data_encoded_hi_lo_1 = {_tl_d_data_encoded_T_19, _tl_d_data_encoded_T_18}; // @[package.scala:45:27, :211:50] wire [15:0] tl_d_data_encoded_hi_hi_1 = {_tl_d_data_encoded_T_21, _tl_d_data_encoded_T_20}; // @[package.scala:45:27, :211:50] wire [31:0] tl_d_data_encoded_hi_1 = {tl_d_data_encoded_hi_hi_1, tl_d_data_encoded_hi_lo_1}; // @[package.scala:45:27] assign _tl_d_data_encoded_T_22 = {tl_d_data_encoded_hi_1, tl_d_data_encoded_lo_1}; // @[package.scala:45:27] assign tl_d_data_encoded = _tl_d_data_encoded_T_22; // @[package.scala:45:27] wire _grantIsCached_T = nodeOut_d_bits_opcode == 3'h4; // @[package.scala:16:47] wire _GEN_113 = nodeOut_d_bits_opcode == 3'h5; // @[package.scala:16:47] wire _grantIsCached_T_1; // @[package.scala:16:47] assign _grantIsCached_T_1 = _GEN_113; // @[package.scala:16:47] wire grantIsRefill; // @[DCache.scala:666:29] assign grantIsRefill = _GEN_113; // @[package.scala:16:47] wire grantIsCached = _grantIsCached_T | _grantIsCached_T_1; // @[package.scala:16:47, :81:59] wire grantIsVoluntary = nodeOut_d_bits_opcode == 3'h6; // @[DCache.scala:665:32] reg grantInProgress; // @[DCache.scala:667:32] reg [2:0] blockProbeAfterGrantCount; // @[DCache.scala:668:42] wire [3:0] _blockProbeAfterGrantCount_T = {1'h0, blockProbeAfterGrantCount} - 4'h1; // @[DCache.scala:668:42, :669:99] wire [2:0] _blockProbeAfterGrantCount_T_1 = _blockProbeAfterGrantCount_T[2:0]; // @[DCache.scala:669:99] wire _T_107 = release_state == 4'h6; // @[package.scala:16:47] wire _canAcceptCachedGrant_T_1; // @[package.scala:16:47] assign _canAcceptCachedGrant_T_1 = _T_107; // @[package.scala:16:47] wire _metaArb_io_in_4_valid_T; // @[package.scala:16:47] assign _metaArb_io_in_4_valid_T = _T_107; // @[package.scala:16:47] wire _T_111 = release_state == 4'h9; // @[package.scala:16:47] wire _canAcceptCachedGrant_T_2; // @[package.scala:16:47] assign _canAcceptCachedGrant_T_2 = _T_111; // @[package.scala:16:47] wire _nodeOut_c_valid_T_1; // @[DCache.scala:810:91] assign _nodeOut_c_valid_T_1 = _T_111; // @[package.scala:16:47] wire _canAcceptCachedGrant_T_3 = _canAcceptCachedGrant_T | _canAcceptCachedGrant_T_1; // @[package.scala:16:47, :81:59] wire _canAcceptCachedGrant_T_4 = _canAcceptCachedGrant_T_3 | _canAcceptCachedGrant_T_2; // @[package.scala:16:47, :81:59] wire canAcceptCachedGrant = ~_canAcceptCachedGrant_T_4; // @[package.scala:81:59] wire _nodeOut_d_ready_T = ~d_first; // @[Edges.scala:231:25] wire _nodeOut_d_ready_T_1 = _nodeOut_d_ready_T | nodeOut_e_ready; // @[DCache.scala:671:{41,50}] wire _nodeOut_d_ready_T_2 = _nodeOut_d_ready_T_1 & canAcceptCachedGrant; // @[DCache.scala:670:30, :671:{50,69}] wire _nodeOut_d_ready_T_3 = ~grantIsCached | _nodeOut_d_ready_T_2; // @[package.scala:81:59] wire [1:0] _uncachedRespIdxOH_T = 2'h1 << uncachedRespIdxOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [1:0] _uncachedRespIdxOH_T_1 = _uncachedRespIdxOH_T; // @[OneHot.scala:65:{12,27}] wire uncachedRespIdxOH = _uncachedRespIdxOH_T_1[1]; // @[OneHot.scala:65:27] wire _uncachedResp_T = uncachedRespIdxOH; // @[Mux.scala:32:36] wire _GEN_114 = _T_82 & grantIsCached; // @[Decoupled.scala:51:35] assign replace = _GEN_114 & d_last; // @[Replacement.scala:37:29, :38:11] wire _T_74 = uncachedRespIdxOH & d_last; // @[Edges.scala:232:33] assign s1_data_way = ~_T_82 | grantIsCached | ~(grantIsUncached & grantIsUncachedData) ? {1'h0, _s1_data_way_T} : 9'h100; // @[Decoupled.scala:51:35] wire [28:0] _s2_req_addr_dontCareBits_T = s1_paddr[31:3]; // @[DCache.scala:298:21, :701:41] wire [31:0] s2_req_addr_dontCareBits = {_s2_req_addr_dontCareBits_T, 3'h0}; // @[DCache.scala:701:{41,55}] wire [2:0] _s2_req_addr_T = uncachedResp_addr[2:0]; // @[DCache.scala:238:30, :702:45] wire [31:0] _s2_req_addr_T_1 = {s2_req_addr_dontCareBits[31:3], s2_req_addr_dontCareBits[2:0] | _s2_req_addr_T}; // @[DCache.scala:701:55, :702:{26,45}] wire _nodeOut_e_valid_T = nodeOut_d_valid & d_first; // @[Edges.scala:231:25] wire _nodeOut_e_valid_T_1 = _nodeOut_e_valid_T & grantIsCached; // @[package.scala:81:59] wire _nodeOut_e_valid_T_2 = _nodeOut_e_valid_T_1 & canAcceptCachedGrant; // @[DCache.scala:670:30, :714:{47,64}] assign nodeOut_e_bits_sink = nodeOut_e_bits_e_sink; // @[Edges.scala:451:17] wire _dataArb_io_in_1_valid_T = nodeOut_d_valid & grantIsRefill; // @[DCache.scala:666:29, :721:44] wire _dataArb_io_in_1_valid_T_1 = _dataArb_io_in_1_valid_T & canAcceptCachedGrant; // @[DCache.scala:670:30, :721:{44,61}] wire _T_90 = grantIsRefill & ~dataArb_io_in_1_ready; // @[DCache.scala:152:28, :666:29, :722:{23,26}] assign nodeOut_e_valid = ~_T_90 & _nodeOut_e_valid_T_2; // @[DCache.scala:714:{18,64}, :722:{23,51}, :723:20] wire [33:0] _dataArb_io_in_1_bits_addr_T = s2_vaddr[39:6]; // @[DCache.scala:351:21, :728:46] wire [39:0] _dataArb_io_in_1_bits_addr_T_1 = {_dataArb_io_in_1_bits_addr_T, 6'h0}; // @[DCache.scala:728:{46,57}] wire [39:0] _dataArb_io_in_1_bits_addr_T_2 = {_dataArb_io_in_1_bits_addr_T_1[39:12], _dataArb_io_in_1_bits_addr_T_1[11:0] | d_address_inc}; // @[Edges.scala:269:29] assign dataArb_io_in_1_bits_addr = _dataArb_io_in_1_bits_addr_T_2[11:0]; // @[DCache.scala:152:28, :728:{32,67}] wire _metaArb_io_in_3_valid_T = grantIsCached & d_done; // @[package.scala:81:59] wire _metaArb_io_in_3_valid_T_1 = ~nodeOut_d_bits_denied; // @[DCache.scala:741:56] assign _metaArb_io_in_3_valid_T_2 = _metaArb_io_in_3_valid_T & _metaArb_io_in_3_valid_T_1; // @[DCache.scala:741:{43,53,56}] assign metaArb_io_in_3_valid = _metaArb_io_in_3_valid_T_2; // @[DCache.scala:135:28, :741:53] assign metaArb_io_in_3_bits_idx = _metaArb_io_in_3_bits_idx_T; // @[DCache.scala:135:28, :744:40] assign _metaArb_io_in_3_bits_addr_T_2 = {_metaArb_io_in_3_bits_addr_T, _metaArb_io_in_3_bits_addr_T_1}; // @[DCache.scala:745:{36,58,80}] assign metaArb_io_in_3_bits_addr = _metaArb_io_in_3_bits_addr_T_2; // @[DCache.scala:135:28, :745:36] wire _metaArb_io_in_3_bits_data_c_cat_T_2 = _metaArb_io_in_3_bits_data_c_cat_T | _metaArb_io_in_3_bits_data_c_cat_T_1; // @[Consts.scala:90:{32,42,49}] wire _metaArb_io_in_3_bits_data_c_cat_T_4 = _metaArb_io_in_3_bits_data_c_cat_T_2 | _metaArb_io_in_3_bits_data_c_cat_T_3; // @[Consts.scala:90:{42,59,66}] wire _metaArb_io_in_3_bits_data_c_cat_T_9 = _metaArb_io_in_3_bits_data_c_cat_T_5 | _metaArb_io_in_3_bits_data_c_cat_T_6; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_10 = _metaArb_io_in_3_bits_data_c_cat_T_9 | _metaArb_io_in_3_bits_data_c_cat_T_7; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_11 = _metaArb_io_in_3_bits_data_c_cat_T_10 | _metaArb_io_in_3_bits_data_c_cat_T_8; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_17 = _metaArb_io_in_3_bits_data_c_cat_T_12 | _metaArb_io_in_3_bits_data_c_cat_T_13; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_18 = _metaArb_io_in_3_bits_data_c_cat_T_17 | _metaArb_io_in_3_bits_data_c_cat_T_14; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_19 = _metaArb_io_in_3_bits_data_c_cat_T_18 | _metaArb_io_in_3_bits_data_c_cat_T_15; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_20 = _metaArb_io_in_3_bits_data_c_cat_T_19 | _metaArb_io_in_3_bits_data_c_cat_T_16; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_21 = _metaArb_io_in_3_bits_data_c_cat_T_11 | _metaArb_io_in_3_bits_data_c_cat_T_20; // @[package.scala:81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_22 = _metaArb_io_in_3_bits_data_c_cat_T_4 | _metaArb_io_in_3_bits_data_c_cat_T_21; // @[Consts.scala:87:44, :90:{59,76}] wire _metaArb_io_in_3_bits_data_c_cat_T_25 = _metaArb_io_in_3_bits_data_c_cat_T_23 | _metaArb_io_in_3_bits_data_c_cat_T_24; // @[Consts.scala:90:{32,42,49}] wire _metaArb_io_in_3_bits_data_c_cat_T_27 = _metaArb_io_in_3_bits_data_c_cat_T_25 | _metaArb_io_in_3_bits_data_c_cat_T_26; // @[Consts.scala:90:{42,59,66}] wire _metaArb_io_in_3_bits_data_c_cat_T_32 = _metaArb_io_in_3_bits_data_c_cat_T_28 | _metaArb_io_in_3_bits_data_c_cat_T_29; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_33 = _metaArb_io_in_3_bits_data_c_cat_T_32 | _metaArb_io_in_3_bits_data_c_cat_T_30; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_34 = _metaArb_io_in_3_bits_data_c_cat_T_33 | _metaArb_io_in_3_bits_data_c_cat_T_31; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_40 = _metaArb_io_in_3_bits_data_c_cat_T_35 | _metaArb_io_in_3_bits_data_c_cat_T_36; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_41 = _metaArb_io_in_3_bits_data_c_cat_T_40 | _metaArb_io_in_3_bits_data_c_cat_T_37; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_42 = _metaArb_io_in_3_bits_data_c_cat_T_41 | _metaArb_io_in_3_bits_data_c_cat_T_38; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_43 = _metaArb_io_in_3_bits_data_c_cat_T_42 | _metaArb_io_in_3_bits_data_c_cat_T_39; // @[package.scala:16:47, :81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_44 = _metaArb_io_in_3_bits_data_c_cat_T_34 | _metaArb_io_in_3_bits_data_c_cat_T_43; // @[package.scala:81:59] wire _metaArb_io_in_3_bits_data_c_cat_T_45 = _metaArb_io_in_3_bits_data_c_cat_T_27 | _metaArb_io_in_3_bits_data_c_cat_T_44; // @[Consts.scala:87:44, :90:{59,76}] wire _metaArb_io_in_3_bits_data_c_cat_T_47 = _metaArb_io_in_3_bits_data_c_cat_T_45 | _metaArb_io_in_3_bits_data_c_cat_T_46; // @[Consts.scala:90:76, :91:{47,54}] wire _metaArb_io_in_3_bits_data_c_cat_T_49 = _metaArb_io_in_3_bits_data_c_cat_T_47 | _metaArb_io_in_3_bits_data_c_cat_T_48; // @[Consts.scala:91:{47,64,71}] wire [1:0] metaArb_io_in_3_bits_data_c = {_metaArb_io_in_3_bits_data_c_cat_T_22, _metaArb_io_in_3_bits_data_c_cat_T_49}; // @[Metadata.scala:29:18] wire [3:0] _metaArb_io_in_3_bits_data_T_1 = {metaArb_io_in_3_bits_data_c, nodeOut_d_bits_param}; // @[Metadata.scala:29:18, :84:18] wire _metaArb_io_in_3_bits_data_T_10 = _metaArb_io_in_3_bits_data_T_1 == 4'h1; // @[Metadata.scala:84:{18,38}] wire [1:0] _metaArb_io_in_3_bits_data_T_11 = {1'h0, _metaArb_io_in_3_bits_data_T_10}; // @[Metadata.scala:84:38] wire _metaArb_io_in_3_bits_data_T_12 = _metaArb_io_in_3_bits_data_T_1 == 4'h0; // @[Metadata.scala:84:{18,38}] wire [1:0] _metaArb_io_in_3_bits_data_T_13 = _metaArb_io_in_3_bits_data_T_12 ? 2'h2 : _metaArb_io_in_3_bits_data_T_11; // @[Metadata.scala:84:38] wire _metaArb_io_in_3_bits_data_T_14 = _metaArb_io_in_3_bits_data_T_1 == 4'h4; // @[Metadata.scala:84:{18,38}] wire [1:0] _metaArb_io_in_3_bits_data_T_15 = _metaArb_io_in_3_bits_data_T_14 ? 2'h2 : _metaArb_io_in_3_bits_data_T_13; // @[Metadata.scala:84:38] wire _metaArb_io_in_3_bits_data_T_16 = _metaArb_io_in_3_bits_data_T_1 == 4'hC; // @[Metadata.scala:84:{18,38}] wire [1:0] _metaArb_io_in_3_bits_data_T_17 = _metaArb_io_in_3_bits_data_T_16 ? 2'h3 : _metaArb_io_in_3_bits_data_T_15; // @[Metadata.scala:84:38] wire [1:0] metaArb_io_in_3_bits_data_meta_state = _metaArb_io_in_3_bits_data_T_17; // @[Metadata.scala:84:38, :160:20] wire [1:0] metaArb_io_in_3_bits_data_meta_1_coh_state = metaArb_io_in_3_bits_data_meta_state; // @[Metadata.scala:160:20] wire [19:0] metaArb_io_in_3_bits_data_meta_1_tag; // @[HellaCache.scala:305:20] assign metaArb_io_in_3_bits_data_meta_1_tag = _metaArb_io_in_3_bits_data_T[19:0]; // @[HellaCache.scala:305:20, :306:14] assign _metaArb_io_in_3_bits_data_T_18 = {metaArb_io_in_3_bits_data_meta_1_coh_state, metaArb_io_in_3_bits_data_meta_1_tag}; // @[HellaCache.scala:305:20] assign metaArb_io_in_3_bits_data = _metaArb_io_in_3_bits_data_T_18; // @[DCache.scala:135:28, :746:134] reg blockUncachedGrant; // @[DCache.scala:750:33] wire _T_92 = grantIsUncachedData & (blockUncachedGrant | s1_valid); // @[package.scala:16:47] assign nodeOut_d_ready = ~(_T_92 | _T_90) & _nodeOut_d_ready_T_3; // @[DCache.scala:671:{18,24}, :722:{23,51}, :724:20, :752:{31,68}, :753:22] assign io_cpu_req_ready_0 = _T_92 ? ~(nodeOut_d_valid | _T_10 | ~metaArb_io_in_7_ready | _T_4) & _io_cpu_req_ready_T_4 : ~(_T_10 | ~metaArb_io_in_7_ready | _T_4) & _io_cpu_req_ready_T_4; // @[DCache.scala:101:7, :135:28, :195:9, :233:{20,73}, :258:{33,45,64}, :267:{34,53}, :275:{27,53,79,98}, :752:{31,68}, :755:29, :756:26] wire _GEN_115 = _T_92 & nodeOut_d_valid; // @[DCache.scala:721:26, :752:{31,68}, :755:29, :757:32] assign dataArb_io_in_1_valid = _GEN_115 | _dataArb_io_in_1_valid_T_1; // @[DCache.scala:152:28, :721:{26,61}, :752:68, :755:29, :757:32] assign dataArb_io_in_1_bits_write = ~_T_92 | ~nodeOut_d_valid; // @[DCache.scala:152:28, :727:33, :752:{31,68}, :755:29, :758:37] wire _blockUncachedGrant_T = ~dataArb_io_in_1_ready; // @[DCache.scala:152:28, :722:26, :759:31] wire _block_probe_for_core_progress_T = |blockProbeAfterGrantCount; // @[DCache.scala:668:42, :669:35, :766:65] wire block_probe_for_core_progress = _block_probe_for_core_progress_T | lrscValid; // @[DCache.scala:473:29, :766:{65,71}] wire [31:0] _block_probe_for_pending_release_ack_T = nodeOut_b_bits_address ^ release_ack_addr; // @[DCache.scala:227:29, :767:88] wire [14:0] _block_probe_for_pending_release_ack_T_1 = _block_probe_for_pending_release_ack_T[20:6]; // @[DCache.scala:767:{88,107}] wire _block_probe_for_pending_release_ack_T_2 = _block_probe_for_pending_release_ack_T_1 == 15'h0; // @[DCache.scala:582:29, :767:{107,163}] wire block_probe_for_pending_release_ack = release_ack_wait & _block_probe_for_pending_release_ack_T_2; // @[DCache.scala:226:33, :767:{62,163}] wire _block_probe_for_ordering_T = releaseInFlight | block_probe_for_pending_release_ack; // @[DCache.scala:334:46, :767:62, :768:50] wire block_probe_for_ordering = _block_probe_for_ordering_T | grantInProgress; // @[DCache.scala:667:32, :768:{50,89}] wire _metaArb_io_in_6_valid_T = ~block_probe_for_core_progress; // @[DCache.scala:766:71, :769:48] wire _metaArb_io_in_6_valid_T_1 = _metaArb_io_in_6_valid_T | lrscBackingOff; // @[DCache.scala:474:40, :769:{48,79}] wire _metaArb_io_in_6_valid_T_2 = nodeOut_b_valid & _metaArb_io_in_6_valid_T_1; // @[DCache.scala:769:{44,79}] wire _nodeOut_b_ready_T = block_probe_for_core_progress | block_probe_for_ordering; // @[DCache.scala:766:71, :768:89, :770:79] wire _nodeOut_b_ready_T_1 = _nodeOut_b_ready_T | s1_valid; // @[DCache.scala:182:25, :770:{79,107}] wire _nodeOut_b_ready_T_2 = _nodeOut_b_ready_T_1 | s2_valid; // @[DCache.scala:331:25, :770:{107,119}] wire _nodeOut_b_ready_T_3 = ~_nodeOut_b_ready_T_2; // @[DCache.scala:770:{47,119}] assign _nodeOut_b_ready_T_4 = metaArb_io_in_6_ready & _nodeOut_b_ready_T_3; // @[DCache.scala:135:28, :770:{44,47}] assign nodeOut_b_ready = _nodeOut_b_ready_T_4; // @[DCache.scala:770:44] wire [5:0] _metaArb_io_in_6_bits_idx_T = nodeOut_b_bits_address[11:6]; // @[DCache.scala:1200:47] wire [7:0] _metaArb_io_in_6_bits_addr_T = io_cpu_req_bits_addr_0[39:32]; // @[DCache.scala:101:7, :773:58] wire [7:0] _metaArb_io_in_6_bits_addr_T_2 = io_cpu_req_bits_addr_0[39:32]; // @[DCache.scala:101:7, :773:58, :844:62] wire [39:0] _metaArb_io_in_6_bits_addr_T_1 = {_metaArb_io_in_6_bits_addr_T, nodeOut_b_bits_address}; // @[DCache.scala:773:{36,58}] assign _s1_victim_way_T = lfsr[2:0]; // @[PRNG.scala:95:17] assign s1_victim_way = _s1_victim_way_T; // @[package.scala:163:13] wire _T_126 = nodeOut_c_ready & nodeOut_c_valid; // @[Decoupled.scala:51:35] wire _releaseRejected_T; // @[Decoupled.scala:51:35] assign _releaseRejected_T = _T_126; // @[Decoupled.scala:51:35] wire _io_cpu_perf_release_T; // @[Decoupled.scala:51:35] assign _io_cpu_perf_release_T = _T_126; // @[Decoupled.scala:51:35] wire [26:0] _GEN_116 = 27'hFFF << nodeOut_c_bits_size; // @[package.scala:243:71] wire [26:0] _r_beats1_decode_T_3; // @[package.scala:243:71] assign _r_beats1_decode_T_3 = _GEN_116; // @[package.scala:243:71] wire [26:0] _io_cpu_perf_release_beats1_decode_T; // @[package.scala:243:71] assign _io_cpu_perf_release_beats1_decode_T = _GEN_116; // @[package.scala:243:71] wire [11:0] _r_beats1_decode_T_4 = _r_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _r_beats1_decode_T_5 = ~_r_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [8:0] r_beats1_decode_1 = _r_beats1_decode_T_5[11:3]; // @[package.scala:243:46] wire r_beats1_opdata_1 = nodeOut_c_bits_opcode[0]; // @[Edges.scala:102:36] wire io_cpu_perf_release_beats1_opdata = nodeOut_c_bits_opcode[0]; // @[Edges.scala:102:36] wire [8:0] r_beats1_1 = r_beats1_opdata_1 ? r_beats1_decode_1 : 9'h0; // @[Edges.scala:102:36, :220:59, :221:14] reg [8:0] r_counter_1; // @[Edges.scala:229:27] wire [9:0] _r_counter1_T_1 = {1'h0, r_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] r_counter1_1 = _r_counter1_T_1[8:0]; // @[Edges.scala:230:28] wire c_first = r_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _r_last_T_2 = r_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _r_last_T_3 = r_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire c_last = _r_last_T_2 | _r_last_T_3; // @[Edges.scala:232:{25,33,43}] wire releaseDone = c_last & _T_126; // @[Decoupled.scala:51:35] wire [8:0] _r_count_T_1 = ~r_counter1_1; // @[Edges.scala:230:28, :234:27] wire [8:0] c_count = r_beats1_1 & _r_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _r_counter_T_1 = c_first ? r_beats1_1 : r_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire _releaseRejected_T_2; // @[DCache.scala:803:44] wire releaseRejected; // @[DCache.scala:800:29] wire _s1_release_data_valid_T = dataArb_io_in_2_ready & _dataArb_io_in_2_valid_T_1; // @[Decoupled.scala:51:35] reg s1_release_data_valid; // @[DCache.scala:801:38] wire _s2_release_data_valid_T = ~releaseRejected; // @[DCache.scala:800:29, :802:64] wire _s2_release_data_valid_T_1 = s1_release_data_valid & _s2_release_data_valid_T; // @[DCache.scala:801:38, :802:{61,64}] reg s2_release_data_valid; // @[DCache.scala:802:38] wire _nodeOut_c_valid_T_3 = s2_release_data_valid; // @[DCache.scala:802:38, :810:44] wire _releaseRejected_T_1 = ~_releaseRejected_T; // @[Decoupled.scala:51:35] assign _releaseRejected_T_2 = s2_release_data_valid & _releaseRejected_T_1; // @[DCache.scala:802:38, :803:{44,47}] assign releaseRejected = _releaseRejected_T_2; // @[DCache.scala:800:29, :803:44] wire [9:0] _releaseDataBeat_T = {1'h0, c_count}; // @[Edges.scala:234:25] wire [1:0] _releaseDataBeat_T_1 = {1'h0, s2_release_data_valid}; // @[DCache.scala:802:38, :804:98] wire [2:0] _releaseDataBeat_T_2 = {2'h0, s1_release_data_valid} + {1'h0, _releaseDataBeat_T_1}; // @[DCache.scala:801:38, :804:{93,98}] wire [1:0] _releaseDataBeat_T_3 = _releaseDataBeat_T_2[1:0]; // @[DCache.scala:804:93] wire [1:0] _releaseDataBeat_T_4 = releaseRejected ? 2'h0 : _releaseDataBeat_T_3; // @[DCache.scala:800:29, :804:{48,93}] wire [10:0] _releaseDataBeat_T_5 = {1'h0, _releaseDataBeat_T} + {9'h0, _releaseDataBeat_T_4}; // @[DCache.scala:804:{28,43,48}] wire [9:0] releaseDataBeat = _releaseDataBeat_T_5[9:0]; // @[DCache.scala:804:43] wire _nodeOut_c_valid_T_4 = c_first & release_ack_wait; // @[Edges.scala:231:25] wire _nodeOut_c_valid_T_5 = ~_nodeOut_c_valid_T_4; // @[DCache.scala:810:{120,130}] wire _nodeOut_c_valid_T_6 = _nodeOut_c_valid_T_3 & _nodeOut_c_valid_T_5; // @[DCache.scala:810:{44,117,120}] wire [1:0] newCoh_state; // @[DCache.scala:812:27] wire [1:0] metaArb_io_in_4_bits_data_meta_coh_state = newCoh_state; // @[HellaCache.scala:305:20] wire _release_state_T_8 = s2_valid_flush_line | s2_flush_valid; // @[DCache.scala:363:51, :419:75, :817:34, :820:151] wire _discard_line_T = s2_req_size[1]; // @[DCache.scala:339:19, :818:60] wire _discard_line_T_1 = s2_valid_flush_line & _discard_line_T; // @[DCache.scala:419:75, :818:{46,60}] wire _discard_line_T_3 = s2_flush_valid & _discard_line_T_2; // @[DCache.scala:363:51, :818:{82,102}] wire discard_line = _discard_line_T_1 | _discard_line_T_3; // @[DCache.scala:818:{46,64,82}] wire _release_state_T = ~discard_line; // @[DCache.scala:818:64, :819:47] wire _release_state_T_1 = s2_victim_dirty & _release_state_T; // @[Misc.scala:38:9] wire _release_state_T_3 = ~release_ack_wait; // @[DCache.scala:226:33, :607:47, :820:57] wire _release_state_T_6 = |s2_victim_state_state; // @[Metadata.scala:50:45] wire _release_state_T_9 = ~s2_hit_valid; // @[Metadata.scala:50:45] wire _release_state_T_10 = s2_readwrite & _release_state_T_9; // @[DCache.scala:354:30, :820:{185,188}] wire _release_state_T_11 = _release_state_T_8 | _release_state_T_10; // @[DCache.scala:820:{151,169,185}] wire [3:0] _release_state_T_14 = _release_state_T_1 ? 4'h1 : 4'h6; // @[DCache.scala:819:{27,44}] wire [5:0] _probe_bits_T_1 = s2_req_addr[11:6]; // @[DCache.scala:339:19, :822:76] wire [25:0] _probe_bits_T_2 = {s2_victim_tag, _probe_bits_T_1}; // @[DCache.scala:433:26, :822:{49,76}] wire [31:0] _probe_bits_T_3 = {_probe_bits_T_2, 6'h0}; // @[DCache.scala:822:{49,96}] wire [31:0] probe_bits_res_address = _probe_bits_T_3; // @[DCache.scala:822:96, :1202:19] wire probeNack; // @[DCache.scala:825:34] wire [3:0] _release_state_T_15 = {1'h0, releaseDone, 2'h3}; // @[Edges.scala:233:22] wire _probeNack_T = ~releaseDone; // @[Edges.scala:233:22] assign probeNack = s2_prb_ack_data | (|s2_probe_state_state) | _probeNack_T; // @[Misc.scala:38:9] wire [3:0] _release_state_T_16 = releaseDone ? 4'h0 : 4'h5; // @[Edges.scala:233:22] assign s1_nack = s2_probe ? probeNack | _T_60 | _T_40 | _T_14 : _T_60 | _T_40 | _T_14; // @[DCache.scala:185:28, :276:{39,58,79}, :288:{75,85}, :333:25, :446:{24,82,92}, :571:{18,36,46}, :824:21, :825:34, :839:{24,34}] wire _T_102 = release_state == 4'h4; // @[DCache.scala:228:30, :841:25] assign metaArb_io_in_6_valid = _T_102 | _metaArb_io_in_6_valid_T_2; // @[DCache.scala:135:28, :769:{26,44}, :841:{25,44}, :842:30] assign metaArb_io_in_6_bits_idx = _T_102 ? _metaArb_io_in_6_bits_idx_T_1 : _metaArb_io_in_6_bits_idx_T; // @[DCache.scala:135:28, :772:29, :841:{25,44}, :843:33, :1200:47] wire [39:0] _metaArb_io_in_6_bits_addr_T_3 = {_metaArb_io_in_6_bits_addr_T_2, probe_bits_address}; // @[DCache.scala:184:29, :844:{40,62}] assign metaArb_io_in_6_bits_addr = _T_102 ? _metaArb_io_in_6_bits_addr_T_3 : _metaArb_io_in_6_bits_addr_T_1; // @[DCache.scala:135:28, :773:{30,36}, :841:{25,44}, :844:{34,40}] wire _T_103 = release_state == 4'h5; // @[DCache.scala:228:30, :850:25] wire _T_104 = release_state == 4'h3; // @[DCache.scala:228:30, :854:25] assign nodeOut_c_valid = _T_104 | _T_103 | s2_probe & ~s2_prb_ack_data | _nodeOut_c_valid_T_6; // @[Misc.scala:38:9] wire _GEN_117 = _T_104 | ~(~s2_probe | s2_prb_ack_data | ~(|s2_probe_state_state)); // @[Misc.scala:38:9] wire _T_110 = _T_106 | _T_107 | _T_111; // @[package.scala:16:47, :81:59] assign nodeOut_c_bits_opcode = _T_110 ? {2'h3, ~_T_111} : {2'h2, _inWriteback_T_1}; // @[package.scala:16:47, :81:59] assign nodeOut_c_bits_param = _T_110 ? (_T_111 ? nodeOut_c_bits_c_param : nodeOut_c_bits_c_1_param) : _inWriteback_T_1 ? dirtyReleaseMessage_param : _GEN_117 ? cleanReleaseMessage_param : 3'h5; // @[package.scala:16:47, :81:59] assign nodeOut_c_bits_size = _T_110 ? 4'h6 : _inWriteback_T_1 ? dirtyReleaseMessage_size : _GEN_117 ? cleanReleaseMessage_size : nackResponseMessage_size; // @[package.scala:16:47, :81:59] assign newCoh_state = _T_110 ? voluntaryNewCoh_state : probeNewCoh_state; // @[package.scala:81:59] assign releaseWay = _T_110 ? s2_victim_or_hit_way : s2_probe_way; // @[package.scala:81:59] wire _dataArb_io_in_2_valid_T = releaseDataBeat < 10'h8; // @[DCache.scala:804:43, :900:60] assign _dataArb_io_in_2_valid_T_1 = inWriteback & _dataArb_io_in_2_valid_T; // @[package.scala:81:59] assign dataArb_io_in_2_valid = _dataArb_io_in_2_valid_T_1; // @[DCache.scala:152:28, :900:41] wire [11:0] _dataArb_io_in_2_bits_addr_T_1 = {_dataArb_io_in_2_bits_addr_T, 6'h0}; // @[DCache.scala:903:55, :1200:47] wire [2:0] _dataArb_io_in_2_bits_addr_T_2 = releaseDataBeat[2:0]; // @[DCache.scala:804:43, :903:90] wire [5:0] _dataArb_io_in_2_bits_addr_T_3 = {_dataArb_io_in_2_bits_addr_T_2, 3'h0}; // @[DCache.scala:903:{90,117}] assign _dataArb_io_in_2_bits_addr_T_4 = {_dataArb_io_in_2_bits_addr_T_1[11:6], _dataArb_io_in_2_bits_addr_T_1[5:0] | _dataArb_io_in_2_bits_addr_T_3}; // @[DCache.scala:903:{55,72,117}] assign dataArb_io_in_2_bits_addr = _dataArb_io_in_2_bits_addr_T_4; // @[DCache.scala:152:28, :903:72] wire _metaArb_io_in_4_valid_T_1 = release_state == 4'h7; // @[package.scala:16:47] assign _metaArb_io_in_4_valid_T_2 = _metaArb_io_in_4_valid_T | _metaArb_io_in_4_valid_T_1; // @[package.scala:16:47, :81:59] assign metaArb_io_in_4_valid = _metaArb_io_in_4_valid_T_2; // @[package.scala:81:59] assign metaArb_io_in_4_bits_idx = _metaArb_io_in_4_bits_idx_T; // @[DCache.scala:135:28, :1200:47] wire [11:0] _metaArb_io_in_4_bits_addr_T_1 = probe_bits_address[11:0]; // @[DCache.scala:184:29, :912:90] assign _metaArb_io_in_4_bits_addr_T_2 = {_metaArb_io_in_4_bits_addr_T, _metaArb_io_in_4_bits_addr_T_1}; // @[DCache.scala:912:{36,58,90}] assign metaArb_io_in_4_bits_addr = _metaArb_io_in_4_bits_addr_T_2; // @[DCache.scala:135:28, :912:36] wire [19:0] _metaArb_io_in_4_bits_data_T = nodeOut_c_bits_address[31:12]; // @[DCache.scala:913:78] wire [19:0] metaArb_io_in_4_bits_data_meta_tag = _metaArb_io_in_4_bits_data_T; // @[HellaCache.scala:305:20] assign _metaArb_io_in_4_bits_data_T_1 = {metaArb_io_in_4_bits_data_meta_coh_state, metaArb_io_in_4_bits_data_meta_tag}; // @[HellaCache.scala:305:20] assign metaArb_io_in_4_bits_data = _metaArb_io_in_4_bits_data_T_1; // @[DCache.scala:135:28, :913:97] assign metaArb_io_in_5_bits_data = _metaArb_io_in_4_bits_data_T_1; // @[DCache.scala:135:28, :913:97] assign metaArb_io_in_6_bits_data = _metaArb_io_in_4_bits_data_T_1; // @[DCache.scala:135:28, :913:97] assign metaArb_io_in_7_bits_data = _metaArb_io_in_4_bits_data_T_1; // @[DCache.scala:135:28, :913:97] wire _io_cpu_s2_uncached_T = ~s2_hit; // @[Misc.scala:35:9] assign _io_cpu_s2_uncached_T_1 = s2_uncached & _io_cpu_s2_uncached_T; // @[DCache.scala:424:39, :920:{37,40}] assign io_cpu_s2_uncached_0 = _io_cpu_s2_uncached_T_1; // @[DCache.scala:101:7, :920:37] wire _io_cpu_ordered_T_2 = ~s2_req_no_xcpt; // @[DCache.scala:339:19, :929:72] wire _io_cpu_ordered_T_3 = s2_valid & _io_cpu_ordered_T_2; // @[DCache.scala:331:25, :929:{69,72}] wire _io_cpu_ordered_T_4 = _io_cpu_ordered_T_1 | _io_cpu_ordered_T_3; // @[DCache.scala:929:{32,57,69}] wire _io_cpu_ordered_T_5 = _io_cpu_ordered_T_4 | cached_grant_wait; // @[DCache.scala:223:34, :929:{57,94}] wire _io_cpu_ordered_T_7 = _io_cpu_ordered_T_5 | _io_cpu_ordered_T_6; // @[DCache.scala:929:{94,115,142}] assign _io_cpu_ordered_T_8 = ~_io_cpu_ordered_T_7; // @[DCache.scala:929:{21,115}] assign io_cpu_ordered_0 = _io_cpu_ordered_T_8; // @[DCache.scala:101:7, :929:21] wire _io_cpu_store_pending_T_2 = _io_cpu_store_pending_T | _io_cpu_store_pending_T_1; // @[Consts.scala:90:{32,42,49}] wire _io_cpu_store_pending_T_4 = _io_cpu_store_pending_T_2 | _io_cpu_store_pending_T_3; // @[Consts.scala:90:{42,59,66}] wire _io_cpu_store_pending_T_9 = _io_cpu_store_pending_T_5 | _io_cpu_store_pending_T_6; // @[package.scala:16:47, :81:59] wire _io_cpu_store_pending_T_10 = _io_cpu_store_pending_T_9 | _io_cpu_store_pending_T_7; // @[package.scala:16:47, :81:59] wire _io_cpu_store_pending_T_11 = _io_cpu_store_pending_T_10 | _io_cpu_store_pending_T_8; // @[package.scala:16:47, :81:59] wire _io_cpu_store_pending_T_17 = _io_cpu_store_pending_T_12 | _io_cpu_store_pending_T_13; // @[package.scala:16:47, :81:59] wire _io_cpu_store_pending_T_18 = _io_cpu_store_pending_T_17 | _io_cpu_store_pending_T_14; // @[package.scala:16:47, :81:59] wire _io_cpu_store_pending_T_19 = _io_cpu_store_pending_T_18 | _io_cpu_store_pending_T_15; // @[package.scala:16:47, :81:59] wire _io_cpu_store_pending_T_20 = _io_cpu_store_pending_T_19 | _io_cpu_store_pending_T_16; // @[package.scala:16:47, :81:59] wire _io_cpu_store_pending_T_21 = _io_cpu_store_pending_T_11 | _io_cpu_store_pending_T_20; // @[package.scala:81:59] wire _io_cpu_store_pending_T_22 = _io_cpu_store_pending_T_4 | _io_cpu_store_pending_T_21; // @[Consts.scala:87:44, :90:{59,76}] wire _io_cpu_store_pending_T_23 = cached_grant_wait & _io_cpu_store_pending_T_22; // @[DCache.scala:223:34, :930:46] assign _io_cpu_store_pending_T_25 = _io_cpu_store_pending_T_23 | _io_cpu_store_pending_T_24; // @[DCache.scala:930:{46,70,97}] assign io_cpu_store_pending_0 = _io_cpu_store_pending_T_25; // @[DCache.scala:101:7, :930:70] wire _s1_xcpt_valid_T_2 = ~s1_nack; // @[DCache.scala:185:28, :187:41, :932:68] wire s1_xcpt_valid = _s1_xcpt_valid_T_1 & _s1_xcpt_valid_T_2; // @[DCache.scala:932:{40,65,68}] reg io_cpu_s2_xcpt_REG; // @[DCache.scala:933:32] wire _io_cpu_s2_xcpt_T_miss = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_miss; // @[DCache.scala:342:24, :933:{24,32}] wire [31:0] _io_cpu_s2_xcpt_T_paddr = io_cpu_s2_xcpt_REG ? s2_tlb_xcpt_paddr : 32'h0; // @[DCache.scala:342:24, :933:{24,32}] wire [39:0] _io_cpu_s2_xcpt_T_gpa = io_cpu_s2_xcpt_REG ? s2_tlb_xcpt_gpa : 40'h0; // @[DCache.scala:342:24, :933:{24,32}] assign _io_cpu_s2_xcpt_T_pf_ld = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_pf_ld; // @[DCache.scala:342:24, :933:{24,32}] assign _io_cpu_s2_xcpt_T_pf_st = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_pf_st; // @[DCache.scala:342:24, :933:{24,32}] wire _io_cpu_s2_xcpt_T_pf_inst = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_pf_inst; // @[DCache.scala:342:24, :933:{24,32}] assign _io_cpu_s2_xcpt_T_ae_ld = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_ae_ld; // @[DCache.scala:342:24, :933:{24,32}] assign _io_cpu_s2_xcpt_T_ae_st = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_ae_st; // @[DCache.scala:342:24, :933:{24,32}] wire _io_cpu_s2_xcpt_T_ae_inst = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_ae_inst; // @[DCache.scala:342:24, :933:{24,32}] assign _io_cpu_s2_xcpt_T_ma_ld = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_ma_ld; // @[DCache.scala:342:24, :933:{24,32}] assign _io_cpu_s2_xcpt_T_ma_st = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_ma_st; // @[DCache.scala:342:24, :933:{24,32}] wire _io_cpu_s2_xcpt_T_cacheable = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_cacheable; // @[DCache.scala:342:24, :933:{24,32}] wire _io_cpu_s2_xcpt_T_must_alloc = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_must_alloc; // @[DCache.scala:342:24, :933:{24,32}] wire _io_cpu_s2_xcpt_T_prefetchable = io_cpu_s2_xcpt_REG & s2_tlb_xcpt_prefetchable; // @[DCache.scala:342:24, :933:{24,32}] wire [1:0] _io_cpu_s2_xcpt_T_size = io_cpu_s2_xcpt_REG ? s2_tlb_xcpt_size : 2'h0; // @[DCache.scala:342:24, :933:{24,32}] wire [4:0] _io_cpu_s2_xcpt_T_cmd = io_cpu_s2_xcpt_REG ? s2_tlb_xcpt_cmd : 5'h0; // @[DCache.scala:342:24, :933:{24,32}] assign io_cpu_s2_xcpt_pf_ld_0 = _io_cpu_s2_xcpt_T_pf_ld; // @[DCache.scala:101:7, :933:24] assign io_cpu_s2_xcpt_pf_st_0 = _io_cpu_s2_xcpt_T_pf_st; // @[DCache.scala:101:7, :933:24] assign io_cpu_s2_xcpt_ae_ld_0 = _io_cpu_s2_xcpt_T_ae_ld; // @[DCache.scala:101:7, :933:24] assign io_cpu_s2_xcpt_ae_st_0 = _io_cpu_s2_xcpt_T_ae_st; // @[DCache.scala:101:7, :933:24] assign io_cpu_s2_xcpt_ma_ld_0 = _io_cpu_s2_xcpt_T_ma_ld; // @[DCache.scala:101:7, :933:24] assign io_cpu_s2_xcpt_ma_st_0 = _io_cpu_s2_xcpt_T_ma_st; // @[DCache.scala:101:7, :933:24] reg [63:0] s2_uncached_data_word; // @[DCache.scala:947:40] reg doUncachedResp; // @[DCache.scala:948:31] assign io_cpu_resp_bits_replay_0 = doUncachedResp; // @[DCache.scala:101:7, :948:31] wire _io_cpu_resp_valid_T = s2_valid_hit_pre_data_ecc | doUncachedResp; // @[DCache.scala:420:69, :948:31, :949:51] assign _io_cpu_resp_valid_T_2 = _io_cpu_resp_valid_T; // @[DCache.scala:949:{51,70}] assign io_cpu_resp_valid_0 = _io_cpu_resp_valid_T_2; // @[DCache.scala:101:7, :949:70] wire _io_cpu_replay_next_T_1 = _io_cpu_replay_next_T & grantIsUncachedData; // @[Decoupled.scala:51:35] assign _io_cpu_replay_next_T_3 = _io_cpu_replay_next_T_1; // @[DCache.scala:950:{39,62}] assign io_cpu_replay_next_0 = _io_cpu_replay_next_T_3; // @[DCache.scala:101:7, :950:62]
Generate the Verilog code corresponding to the following Chisel files. File Buffer.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.BufferParams class TLBufferNode ( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit valName: ValName) extends TLAdapterNode( clientFn = { p => p.v1copy(minLatency = p.minLatency + b.latency + c.latency) }, managerFn = { p => p.v1copy(minLatency = p.minLatency + a.latency + d.latency) } ) { override lazy val nodedebugstring = s"a:${a.toString}, b:${b.toString}, c:${c.toString}, d:${d.toString}, e:${e.toString}" override def circuitIdentity = List(a,b,c,d,e).forall(_ == BufferParams.none) } class TLBuffer( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters) extends LazyModule { def this(ace: BufferParams, bd: BufferParams)(implicit p: Parameters) = this(ace, bd, ace, bd, ace) def this(abcde: BufferParams)(implicit p: Parameters) = this(abcde, abcde) def this()(implicit p: Parameters) = this(BufferParams.default) val node = new TLBufferNode(a, b, c, d, e) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def headBundle = node.out.head._2.bundle override def desiredName = (Seq("TLBuffer") ++ node.out.headOption.map(_._2.bundle.shortName)).mkString("_") (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.a <> a(in .a) in .d <> d(out.d) if (edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe) { in .b <> b(out.b) out.c <> c(in .c) out.e <> e(in .e) } else { in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLBuffer { def apply() (implicit p: Parameters): TLNode = apply(BufferParams.default) def apply(abcde: BufferParams) (implicit p: Parameters): TLNode = apply(abcde, abcde) def apply(ace: BufferParams, bd: BufferParams)(implicit p: Parameters): TLNode = apply(ace, bd, ace, bd, ace) def apply( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams)(implicit p: Parameters): TLNode = { val buffer = LazyModule(new TLBuffer(a, b, c, d, e)) buffer.node } def chain(depth: Int, name: Option[String] = None)(implicit p: Parameters): Seq[TLNode] = { val buffers = Seq.fill(depth) { LazyModule(new TLBuffer()) } name.foreach { n => buffers.zipWithIndex.foreach { case (b, i) => b.suggestName(s"${n}_${i}") } } buffers.map(_.node) } def chainNode(depth: Int, name: Option[String] = None)(implicit p: Parameters): TLNode = { chain(depth, name) .reduceLeftOption(_ :*=* _) .getOrElse(TLNameNode("no_buffer")) } } File Crossing.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.interrupts import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.util.{SynchronizerShiftReg, AsyncResetReg} @deprecated("IntXing does not ensure interrupt source is glitch free. Use IntSyncSource and IntSyncSink", "rocket-chip 1.2") class IntXing(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val intnode = IntAdapterNode() lazy val module = new Impl class Impl extends LazyModuleImp(this) { (intnode.in zip intnode.out) foreach { case ((in, _), (out, _)) => out := SynchronizerShiftReg(in, sync) } } } object IntSyncCrossingSource { def apply(alreadyRegistered: Boolean = false)(implicit p: Parameters) = { val intsource = LazyModule(new IntSyncCrossingSource(alreadyRegistered)) intsource.node } } class IntSyncCrossingSource(alreadyRegistered: Boolean = false)(implicit p: Parameters) extends LazyModule { val node = IntSyncSourceNode(alreadyRegistered) lazy val module = if (alreadyRegistered) (new ImplRegistered) else (new Impl) class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := AsyncResetReg(Cat(in.reverse)).asBools } } class ImplRegistered extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}_Registered" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := in } } } object IntSyncCrossingSink { @deprecated("IntSyncCrossingSink which used the `sync` parameter to determine crossing type is deprecated. Use IntSyncAsyncCrossingSink, IntSyncRationalCrossingSink, or IntSyncSyncCrossingSink instead for > 1, 1, and 0 sync values respectively", "rocket-chip 1.2") def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncAsyncCrossingSink(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(sync) lazy val module = new Impl class Impl extends LazyModuleImp(this) { override def desiredName = s"IntSyncAsyncCrossingSink_n${node.out.size}x${node.out.head._1.size}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := SynchronizerShiftReg(in.sync, sync) } } } object IntSyncAsyncCrossingSink { def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncSyncCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(0) lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncSyncCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := in.sync } } } object IntSyncSyncCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncSyncCrossingSink()) intsink.node } } class IntSyncRationalCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(1) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncRationalCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := RegNext(in.sync) } } } object IntSyncRationalCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncRationalCrossingSink()) intsink.node } } File ClockDomain.scala: package freechips.rocketchip.prci import chisel3._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing { def clockBundle: ClockBundle lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { childClock := clockBundle.clock childReset := clockBundle.reset override def provideImplicitClockToLazyChildren = true // these are just for backwards compatibility with external devices // that were manually wiring themselves to the domain's clock/reset input: val clock = IO(Output(chiselTypeOf(clockBundle.clock))) val reset = IO(Output(chiselTypeOf(clockBundle.reset))) clock := clockBundle.clock reset := clockBundle.reset } } abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain { def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name)) val clockNode = ClockSinkNode(Seq(clockSinkParams)) def clockBundle = clockNode.in.head._1 override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString } class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain { def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name)) val clockNode = ClockSourceNode(Seq(clockSourceParams)) def clockBundle = clockNode.out.head._1 override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString } abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing File HasTiles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.subsystem import chisel3._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.bundlebridge._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.devices.debug.TLDebugModule import freechips.rocketchip.diplomacy.{DisableMonitors, FlipRendering} import freechips.rocketchip.interrupts.{IntXbar, IntSinkNode, IntSinkPortSimple, IntSyncAsyncCrossingSink} import freechips.rocketchip.tile.{MaxHartIdBits, BaseTile, InstantiableTileParams, TileParams, TilePRCIDomain, TraceBundle, PriorityMuxHartIdFromSeq} import freechips.rocketchip.tilelink.TLWidthWidget import freechips.rocketchip.prci.{ClockGroup, BundleBridgeBlockDuringReset, NoCrossing, SynchronousCrossing, CreditedCrossing, RationalCrossing, AsynchronousCrossing} import freechips.rocketchip.rocket.TracedInstruction import freechips.rocketchip.util.TraceCoreInterface import scala.collection.immutable.SortedMap /** Entry point for Config-uring the presence of Tiles */ case class TilesLocated(loc: HierarchicalLocation) extends Field[Seq[CanAttachTile]](Nil) /** List of HierarchicalLocations which might contain a Tile */ case object PossibleTileLocations extends Field[Seq[HierarchicalLocation]](Nil) /** For determining static tile id */ case object NumTiles extends Field[Int](0) /** Whether to add timing-closure registers along the path of the hart id * as it propagates through the subsystem and into the tile. * * These are typically only desirable when a dynamically programmable prefix is being combined * with the static hart id via [[freechips.rocketchip.subsystem.HasTiles.tileHartIdNexusNode]]. */ case object InsertTimingClosureRegistersOnHartIds extends Field[Boolean](false) /** Whether per-tile hart ids are going to be driven as inputs into a HasTiles block, * and if so, what their width should be. */ case object HasTilesExternalHartIdWidthKey extends Field[Option[Int]](None) /** Whether per-tile reset vectors are going to be driven as inputs into a HasTiles block. * * Unlike the hart ids, the reset vector width is determined by the sinks within the tiles, * based on the size of the address map visible to the tiles. */ case object HasTilesExternalResetVectorKey extends Field[Boolean](true) /** These are sources of "constants" that are driven into the tile. * * While they are not expected to change dyanmically while the tile is executing code, * they may be either tied to a contant value or programmed during boot or reset. * They need to be instantiated before tiles are attached within the subsystem containing them. */ trait HasTileInputConstants { this: LazyModule with Attachable with InstantiatesHierarchicalElements => /** tileHartIdNode is used to collect publishers and subscribers of hartids. */ val tileHartIdNodes: SortedMap[Int, BundleBridgeEphemeralNode[UInt]] = (0 until nTotalTiles).map { i => (i, BundleBridgeEphemeralNode[UInt]()) }.to(SortedMap) /** tileHartIdNexusNode is a BundleBridgeNexus that collects dynamic hart prefixes. * * Each "prefix" input is actually the same full width as the outer hart id; the expected usage * is that each prefix source would set only some non-overlapping portion of the bits to non-zero values. * This node orReduces them, and further combines the reduction with the static ids assigned to each tile, * producing a unique, dynamic hart id for each tile. * * If p(InsertTimingClosureRegistersOnHartIds) is set, the input and output values are registered. * * The output values are [[dontTouch]]'d to prevent constant propagation from pulling the values into * the tiles if they are constant, which would ruin deduplication of tiles that are otherwise homogeneous. */ val tileHartIdNexusNode = LazyModule(new BundleBridgeNexus[UInt]( inputFn = BundleBridgeNexus.orReduction[UInt](registered = p(InsertTimingClosureRegistersOnHartIds)) _, outputFn = (prefix: UInt, n: Int) => Seq.tabulate(n) { i => val y = dontTouch(prefix | totalTileIdList(i).U(p(MaxHartIdBits).W)) // dontTouch to keep constant prop from breaking tile dedup if (p(InsertTimingClosureRegistersOnHartIds)) BundleBridgeNexus.safeRegNext(y) else y }, default = Some(() => 0.U(p(MaxHartIdBits).W)), inputRequiresOutput = true, // guard against this being driven but then ignored in tileHartIdIONodes below shouldBeInlined = false // can't inline something whose output we are are dontTouching )).node // TODO: Replace the DebugModuleHartSelFuncs config key with logic to consume the dynamic hart IDs /** tileResetVectorNode is used to collect publishers and subscribers of tile reset vector addresses. */ val tileResetVectorNodes: SortedMap[Int, BundleBridgeEphemeralNode[UInt]] = (0 until nTotalTiles).map { i => (i, BundleBridgeEphemeralNode[UInt]()) }.to(SortedMap) /** tileResetVectorNexusNode is a BundleBridgeNexus that accepts a single reset vector source, and broadcasts it to all tiles. */ val tileResetVectorNexusNode = BundleBroadcast[UInt]( inputRequiresOutput = true // guard against this being driven but ignored in tileResetVectorIONodes below ) /** tileHartIdIONodes may generate subsystem IOs, one per tile, allowing the parent to assign unique hart ids. * * Or, if such IOs are not configured to exist, tileHartIdNexusNode is used to supply an id to each tile. */ val tileHartIdIONodes: Seq[BundleBridgeSource[UInt]] = p(HasTilesExternalHartIdWidthKey) match { case Some(w) => (0 until nTotalTiles).map { i => val hartIdSource = BundleBridgeSource(() => UInt(w.W)) tileHartIdNodes(i) := hartIdSource hartIdSource } case None => { (0 until nTotalTiles).map { i => tileHartIdNodes(i) :*= tileHartIdNexusNode } Nil } } /** tileResetVectorIONodes may generate subsystem IOs, one per tile, allowing the parent to assign unique reset vectors. * * Or, if such IOs are not configured to exist, tileResetVectorNexusNode is used to supply a single reset vector to every tile. */ val tileResetVectorIONodes: Seq[BundleBridgeSource[UInt]] = p(HasTilesExternalResetVectorKey) match { case true => (0 until nTotalTiles).map { i => val resetVectorSource = BundleBridgeSource[UInt]() tileResetVectorNodes(i) := resetVectorSource resetVectorSource } case false => { (0 until nTotalTiles).map { i => tileResetVectorNodes(i) :*= tileResetVectorNexusNode } Nil } } } /** These are sinks of notifications that are driven out from the tile. * * They need to be instantiated before tiles are attached to the subsystem containing them. */ trait HasTileNotificationSinks { this: LazyModule => val tileHaltXbarNode = IntXbar() val tileHaltSinkNode = IntSinkNode(IntSinkPortSimple()) tileHaltSinkNode := tileHaltXbarNode val tileWFIXbarNode = IntXbar() val tileWFISinkNode = IntSinkNode(IntSinkPortSimple()) tileWFISinkNode := tileWFIXbarNode val tileCeaseXbarNode = IntXbar() val tileCeaseSinkNode = IntSinkNode(IntSinkPortSimple()) tileCeaseSinkNode := tileCeaseXbarNode } /** Standardized interface by which parameterized tiles can be attached to contexts containing interconnect resources. * * Sub-classes of this trait can optionally override the individual connect functions in order to specialize * their attachment behaviors, but most use cases should be be handled simply by changing the implementation * of the injectNode functions in crossingParams. */ trait CanAttachTile { type TileType <: BaseTile type TileContextType <: DefaultHierarchicalElementContextType def tileParams: InstantiableTileParams[TileType] def crossingParams: HierarchicalElementCrossingParamsLike /** Narrow waist through which all tiles are intended to pass while being instantiated. */ def instantiate(allTileParams: Seq[TileParams], instantiatedTiles: SortedMap[Int, TilePRCIDomain[_]])(implicit p: Parameters): TilePRCIDomain[TileType] = { val clockSinkParams = tileParams.clockSinkParams.copy(name = Some(tileParams.uniqueName)) val tile_prci_domain = LazyModule(new TilePRCIDomain[TileType](clockSinkParams, crossingParams) { self => val element = self.element_reset_domain { LazyModule(tileParams.instantiate(crossingParams, PriorityMuxHartIdFromSeq(allTileParams))) } }) tile_prci_domain } /** A default set of connections that need to occur for most tile types */ def connect(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = { connectMasterPorts(domain, context) connectSlavePorts(domain, context) connectInterrupts(domain, context) connectPRC(domain, context) connectOutputNotifications(domain, context) connectInputConstants(domain, context) connectTrace(domain, context) } /** Connect the port where the tile is the master to a TileLink interconnect. */ def connectMasterPorts(domain: TilePRCIDomain[TileType], context: Attachable): Unit = { implicit val p = context.p val dataBus = context.locateTLBusWrapper(crossingParams.master.where) dataBus.coupleFrom(tileParams.baseName) { bus => bus :=* crossingParams.master.injectNode(context) :=* domain.crossMasterPort(crossingParams.crossingType) } } /** Connect the port where the tile is the slave to a TileLink interconnect. */ def connectSlavePorts(domain: TilePRCIDomain[TileType], context: Attachable): Unit = { implicit val p = context.p DisableMonitors { implicit p => val controlBus = context.locateTLBusWrapper(crossingParams.slave.where) controlBus.coupleTo(tileParams.baseName) { bus => domain.crossSlavePort(crossingParams.crossingType) :*= crossingParams.slave.injectNode(context) :*= TLWidthWidget(controlBus.beatBytes) :*= bus } } } /** Connect the various interrupts sent to and and raised by the tile. */ def connectInterrupts(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = { implicit val p = context.p // NOTE: The order of calls to := matters! They must match how interrupts // are decoded from tile.intInwardNode inside the tile. For this reason, // we stub out missing interrupts with constant sources here. // 1. Debug interrupt is definitely asynchronous in all cases. domain.element.intInwardNode := domain { IntSyncAsyncCrossingSink(3) } := context.debugNodes(domain.element.tileId) // 2. The CLINT and PLIC output interrupts are synchronous to the CLINT/PLIC respectively, // so might need to be synchronized depending on the Tile's crossing type. // From CLINT: "msip" and "mtip" context.msipDomain { domain.crossIntIn(crossingParams.crossingType, domain.element.intInwardNode) := context.msipNodes(domain.element.tileId) } // From PLIC: "meip" context.meipDomain { domain.crossIntIn(crossingParams.crossingType, domain.element.intInwardNode) := context.meipNodes(domain.element.tileId) } // From PLIC: "seip" (only if supervisor mode is enabled) if (domain.element.tileParams.core.hasSupervisorMode) { context.seipDomain { domain.crossIntIn(crossingParams.crossingType, domain.element.intInwardNode) := context.seipNodes(domain.element.tileId) } } // 3. Local Interrupts ("lip") are required to already be synchronous to the Tile's clock. // (they are connected to domain.element.intInwardNode in a seperate trait) // 4. Interrupts coming out of the tile are sent to the PLIC, // so might need to be synchronized depending on the Tile's crossing type. context.tileToPlicNodes.get(domain.element.tileId).foreach { node => FlipRendering { implicit p => domain.element.intOutwardNode.foreach { out => context.toPlicDomain { node := domain.crossIntOut(crossingParams.crossingType, out) } }} } // 5. Connect NMI inputs to the tile. These inputs are synchronous to the respective core_clock. domain.element.nmiNode.foreach(_ := context.nmiNodes(domain.element.tileId)) } /** Notifications of tile status are connected to be broadcast without needing to be clock-crossed. */ def connectOutputNotifications(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = { implicit val p = context.p domain { context.tileHaltXbarNode :=* domain.crossIntOut(NoCrossing, domain.element.haltNode) context.tileWFIXbarNode :=* domain.crossIntOut(NoCrossing, domain.element.wfiNode) context.tileCeaseXbarNode :=* domain.crossIntOut(NoCrossing, domain.element.ceaseNode) } // TODO should context be forced to have a trace sink connected here? // for now this just ensures domain.trace[Core]Node has been crossed without connecting it externally } /** Connect inputs to the tile that are assumed to be constant during normal operation, and so are not clock-crossed. */ def connectInputConstants(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = { implicit val p = context.p val tlBusToGetPrefixFrom = context.locateTLBusWrapper(crossingParams.mmioBaseAddressPrefixWhere) domain.element.hartIdNode := context.tileHartIdNodes(domain.element.tileId) domain.element.resetVectorNode := context.tileResetVectorNodes(domain.element.tileId) tlBusToGetPrefixFrom.prefixNode.foreach { domain.element.mmioAddressPrefixNode := _ } } /** Connect power/reset/clock resources. */ def connectPRC(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = { implicit val p = context.p val tlBusToGetClockDriverFrom = context.locateTLBusWrapper(crossingParams.master.where) (crossingParams.crossingType match { case _: SynchronousCrossing | _: CreditedCrossing => if (crossingParams.forceSeparateClockReset) { domain.clockNode := tlBusToGetClockDriverFrom.clockNode } else { domain.clockNode := tlBusToGetClockDriverFrom.fixedClockNode } case _: RationalCrossing => domain.clockNode := tlBusToGetClockDriverFrom.clockNode case _: AsynchronousCrossing => { val tileClockGroup = ClockGroup() tileClockGroup := context.allClockGroupsNode domain.clockNode := tileClockGroup } }) domain { domain.element_reset_domain.clockNode := crossingParams.resetCrossingType.injectClockNode := domain.clockNode } } /** Function to handle all trace crossings when tile is instantiated inside domains */ def connectTrace(domain: TilePRCIDomain[TileType], context: TileContextType): Unit = { implicit val p = context.p val traceCrossingNode = BundleBridgeBlockDuringReset[TraceBundle]( resetCrossingType = crossingParams.resetCrossingType) context.traceNodes(domain.element.tileId) := traceCrossingNode := domain.element.traceNode val traceCoreCrossingNode = BundleBridgeBlockDuringReset[TraceCoreInterface]( resetCrossingType = crossingParams.resetCrossingType) context.traceCoreNodes(domain.element.tileId) :*= traceCoreCrossingNode := domain.element.traceCoreNode } } case class CloneTileAttachParams( sourceTileId: Int, cloneParams: CanAttachTile ) extends CanAttachTile { type TileType = cloneParams.TileType type TileContextType = cloneParams.TileContextType def tileParams = cloneParams.tileParams def crossingParams = cloneParams.crossingParams override def instantiate(allTileParams: Seq[TileParams], instantiatedTiles: SortedMap[Int, TilePRCIDomain[_]])(implicit p: Parameters): TilePRCIDomain[TileType] = { require(instantiatedTiles.contains(sourceTileId)) val clockSinkParams = tileParams.clockSinkParams.copy(name = Some(tileParams.uniqueName)) val tile_prci_domain = CloneLazyModule( new TilePRCIDomain[TileType](clockSinkParams, crossingParams) { self => val element = self.element_reset_domain { LazyModule(tileParams.instantiate(crossingParams, PriorityMuxHartIdFromSeq(allTileParams))) } }, instantiatedTiles(sourceTileId).asInstanceOf[TilePRCIDomain[TileType]] ) tile_prci_domain } } File ClockGroup.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.prci import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.resources.FixedClockResource case class ClockGroupingNode(groupName: String)(implicit valName: ValName) extends MixedNexusNode(ClockGroupImp, ClockImp)( dFn = { _ => ClockSourceParameters() }, uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq) }) { override def circuitIdentity = outputs.size == 1 } class ClockGroup(groupName: String)(implicit p: Parameters) extends LazyModule { val node = ClockGroupingNode(groupName) lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { val (in, _) = node.in(0) val (out, _) = node.out.unzip require (node.in.size == 1) require (in.member.size == out.size) (in.member.data zip out) foreach { case (i, o) => o := i } } } object ClockGroup { def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroup(valName.name)).node } case class ClockGroupAggregateNode(groupName: String)(implicit valName: ValName) extends NexusNode(ClockGroupImp)( dFn = { _ => ClockGroupSourceParameters() }, uFn = { seq => ClockGroupSinkParameters(name = groupName, members = seq.flatMap(_.members))}) { override def circuitIdentity = outputs.size == 1 } class ClockGroupAggregator(groupName: String)(implicit p: Parameters) extends LazyModule { val node = ClockGroupAggregateNode(groupName) override lazy val desiredName = s"ClockGroupAggregator_$groupName" lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { val (in, _) = node.in.unzip val (out, _) = node.out.unzip val outputs = out.flatMap(_.member.data) require (node.in.size == 1, s"Aggregator for groupName: ${groupName} had ${node.in.size} inward edges instead of 1") require (in.head.member.size == outputs.size) in.head.member.data.zip(outputs).foreach { case (i, o) => o := i } } } object ClockGroupAggregator { def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new ClockGroupAggregator(valName.name)).node } class SimpleClockGroupSource(numSources: Int = 1)(implicit p: Parameters) extends LazyModule { val node = ClockGroupSourceNode(List.fill(numSources) { ClockGroupSourceParameters() }) lazy val module = new Impl class Impl extends LazyModuleImp(this) { val (out, _) = node.out.unzip out.map { out: ClockGroupBundle => out.member.data.foreach { o => o.clock := clock; o.reset := reset } } } } object SimpleClockGroupSource { def apply(num: Int = 1)(implicit p: Parameters, valName: ValName) = LazyModule(new SimpleClockGroupSource(num)).node } case class FixedClockBroadcastNode(fixedClockOpt: Option[ClockParameters])(implicit valName: ValName) extends NexusNode(ClockImp)( dFn = { seq => fixedClockOpt.map(_ => ClockSourceParameters(give = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSourceParameters()) }, uFn = { seq => fixedClockOpt.map(_ => ClockSinkParameters(take = fixedClockOpt)).orElse(seq.headOption).getOrElse(ClockSinkParameters()) }, inputRequiresOutput = false) { def fixedClockResources(name: String, prefix: String = "soc/"): Seq[Option[FixedClockResource]] = Seq(fixedClockOpt.map(t => new FixedClockResource(name, t.freqMHz, prefix))) } class FixedClockBroadcast(fixedClockOpt: Option[ClockParameters])(implicit p: Parameters) extends LazyModule { val node = new FixedClockBroadcastNode(fixedClockOpt) { override def circuitIdentity = outputs.size == 1 } lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { val (in, _) = node.in(0) val (out, _) = node.out.unzip override def desiredName = s"FixedClockBroadcast_${out.size}" require (node.in.size == 1, "FixedClockBroadcast can only broadcast a single clock") out.foreach { _ := in } } } object FixedClockBroadcast { def apply(fixedClockOpt: Option[ClockParameters] = None)(implicit p: Parameters, valName: ValName) = LazyModule(new FixedClockBroadcast(fixedClockOpt)).node } case class PRCIClockGroupNode()(implicit valName: ValName) extends NexusNode(ClockGroupImp)( dFn = { _ => ClockGroupSourceParameters() }, uFn = { _ => ClockGroupSinkParameters("prci", Nil) }, outputRequiresInput = false) File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } }
module TilePRCIDomain( // @[ClockDomain.scala:14:9] output auto_intsink_out_1_0, // @[LazyModuleImp.scala:107:25] input auto_intsink_in_sync_0, // @[LazyModuleImp.scala:107:25] output auto_element_reset_domain_rockettile_trace_source_out_insns_0_valid, // @[LazyModuleImp.scala:107:25] output [39:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_iaddr, // @[LazyModuleImp.scala:107:25] output [31:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_insn, // @[LazyModuleImp.scala:107:25] output [2:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_priv, // @[LazyModuleImp.scala:107:25] output auto_element_reset_domain_rockettile_trace_source_out_insns_0_exception, // @[LazyModuleImp.scala:107:25] output auto_element_reset_domain_rockettile_trace_source_out_insns_0_interrupt, // @[LazyModuleImp.scala:107:25] output [63:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_cause, // @[LazyModuleImp.scala:107:25] output [39:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_tval, // @[LazyModuleImp.scala:107:25] output [63:0] auto_element_reset_domain_rockettile_trace_source_out_time, // @[LazyModuleImp.scala:107:25] input [1:0] auto_element_reset_domain_rockettile_hartid_in, // @[LazyModuleImp.scala:107:25] input auto_int_in_clock_xing_in_2_sync_0, // @[LazyModuleImp.scala:107:25] input auto_int_in_clock_xing_in_1_sync_0, // @[LazyModuleImp.scala:107:25] input auto_int_in_clock_xing_in_0_sync_0, // @[LazyModuleImp.scala:107:25] input auto_int_in_clock_xing_in_0_sync_1, // @[LazyModuleImp.scala:107:25] input auto_tl_master_clock_xing_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_tl_master_clock_xing_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_tl_master_clock_xing_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_tl_master_clock_xing_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_tl_master_clock_xing_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [1:0] auto_tl_master_clock_xing_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_tl_master_clock_xing_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [15:0] auto_tl_master_clock_xing_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [127:0] auto_tl_master_clock_xing_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_tl_master_clock_xing_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_tl_master_clock_xing_out_b_ready, // @[LazyModuleImp.scala:107:25] input auto_tl_master_clock_xing_out_b_valid, // @[LazyModuleImp.scala:107:25] input [1:0] auto_tl_master_clock_xing_out_b_bits_param, // @[LazyModuleImp.scala:107:25] input [1:0] auto_tl_master_clock_xing_out_b_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_tl_master_clock_xing_out_b_bits_address, // @[LazyModuleImp.scala:107:25] input auto_tl_master_clock_xing_out_c_ready, // @[LazyModuleImp.scala:107:25] output auto_tl_master_clock_xing_out_c_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_tl_master_clock_xing_out_c_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_tl_master_clock_xing_out_c_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_tl_master_clock_xing_out_c_bits_size, // @[LazyModuleImp.scala:107:25] output [1:0] auto_tl_master_clock_xing_out_c_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_tl_master_clock_xing_out_c_bits_address, // @[LazyModuleImp.scala:107:25] output [127:0] auto_tl_master_clock_xing_out_c_bits_data, // @[LazyModuleImp.scala:107:25] output auto_tl_master_clock_xing_out_c_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_tl_master_clock_xing_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_tl_master_clock_xing_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_tl_master_clock_xing_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_tl_master_clock_xing_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_tl_master_clock_xing_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [1:0] auto_tl_master_clock_xing_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input [3:0] auto_tl_master_clock_xing_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_tl_master_clock_xing_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [127:0] auto_tl_master_clock_xing_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_tl_master_clock_xing_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_tl_master_clock_xing_out_e_ready, // @[LazyModuleImp.scala:107:25] output auto_tl_master_clock_xing_out_e_valid, // @[LazyModuleImp.scala:107:25] output [3:0] auto_tl_master_clock_xing_out_e_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_tap_clock_in_clock, // @[LazyModuleImp.scala:107:25] input auto_tap_clock_in_reset // @[LazyModuleImp.scala:107:25] ); wire clockNode_auto_anon_in_reset; // @[ClockGroup.scala:104:9] wire clockNode_auto_anon_in_clock; // @[ClockGroup.scala:104:9] wire element_reset_domain_auto_clock_in_reset; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_clock_in_clock; // @[ClockDomain.scala:14:9] wire auto_intsink_in_sync_0_0 = auto_intsink_in_sync_0; // @[ClockDomain.scala:14:9] wire [1:0] auto_element_reset_domain_rockettile_hartid_in_0 = auto_element_reset_domain_rockettile_hartid_in; // @[ClockDomain.scala:14:9] wire auto_int_in_clock_xing_in_2_sync_0_0 = auto_int_in_clock_xing_in_2_sync_0; // @[ClockDomain.scala:14:9] wire auto_int_in_clock_xing_in_1_sync_0_0 = auto_int_in_clock_xing_in_1_sync_0; // @[ClockDomain.scala:14:9] wire auto_int_in_clock_xing_in_0_sync_0_0 = auto_int_in_clock_xing_in_0_sync_0; // @[ClockDomain.scala:14:9] wire auto_int_in_clock_xing_in_0_sync_1_0 = auto_int_in_clock_xing_in_0_sync_1; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_a_ready_0 = auto_tl_master_clock_xing_out_a_ready; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_b_valid_0 = auto_tl_master_clock_xing_out_b_valid; // @[ClockDomain.scala:14:9] wire [1:0] auto_tl_master_clock_xing_out_b_bits_param_0 = auto_tl_master_clock_xing_out_b_bits_param; // @[ClockDomain.scala:14:9] wire [1:0] auto_tl_master_clock_xing_out_b_bits_source_0 = auto_tl_master_clock_xing_out_b_bits_source; // @[ClockDomain.scala:14:9] wire [31:0] auto_tl_master_clock_xing_out_b_bits_address_0 = auto_tl_master_clock_xing_out_b_bits_address; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_c_ready_0 = auto_tl_master_clock_xing_out_c_ready; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_d_valid_0 = auto_tl_master_clock_xing_out_d_valid; // @[ClockDomain.scala:14:9] wire [2:0] auto_tl_master_clock_xing_out_d_bits_opcode_0 = auto_tl_master_clock_xing_out_d_bits_opcode; // @[ClockDomain.scala:14:9] wire [1:0] auto_tl_master_clock_xing_out_d_bits_param_0 = auto_tl_master_clock_xing_out_d_bits_param; // @[ClockDomain.scala:14:9] wire [3:0] auto_tl_master_clock_xing_out_d_bits_size_0 = auto_tl_master_clock_xing_out_d_bits_size; // @[ClockDomain.scala:14:9] wire [1:0] auto_tl_master_clock_xing_out_d_bits_source_0 = auto_tl_master_clock_xing_out_d_bits_source; // @[ClockDomain.scala:14:9] wire [3:0] auto_tl_master_clock_xing_out_d_bits_sink_0 = auto_tl_master_clock_xing_out_d_bits_sink; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_d_bits_denied_0 = auto_tl_master_clock_xing_out_d_bits_denied; // @[ClockDomain.scala:14:9] wire [127:0] auto_tl_master_clock_xing_out_d_bits_data_0 = auto_tl_master_clock_xing_out_d_bits_data; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_d_bits_corrupt_0 = auto_tl_master_clock_xing_out_d_bits_corrupt; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_e_ready_0 = auto_tl_master_clock_xing_out_e_ready; // @[ClockDomain.scala:14:9] wire auto_tap_clock_in_clock_0 = auto_tap_clock_in_clock; // @[ClockDomain.scala:14:9] wire auto_tap_clock_in_reset_0 = auto_tap_clock_in_reset; // @[ClockDomain.scala:14:9] wire [31:0] auto_element_reset_domain_rockettile_trace_core_source_out_group_0_iaddr = 32'h0; // @[ClockDomain.scala:14:9] wire [31:0] auto_element_reset_domain_rockettile_trace_core_source_out_tval = 32'h0; // @[ClockDomain.scala:14:9] wire [31:0] auto_element_reset_domain_rockettile_trace_core_source_out_cause = 32'h0; // @[ClockDomain.scala:14:9] wire [31:0] element_reset_domain_auto_rockettile_trace_core_source_out_group_0_iaddr = 32'h0; // @[ClockDomain.scala:14:9] wire [31:0] element_reset_domain_auto_rockettile_trace_core_source_out_tval = 32'h0; // @[ClockDomain.scala:14:9] wire [31:0] element_reset_domain_auto_rockettile_trace_core_source_out_cause = 32'h0; // @[ClockDomain.scala:14:9] wire [3:0] auto_element_reset_domain_rockettile_trace_core_source_out_group_0_itype = 4'h0; // @[ClockDomain.scala:14:9] wire [3:0] auto_element_reset_domain_rockettile_trace_core_source_out_priv = 4'h0; // @[ClockDomain.scala:14:9] wire [3:0] element_reset_domain_auto_rockettile_trace_core_source_out_group_0_itype = 4'h0; // @[ClockDomain.scala:14:9] wire [3:0] element_reset_domain_auto_rockettile_trace_core_source_out_priv = 4'h0; // @[ClockDomain.scala:14:9] wire [31:0] auto_element_reset_domain_rockettile_reset_vector_in = 32'h10000; // @[ClockDomain.scala:14:9] wire [31:0] element_reset_domain_auto_rockettile_reset_vector_in = 32'h10000; // @[ClockDomain.scala:14:9] wire [2:0] auto_tl_master_clock_xing_out_b_bits_opcode = 3'h6; // @[ClockDomain.scala:14:9] wire [2:0] tlMasterClockXingOut_b_bits_opcode = 3'h6; // @[MixedNode.scala:542:17] wire [2:0] tlMasterClockXingIn_b_bits_opcode = 3'h6; // @[MixedNode.scala:551:17] wire [3:0] auto_tl_master_clock_xing_out_b_bits_size = 4'h6; // @[ClockDomain.scala:14:9] wire [3:0] tlMasterClockXingOut_b_bits_size = 4'h6; // @[MixedNode.scala:542:17] wire [3:0] tlMasterClockXingIn_b_bits_size = 4'h6; // @[MixedNode.scala:551:17] wire [15:0] auto_tl_master_clock_xing_out_b_bits_mask = 16'hFFFF; // @[ClockDomain.scala:14:9] wire [15:0] tlMasterClockXingOut_b_bits_mask = 16'hFFFF; // @[MixedNode.scala:542:17] wire [15:0] tlMasterClockXingIn_b_bits_mask = 16'hFFFF; // @[MixedNode.scala:551:17] wire [127:0] auto_tl_master_clock_xing_out_b_bits_data = 128'h0; // @[ClockDomain.scala:14:9] wire [127:0] tlMasterClockXingOut_b_bits_data = 128'h0; // @[MixedNode.scala:542:17] wire [127:0] tlMasterClockXingIn_b_bits_data = 128'h0; // @[MixedNode.scala:551:17] wire auto_intsink_out_2_0 = 1'h0; // @[ClockDomain.scala:14:9] wire auto_intsink_out_0_0 = 1'h0; // @[ClockDomain.scala:14:9] wire auto_element_reset_domain_rockettile_trace_core_source_out_group_0_iretire = 1'h0; // @[ClockDomain.scala:14:9] wire auto_element_reset_domain_rockettile_trace_core_source_out_group_0_ilastsize = 1'h0; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_b_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9] wire _childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25] wire element_reset_domain_auto_rockettile_buffer_out_a_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_c_bits_corrupt = 1'h0; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_cease_out_0 = 1'h0; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_halt_out_0 = 1'h0; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_trace_core_source_out_group_0_iretire = 1'h0; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_trace_core_source_out_group_0_ilastsize = 1'h0; // @[ClockDomain.scala:14:9] wire element_reset_domain__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25] wire clockNode_childClock = 1'h0; // @[LazyModuleImp.scala:155:31] wire clockNode_childReset = 1'h0; // @[LazyModuleImp.scala:158:31] wire clockNode__childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25] wire tlMasterClockXingOut_b_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17] wire tlMasterClockXingIn_b_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17] wire intOutClockXingOut_sync_0 = 1'h0; // @[MixedNode.scala:542:17] wire intOutClockXingIn_sync_0 = 1'h0; // @[MixedNode.scala:551:17] wire intOutClockXingOut_1_sync_0 = 1'h0; // @[MixedNode.scala:542:17] wire intOutClockXingIn_1_sync_0 = 1'h0; // @[MixedNode.scala:551:17] wire intOutClockXingOut_4_sync_0 = 1'h0; // @[MixedNode.scala:542:17] wire intOutClockXingIn_4_sync_0 = 1'h0; // @[MixedNode.scala:551:17] wire intOutClockXingOut_5_sync_0 = 1'h0; // @[MixedNode.scala:542:17] wire intOutClockXingIn_5_sync_0 = 1'h0; // @[MixedNode.scala:551:17] wire element_reset_domain_auto_rockettile_trace_source_out_insns_0_valid; // @[ClockDomain.scala:14:9] wire [39:0] element_reset_domain_auto_rockettile_trace_source_out_insns_0_iaddr; // @[ClockDomain.scala:14:9] wire [31:0] element_reset_domain_auto_rockettile_trace_source_out_insns_0_insn; // @[ClockDomain.scala:14:9] wire [2:0] element_reset_domain_auto_rockettile_trace_source_out_insns_0_priv; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_trace_source_out_insns_0_exception; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_trace_source_out_insns_0_interrupt; // @[ClockDomain.scala:14:9] wire [63:0] element_reset_domain_auto_rockettile_trace_source_out_insns_0_cause; // @[ClockDomain.scala:14:9] wire [39:0] element_reset_domain_auto_rockettile_trace_source_out_insns_0_tval; // @[ClockDomain.scala:14:9] wire [63:0] element_reset_domain_auto_rockettile_trace_source_out_time; // @[ClockDomain.scala:14:9] wire [1:0] element_reset_domain_auto_rockettile_hartid_in = auto_element_reset_domain_rockettile_hartid_in_0; // @[ClockDomain.scala:14:9] wire intInClockXingIn_2_sync_0 = auto_int_in_clock_xing_in_2_sync_0_0; // @[ClockDomain.scala:14:9] wire intInClockXingIn_1_sync_0 = auto_int_in_clock_xing_in_1_sync_0_0; // @[ClockDomain.scala:14:9] wire intInClockXingIn_sync_0 = auto_int_in_clock_xing_in_0_sync_0_0; // @[ClockDomain.scala:14:9] wire intInClockXingIn_sync_1 = auto_int_in_clock_xing_in_0_sync_1_0; // @[ClockDomain.scala:14:9] wire tlMasterClockXingOut_a_ready = auto_tl_master_clock_xing_out_a_ready_0; // @[ClockDomain.scala:14:9] wire tlMasterClockXingOut_a_valid; // @[MixedNode.scala:542:17] wire [2:0] tlMasterClockXingOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] tlMasterClockXingOut_a_bits_param; // @[MixedNode.scala:542:17] wire [3:0] tlMasterClockXingOut_a_bits_size; // @[MixedNode.scala:542:17] wire [1:0] tlMasterClockXingOut_a_bits_source; // @[MixedNode.scala:542:17] wire [31:0] tlMasterClockXingOut_a_bits_address; // @[MixedNode.scala:542:17] wire [15:0] tlMasterClockXingOut_a_bits_mask; // @[MixedNode.scala:542:17] wire [127:0] tlMasterClockXingOut_a_bits_data; // @[MixedNode.scala:542:17] wire tlMasterClockXingOut_a_bits_corrupt; // @[MixedNode.scala:542:17] wire tlMasterClockXingOut_b_ready; // @[MixedNode.scala:542:17] wire tlMasterClockXingOut_b_valid = auto_tl_master_clock_xing_out_b_valid_0; // @[ClockDomain.scala:14:9] wire [1:0] tlMasterClockXingOut_b_bits_param = auto_tl_master_clock_xing_out_b_bits_param_0; // @[ClockDomain.scala:14:9] wire [1:0] tlMasterClockXingOut_b_bits_source = auto_tl_master_clock_xing_out_b_bits_source_0; // @[ClockDomain.scala:14:9] wire [31:0] tlMasterClockXingOut_b_bits_address = auto_tl_master_clock_xing_out_b_bits_address_0; // @[ClockDomain.scala:14:9] wire tlMasterClockXingOut_c_ready = auto_tl_master_clock_xing_out_c_ready_0; // @[ClockDomain.scala:14:9] wire tlMasterClockXingOut_c_valid; // @[MixedNode.scala:542:17] wire [2:0] tlMasterClockXingOut_c_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] tlMasterClockXingOut_c_bits_param; // @[MixedNode.scala:542:17] wire [3:0] tlMasterClockXingOut_c_bits_size; // @[MixedNode.scala:542:17] wire [1:0] tlMasterClockXingOut_c_bits_source; // @[MixedNode.scala:542:17] wire [31:0] tlMasterClockXingOut_c_bits_address; // @[MixedNode.scala:542:17] wire [127:0] tlMasterClockXingOut_c_bits_data; // @[MixedNode.scala:542:17] wire tlMasterClockXingOut_c_bits_corrupt; // @[MixedNode.scala:542:17] wire tlMasterClockXingOut_d_ready; // @[MixedNode.scala:542:17] wire tlMasterClockXingOut_d_valid = auto_tl_master_clock_xing_out_d_valid_0; // @[ClockDomain.scala:14:9] wire [2:0] tlMasterClockXingOut_d_bits_opcode = auto_tl_master_clock_xing_out_d_bits_opcode_0; // @[ClockDomain.scala:14:9] wire [1:0] tlMasterClockXingOut_d_bits_param = auto_tl_master_clock_xing_out_d_bits_param_0; // @[ClockDomain.scala:14:9] wire [3:0] tlMasterClockXingOut_d_bits_size = auto_tl_master_clock_xing_out_d_bits_size_0; // @[ClockDomain.scala:14:9] wire [1:0] tlMasterClockXingOut_d_bits_source = auto_tl_master_clock_xing_out_d_bits_source_0; // @[ClockDomain.scala:14:9] wire [3:0] tlMasterClockXingOut_d_bits_sink = auto_tl_master_clock_xing_out_d_bits_sink_0; // @[ClockDomain.scala:14:9] wire tlMasterClockXingOut_d_bits_denied = auto_tl_master_clock_xing_out_d_bits_denied_0; // @[ClockDomain.scala:14:9] wire [127:0] tlMasterClockXingOut_d_bits_data = auto_tl_master_clock_xing_out_d_bits_data_0; // @[ClockDomain.scala:14:9] wire tlMasterClockXingOut_d_bits_corrupt = auto_tl_master_clock_xing_out_d_bits_corrupt_0; // @[ClockDomain.scala:14:9] wire tlMasterClockXingOut_e_ready = auto_tl_master_clock_xing_out_e_ready_0; // @[ClockDomain.scala:14:9] wire tlMasterClockXingOut_e_valid; // @[MixedNode.scala:542:17] wire [3:0] tlMasterClockXingOut_e_bits_sink; // @[MixedNode.scala:542:17] wire tapClockNodeIn_clock = auto_tap_clock_in_clock_0; // @[ClockDomain.scala:14:9] wire tapClockNodeIn_reset = auto_tap_clock_in_reset_0; // @[ClockDomain.scala:14:9] wire auto_intsink_out_1_0_0; // @[ClockDomain.scala:14:9] wire auto_element_reset_domain_rockettile_trace_source_out_insns_0_valid_0; // @[ClockDomain.scala:14:9] wire [39:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_iaddr_0; // @[ClockDomain.scala:14:9] wire [31:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_insn_0; // @[ClockDomain.scala:14:9] wire [2:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_priv_0; // @[ClockDomain.scala:14:9] wire auto_element_reset_domain_rockettile_trace_source_out_insns_0_exception_0; // @[ClockDomain.scala:14:9] wire auto_element_reset_domain_rockettile_trace_source_out_insns_0_interrupt_0; // @[ClockDomain.scala:14:9] wire [63:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_cause_0; // @[ClockDomain.scala:14:9] wire [39:0] auto_element_reset_domain_rockettile_trace_source_out_insns_0_tval_0; // @[ClockDomain.scala:14:9] wire [63:0] auto_element_reset_domain_rockettile_trace_source_out_time_0; // @[ClockDomain.scala:14:9] wire [2:0] auto_tl_master_clock_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9] wire [2:0] auto_tl_master_clock_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9] wire [3:0] auto_tl_master_clock_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9] wire [1:0] auto_tl_master_clock_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9] wire [31:0] auto_tl_master_clock_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9] wire [15:0] auto_tl_master_clock_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9] wire [127:0] auto_tl_master_clock_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_a_valid_0; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_b_ready_0; // @[ClockDomain.scala:14:9] wire [2:0] auto_tl_master_clock_xing_out_c_bits_opcode_0; // @[ClockDomain.scala:14:9] wire [2:0] auto_tl_master_clock_xing_out_c_bits_param_0; // @[ClockDomain.scala:14:9] wire [3:0] auto_tl_master_clock_xing_out_c_bits_size_0; // @[ClockDomain.scala:14:9] wire [1:0] auto_tl_master_clock_xing_out_c_bits_source_0; // @[ClockDomain.scala:14:9] wire [31:0] auto_tl_master_clock_xing_out_c_bits_address_0; // @[ClockDomain.scala:14:9] wire [127:0] auto_tl_master_clock_xing_out_c_bits_data_0; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_c_bits_corrupt_0; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_c_valid_0; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_d_ready_0; // @[ClockDomain.scala:14:9] wire [3:0] auto_tl_master_clock_xing_out_e_bits_sink_0; // @[ClockDomain.scala:14:9] wire auto_tl_master_clock_xing_out_e_valid_0; // @[ClockDomain.scala:14:9] wire childClock; // @[LazyModuleImp.scala:155:31] wire childReset; // @[LazyModuleImp.scala:158:31] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_valid_0 = element_reset_domain_auto_rockettile_trace_source_out_insns_0_valid; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_iaddr_0 = element_reset_domain_auto_rockettile_trace_source_out_insns_0_iaddr; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_insn_0 = element_reset_domain_auto_rockettile_trace_source_out_insns_0_insn; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_priv_0 = element_reset_domain_auto_rockettile_trace_source_out_insns_0_priv; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_exception_0 = element_reset_domain_auto_rockettile_trace_source_out_insns_0_exception; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_interrupt_0 = element_reset_domain_auto_rockettile_trace_source_out_insns_0_interrupt; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_cause_0 = element_reset_domain_auto_rockettile_trace_source_out_insns_0_cause; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_tval_0 = element_reset_domain_auto_rockettile_trace_source_out_insns_0_tval; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_time_0 = element_reset_domain_auto_rockettile_trace_source_out_time; // @[ClockDomain.scala:14:9] wire clockNode_auto_anon_out_clock; // @[ClockGroup.scala:104:9] wire element_reset_domain_clockNodeIn_clock = element_reset_domain_auto_clock_in_clock; // @[ClockDomain.scala:14:9] wire clockNode_auto_anon_out_reset; // @[ClockGroup.scala:104:9] wire [2:0] element_reset_domain_auto_rockettile_buffer_out_a_bits_opcode; // @[ClockDomain.scala:14:9] wire [2:0] element_reset_domain_auto_rockettile_buffer_out_a_bits_param; // @[ClockDomain.scala:14:9] wire [3:0] element_reset_domain_auto_rockettile_buffer_out_a_bits_size; // @[ClockDomain.scala:14:9] wire [1:0] element_reset_domain_auto_rockettile_buffer_out_a_bits_source; // @[ClockDomain.scala:14:9] wire [31:0] element_reset_domain_auto_rockettile_buffer_out_a_bits_address; // @[ClockDomain.scala:14:9] wire [15:0] element_reset_domain_auto_rockettile_buffer_out_a_bits_mask; // @[ClockDomain.scala:14:9] wire [127:0] element_reset_domain_auto_rockettile_buffer_out_a_bits_data; // @[ClockDomain.scala:14:9] wire element_reset_domain_clockNodeIn_reset = element_reset_domain_auto_clock_in_reset; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_a_ready; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_a_valid; // @[ClockDomain.scala:14:9] wire [2:0] element_reset_domain_auto_rockettile_buffer_out_b_bits_opcode; // @[ClockDomain.scala:14:9] wire [1:0] element_reset_domain_auto_rockettile_buffer_out_b_bits_param; // @[ClockDomain.scala:14:9] wire [3:0] element_reset_domain_auto_rockettile_buffer_out_b_bits_size; // @[ClockDomain.scala:14:9] wire [1:0] element_reset_domain_auto_rockettile_buffer_out_b_bits_source; // @[ClockDomain.scala:14:9] wire [31:0] element_reset_domain_auto_rockettile_buffer_out_b_bits_address; // @[ClockDomain.scala:14:9] wire [15:0] element_reset_domain_auto_rockettile_buffer_out_b_bits_mask; // @[ClockDomain.scala:14:9] wire [127:0] element_reset_domain_auto_rockettile_buffer_out_b_bits_data; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_b_bits_corrupt; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_b_ready; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_b_valid; // @[ClockDomain.scala:14:9] wire [2:0] element_reset_domain_auto_rockettile_buffer_out_c_bits_opcode; // @[ClockDomain.scala:14:9] wire [2:0] element_reset_domain_auto_rockettile_buffer_out_c_bits_param; // @[ClockDomain.scala:14:9] wire [3:0] element_reset_domain_auto_rockettile_buffer_out_c_bits_size; // @[ClockDomain.scala:14:9] wire [1:0] element_reset_domain_auto_rockettile_buffer_out_c_bits_source; // @[ClockDomain.scala:14:9] wire [31:0] element_reset_domain_auto_rockettile_buffer_out_c_bits_address; // @[ClockDomain.scala:14:9] wire [127:0] element_reset_domain_auto_rockettile_buffer_out_c_bits_data; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_c_ready; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_c_valid; // @[ClockDomain.scala:14:9] wire [2:0] element_reset_domain_auto_rockettile_buffer_out_d_bits_opcode; // @[ClockDomain.scala:14:9] wire [1:0] element_reset_domain_auto_rockettile_buffer_out_d_bits_param; // @[ClockDomain.scala:14:9] wire [3:0] element_reset_domain_auto_rockettile_buffer_out_d_bits_size; // @[ClockDomain.scala:14:9] wire [1:0] element_reset_domain_auto_rockettile_buffer_out_d_bits_source; // @[ClockDomain.scala:14:9] wire [3:0] element_reset_domain_auto_rockettile_buffer_out_d_bits_sink; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_d_bits_denied; // @[ClockDomain.scala:14:9] wire [127:0] element_reset_domain_auto_rockettile_buffer_out_d_bits_data; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_d_bits_corrupt; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_d_ready; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_d_valid; // @[ClockDomain.scala:14:9] wire [3:0] element_reset_domain_auto_rockettile_buffer_out_e_bits_sink; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_e_ready; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_buffer_out_e_valid; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_wfi_out_0; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_int_local_in_3_0; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_int_local_in_2_0; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_int_local_in_1_0; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_int_local_in_1_1; // @[ClockDomain.scala:14:9] wire element_reset_domain_auto_rockettile_int_local_in_0_0; // @[ClockDomain.scala:14:9] wire element_reset_domain_childClock; // @[LazyModuleImp.scala:155:31] wire element_reset_domain_childReset; // @[LazyModuleImp.scala:158:31] assign element_reset_domain_childClock = element_reset_domain_clockNodeIn_clock; // @[MixedNode.scala:551:17] assign element_reset_domain_childReset = element_reset_domain_clockNodeIn_reset; // @[MixedNode.scala:551:17] wire tapClockNodeOut_clock; // @[MixedNode.scala:542:17] wire clockNode_anonIn_clock = clockNode_auto_anon_in_clock; // @[ClockGroup.scala:104:9] wire tapClockNodeOut_reset; // @[MixedNode.scala:542:17] wire clockNode_anonOut_clock; // @[MixedNode.scala:542:17] wire clockNode_anonIn_reset = clockNode_auto_anon_in_reset; // @[ClockGroup.scala:104:9] assign element_reset_domain_auto_clock_in_clock = clockNode_auto_anon_out_clock; // @[ClockGroup.scala:104:9] wire clockNode_anonOut_reset; // @[MixedNode.scala:542:17] assign element_reset_domain_auto_clock_in_reset = clockNode_auto_anon_out_reset; // @[ClockGroup.scala:104:9] assign clockNode_auto_anon_out_clock = clockNode_anonOut_clock; // @[ClockGroup.scala:104:9] assign clockNode_auto_anon_out_reset = clockNode_anonOut_reset; // @[ClockGroup.scala:104:9] assign clockNode_anonOut_clock = clockNode_anonIn_clock; // @[MixedNode.scala:542:17, :551:17] assign clockNode_anonOut_reset = clockNode_anonIn_reset; // @[MixedNode.scala:542:17, :551:17] assign clockNode_auto_anon_in_clock = tapClockNodeOut_clock; // @[ClockGroup.scala:104:9] assign clockNode_auto_anon_in_reset = tapClockNodeOut_reset; // @[ClockGroup.scala:104:9] assign childClock = tapClockNodeIn_clock; // @[MixedNode.scala:551:17] assign tapClockNodeOut_clock = tapClockNodeIn_clock; // @[MixedNode.scala:542:17, :551:17] assign childReset = tapClockNodeIn_reset; // @[MixedNode.scala:551:17] assign tapClockNodeOut_reset = tapClockNodeIn_reset; // @[MixedNode.scala:542:17, :551:17] wire tlMasterClockXingIn_a_ready = tlMasterClockXingOut_a_ready; // @[MixedNode.scala:542:17, :551:17] wire tlMasterClockXingIn_a_valid; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_a_valid_0 = tlMasterClockXingOut_a_valid; // @[ClockDomain.scala:14:9] wire [2:0] tlMasterClockXingIn_a_bits_opcode; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_a_bits_opcode_0 = tlMasterClockXingOut_a_bits_opcode; // @[ClockDomain.scala:14:9] wire [2:0] tlMasterClockXingIn_a_bits_param; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_a_bits_param_0 = tlMasterClockXingOut_a_bits_param; // @[ClockDomain.scala:14:9] wire [3:0] tlMasterClockXingIn_a_bits_size; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_a_bits_size_0 = tlMasterClockXingOut_a_bits_size; // @[ClockDomain.scala:14:9] wire [1:0] tlMasterClockXingIn_a_bits_source; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_a_bits_source_0 = tlMasterClockXingOut_a_bits_source; // @[ClockDomain.scala:14:9] wire [31:0] tlMasterClockXingIn_a_bits_address; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_a_bits_address_0 = tlMasterClockXingOut_a_bits_address; // @[ClockDomain.scala:14:9] wire [15:0] tlMasterClockXingIn_a_bits_mask; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_a_bits_mask_0 = tlMasterClockXingOut_a_bits_mask; // @[ClockDomain.scala:14:9] wire [127:0] tlMasterClockXingIn_a_bits_data; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_a_bits_data_0 = tlMasterClockXingOut_a_bits_data; // @[ClockDomain.scala:14:9] wire tlMasterClockXingIn_a_bits_corrupt; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_a_bits_corrupt_0 = tlMasterClockXingOut_a_bits_corrupt; // @[ClockDomain.scala:14:9] wire tlMasterClockXingIn_b_ready; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_b_ready_0 = tlMasterClockXingOut_b_ready; // @[ClockDomain.scala:14:9] wire tlMasterClockXingIn_b_valid = tlMasterClockXingOut_b_valid; // @[MixedNode.scala:542:17, :551:17] wire [1:0] tlMasterClockXingIn_b_bits_param = tlMasterClockXingOut_b_bits_param; // @[MixedNode.scala:542:17, :551:17] wire [1:0] tlMasterClockXingIn_b_bits_source = tlMasterClockXingOut_b_bits_source; // @[MixedNode.scala:542:17, :551:17] wire [31:0] tlMasterClockXingIn_b_bits_address = tlMasterClockXingOut_b_bits_address; // @[MixedNode.scala:542:17, :551:17] wire tlMasterClockXingIn_c_ready = tlMasterClockXingOut_c_ready; // @[MixedNode.scala:542:17, :551:17] wire tlMasterClockXingIn_c_valid; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_c_valid_0 = tlMasterClockXingOut_c_valid; // @[ClockDomain.scala:14:9] wire [2:0] tlMasterClockXingIn_c_bits_opcode; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_c_bits_opcode_0 = tlMasterClockXingOut_c_bits_opcode; // @[ClockDomain.scala:14:9] wire [2:0] tlMasterClockXingIn_c_bits_param; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_c_bits_param_0 = tlMasterClockXingOut_c_bits_param; // @[ClockDomain.scala:14:9] wire [3:0] tlMasterClockXingIn_c_bits_size; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_c_bits_size_0 = tlMasterClockXingOut_c_bits_size; // @[ClockDomain.scala:14:9] wire [1:0] tlMasterClockXingIn_c_bits_source; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_c_bits_source_0 = tlMasterClockXingOut_c_bits_source; // @[ClockDomain.scala:14:9] wire [31:0] tlMasterClockXingIn_c_bits_address; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_c_bits_address_0 = tlMasterClockXingOut_c_bits_address; // @[ClockDomain.scala:14:9] wire [127:0] tlMasterClockXingIn_c_bits_data; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_c_bits_data_0 = tlMasterClockXingOut_c_bits_data; // @[ClockDomain.scala:14:9] wire tlMasterClockXingIn_c_bits_corrupt; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_c_bits_corrupt_0 = tlMasterClockXingOut_c_bits_corrupt; // @[ClockDomain.scala:14:9] wire tlMasterClockXingIn_d_ready; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_d_ready_0 = tlMasterClockXingOut_d_ready; // @[ClockDomain.scala:14:9] wire tlMasterClockXingIn_d_valid = tlMasterClockXingOut_d_valid; // @[MixedNode.scala:542:17, :551:17] wire [2:0] tlMasterClockXingIn_d_bits_opcode = tlMasterClockXingOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17] wire [1:0] tlMasterClockXingIn_d_bits_param = tlMasterClockXingOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17] wire [3:0] tlMasterClockXingIn_d_bits_size = tlMasterClockXingOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17] wire [1:0] tlMasterClockXingIn_d_bits_source = tlMasterClockXingOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17] wire [3:0] tlMasterClockXingIn_d_bits_sink = tlMasterClockXingOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17] wire tlMasterClockXingIn_d_bits_denied = tlMasterClockXingOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17] wire [127:0] tlMasterClockXingIn_d_bits_data = tlMasterClockXingOut_d_bits_data; // @[MixedNode.scala:542:17, :551:17] wire tlMasterClockXingIn_d_bits_corrupt = tlMasterClockXingOut_d_bits_corrupt; // @[MixedNode.scala:542:17, :551:17] wire tlMasterClockXingIn_e_ready = tlMasterClockXingOut_e_ready; // @[MixedNode.scala:542:17, :551:17] wire tlMasterClockXingIn_e_valid; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_e_valid_0 = tlMasterClockXingOut_e_valid; // @[ClockDomain.scala:14:9] wire [3:0] tlMasterClockXingIn_e_bits_sink; // @[MixedNode.scala:551:17] assign auto_tl_master_clock_xing_out_e_bits_sink_0 = tlMasterClockXingOut_e_bits_sink; // @[ClockDomain.scala:14:9] assign tlMasterClockXingOut_a_valid = tlMasterClockXingIn_a_valid; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_a_bits_opcode = tlMasterClockXingIn_a_bits_opcode; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_a_bits_param = tlMasterClockXingIn_a_bits_param; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_a_bits_size = tlMasterClockXingIn_a_bits_size; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_a_bits_source = tlMasterClockXingIn_a_bits_source; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_a_bits_address = tlMasterClockXingIn_a_bits_address; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_a_bits_mask = tlMasterClockXingIn_a_bits_mask; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_a_bits_data = tlMasterClockXingIn_a_bits_data; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_a_bits_corrupt = tlMasterClockXingIn_a_bits_corrupt; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_b_ready = tlMasterClockXingIn_b_ready; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_c_valid = tlMasterClockXingIn_c_valid; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_c_bits_opcode = tlMasterClockXingIn_c_bits_opcode; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_c_bits_param = tlMasterClockXingIn_c_bits_param; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_c_bits_size = tlMasterClockXingIn_c_bits_size; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_c_bits_source = tlMasterClockXingIn_c_bits_source; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_c_bits_address = tlMasterClockXingIn_c_bits_address; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_c_bits_data = tlMasterClockXingIn_c_bits_data; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_c_bits_corrupt = tlMasterClockXingIn_c_bits_corrupt; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_d_ready = tlMasterClockXingIn_d_ready; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_e_valid = tlMasterClockXingIn_e_valid; // @[MixedNode.scala:542:17, :551:17] assign tlMasterClockXingOut_e_bits_sink = tlMasterClockXingIn_e_bits_sink; // @[MixedNode.scala:542:17, :551:17] wire intInClockXingOut_sync_0; // @[MixedNode.scala:542:17] wire intInClockXingOut_sync_1; // @[MixedNode.scala:542:17] assign intInClockXingOut_sync_0 = intInClockXingIn_sync_0; // @[MixedNode.scala:542:17, :551:17] assign intInClockXingOut_sync_1 = intInClockXingIn_sync_1; // @[MixedNode.scala:542:17, :551:17] wire intInClockXingOut_1_sync_0; // @[MixedNode.scala:542:17] assign intInClockXingOut_1_sync_0 = intInClockXingIn_1_sync_0; // @[MixedNode.scala:542:17, :551:17] wire intInClockXingOut_2_sync_0; // @[MixedNode.scala:542:17] assign intInClockXingOut_2_sync_0 = intInClockXingIn_2_sync_0; // @[MixedNode.scala:542:17, :551:17] wire intOutClockXingIn_2_sync_0; // @[MixedNode.scala:551:17] wire intOutClockXingOut_2_sync_0; // @[MixedNode.scala:542:17] wire intOutClockXingOut_3_sync_0; // @[MixedNode.scala:542:17] assign intOutClockXingOut_2_sync_0 = intOutClockXingIn_2_sync_0; // @[MixedNode.scala:542:17, :551:17] wire intOutClockXingIn_3_sync_0; // @[MixedNode.scala:551:17] assign intOutClockXingIn_2_sync_0 = intOutClockXingOut_3_sync_0; // @[MixedNode.scala:542:17, :551:17] assign intOutClockXingOut_3_sync_0 = intOutClockXingIn_3_sync_0; // @[MixedNode.scala:542:17, :551:17] RocketTile element_reset_domain_rockettile ( // @[HasTiles.scala:164:59] .clock (element_reset_domain_childClock), // @[LazyModuleImp.scala:155:31] .reset (element_reset_domain_childReset), // @[LazyModuleImp.scala:158:31] .auto_buffer_out_a_ready (element_reset_domain_auto_rockettile_buffer_out_a_ready), // @[ClockDomain.scala:14:9] .auto_buffer_out_a_valid (element_reset_domain_auto_rockettile_buffer_out_a_valid), .auto_buffer_out_a_bits_opcode (element_reset_domain_auto_rockettile_buffer_out_a_bits_opcode), .auto_buffer_out_a_bits_param (element_reset_domain_auto_rockettile_buffer_out_a_bits_param), .auto_buffer_out_a_bits_size (element_reset_domain_auto_rockettile_buffer_out_a_bits_size), .auto_buffer_out_a_bits_source (element_reset_domain_auto_rockettile_buffer_out_a_bits_source), .auto_buffer_out_a_bits_address (element_reset_domain_auto_rockettile_buffer_out_a_bits_address), .auto_buffer_out_a_bits_mask (element_reset_domain_auto_rockettile_buffer_out_a_bits_mask), .auto_buffer_out_a_bits_data (element_reset_domain_auto_rockettile_buffer_out_a_bits_data), .auto_buffer_out_b_ready (element_reset_domain_auto_rockettile_buffer_out_b_ready), .auto_buffer_out_b_valid (element_reset_domain_auto_rockettile_buffer_out_b_valid), // @[ClockDomain.scala:14:9] .auto_buffer_out_b_bits_opcode (element_reset_domain_auto_rockettile_buffer_out_b_bits_opcode), // @[ClockDomain.scala:14:9] .auto_buffer_out_b_bits_param (element_reset_domain_auto_rockettile_buffer_out_b_bits_param), // @[ClockDomain.scala:14:9] .auto_buffer_out_b_bits_size (element_reset_domain_auto_rockettile_buffer_out_b_bits_size), // @[ClockDomain.scala:14:9] .auto_buffer_out_b_bits_source (element_reset_domain_auto_rockettile_buffer_out_b_bits_source), // @[ClockDomain.scala:14:9] .auto_buffer_out_b_bits_address (element_reset_domain_auto_rockettile_buffer_out_b_bits_address), // @[ClockDomain.scala:14:9] .auto_buffer_out_b_bits_mask (element_reset_domain_auto_rockettile_buffer_out_b_bits_mask), // @[ClockDomain.scala:14:9] .auto_buffer_out_b_bits_data (element_reset_domain_auto_rockettile_buffer_out_b_bits_data), // @[ClockDomain.scala:14:9] .auto_buffer_out_b_bits_corrupt (element_reset_domain_auto_rockettile_buffer_out_b_bits_corrupt), // @[ClockDomain.scala:14:9] .auto_buffer_out_c_ready (element_reset_domain_auto_rockettile_buffer_out_c_ready), // @[ClockDomain.scala:14:9] .auto_buffer_out_c_valid (element_reset_domain_auto_rockettile_buffer_out_c_valid), .auto_buffer_out_c_bits_opcode (element_reset_domain_auto_rockettile_buffer_out_c_bits_opcode), .auto_buffer_out_c_bits_param (element_reset_domain_auto_rockettile_buffer_out_c_bits_param), .auto_buffer_out_c_bits_size (element_reset_domain_auto_rockettile_buffer_out_c_bits_size), .auto_buffer_out_c_bits_source (element_reset_domain_auto_rockettile_buffer_out_c_bits_source), .auto_buffer_out_c_bits_address (element_reset_domain_auto_rockettile_buffer_out_c_bits_address), .auto_buffer_out_c_bits_data (element_reset_domain_auto_rockettile_buffer_out_c_bits_data), .auto_buffer_out_d_ready (element_reset_domain_auto_rockettile_buffer_out_d_ready), .auto_buffer_out_d_valid (element_reset_domain_auto_rockettile_buffer_out_d_valid), // @[ClockDomain.scala:14:9] .auto_buffer_out_d_bits_opcode (element_reset_domain_auto_rockettile_buffer_out_d_bits_opcode), // @[ClockDomain.scala:14:9] .auto_buffer_out_d_bits_param (element_reset_domain_auto_rockettile_buffer_out_d_bits_param), // @[ClockDomain.scala:14:9] .auto_buffer_out_d_bits_size (element_reset_domain_auto_rockettile_buffer_out_d_bits_size), // @[ClockDomain.scala:14:9] .auto_buffer_out_d_bits_source (element_reset_domain_auto_rockettile_buffer_out_d_bits_source), // @[ClockDomain.scala:14:9] .auto_buffer_out_d_bits_sink (element_reset_domain_auto_rockettile_buffer_out_d_bits_sink), // @[ClockDomain.scala:14:9] .auto_buffer_out_d_bits_denied (element_reset_domain_auto_rockettile_buffer_out_d_bits_denied), // @[ClockDomain.scala:14:9] .auto_buffer_out_d_bits_data (element_reset_domain_auto_rockettile_buffer_out_d_bits_data), // @[ClockDomain.scala:14:9] .auto_buffer_out_d_bits_corrupt (element_reset_domain_auto_rockettile_buffer_out_d_bits_corrupt), // @[ClockDomain.scala:14:9] .auto_buffer_out_e_ready (element_reset_domain_auto_rockettile_buffer_out_e_ready), // @[ClockDomain.scala:14:9] .auto_buffer_out_e_valid (element_reset_domain_auto_rockettile_buffer_out_e_valid), .auto_buffer_out_e_bits_sink (element_reset_domain_auto_rockettile_buffer_out_e_bits_sink), .auto_wfi_out_0 (element_reset_domain_auto_rockettile_wfi_out_0), .auto_int_local_in_3_0 (element_reset_domain_auto_rockettile_int_local_in_3_0), // @[ClockDomain.scala:14:9] .auto_int_local_in_2_0 (element_reset_domain_auto_rockettile_int_local_in_2_0), // @[ClockDomain.scala:14:9] .auto_int_local_in_1_0 (element_reset_domain_auto_rockettile_int_local_in_1_0), // @[ClockDomain.scala:14:9] .auto_int_local_in_1_1 (element_reset_domain_auto_rockettile_int_local_in_1_1), // @[ClockDomain.scala:14:9] .auto_int_local_in_0_0 (element_reset_domain_auto_rockettile_int_local_in_0_0), // @[ClockDomain.scala:14:9] .auto_trace_source_out_insns_0_valid (element_reset_domain_auto_rockettile_trace_source_out_insns_0_valid), .auto_trace_source_out_insns_0_iaddr (element_reset_domain_auto_rockettile_trace_source_out_insns_0_iaddr), .auto_trace_source_out_insns_0_insn (element_reset_domain_auto_rockettile_trace_source_out_insns_0_insn), .auto_trace_source_out_insns_0_priv (element_reset_domain_auto_rockettile_trace_source_out_insns_0_priv), .auto_trace_source_out_insns_0_exception (element_reset_domain_auto_rockettile_trace_source_out_insns_0_exception), .auto_trace_source_out_insns_0_interrupt (element_reset_domain_auto_rockettile_trace_source_out_insns_0_interrupt), .auto_trace_source_out_insns_0_cause (element_reset_domain_auto_rockettile_trace_source_out_insns_0_cause), .auto_trace_source_out_insns_0_tval (element_reset_domain_auto_rockettile_trace_source_out_insns_0_tval), .auto_trace_source_out_time (element_reset_domain_auto_rockettile_trace_source_out_time), .auto_hartid_in (element_reset_domain_auto_rockettile_hartid_in) // @[ClockDomain.scala:14:9] ); // @[HasTiles.scala:164:59] TLBuffer_a32d128s2k4z4c_1 buffer ( // @[Buffer.scala:75:28] .clock (childClock), // @[LazyModuleImp.scala:155:31] .reset (childReset), // @[LazyModuleImp.scala:158:31] .auto_in_a_ready (element_reset_domain_auto_rockettile_buffer_out_a_ready), .auto_in_a_valid (element_reset_domain_auto_rockettile_buffer_out_a_valid), // @[ClockDomain.scala:14:9] .auto_in_a_bits_opcode (element_reset_domain_auto_rockettile_buffer_out_a_bits_opcode), // @[ClockDomain.scala:14:9] .auto_in_a_bits_param (element_reset_domain_auto_rockettile_buffer_out_a_bits_param), // @[ClockDomain.scala:14:9] .auto_in_a_bits_size (element_reset_domain_auto_rockettile_buffer_out_a_bits_size), // @[ClockDomain.scala:14:9] .auto_in_a_bits_source (element_reset_domain_auto_rockettile_buffer_out_a_bits_source), // @[ClockDomain.scala:14:9] .auto_in_a_bits_address (element_reset_domain_auto_rockettile_buffer_out_a_bits_address), // @[ClockDomain.scala:14:9] .auto_in_a_bits_mask (element_reset_domain_auto_rockettile_buffer_out_a_bits_mask), // @[ClockDomain.scala:14:9] .auto_in_a_bits_data (element_reset_domain_auto_rockettile_buffer_out_a_bits_data), // @[ClockDomain.scala:14:9] .auto_in_b_ready (element_reset_domain_auto_rockettile_buffer_out_b_ready), // @[ClockDomain.scala:14:9] .auto_in_b_valid (element_reset_domain_auto_rockettile_buffer_out_b_valid), .auto_in_b_bits_opcode (element_reset_domain_auto_rockettile_buffer_out_b_bits_opcode), .auto_in_b_bits_param (element_reset_domain_auto_rockettile_buffer_out_b_bits_param), .auto_in_b_bits_size (element_reset_domain_auto_rockettile_buffer_out_b_bits_size), .auto_in_b_bits_source (element_reset_domain_auto_rockettile_buffer_out_b_bits_source), .auto_in_b_bits_address (element_reset_domain_auto_rockettile_buffer_out_b_bits_address), .auto_in_b_bits_mask (element_reset_domain_auto_rockettile_buffer_out_b_bits_mask), .auto_in_b_bits_data (element_reset_domain_auto_rockettile_buffer_out_b_bits_data), .auto_in_b_bits_corrupt (element_reset_domain_auto_rockettile_buffer_out_b_bits_corrupt), .auto_in_c_ready (element_reset_domain_auto_rockettile_buffer_out_c_ready), .auto_in_c_valid (element_reset_domain_auto_rockettile_buffer_out_c_valid), // @[ClockDomain.scala:14:9] .auto_in_c_bits_opcode (element_reset_domain_auto_rockettile_buffer_out_c_bits_opcode), // @[ClockDomain.scala:14:9] .auto_in_c_bits_param (element_reset_domain_auto_rockettile_buffer_out_c_bits_param), // @[ClockDomain.scala:14:9] .auto_in_c_bits_size (element_reset_domain_auto_rockettile_buffer_out_c_bits_size), // @[ClockDomain.scala:14:9] .auto_in_c_bits_source (element_reset_domain_auto_rockettile_buffer_out_c_bits_source), // @[ClockDomain.scala:14:9] .auto_in_c_bits_address (element_reset_domain_auto_rockettile_buffer_out_c_bits_address), // @[ClockDomain.scala:14:9] .auto_in_c_bits_data (element_reset_domain_auto_rockettile_buffer_out_c_bits_data), // @[ClockDomain.scala:14:9] .auto_in_d_ready (element_reset_domain_auto_rockettile_buffer_out_d_ready), // @[ClockDomain.scala:14:9] .auto_in_d_valid (element_reset_domain_auto_rockettile_buffer_out_d_valid), .auto_in_d_bits_opcode (element_reset_domain_auto_rockettile_buffer_out_d_bits_opcode), .auto_in_d_bits_param (element_reset_domain_auto_rockettile_buffer_out_d_bits_param), .auto_in_d_bits_size (element_reset_domain_auto_rockettile_buffer_out_d_bits_size), .auto_in_d_bits_source (element_reset_domain_auto_rockettile_buffer_out_d_bits_source), .auto_in_d_bits_sink (element_reset_domain_auto_rockettile_buffer_out_d_bits_sink), .auto_in_d_bits_denied (element_reset_domain_auto_rockettile_buffer_out_d_bits_denied), .auto_in_d_bits_data (element_reset_domain_auto_rockettile_buffer_out_d_bits_data), .auto_in_d_bits_corrupt (element_reset_domain_auto_rockettile_buffer_out_d_bits_corrupt), .auto_in_e_ready (element_reset_domain_auto_rockettile_buffer_out_e_ready), .auto_in_e_valid (element_reset_domain_auto_rockettile_buffer_out_e_valid), // @[ClockDomain.scala:14:9] .auto_in_e_bits_sink (element_reset_domain_auto_rockettile_buffer_out_e_bits_sink), // @[ClockDomain.scala:14:9] .auto_out_a_ready (tlMasterClockXingIn_a_ready), // @[MixedNode.scala:551:17] .auto_out_a_valid (tlMasterClockXingIn_a_valid), .auto_out_a_bits_opcode (tlMasterClockXingIn_a_bits_opcode), .auto_out_a_bits_param (tlMasterClockXingIn_a_bits_param), .auto_out_a_bits_size (tlMasterClockXingIn_a_bits_size), .auto_out_a_bits_source (tlMasterClockXingIn_a_bits_source), .auto_out_a_bits_address (tlMasterClockXingIn_a_bits_address), .auto_out_a_bits_mask (tlMasterClockXingIn_a_bits_mask), .auto_out_a_bits_data (tlMasterClockXingIn_a_bits_data), .auto_out_a_bits_corrupt (tlMasterClockXingIn_a_bits_corrupt), .auto_out_b_ready (tlMasterClockXingIn_b_ready), .auto_out_b_valid (tlMasterClockXingIn_b_valid), // @[MixedNode.scala:551:17] .auto_out_b_bits_param (tlMasterClockXingIn_b_bits_param), // @[MixedNode.scala:551:17] .auto_out_b_bits_source (tlMasterClockXingIn_b_bits_source), // @[MixedNode.scala:551:17] .auto_out_b_bits_address (tlMasterClockXingIn_b_bits_address), // @[MixedNode.scala:551:17] .auto_out_c_ready (tlMasterClockXingIn_c_ready), // @[MixedNode.scala:551:17] .auto_out_c_valid (tlMasterClockXingIn_c_valid), .auto_out_c_bits_opcode (tlMasterClockXingIn_c_bits_opcode), .auto_out_c_bits_param (tlMasterClockXingIn_c_bits_param), .auto_out_c_bits_size (tlMasterClockXingIn_c_bits_size), .auto_out_c_bits_source (tlMasterClockXingIn_c_bits_source), .auto_out_c_bits_address (tlMasterClockXingIn_c_bits_address), .auto_out_c_bits_data (tlMasterClockXingIn_c_bits_data), .auto_out_c_bits_corrupt (tlMasterClockXingIn_c_bits_corrupt), .auto_out_d_ready (tlMasterClockXingIn_d_ready), .auto_out_d_valid (tlMasterClockXingIn_d_valid), // @[MixedNode.scala:551:17] .auto_out_d_bits_opcode (tlMasterClockXingIn_d_bits_opcode), // @[MixedNode.scala:551:17] .auto_out_d_bits_param (tlMasterClockXingIn_d_bits_param), // @[MixedNode.scala:551:17] .auto_out_d_bits_size (tlMasterClockXingIn_d_bits_size), // @[MixedNode.scala:551:17] .auto_out_d_bits_source (tlMasterClockXingIn_d_bits_source), // @[MixedNode.scala:551:17] .auto_out_d_bits_sink (tlMasterClockXingIn_d_bits_sink), // @[MixedNode.scala:551:17] .auto_out_d_bits_denied (tlMasterClockXingIn_d_bits_denied), // @[MixedNode.scala:551:17] .auto_out_d_bits_data (tlMasterClockXingIn_d_bits_data), // @[MixedNode.scala:551:17] .auto_out_d_bits_corrupt (tlMasterClockXingIn_d_bits_corrupt), // @[MixedNode.scala:551:17] .auto_out_e_ready (tlMasterClockXingIn_e_ready), // @[MixedNode.scala:551:17] .auto_out_e_valid (tlMasterClockXingIn_e_valid), .auto_out_e_bits_sink (tlMasterClockXingIn_e_bits_sink) ); // @[Buffer.scala:75:28] TLBuffer_2 buffer_1 ( // @[Buffer.scala:75:28] .clock (childClock), // @[LazyModuleImp.scala:155:31] .reset (childReset) // @[LazyModuleImp.scala:158:31] ); // @[Buffer.scala:75:28] IntSyncAsyncCrossingSink_n1x1 intsink ( // @[Crossing.scala:86:29] .clock (childClock), // @[LazyModuleImp.scala:155:31] .reset (childReset), // @[LazyModuleImp.scala:158:31] .auto_in_sync_0 (auto_intsink_in_sync_0_0), // @[ClockDomain.scala:14:9] .auto_out_0 (element_reset_domain_auto_rockettile_int_local_in_0_0) ); // @[Crossing.scala:86:29] IntSyncSyncCrossingSink_n1x2 intsink_1 ( // @[Crossing.scala:109:29] .auto_in_sync_0 (intInClockXingOut_sync_0), // @[MixedNode.scala:542:17] .auto_in_sync_1 (intInClockXingOut_sync_1), // @[MixedNode.scala:542:17] .auto_out_0 (element_reset_domain_auto_rockettile_int_local_in_1_0), .auto_out_1 (element_reset_domain_auto_rockettile_int_local_in_1_1) ); // @[Crossing.scala:109:29] IntSyncSyncCrossingSink_n1x1 intsink_2 ( // @[Crossing.scala:109:29] .auto_in_sync_0 (intInClockXingOut_1_sync_0), // @[MixedNode.scala:542:17] .auto_out_0 (element_reset_domain_auto_rockettile_int_local_in_2_0) ); // @[Crossing.scala:109:29] IntSyncSyncCrossingSink_n1x1_1 intsink_3 ( // @[Crossing.scala:109:29] .auto_in_sync_0 (intInClockXingOut_2_sync_0), // @[MixedNode.scala:542:17] .auto_out_0 (element_reset_domain_auto_rockettile_int_local_in_3_0) ); // @[Crossing.scala:109:29] IntSyncSyncCrossingSink_n1x1_2 intsink_4 (); // @[Crossing.scala:109:29] IntSyncCrossingSource_n1x1 intsource ( // @[Crossing.scala:29:31] .clock (childClock), // @[LazyModuleImp.scala:155:31] .reset (childReset) // @[LazyModuleImp.scala:158:31] ); // @[Crossing.scala:29:31] IntSyncSyncCrossingSink_n1x1_3 intsink_5 ( // @[Crossing.scala:109:29] .auto_in_sync_0 (intOutClockXingOut_2_sync_0), // @[MixedNode.scala:542:17] .auto_out_0 (auto_intsink_out_1_0_0) ); // @[Crossing.scala:109:29] IntSyncCrossingSource_n1x1_1 intsource_1 ( // @[Crossing.scala:29:31] .clock (childClock), // @[LazyModuleImp.scala:155:31] .reset (childReset), // @[LazyModuleImp.scala:158:31] .auto_in_0 (element_reset_domain_auto_rockettile_wfi_out_0), // @[ClockDomain.scala:14:9] .auto_out_sync_0 (intOutClockXingIn_3_sync_0) ); // @[Crossing.scala:29:31] IntSyncSyncCrossingSink_n1x1_4 intsink_6 (); // @[Crossing.scala:109:29] IntSyncCrossingSource_n1x1_2 intsource_2 ( // @[Crossing.scala:29:31] .clock (childClock), // @[LazyModuleImp.scala:155:31] .reset (childReset) // @[LazyModuleImp.scala:158:31] ); // @[Crossing.scala:29:31] assign auto_intsink_out_1_0 = auto_intsink_out_1_0_0; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_valid = auto_element_reset_domain_rockettile_trace_source_out_insns_0_valid_0; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_iaddr = auto_element_reset_domain_rockettile_trace_source_out_insns_0_iaddr_0; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_insn = auto_element_reset_domain_rockettile_trace_source_out_insns_0_insn_0; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_priv = auto_element_reset_domain_rockettile_trace_source_out_insns_0_priv_0; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_exception = auto_element_reset_domain_rockettile_trace_source_out_insns_0_exception_0; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_interrupt = auto_element_reset_domain_rockettile_trace_source_out_insns_0_interrupt_0; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_cause = auto_element_reset_domain_rockettile_trace_source_out_insns_0_cause_0; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_insns_0_tval = auto_element_reset_domain_rockettile_trace_source_out_insns_0_tval_0; // @[ClockDomain.scala:14:9] assign auto_element_reset_domain_rockettile_trace_source_out_time = auto_element_reset_domain_rockettile_trace_source_out_time_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_a_valid = auto_tl_master_clock_xing_out_a_valid_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_a_bits_opcode = auto_tl_master_clock_xing_out_a_bits_opcode_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_a_bits_param = auto_tl_master_clock_xing_out_a_bits_param_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_a_bits_size = auto_tl_master_clock_xing_out_a_bits_size_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_a_bits_source = auto_tl_master_clock_xing_out_a_bits_source_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_a_bits_address = auto_tl_master_clock_xing_out_a_bits_address_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_a_bits_mask = auto_tl_master_clock_xing_out_a_bits_mask_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_a_bits_data = auto_tl_master_clock_xing_out_a_bits_data_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_a_bits_corrupt = auto_tl_master_clock_xing_out_a_bits_corrupt_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_b_ready = auto_tl_master_clock_xing_out_b_ready_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_c_valid = auto_tl_master_clock_xing_out_c_valid_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_c_bits_opcode = auto_tl_master_clock_xing_out_c_bits_opcode_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_c_bits_param = auto_tl_master_clock_xing_out_c_bits_param_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_c_bits_size = auto_tl_master_clock_xing_out_c_bits_size_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_c_bits_source = auto_tl_master_clock_xing_out_c_bits_source_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_c_bits_address = auto_tl_master_clock_xing_out_c_bits_address_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_c_bits_data = auto_tl_master_clock_xing_out_c_bits_data_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_c_bits_corrupt = auto_tl_master_clock_xing_out_c_bits_corrupt_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_d_ready = auto_tl_master_clock_xing_out_d_ready_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_e_valid = auto_tl_master_clock_xing_out_e_valid_0; // @[ClockDomain.scala:14:9] assign auto_tl_master_clock_xing_out_e_bits_sink = auto_tl_master_clock_xing_out_e_bits_sink_0; // @[ClockDomain.scala:14:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Crossing.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.interrupts import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.util.{SynchronizerShiftReg, AsyncResetReg} @deprecated("IntXing does not ensure interrupt source is glitch free. Use IntSyncSource and IntSyncSink", "rocket-chip 1.2") class IntXing(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val intnode = IntAdapterNode() lazy val module = new Impl class Impl extends LazyModuleImp(this) { (intnode.in zip intnode.out) foreach { case ((in, _), (out, _)) => out := SynchronizerShiftReg(in, sync) } } } object IntSyncCrossingSource { def apply(alreadyRegistered: Boolean = false)(implicit p: Parameters) = { val intsource = LazyModule(new IntSyncCrossingSource(alreadyRegistered)) intsource.node } } class IntSyncCrossingSource(alreadyRegistered: Boolean = false)(implicit p: Parameters) extends LazyModule { val node = IntSyncSourceNode(alreadyRegistered) lazy val module = if (alreadyRegistered) (new ImplRegistered) else (new Impl) class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := AsyncResetReg(Cat(in.reverse)).asBools } } class ImplRegistered extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.sync.size).getOrElse(0) override def desiredName = s"IntSyncCrossingSource_n${node.out.size}x${outSize}_Registered" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out.sync := in } } } object IntSyncCrossingSink { @deprecated("IntSyncCrossingSink which used the `sync` parameter to determine crossing type is deprecated. Use IntSyncAsyncCrossingSink, IntSyncRationalCrossingSink, or IntSyncSyncCrossingSink instead for > 1, 1, and 0 sync values respectively", "rocket-chip 1.2") def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncAsyncCrossingSink(sync: Int = 3)(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(sync) lazy val module = new Impl class Impl extends LazyModuleImp(this) { override def desiredName = s"IntSyncAsyncCrossingSink_n${node.out.size}x${node.out.head._1.size}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := SynchronizerShiftReg(in.sync, sync) } } } object IntSyncAsyncCrossingSink { def apply(sync: Int = 3)(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncAsyncCrossingSink(sync)) intsink.node } } class IntSyncSyncCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(0) lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncSyncCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := in.sync } } } object IntSyncSyncCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncSyncCrossingSink()) intsink.node } } class IntSyncRationalCrossingSink()(implicit p: Parameters) extends LazyModule { val node = IntSyncSinkNode(1) lazy val module = new Impl class Impl extends LazyModuleImp(this) { def outSize = node.out.headOption.map(_._1.size).getOrElse(0) override def desiredName = s"IntSyncRationalCrossingSink_n${node.out.size}x${outSize}" (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => out := RegNext(in.sync) } } } object IntSyncRationalCrossingSink { def apply()(implicit p: Parameters) = { val intsink = LazyModule(new IntSyncRationalCrossingSink()) intsink.node } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } }
module IntSyncSyncCrossingSink_n1x1_35(); // @[Crossing.scala:96:9] wire auto_in_sync_0 = 1'h0; // @[Crossing.scala:96:9] wire auto_out_0 = 1'h0; // @[Crossing.scala:96:9] wire childClock = 1'h0; // @[LazyModuleImp.scala:155:31] wire childReset = 1'h0; // @[LazyModuleImp.scala:158:31] wire _childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25] wire nodeIn_sync_0 = 1'h0; // @[MixedNode.scala:551:17] wire nodeOut_0 = 1'h0; // @[MixedNode.scala:542:17] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module PE_437( // @[PE.scala:31:7] input clock, // @[PE.scala:31:7] input reset, // @[PE.scala:31:7] input [7:0] io_in_a, // @[PE.scala:35:14] input [19:0] io_in_b, // @[PE.scala:35:14] input [19:0] io_in_d, // @[PE.scala:35:14] output [7:0] io_out_a, // @[PE.scala:35:14] output [19:0] io_out_b, // @[PE.scala:35:14] output [19:0] io_out_c, // @[PE.scala:35:14] input io_in_control_dataflow, // @[PE.scala:35:14] input io_in_control_propagate, // @[PE.scala:35:14] input [4:0] io_in_control_shift, // @[PE.scala:35:14] output io_out_control_dataflow, // @[PE.scala:35:14] output io_out_control_propagate, // @[PE.scala:35:14] output [4:0] io_out_control_shift, // @[PE.scala:35:14] input [2:0] io_in_id, // @[PE.scala:35:14] output [2:0] io_out_id, // @[PE.scala:35:14] input io_in_last, // @[PE.scala:35:14] output io_out_last, // @[PE.scala:35:14] input io_in_valid, // @[PE.scala:35:14] output io_out_valid // @[PE.scala:35:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7] wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7] wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7] wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7] wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7] wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7] wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7] wire io_in_last_0 = io_in_last; // @[PE.scala:31:7] wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7] wire io_bad_dataflow = 1'h0; // @[PE.scala:31:7] wire _io_out_c_T_5 = 1'h0; // @[Arithmetic.scala:125:33] wire _io_out_c_T_6 = 1'h0; // @[Arithmetic.scala:125:60] wire _io_out_c_T_16 = 1'h0; // @[Arithmetic.scala:125:33] wire _io_out_c_T_17 = 1'h0; // @[Arithmetic.scala:125:60] wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7] wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37] wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37] wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35] wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7] wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7] wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7] wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7] wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7] wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7] wire [19:0] io_out_b_0; // @[PE.scala:31:7] wire [19:0] io_out_c_0; // @[PE.scala:31:7] reg [7:0] c1; // @[PE.scala:70:15] wire [7:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15] wire [7:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38] reg [7:0] c2; // @[PE.scala:71:15] wire [7:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15] wire [7:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38] reg last_s; // @[PE.scala:89:25] wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21] wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25] wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25] wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32] wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32] wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25] wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53] wire [7:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15] wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}] wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25] wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27] wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27] wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_7 = {24'h0, _io_out_c_zeros_T_6[7:0] & _io_out_c_zeros_T_1}; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}] wire [7:0] _GEN_2 = {3'h0, shift_offset}; // @[PE.scala:91:25] wire [7:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15] wire [7:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30] wire [7:0] _io_out_c_T; // @[Arithmetic.scala:107:15] assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33] wire [8:0] _io_out_c_T_2 = {_io_out_c_T[7], _io_out_c_T} + {{7{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}] wire [7:0] _io_out_c_T_3 = _io_out_c_T_2[7:0]; // @[Arithmetic.scala:107:28] wire [7:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28] wire [19:0] _io_out_c_T_7 = {{12{_io_out_c_T_4[7]}}, _io_out_c_T_4}; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_8 = _io_out_c_T_7; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_9 = _io_out_c_T_8; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37] wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37] wire [7:0] _c1_T = io_in_d_0[7:0]; // @[PE.scala:31:7] wire [7:0] _c2_T = io_in_d_0[7:0]; // @[PE.scala:31:7] wire [7:0] _c1_T_1 = _c1_T; // @[Arithmetic.scala:114:{15,33}] wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53] wire [7:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15] wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}] wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_16 = {24'h0, _io_out_c_zeros_T_15[7:0] & _io_out_c_zeros_T_10}; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}] wire [7:0] _GEN_4 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15] wire [7:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T_1 = _GEN_4; // @[Arithmetic.scala:103:30] wire [7:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15] assign _io_out_c_T_11 = _GEN_4; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33] wire [8:0] _io_out_c_T_13 = {_io_out_c_T_11[7], _io_out_c_T_11} + {{7{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}] wire [7:0] _io_out_c_T_14 = _io_out_c_T_13[7:0]; // @[Arithmetic.scala:107:28] wire [7:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28] wire [19:0] _io_out_c_T_18 = {{12{_io_out_c_T_15[7]}}, _io_out_c_T_15}; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_19 = _io_out_c_T_18; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_20 = _io_out_c_T_19; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37] wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37] wire [7:0] _c2_T_1 = _c2_T; // @[Arithmetic.scala:114:{15,33}] wire [7:0] _mac_unit_io_in_b_T_5; // @[PE.scala:121:38] assign _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38] wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5; // @[PE.scala:121:38] assign io_out_c_0 = io_in_control_propagate_0 ? {{12{c1[7]}}, c1} : {{12{c2[7]}}, c2}; // @[PE.scala:31:7, :70:15, :71:15, :119:30, :120:16, :126:16] wire [7:0] _mac_unit_io_in_b_T_7; // @[PE.scala:127:38] assign _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38] wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7; // @[PE.scala:127:38] wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35] wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35] always @(posedge clock) begin // @[PE.scala:31:7] if (io_in_valid_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :102:95, :141:17, :142:8] c1 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :70:15] if (~(~io_in_valid_0 | io_in_control_propagate_0)) // @[PE.scala:31:7, :71:15, :102:95, :119:30, :130:10, :141:{9,17}, :143:8] c2 <= io_in_d_0[7:0]; // @[PE.scala:31:7, :71:15] if (io_in_valid_0) // @[PE.scala:31:7] last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25] always @(posedge) MacUnit_181 mac_unit ( // @[PE.scala:64:24] .clock (clock), .reset (reset), .io_in_a (io_in_a_0), // @[PE.scala:31:7] .io_in_b (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3), // @[PE.scala:31:7, :119:30, :121:{24,38}, :127:{24,38}] .io_in_c (io_in_b_0), // @[PE.scala:31:7] .io_out_d (io_out_b_0) ); // @[PE.scala:64:24] assign io_out_a = io_out_a_0; // @[PE.scala:31:7] assign io_out_b = io_out_b_0; // @[PE.scala:31:7] assign io_out_c = io_out_c_0; // @[PE.scala:31:7] assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7] assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7] assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7] assign io_out_id = io_out_id_0; // @[PE.scala:31:7] assign io_out_last = io_out_last_0; // @[PE.scala:31:7] assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File IngressUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import constellation.channel._ class IngressUnit( ingressNodeId: Int, cParam: IngressChannelParams, outParams: Seq[ChannelParams], egressParams: Seq[EgressChannelParams], combineRCVA: Boolean, combineSAST: Boolean, ) (implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) { class IngressUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) { val in = Flipped(Decoupled(new IngressFlit(cParam.payloadBits))) } val io = IO(new IngressUnitIO) val route_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val route_q = Module(new Queue(new RouteComputerResp(outParams, egressParams), 2, flow=combineRCVA)) assert(!(io.in.valid && !cParam.possibleFlows.toSeq.map(_.egressId.U === io.in.bits.egress_id).orR)) route_buffer.io.enq.bits.head := io.in.bits.head route_buffer.io.enq.bits.tail := io.in.bits.tail val flows = cParam.possibleFlows.toSeq if (flows.size == 0) { route_buffer.io.enq.bits.flow := DontCare } else { route_buffer.io.enq.bits.flow.ingress_node := cParam.destId.U route_buffer.io.enq.bits.flow.ingress_node_id := ingressNodeId.U route_buffer.io.enq.bits.flow.vnet_id := cParam.vNetId.U route_buffer.io.enq.bits.flow.egress_node := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNode.U) ) route_buffer.io.enq.bits.flow.egress_node_id := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNodeId.U) ) } route_buffer.io.enq.bits.payload := io.in.bits.payload route_buffer.io.enq.bits.virt_channel_id := DontCare io.router_req.bits.src_virt_id := 0.U io.router_req.bits.flow := route_buffer.io.enq.bits.flow val at_dest = route_buffer.io.enq.bits.flow.egress_node === nodeId.U route_buffer.io.enq.valid := io.in.valid && ( io.router_req.ready || !io.in.bits.head || at_dest) io.router_req.valid := io.in.valid && route_buffer.io.enq.ready && io.in.bits.head && !at_dest io.in.ready := route_buffer.io.enq.ready && ( io.router_req.ready || !io.in.bits.head || at_dest) route_q.io.enq.valid := io.router_req.fire route_q.io.enq.bits := io.router_resp when (io.in.fire && io.in.bits.head && at_dest) { route_q.io.enq.valid := true.B route_q.io.enq.bits.vc_sel.foreach(_.foreach(_ := false.B)) for (o <- 0 until nEgress) { when (egressParams(o).egressId.U === io.in.bits.egress_id) { route_q.io.enq.bits.vc_sel(o+nOutputs)(0) := true.B } } } assert(!(route_q.io.enq.valid && !route_q.io.enq.ready)) val vcalloc_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val vcalloc_q = Module(new Queue(new VCAllocResp(outParams, egressParams), 1, pipe=true)) vcalloc_buffer.io.enq.bits := route_buffer.io.deq.bits io.vcalloc_req.bits.vc_sel := route_q.io.deq.bits.vc_sel io.vcalloc_req.bits.flow := route_buffer.io.deq.bits.flow io.vcalloc_req.bits.in_vc := 0.U val head = route_buffer.io.deq.bits.head val tail = route_buffer.io.deq.bits.tail vcalloc_buffer.io.enq.valid := (route_buffer.io.deq.valid && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) ) io.vcalloc_req.valid := (route_buffer.io.deq.valid && route_q.io.deq.valid && head && vcalloc_buffer.io.enq.ready && vcalloc_q.io.enq.ready) route_buffer.io.deq.ready := (vcalloc_buffer.io.enq.ready && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) && (vcalloc_q.io.enq.ready || !head)) route_q.io.deq.ready := (route_buffer.io.deq.fire && tail) vcalloc_q.io.enq.valid := io.vcalloc_req.fire vcalloc_q.io.enq.bits := io.vcalloc_resp assert(!(vcalloc_q.io.enq.valid && !vcalloc_q.io.enq.ready)) io.salloc_req(0).bits.vc_sel := vcalloc_q.io.deq.bits.vc_sel io.salloc_req(0).bits.tail := vcalloc_buffer.io.deq.bits.tail val c = (vcalloc_q.io.deq.bits.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U val vcalloc_tail = vcalloc_buffer.io.deq.bits.tail io.salloc_req(0).valid := vcalloc_buffer.io.deq.valid && vcalloc_q.io.deq.valid && c && !io.block vcalloc_buffer.io.deq.ready := io.salloc_req(0).ready && vcalloc_q.io.deq.valid && c && !io.block vcalloc_q.io.deq.ready := vcalloc_tail && vcalloc_buffer.io.deq.fire val out_bundle = if (combineSAST) { Wire(Valid(new SwitchBundle(outParams, egressParams))) } else { Reg(Valid(new SwitchBundle(outParams, egressParams))) } io.out(0) := out_bundle out_bundle.valid := vcalloc_buffer.io.deq.fire out_bundle.bits.flit := vcalloc_buffer.io.deq.bits out_bundle.bits.flit.virt_channel_id := 0.U val out_channel_oh = vcalloc_q.io.deq.bits.vc_sel.map(_.reduce(_||_)).toSeq out_bundle.bits.out_virt_channel := Mux1H(out_channel_oh, vcalloc_q.io.deq.bits.vc_sel.map(v => OHToUInt(v)).toSeq) io.debug.va_stall := io.vcalloc_req.valid && !io.vcalloc_req.ready io.debug.sa_stall := io.salloc_req(0).valid && !io.salloc_req(0).ready // TODO: We should not generate input/ingress/output/egress units for untraversable channels if (!cParam.traversable) { io.in.ready := false.B io.router_req.valid := false.B io.router_req.bits := DontCare io.vcalloc_req.valid := false.B io.vcalloc_req.bits := DontCare io.salloc_req.foreach(_.valid := false.B) io.salloc_req.foreach(_.bits := DontCare) io.out.foreach(_.valid := false.B) io.out.foreach(_.bits := DontCare) } }
module IngressUnit_19( // @[IngressUnit.scala:11:7] input clock, // @[IngressUnit.scala:11:7] input reset, // @[IngressUnit.scala:11:7] output [3:0] io_router_req_bits_flow_egress_node, // @[IngressUnit.scala:24:14] output [1:0] io_router_req_bits_flow_egress_node_id, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_3_0, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_3_1, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_3_2, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_2_0, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_2_1, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_2_2, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_1_0, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_1_1, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_1_2, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_0_0, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_0_1, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_0_2, // @[IngressUnit.scala:24:14] input io_vcalloc_req_ready, // @[IngressUnit.scala:24:14] output io_vcalloc_req_valid, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_5_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_4_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_3_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_3_1, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_3_2, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_2_1, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_2_2, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_1_1, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_1_2, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_2, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_5_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_4_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_3_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_3_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_3_2, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_2_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_2_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_2_2, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_1_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_1_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_1_2, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_2, // @[IngressUnit.scala:24:14] input io_out_credit_available_5_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_4_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_3_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_2_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_2_1, // @[IngressUnit.scala:24:14] input io_out_credit_available_2_2, // @[IngressUnit.scala:24:14] input io_out_credit_available_1_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_1_2, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_1, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_2, // @[IngressUnit.scala:24:14] input io_salloc_req_0_ready, // @[IngressUnit.scala:24:14] output io_salloc_req_0_valid, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_5_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_4_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_3_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_3_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_3_2, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_2_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_2_2, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_1_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_1_2, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_2, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_tail, // @[IngressUnit.scala:24:14] output io_out_0_valid, // @[IngressUnit.scala:24:14] output io_out_0_bits_flit_head, // @[IngressUnit.scala:24:14] output io_out_0_bits_flit_tail, // @[IngressUnit.scala:24:14] output [144:0] io_out_0_bits_flit_payload, // @[IngressUnit.scala:24:14] output [1:0] io_out_0_bits_flit_flow_vnet_id, // @[IngressUnit.scala:24:14] output [3:0] io_out_0_bits_flit_flow_ingress_node, // @[IngressUnit.scala:24:14] output [2:0] io_out_0_bits_flit_flow_ingress_node_id, // @[IngressUnit.scala:24:14] output [3:0] io_out_0_bits_flit_flow_egress_node, // @[IngressUnit.scala:24:14] output [1:0] io_out_0_bits_flit_flow_egress_node_id, // @[IngressUnit.scala:24:14] output [1:0] io_out_0_bits_out_virt_channel, // @[IngressUnit.scala:24:14] output io_in_ready, // @[IngressUnit.scala:24:14] input io_in_valid, // @[IngressUnit.scala:24:14] input io_in_bits_head, // @[IngressUnit.scala:24:14] input io_in_bits_tail, // @[IngressUnit.scala:24:14] input [144:0] io_in_bits_payload, // @[IngressUnit.scala:24:14] input [3:0] io_in_bits_egress_id // @[IngressUnit.scala:24:14] ); wire _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_valid; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_5_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_4_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_3_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_3_1; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_3_2; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_2_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_2_1; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_2_2; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_1_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_1_1; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_1_2; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_1; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_2; // @[IngressUnit.scala:76:25] wire _vcalloc_buffer_io_enq_ready; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_valid; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_bits_tail; // @[IngressUnit.scala:75:30] wire _route_q_io_enq_ready; // @[IngressUnit.scala:27:23] wire _route_q_io_deq_valid; // @[IngressUnit.scala:27:23] wire _route_buffer_io_enq_ready; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_valid; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_head; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_tail; // @[IngressUnit.scala:26:28] wire [144:0] _route_buffer_io_deq_bits_payload; // @[IngressUnit.scala:26:28] wire [1:0] _route_buffer_io_deq_bits_flow_vnet_id; // @[IngressUnit.scala:26:28] wire [3:0] _route_buffer_io_deq_bits_flow_ingress_node; // @[IngressUnit.scala:26:28] wire [2:0] _route_buffer_io_deq_bits_flow_ingress_node_id; // @[IngressUnit.scala:26:28] wire [3:0] _route_buffer_io_deq_bits_flow_egress_node; // @[IngressUnit.scala:26:28] wire [1:0] _route_buffer_io_deq_bits_flow_egress_node_id; // @[IngressUnit.scala:26:28] wire [1:0] _route_buffer_io_deq_bits_virt_channel_id; // @[IngressUnit.scala:26:28] wire _route_buffer_io_enq_bits_flow_egress_node_id_T = io_in_bits_egress_id == 4'h6; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_1 = io_in_bits_egress_id == 4'h3; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_2 = io_in_bits_egress_id == 4'h2; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_3 = io_in_bits_egress_id == 4'hB; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_4 = io_in_bits_egress_id == 4'h4; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_5 = io_in_bits_egress_id == 4'h9; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_37 = io_in_bits_egress_id == 4'h1; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_7 = io_in_bits_egress_id == 4'h7; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_8 = io_in_bits_egress_id == 4'hA; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_9 = io_in_bits_egress_id == 4'h5; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_10 = io_in_bits_egress_id == 4'h8; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_12 = io_in_bits_egress_id == 4'hC; // @[IngressUnit.scala:30:72] wire [1:0] _GEN = {2{_route_buffer_io_enq_bits_flow_egress_node_id_T}} | {_route_buffer_io_enq_bits_flow_egress_node_id_T_1, 1'h0}; // @[Mux.scala:30:73] wire [3:0] _route_buffer_io_enq_bits_flow_egress_node_T_28 = {1'h0, _route_buffer_io_enq_bits_flow_egress_node_id_T, _GEN[1], _GEN[0] | _route_buffer_io_enq_bits_flow_egress_node_id_T_2} | (_route_buffer_io_enq_bits_flow_egress_node_id_T_3 ? 4'hE : 4'h0); // @[Mux.scala:30:73] wire [3:0] _route_buffer_io_enq_bits_flow_egress_node_T_33 = (_route_buffer_io_enq_bits_flow_egress_node_id_T_5 ? 4'hC : 4'h0) | (_route_buffer_io_enq_bits_flow_egress_node_id_T_8 ? 4'hD : 4'h0) | {_route_buffer_io_enq_bits_flow_egress_node_T_28[3] | _route_buffer_io_enq_bits_flow_egress_node_id_T_7, _route_buffer_io_enq_bits_flow_egress_node_T_28[2], _route_buffer_io_enq_bits_flow_egress_node_T_28[1:0] | {2{_route_buffer_io_enq_bits_flow_egress_node_id_T_4}}}; // @[Mux.scala:30:73] wire [3:0] _route_buffer_io_enq_bits_flow_egress_node_T_37 = {_route_buffer_io_enq_bits_flow_egress_node_T_33[3], _route_buffer_io_enq_bits_flow_egress_node_T_33[2:0] | {_route_buffer_io_enq_bits_flow_egress_node_id_T_9, 2'h0}} | (_route_buffer_io_enq_bits_flow_egress_node_id_T_10 ? 4'hB : 4'h0) | {4{_route_buffer_io_enq_bits_flow_egress_node_id_T_12}}; // @[Mux.scala:30:73] wire [1:0] route_buffer_io_enq_bits_flow_egress_node_id = {1'h0, _route_buffer_io_enq_bits_flow_egress_node_id_T_37}; // @[IngressUnit.scala:30:72, :45:50] wire _GEN_0 = _route_buffer_io_enq_ready & io_in_valid & io_in_bits_head & _route_buffer_io_enq_bits_flow_egress_node_T_37 == 4'h9; // @[Mux.scala:30:73] wire route_q_io_enq_valid = _GEN_0 | io_in_valid & _route_buffer_io_enq_ready & io_in_bits_head & _route_buffer_io_enq_bits_flow_egress_node_T_37 != 4'h9; // @[Mux.scala:30:73] wire io_vcalloc_req_valid_0 = _route_buffer_io_deq_valid & _route_q_io_deq_valid & _route_buffer_io_deq_bits_head & _vcalloc_buffer_io_enq_ready & _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :91:{54,78}, :92:{10,41}] wire route_buffer_io_deq_ready = _vcalloc_buffer_io_enq_ready & (_route_q_io_deq_valid | ~_route_buffer_io_deq_bits_head) & (io_vcalloc_req_ready | ~_route_buffer_io_deq_bits_head) & (_vcalloc_q_io_enq_ready | ~_route_buffer_io_deq_bits_head); // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :88:30, :93:61, :94:{27,37}, :95:{27,37}, :96:29] wire vcalloc_q_io_enq_valid = io_vcalloc_req_ready & io_vcalloc_req_valid_0; // @[Decoupled.scala:51:35]
Generate the Verilog code corresponding to the following Chisel files. File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File SBA.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.devices.debug.systembusaccess import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.amba.{AMBAProt, AMBAProtField} import freechips.rocketchip.devices.debug.{DebugModuleKey, RWNotify, SBCSFields, WNotifyVal} import freechips.rocketchip.diplomacy.TransferSizes import freechips.rocketchip.regmapper.{RegField, RegFieldDesc, RegFieldGroup, RegFieldWrType} import freechips.rocketchip.tilelink.{TLClientNode, TLMasterParameters, TLMasterPortParameters} import freechips.rocketchip.util.property object SystemBusAccessState extends scala.Enumeration { type SystemBusAccessState = Value val Idle, SBReadRequest, SBWriteRequest, SBReadResponse, SBWriteResponse = Value } object SBErrorCode extends scala.Enumeration { type SBErrorCode = Value val NoError = Value(0) val Timeout = Value(1) val BadAddr = Value(2) val AlgnError = Value(3) val BadAccess = Value(4) val OtherError = Value(7) } object SystemBusAccessModule { def apply(sb2tl: SBToTL, dmactive: Bool, dmAuthenticated: Bool)(implicit p: Parameters): (Seq[RegField], Seq[Seq[RegField]], Seq[Seq[RegField]]) = { import SBErrorCode._ val cfg = p(DebugModuleKey).get val anyAddressWrEn = WireInit(false.B).suggestName("anyAddressWrEn") val anyDataRdEn = WireInit(false.B).suggestName("anyDataRdEn") val anyDataWrEn = WireInit(false.B).suggestName("anyDataWrEn") // --- SBCS Status Register --- val SBCSFieldsReg = Reg(new SBCSFields()).suggestName("SBCSFieldsReg") val SBCSFieldsRegReset = WireInit(0.U.asTypeOf(new SBCSFields())) SBCSFieldsRegReset.sbversion := 1.U(1.W) // This code implements a version of the spec after January 1, 2018 SBCSFieldsRegReset.sbbusy := (sb2tl.module.io.sbStateOut =/= SystemBusAccessState.Idle.id.U) SBCSFieldsRegReset.sbaccess := 2.U SBCSFieldsRegReset.sbasize := sb2tl.module.edge.bundle.addressBits.U SBCSFieldsRegReset.sbaccess128 := (cfg.maxSupportedSBAccess == 128).B SBCSFieldsRegReset.sbaccess64 := (cfg.maxSupportedSBAccess >= 64).B SBCSFieldsRegReset.sbaccess32 := (cfg.maxSupportedSBAccess >= 32).B SBCSFieldsRegReset.sbaccess16 := (cfg.maxSupportedSBAccess >= 16).B SBCSFieldsRegReset.sbaccess8 := (cfg.maxSupportedSBAccess >= 8).B val SBCSRdData = WireInit(0.U.asTypeOf(new SBCSFields())).suggestName("SBCSRdData") val SBCSWrDataVal = WireInit(0.U(32.W)) val SBCSWrData = WireInit(SBCSWrDataVal.asTypeOf(new SBCSFields())) val sberrorWrEn = WireInit(false.B) val sbreadondataWrEn = WireInit(false.B) val sbautoincrementWrEn= WireInit(false.B) val sbaccessWrEn = WireInit(false.B) val sbreadonaddrWrEn = WireInit(false.B) val sbbusyerrorWrEn = WireInit(false.B) val sbcsfields = RegFieldGroup("sbcs", Some("system bus access control and status"), Seq( RegField.r(1, SBCSRdData.sbaccess8, RegFieldDesc("sbaccess8", "8-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 8) 1 else 0))), RegField.r(1, SBCSRdData.sbaccess16, RegFieldDesc("sbaccess16", "16-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 16) 1 else 0))), RegField.r(1, SBCSRdData.sbaccess32, RegFieldDesc("sbaccess32", "32-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 32) 1 else 0))), RegField.r(1, SBCSRdData.sbaccess64, RegFieldDesc("sbaccess64", "64-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 64) 1 else 0))), RegField.r(1, SBCSRdData.sbaccess128, RegFieldDesc("sbaccess128", "128-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess == 128) 1 else 0))), RegField.r(7, SBCSRdData.sbasize, RegFieldDesc("sbasize", "bits in address", reset=Some(sb2tl.module.edge.bundle.addressBits))), WNotifyVal(3, SBCSRdData.sberror, SBCSWrData.sberror, sberrorWrEn, RegFieldDesc("sberror", "system bus error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))), WNotifyVal(1, SBCSRdData.sbreadondata, SBCSWrData.sbreadondata, sbreadondataWrEn, RegFieldDesc("sbreadondata", "system bus read on data", reset=Some(0))), WNotifyVal(1, SBCSRdData.sbautoincrement, SBCSWrData.sbautoincrement, sbautoincrementWrEn, RegFieldDesc("sbautoincrement", "system bus auto-increment address", reset=Some(0))), WNotifyVal(3, SBCSRdData.sbaccess, SBCSWrData.sbaccess, sbaccessWrEn, RegFieldDesc("sbaccess", "system bus access size", reset=Some(2))), WNotifyVal(1, SBCSRdData.sbreadonaddr, SBCSWrData.sbreadonaddr, sbreadonaddrWrEn, RegFieldDesc("sbreadonaddr", "system bus read on data", reset=Some(0))), RegField.r(1, SBCSRdData.sbbusy, RegFieldDesc("sbbusy", "system bus access is busy", reset=Some(0))), WNotifyVal(1, SBCSRdData.sbbusyerror, SBCSWrData.sbbusyerror, sbbusyerrorWrEn, RegFieldDesc("sbbusyerror", "system bus busy error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))), RegField(6), RegField.r(3, SBCSRdData.sbversion, RegFieldDesc("sbversion", "system bus access version", reset=Some(1))), )) // --- System Bus Address Registers --- // ADDR0 Register is required // Instantiate ADDR1-3 registers as needed depending on system bus address width val hasSBAddr1 = (sb2tl.module.edge.bundle.addressBits >= 33) val hasSBAddr2 = (sb2tl.module.edge.bundle.addressBits >= 65) val hasSBAddr3 = (sb2tl.module.edge.bundle.addressBits >= 97) val hasAddr = Seq(true, hasSBAddr1, hasSBAddr2, hasSBAddr3) val SBADDRESSFieldsReg = Reg(Vec(4, UInt(32.W))) SBADDRESSFieldsReg.zipWithIndex.foreach { case(a,i) => a.suggestName("SBADDRESS"+i+"FieldsReg")} val SBADDRESSWrData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} )) val SBADDRESSRdEn = WireInit(VecInit(Seq.fill(4) {false.B} )) val SBADDRESSWrEn = WireInit(VecInit(Seq.fill(4) {false.B} )) val autoIncrementedAddr = WireInit(0.U(128.W)) autoIncrementedAddr := Cat(SBADDRESSFieldsReg.reverse) + (1.U << SBCSFieldsReg.sbaccess) autoIncrementedAddr.suggestName("autoIncrementedAddr") val sbaddrfields: Seq[Seq[RegField]] = SBADDRESSFieldsReg.zipWithIndex.map { case(a,i) => if(hasAddr(i)) { when (~dmactive || ~dmAuthenticated) { a := 0.U(32.W) }.otherwise { a := Mux(SBADDRESSWrEn(i) && !SBCSRdData.sberror && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror, SBADDRESSWrData(i), Mux((sb2tl.module.io.rdDone || sb2tl.module.io.wrDone) && SBCSFieldsReg.sbautoincrement, autoIncrementedAddr(32*i+31,32*i), a)) } RegFieldGroup("dmi_sbaddr"+i, Some("SBA Address Register"), Seq(RWNotify(32, a, SBADDRESSWrData(i), SBADDRESSRdEn(i), SBADDRESSWrEn(i), Some(RegFieldDesc("dmi_sbaddr"+i, "SBA address register", reset=Some(0), volatile=true))))) } else { a := DontCare Seq.empty[RegField] } } sb2tl.module.io.addrIn := Mux(SBADDRESSWrEn(0), Cat(Cat(SBADDRESSFieldsReg.drop(1).reverse), SBADDRESSWrData(0)), Cat(SBADDRESSFieldsReg.reverse)) anyAddressWrEn := SBADDRESSWrEn.reduce(_ || _) // --- System Bus Data Registers --- // DATA0 Register is required // DATA1-3 Registers may not be needed depending on implementation val hasSBData1 = (cfg.maxSupportedSBAccess > 32) val hasSBData2And3 = (cfg.maxSupportedSBAccess == 128) val hasData = Seq(true, hasSBData1, hasSBData2And3, hasSBData2And3) val SBDATAFieldsReg = Reg(Vec(4, Vec(4, UInt(8.W)))) SBDATAFieldsReg.zipWithIndex.foreach { case(d,i) => d.zipWithIndex.foreach { case(d,j) => d.suggestName("SBDATA"+i+"BYTE"+j) }} val SBDATARdData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} )) SBDATARdData.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATARdData"+i) } val SBDATAWrData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} )) SBDATAWrData.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATAWrData"+i) } val SBDATARdEn = WireInit(VecInit(Seq.fill(4) {false.B} )) val SBDATAWrEn = WireInit(VecInit(Seq.fill(4) {false.B} )) SBDATAWrEn.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATAWrEn"+i) } val sbdatafields: Seq[Seq[RegField]] = SBDATAFieldsReg.zipWithIndex.map { case(d,i) => if(hasData(i)) { // For data registers, load enable per-byte for (j <- 0 to 3) { when (~dmactive || ~dmAuthenticated) { d(j) := 0.U(8.W) }.otherwise { d(j) := Mux(SBDATAWrEn(i) && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror, SBDATAWrData(i)(8*j+7,8*j), Mux(sb2tl.module.io.rdLoad(4*i+j), sb2tl.module.io.dataOut, d(j))) } } SBDATARdData(i) := Cat(d.reverse) RegFieldGroup("dmi_sbdata"+i, Some("SBA Data Register"), Seq(RWNotify(32, SBDATARdData(i), SBDATAWrData(i), SBDATARdEn(i), SBDATAWrEn(i), Some(RegFieldDesc("dmi_sbdata"+i, "SBA data register", reset=Some(0), volatile=true))))) } else { for (j <- 0 to 3) { d(j) := DontCare } Seq.empty[RegField] } } sb2tl.module.io.dataIn := Mux(sb2tl.module.io.wrEn,Cat(SBDATAWrData.reverse),Cat(SBDATAFieldsReg.flatten.reverse)) anyDataRdEn := SBDATARdEn.reduce(_ || _) anyDataWrEn := SBDATAWrEn.reduce(_ || _) val tryWrEn = SBDATAWrEn(0) val tryRdEn = (SBADDRESSWrEn(0) && SBCSFieldsReg.sbreadonaddr) || (SBDATARdEn(0) && SBCSFieldsReg.sbreadondata) val sbAccessError = (SBCSFieldsReg.sbaccess === 0.U) && (SBCSFieldsReg.sbaccess8 =/= 1.U) || (SBCSFieldsReg.sbaccess === 1.U) && (SBCSFieldsReg.sbaccess16 =/= 1.U) || (SBCSFieldsReg.sbaccess === 2.U) && (SBCSFieldsReg.sbaccess32 =/= 1.U) || (SBCSFieldsReg.sbaccess === 3.U) && (SBCSFieldsReg.sbaccess64 =/= 1.U) || (SBCSFieldsReg.sbaccess === 4.U) && (SBCSFieldsReg.sbaccess128 =/= 1.U) || (SBCSFieldsReg.sbaccess > 4.U) val compareAddr = Wire(UInt(32.W)) // Need use written or latched address to detect error case depending on how transaction is initiated compareAddr := Mux(SBADDRESSWrEn(0),SBADDRESSWrData(0),SBADDRESSFieldsReg(0)) val sbAlignmentError = (SBCSFieldsReg.sbaccess === 1.U) && (compareAddr(0) =/= 0.U) || (SBCSFieldsReg.sbaccess === 2.U) && (compareAddr(1,0) =/= 0.U) || (SBCSFieldsReg.sbaccess === 3.U) && (compareAddr(2,0) =/= 0.U) || (SBCSFieldsReg.sbaccess === 4.U) && (compareAddr(3,0) =/= 0.U) sbAccessError.suggestName("sbAccessError") sbAlignmentError.suggestName("sbAlignmentError") sb2tl.module.io.wrEn := dmAuthenticated && tryWrEn && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror && !sbAccessError && !sbAlignmentError sb2tl.module.io.rdEn := dmAuthenticated && tryRdEn && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror && !sbAccessError && !sbAlignmentError sb2tl.module.io.sizeIn := SBCSFieldsReg.sbaccess val sbBusy = (sb2tl.module.io.sbStateOut =/= SystemBusAccessState.Idle.id.U) when (~dmactive || ~dmAuthenticated) { SBCSFieldsReg := SBCSFieldsRegReset }.otherwise { SBCSFieldsReg.sbbusyerror := Mux(sbbusyerrorWrEn && SBCSWrData.sbbusyerror, false.B, // W1C Mux(anyAddressWrEn && sbBusy, true.B, // Set if a write to SBADDRESS occurs while busy Mux((anyDataRdEn || anyDataWrEn) && sbBusy, true.B, SBCSFieldsReg.sbbusyerror))) // Set if any access to SBDATA occurs while busy SBCSFieldsReg.sbreadonaddr := Mux(sbreadonaddrWrEn, SBCSWrData.sbreadonaddr , SBCSFieldsReg.sbreadonaddr) SBCSFieldsReg.sbautoincrement := Mux(sbautoincrementWrEn, SBCSWrData.sbautoincrement, SBCSFieldsReg.sbautoincrement) SBCSFieldsReg.sbreadondata := Mux(sbreadondataWrEn, SBCSWrData.sbreadondata , SBCSFieldsReg.sbreadondata) SBCSFieldsReg.sbaccess := Mux(sbaccessWrEn, SBCSWrData.sbaccess, SBCSFieldsReg.sbaccess) SBCSFieldsReg.sbversion := 1.U(1.W) // This code implements a version of the spec after January 1, 2018 } // sbErrorReg has a per-bit load enable since each bit can be individually cleared by writing a 1 to it val sbErrorReg = Reg(Vec(4, UInt(1.W))) when(~dmactive || ~dmAuthenticated) { for (i <- 0 until 3) sbErrorReg(i) := 0.U }.otherwise { for (i <- 0 until 3) sbErrorReg(i) := Mux(sberrorWrEn && SBCSWrData.sberror(i) === 1.U, NoError.id.U.extract(i), // W1C Mux((sb2tl.module.io.wrEn && !sb2tl.module.io.wrLegal) || (sb2tl.module.io.rdEn && !sb2tl.module.io.rdLegal), BadAddr.id.U.extract(i), // Bad address accessed Mux((tryWrEn || tryRdEn) && sbAlignmentError, AlgnError.id.U.extract(i), // Address alignment error Mux((tryWrEn || tryRdEn) && sbAccessError, BadAccess.id.U.extract(i), // Access size error Mux((sb2tl.module.io.rdDone || sb2tl.module.io.wrDone) && sb2tl.module.io.respError, OtherError.id.U.extract(i), sbErrorReg(i)))))) // Response error from TL } SBCSRdData := SBCSFieldsReg SBCSRdData.sbasize := sb2tl.module.edge.bundle.addressBits.U SBCSRdData.sbaccess128 := (cfg.maxSupportedSBAccess == 128).B SBCSRdData.sbaccess64 := (cfg.maxSupportedSBAccess >= 64).B SBCSRdData.sbaccess32 := (cfg.maxSupportedSBAccess >= 32).B SBCSRdData.sbaccess16 := (cfg.maxSupportedSBAccess >= 16).B SBCSRdData.sbaccess8 := (cfg.maxSupportedSBAccess >= 8).B SBCSRdData.sbbusy := sbBusy SBCSRdData.sberror := sbErrorReg.asUInt when (~dmAuthenticated) { // Read value must be 0 if not authenticated SBCSRdData := 0.U.asTypeOf(new SBCSFields()) } property.cover(SBCSFieldsReg.sbbusyerror, "SBCS Cover", "sberror set") property.cover(SBCSFieldsReg.sbbusy === 3.U, "SBCS Cover", "sbbusyerror alignment error") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 0.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "8-bit access") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 1.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "16-bit access") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 2.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "32-bit access") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 3.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "64-bit access") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 4.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "128-bit access") property.cover(SBCSFieldsReg.sbautoincrement && SBCSFieldsReg.sbbusy, "SBCS Cover", "Access with autoincrement set") property.cover(!SBCSFieldsReg.sbautoincrement && SBCSFieldsReg.sbbusy, "SBCS Cover", "Access without autoincrement set") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess > 4.U, "SBCS Cover", "Invalid sbaccess value") (sbcsfields, sbaddrfields, sbdatafields) } } class SBToTL(implicit p: Parameters) extends LazyModule { val cfg = p(DebugModuleKey).get val node = TLClientNode(Seq(TLMasterPortParameters.v1( clients = Seq(TLMasterParameters.v1("debug")), requestFields = Seq(AMBAProtField())))) lazy val module = new Impl class Impl extends LazyModuleImp(this) { val io = IO(new Bundle { val rdEn = Input(Bool()) val wrEn = Input(Bool()) val addrIn = Input(UInt(128.W)) // TODO: Parameterize these widths val dataIn = Input(UInt(128.W)) val sizeIn = Input(UInt(3.W)) val rdLegal = Output(Bool()) val wrLegal = Output(Bool()) val rdDone = Output(Bool()) val wrDone = Output(Bool()) val respError = Output(Bool()) val dataOut = Output(UInt(8.W)) val rdLoad = Output(Vec(cfg.maxSupportedSBAccess/8, Bool())) val sbStateOut = Output(UInt(log2Ceil(SystemBusAccessState.maxId).W)) }) val rf_reset = IO(Input(Reset())) import SystemBusAccessState._ val (tl, edge) = node.out(0) val sbState = RegInit(0.U) // --- Drive payloads on bus to TileLink --- val d = Queue(tl.d, 2) // Add a small buffer since response could arrive on same cycle as request d.ready := (sbState === SBReadResponse.id.U) || (sbState === SBWriteResponse.id.U) val muxedData = WireInit(0.U(8.W)) val requestValid = tl.a.valid val requestReady = tl.a.ready val responseValid = d.valid val responseReady = d.ready val counter = RegInit(0.U((log2Ceil(cfg.maxSupportedSBAccess/8)+1).W)) val vecData = Wire(Vec(cfg.maxSupportedSBAccess/8, UInt(8.W))) vecData.zipWithIndex.map { case (vd, i) => vd := io.dataIn(8*i+7,8*i) } muxedData := vecData(counter(log2Ceil(vecData.size)-1,0)) // Need an additional check to determine if address is safe for Get/Put val rdLegal_addr = edge.manager.supportsGetSafe(io.addrIn, io.sizeIn, Some(TransferSizes(1,cfg.maxSupportedSBAccess/8))) val wrLegal_addr = edge.manager.supportsPutFullSafe(io.addrIn, io.sizeIn, Some(TransferSizes(1,cfg.maxSupportedSBAccess/8))) val (_, gbits) = edge.Get(0.U, io.addrIn, io.sizeIn) val (_, pfbits) = edge.Put(0.U, io.addrIn, io.sizeIn, muxedData) io.rdLegal := rdLegal_addr io.wrLegal := wrLegal_addr io.sbStateOut := sbState when(sbState === SBReadRequest.id.U) { tl.a.bits := gbits } .otherwise { tl.a.bits := pfbits } tl.a.bits.user.lift(AMBAProt).foreach { x => x.bufferable := false.B x.modifiable := false.B x.readalloc := false.B x.writealloc := false.B x.privileged := true.B x.secure := true.B x.fetch := false.B } val respError = d.bits.denied || d.bits.corrupt io.respError := respError val wrTxValid = sbState === SBWriteRequest.id.U && requestValid && requestReady val rdTxValid = sbState === SBReadResponse.id.U && responseValid && responseReady val txLast = counter === ((1.U << io.sizeIn) - 1.U) counter := Mux((wrTxValid || rdTxValid) && txLast, 0.U, Mux((wrTxValid || rdTxValid) , counter+1.U, counter)) for (i <- 0 until (cfg.maxSupportedSBAccess/8)) { io.rdLoad(i) := rdTxValid && (counter === i.U) } // --- State Machine to interface with TileLink --- when (sbState === Idle.id.U){ sbState := Mux(io.rdEn && io.rdLegal, SBReadRequest.id.U, Mux(io.wrEn && io.wrLegal, SBWriteRequest.id.U, sbState)) }.elsewhen (sbState === SBReadRequest.id.U){ sbState := Mux(requestValid && requestReady, SBReadResponse.id.U, sbState) }.elsewhen (sbState === SBWriteRequest.id.U){ sbState := Mux(wrTxValid && txLast, SBWriteResponse.id.U, sbState) }.elsewhen (sbState === SBReadResponse.id.U){ sbState := Mux(rdTxValid && txLast, Idle.id.U, sbState) }.elsewhen (sbState === SBWriteResponse.id.U){ sbState := Mux(responseValid && responseReady, Idle.id.U, sbState) } io.rdDone := rdTxValid && txLast io.wrDone := (sbState === SBWriteResponse.id.U) && responseValid && responseReady io.dataOut := d.bits.data tl.a.valid := (sbState === SBReadRequest.id.U) || (sbState === SBWriteRequest.id.U) // Tie off unused channels tl.b.ready := false.B tl.c.valid := false.B tl.e.valid := false.B assert (sbState === Idle.id.U || sbState === SBReadRequest.id.U || sbState === SBWriteRequest.id.U || sbState === SBReadResponse.id.U || sbState === SBWriteResponse.id.U, "SBA state machine in undefined state") property.cover (sbState === Idle.id.U, "SBA State Cover", "SBA Access Idle") property.cover (sbState === SBReadRequest.id.U, "SBA State Cover", "SBA Access Read Req") property.cover (sbState === SBWriteRequest.id.U, "SBA State Cover", "SBA Access Write Req") property.cover (sbState === SBReadResponse.id.U, "SBA State Cover", "SBA Access Read Resp") property.cover (sbState === SBWriteResponse.id.U, "SBA State Cover", "SBA Access Write Resp") property.cover (io.rdEn && !io.rdLegal, "SB Legality Cover", "SBA Rd Address Illegal") property.cover (io.wrEn && !io.wrLegal, "SB Legality Cover", "SBA Wr Address Illegal") } } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module SBToTL( // @[SBA.scala:273:9] input clock, // @[SBA.scala:273:9] input reset, // @[SBA.scala:273:9] input auto_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [7:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input io_rdEn, // @[SBA.scala:274:16] input io_wrEn, // @[SBA.scala:274:16] input [127:0] io_addrIn, // @[SBA.scala:274:16] input [127:0] io_dataIn, // @[SBA.scala:274:16] input [2:0] io_sizeIn, // @[SBA.scala:274:16] output io_rdLegal, // @[SBA.scala:274:16] output io_wrLegal, // @[SBA.scala:274:16] output io_rdDone, // @[SBA.scala:274:16] output io_wrDone, // @[SBA.scala:274:16] output io_respError, // @[SBA.scala:274:16] output [7:0] io_dataOut, // @[SBA.scala:274:16] output io_rdLoad_0, // @[SBA.scala:274:16] output io_rdLoad_1, // @[SBA.scala:274:16] output io_rdLoad_2, // @[SBA.scala:274:16] output io_rdLoad_3, // @[SBA.scala:274:16] output io_rdLoad_4, // @[SBA.scala:274:16] output io_rdLoad_5, // @[SBA.scala:274:16] output io_rdLoad_6, // @[SBA.scala:274:16] output io_rdLoad_7, // @[SBA.scala:274:16] output [2:0] io_sbStateOut, // @[SBA.scala:274:16] input rf_reset // @[SBA.scala:289:28] ); wire _d_q_io_deq_valid; // @[Decoupled.scala:362:21] wire _d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21] wire _d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21] wire auto_out_a_ready_0 = auto_out_a_ready; // @[SBA.scala:273:9] wire auto_out_d_valid_0 = auto_out_d_valid; // @[SBA.scala:273:9] wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[SBA.scala:273:9] wire [1:0] auto_out_d_bits_param_0 = auto_out_d_bits_param; // @[SBA.scala:273:9] wire [3:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[SBA.scala:273:9] wire [2:0] auto_out_d_bits_sink_0 = auto_out_d_bits_sink; // @[SBA.scala:273:9] wire auto_out_d_bits_denied_0 = auto_out_d_bits_denied; // @[SBA.scala:273:9] wire [7:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[SBA.scala:273:9] wire auto_out_d_bits_corrupt_0 = auto_out_d_bits_corrupt; // @[SBA.scala:273:9] wire io_rdEn_0 = io_rdEn; // @[SBA.scala:273:9] wire io_wrEn_0 = io_wrEn; // @[SBA.scala:273:9] wire [127:0] io_addrIn_0 = io_addrIn; // @[SBA.scala:273:9] wire [127:0] io_dataIn_0 = io_dataIn; // @[SBA.scala:273:9] wire [2:0] io_sizeIn_0 = io_sizeIn; // @[SBA.scala:273:9] wire auto_out_a_bits_source = 1'h0; // @[SBA.scala:273:9] wire auto_out_a_bits_corrupt = 1'h0; // @[SBA.scala:273:9] wire auto_out_d_bits_source = 1'h0; // @[SBA.scala:273:9] wire nodeOut_a_bits_source = 1'h0; // @[MixedNode.scala:542:17] wire nodeOut_a_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17] wire nodeOut_d_bits_source = 1'h0; // @[MixedNode.scala:542:17] wire _wrLegal_addr_T_58 = 1'h0; // @[Parameters.scala:684:29] wire _wrLegal_addr_T_64 = 1'h0; // @[Parameters.scala:684:54] wire gbits_source = 1'h0; // @[Edges.scala:460:17] wire gbits_corrupt = 1'h0; // @[Edges.scala:460:17] wire _pfbits_legal_T_62 = 1'h0; // @[Parameters.scala:684:29] wire _pfbits_legal_T_68 = 1'h0; // @[Parameters.scala:684:54] wire pfbits_source = 1'h0; // @[Edges.scala:480:17] wire pfbits_corrupt = 1'h0; // @[Edges.scala:480:17] wire [2:0] auto_out_a_bits_param = 3'h0; // @[SBA.scala:273:9] wire [2:0] nodeOut_a_bits_param = 3'h0; // @[MixedNode.scala:542:17] wire [2:0] gbits_param = 3'h0; // @[Edges.scala:460:17] wire [2:0] pfbits_opcode = 3'h0; // @[Edges.scala:480:17] wire [2:0] pfbits_param = 3'h0; // @[Edges.scala:480:17] wire auto_out_a_bits_mask = 1'h1; // @[SBA.scala:273:9] wire nodeOut_a_bits_mask = 1'h1; // @[MixedNode.scala:542:17] wire _rdLegal_addr_T = 1'h1; // @[Parameters.scala:92:28] wire _rdLegal_addr_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _wrLegal_addr_T = 1'h1; // @[Parameters.scala:92:28] wire _wrLegal_addr_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _gbits_legal_T = 1'h1; // @[Parameters.scala:92:28] wire _gbits_legal_T_1 = 1'h1; // @[Parameters.scala:92:38] wire _gbits_legal_T_2 = 1'h1; // @[Parameters.scala:92:33] wire _gbits_legal_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _gbits_legal_T_10 = 1'h1; // @[Parameters.scala:92:28] wire gbits_mask = 1'h1; // @[Edges.scala:460:17] wire gbits_a_mask_sizeOH = 1'h1; // @[Misc.scala:202:81] wire _pfbits_legal_T = 1'h1; // @[Parameters.scala:92:28] wire _pfbits_legal_T_1 = 1'h1; // @[Parameters.scala:92:38] wire _pfbits_legal_T_2 = 1'h1; // @[Parameters.scala:92:33] wire _pfbits_legal_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _pfbits_legal_T_10 = 1'h1; // @[Parameters.scala:92:28] wire pfbits_mask = 1'h1; // @[Edges.scala:480:17] wire pfbits_a_mask_sizeOH = 1'h1; // @[Misc.scala:202:81] wire [7:0] gbits_data = 8'h0; // @[Edges.scala:460:17] wire [2:0] gbits_opcode = 3'h4; // @[Edges.scala:460:17] wire nodeOut_a_ready = auto_out_a_ready_0; // @[SBA.scala:273:9] wire nodeOut_a_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [3:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17] wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17] wire [7:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17] wire nodeOut_d_ready; // @[MixedNode.scala:542:17] wire nodeOut_d_valid = auto_out_d_valid_0; // @[SBA.scala:273:9] wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[SBA.scala:273:9] wire [1:0] nodeOut_d_bits_param = auto_out_d_bits_param_0; // @[SBA.scala:273:9] wire [3:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[SBA.scala:273:9] wire [2:0] nodeOut_d_bits_sink = auto_out_d_bits_sink_0; // @[SBA.scala:273:9] wire nodeOut_d_bits_denied = auto_out_d_bits_denied_0; // @[SBA.scala:273:9] wire [7:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[SBA.scala:273:9] wire nodeOut_d_bits_corrupt = auto_out_d_bits_corrupt_0; // @[SBA.scala:273:9] wire [127:0] _rdLegal_addr_T_4 = io_addrIn_0; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_4 = io_addrIn_0; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_14 = io_addrIn_0; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_14 = io_addrIn_0; // @[Parameters.scala:137:31] wire rdLegal_addr; // @[Parameters.scala:686:26] wire [2:0] _gbits_a_mask_sizeOH_T = io_sizeIn_0; // @[Misc.scala:202:34] wire [2:0] _pfbits_a_mask_sizeOH_T = io_sizeIn_0; // @[Misc.scala:202:34] wire wrLegal_addr; // @[Parameters.scala:686:26] wire _io_rdDone_T; // @[SBA.scala:362:29] wire _io_wrDone_T_2; // @[SBA.scala:363:71] wire respError; // @[SBA.scala:335:35] wire _io_rdLoad_0_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_1_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_2_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_3_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_4_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_5_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_6_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_7_T_1; // @[SBA.scala:345:33] wire [2:0] auto_out_a_bits_opcode_0; // @[SBA.scala:273:9] wire [3:0] auto_out_a_bits_size_0; // @[SBA.scala:273:9] wire [31:0] auto_out_a_bits_address_0; // @[SBA.scala:273:9] wire [7:0] auto_out_a_bits_data_0; // @[SBA.scala:273:9] wire auto_out_a_valid_0; // @[SBA.scala:273:9] wire auto_out_d_ready_0; // @[SBA.scala:273:9] wire io_rdLoad_0_0; // @[SBA.scala:273:9] wire io_rdLoad_1_0; // @[SBA.scala:273:9] wire io_rdLoad_2_0; // @[SBA.scala:273:9] wire io_rdLoad_3_0; // @[SBA.scala:273:9] wire io_rdLoad_4_0; // @[SBA.scala:273:9] wire io_rdLoad_5_0; // @[SBA.scala:273:9] wire io_rdLoad_6_0; // @[SBA.scala:273:9] wire io_rdLoad_7_0; // @[SBA.scala:273:9] wire io_rdLegal_0; // @[SBA.scala:273:9] wire io_wrLegal_0; // @[SBA.scala:273:9] wire io_rdDone_0; // @[SBA.scala:273:9] wire io_wrDone_0; // @[SBA.scala:273:9] wire io_respError_0; // @[SBA.scala:273:9] wire [7:0] io_dataOut_0; // @[SBA.scala:273:9] wire [2:0] io_sbStateOut_0; // @[SBA.scala:273:9] wire _nodeOut_a_valid_T_2; // @[SBA.scala:366:52] assign auto_out_a_valid_0 = nodeOut_a_valid; // @[SBA.scala:273:9] assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[SBA.scala:273:9] assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[SBA.scala:273:9] assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[SBA.scala:273:9] assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[SBA.scala:273:9] assign auto_out_d_ready_0 = nodeOut_d_ready; // @[SBA.scala:273:9] reg [2:0] sbState; // @[SBA.scala:295:26] assign io_sbStateOut_0 = sbState; // @[SBA.scala:273:9, :295:26] wire _T_21 = sbState == 3'h3; // @[SBA.scala:295:26, :299:25] wire _q_io_deq_ready_T; // @[SBA.scala:299:25] assign _q_io_deq_ready_T = _T_21; // @[SBA.scala:299:25] wire _rdTxValid_T; // @[SBA.scala:339:29] assign _rdTxValid_T = _T_21; // @[SBA.scala:299:25, :339:29] wire _T_22 = sbState == 3'h4; // @[SBA.scala:295:26, :299:62] wire _q_io_deq_ready_T_1; // @[SBA.scala:299:62] assign _q_io_deq_ready_T_1 = _T_22; // @[SBA.scala:299:62] wire _io_wrDone_T; // @[SBA.scala:363:28] assign _io_wrDone_T = _T_22; // @[SBA.scala:299:62, :363:28] wire _q_io_deq_ready_T_2 = _q_io_deq_ready_T | _q_io_deq_ready_T_1; // @[SBA.scala:299:{25,50,62}] wire [7:0] muxedData; // @[SBA.scala:301:29] wire [7:0] pfbits_data = muxedData; // @[Edges.scala:480:17] reg [3:0] counter; // @[SBA.scala:307:26] wire [7:0] _vecData_0_T; // @[SBA.scala:309:63] wire [7:0] _vecData_1_T; // @[SBA.scala:309:63] wire [7:0] _vecData_2_T; // @[SBA.scala:309:63] wire [7:0] _vecData_3_T; // @[SBA.scala:309:63] wire [7:0] _vecData_4_T; // @[SBA.scala:309:63] wire [7:0] _vecData_5_T; // @[SBA.scala:309:63] wire [7:0] _vecData_6_T; // @[SBA.scala:309:63] wire [7:0] _vecData_7_T; // @[SBA.scala:309:63] wire [7:0] vecData_0; // @[SBA.scala:308:25] wire [7:0] vecData_1; // @[SBA.scala:308:25] wire [7:0] vecData_2; // @[SBA.scala:308:25] wire [7:0] vecData_3; // @[SBA.scala:308:25] wire [7:0] vecData_4; // @[SBA.scala:308:25] wire [7:0] vecData_5; // @[SBA.scala:308:25] wire [7:0] vecData_6; // @[SBA.scala:308:25] wire [7:0] vecData_7; // @[SBA.scala:308:25] assign _vecData_0_T = io_dataIn_0[7:0]; // @[SBA.scala:273:9, :309:63] assign vecData_0 = _vecData_0_T; // @[SBA.scala:308:25, :309:63] assign _vecData_1_T = io_dataIn_0[15:8]; // @[SBA.scala:273:9, :309:63] assign vecData_1 = _vecData_1_T; // @[SBA.scala:308:25, :309:63] assign _vecData_2_T = io_dataIn_0[23:16]; // @[SBA.scala:273:9, :309:63] assign vecData_2 = _vecData_2_T; // @[SBA.scala:308:25, :309:63] assign _vecData_3_T = io_dataIn_0[31:24]; // @[SBA.scala:273:9, :309:63] assign vecData_3 = _vecData_3_T; // @[SBA.scala:308:25, :309:63] assign _vecData_4_T = io_dataIn_0[39:32]; // @[SBA.scala:273:9, :309:63] assign vecData_4 = _vecData_4_T; // @[SBA.scala:308:25, :309:63] assign _vecData_5_T = io_dataIn_0[47:40]; // @[SBA.scala:273:9, :309:63] assign vecData_5 = _vecData_5_T; // @[SBA.scala:308:25, :309:63] assign _vecData_6_T = io_dataIn_0[55:48]; // @[SBA.scala:273:9, :309:63] assign vecData_6 = _vecData_6_T; // @[SBA.scala:308:25, :309:63] assign _vecData_7_T = io_dataIn_0[63:56]; // @[SBA.scala:273:9, :309:63] assign vecData_7 = _vecData_7_T; // @[SBA.scala:308:25, :309:63] wire [2:0] _muxedData_T = counter[2:0]; // @[SBA.scala:307:26, :310:33] wire [7:0][7:0] _GEN = {{vecData_7}, {vecData_6}, {vecData_5}, {vecData_4}, {vecData_3}, {vecData_2}, {vecData_1}, {vecData_0}}; // @[SBA.scala:308:25, :310:15] assign muxedData = _GEN[_muxedData_T]; // @[SBA.scala:301:29, :310:{15,33}] wire _rdLegal_addr_T_1 = ~(io_sizeIn_0[2]); // @[Parameters.scala:92:38] wire _rdLegal_addr_T_2 = _rdLegal_addr_T_1; // @[Parameters.scala:92:{33,38}] wire [128:0] _rdLegal_addr_T_5 = {1'h0, _rdLegal_addr_T_4}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_6 = _rdLegal_addr_T_5 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFE000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_7 = _rdLegal_addr_T_6; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_8 = _rdLegal_addr_T_7 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_0 = {io_addrIn_0[127:14], io_addrIn_0[13:0] ^ 14'h3000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_9; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_9 = _GEN_0; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_9; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_9 = _GEN_0; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_4; // @[Parameters.scala:137:31] assign _gbits_legal_T_4 = _GEN_0; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_4; // @[Parameters.scala:137:31] assign _pfbits_legal_T_4 = _GEN_0; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_10 = {1'h0, _rdLegal_addr_T_9}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_11 = _rdLegal_addr_T_10 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_12 = _rdLegal_addr_T_11; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_13 = _rdLegal_addr_T_12 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_1 = {io_addrIn_0[127:17], io_addrIn_0[16:0] ^ 17'h10000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_14; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_14 = _GEN_1; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_59; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_59 = _GEN_1; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_19; // @[Parameters.scala:137:31] assign _gbits_legal_T_19 = _GEN_1; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_24; // @[Parameters.scala:137:31] assign _gbits_legal_T_24 = _GEN_1; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_63; // @[Parameters.scala:137:31] assign _pfbits_legal_T_63 = _GEN_1; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_15 = {1'h0, _rdLegal_addr_T_14}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_16 = _rdLegal_addr_T_15 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_17 = _rdLegal_addr_T_16; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_18 = _rdLegal_addr_T_17 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_2 = {io_addrIn_0[127:21], io_addrIn_0[20:0] ^ 21'h100000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_19; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_19 = _GEN_2; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_14; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_14 = _GEN_2; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_19; // @[Parameters.scala:137:31] assign _pfbits_legal_T_19 = _GEN_2; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_20 = {1'h0, _rdLegal_addr_T_19}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_21 = _rdLegal_addr_T_20 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFEF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_22 = _rdLegal_addr_T_21; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_23 = _rdLegal_addr_T_22 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_3 = {io_addrIn_0[127:26], io_addrIn_0[25:0] ^ 26'h2000000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_24; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_24 = _GEN_3; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_19; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_19 = _GEN_3; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_29; // @[Parameters.scala:137:31] assign _gbits_legal_T_29 = _GEN_3; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_24; // @[Parameters.scala:137:31] assign _pfbits_legal_T_24 = _GEN_3; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_25 = {1'h0, _rdLegal_addr_T_24}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_26 = _rdLegal_addr_T_25 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_27 = _rdLegal_addr_T_26; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_28 = _rdLegal_addr_T_27 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_4 = {io_addrIn_0[127:26], io_addrIn_0[25:0] ^ 26'h2010000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_29; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_29 = _GEN_4; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_24; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_24 = _GEN_4; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_29; // @[Parameters.scala:137:31] assign _pfbits_legal_T_29 = _GEN_4; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_30 = {1'h0, _rdLegal_addr_T_29}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_31 = _rdLegal_addr_T_30 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_32 = _rdLegal_addr_T_31; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_33 = _rdLegal_addr_T_32 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_5 = {io_addrIn_0[127:28], io_addrIn_0[27:0] ^ 28'h8000000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_34; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_34 = _GEN_5; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_29; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_29 = _GEN_5; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_34; // @[Parameters.scala:137:31] assign _gbits_legal_T_34 = _GEN_5; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_39; // @[Parameters.scala:137:31] assign _gbits_legal_T_39 = _GEN_5; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_34; // @[Parameters.scala:137:31] assign _pfbits_legal_T_34 = _GEN_5; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_39; // @[Parameters.scala:137:31] assign _pfbits_legal_T_39 = _GEN_5; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_35 = {1'h0, _rdLegal_addr_T_34}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_36 = _rdLegal_addr_T_35 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_37 = _rdLegal_addr_T_36; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_38 = _rdLegal_addr_T_37 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_6 = {io_addrIn_0[127:28], io_addrIn_0[27:0] ^ 28'hC000000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_39; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_39 = _GEN_6; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_34; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_34 = _GEN_6; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_40 = {1'h0, _rdLegal_addr_T_39}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_41 = _rdLegal_addr_T_40 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFC000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_42 = _rdLegal_addr_T_41; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_43 = _rdLegal_addr_T_42 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_7 = {io_addrIn_0[127:29], io_addrIn_0[28:0] ^ 29'h10020000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_44; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_44 = _GEN_7; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_39; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_39 = _GEN_7; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_45 = {1'h0, _rdLegal_addr_T_44}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_46 = _rdLegal_addr_T_45 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_47 = _rdLegal_addr_T_46; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_48 = _rdLegal_addr_T_47 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [31:0] gbits_address = io_addrIn_0[31:0]; // @[Edges.scala:460:17] wire [31:0] pfbits_address = io_addrIn_0[31:0]; // @[Edges.scala:480:17] wire [127:0] _GEN_8 = {io_addrIn_0[127:32], io_addrIn_0[31:0] ^ 32'h80000000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_49; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_49 = _GEN_8; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_44; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_44 = _GEN_8; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_49; // @[Parameters.scala:137:31] assign _gbits_legal_T_49 = _GEN_8; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_49; // @[Parameters.scala:137:31] assign _pfbits_legal_T_49 = _GEN_8; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_50 = {1'h0, _rdLegal_addr_T_49}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_51 = _rdLegal_addr_T_50 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFF0000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_52 = _rdLegal_addr_T_51; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_53 = _rdLegal_addr_T_52 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _rdLegal_addr_T_54 = _rdLegal_addr_T_8 | _rdLegal_addr_T_13; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_55 = _rdLegal_addr_T_54 | _rdLegal_addr_T_18; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_56 = _rdLegal_addr_T_55 | _rdLegal_addr_T_23; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_57 = _rdLegal_addr_T_56 | _rdLegal_addr_T_28; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_58 = _rdLegal_addr_T_57 | _rdLegal_addr_T_33; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_59 = _rdLegal_addr_T_58 | _rdLegal_addr_T_38; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_60 = _rdLegal_addr_T_59 | _rdLegal_addr_T_43; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_61 = _rdLegal_addr_T_60 | _rdLegal_addr_T_48; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_62 = _rdLegal_addr_T_61 | _rdLegal_addr_T_53; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_63 = _rdLegal_addr_T_62; // @[Parameters.scala:684:54, :685:42] assign rdLegal_addr = _rdLegal_addr_T_63; // @[Parameters.scala:684:54, :686:26] assign io_rdLegal_0 = rdLegal_addr; // @[Parameters.scala:686:26] wire _wrLegal_addr_T_1 = ~(io_sizeIn_0[2]); // @[Parameters.scala:92:38] wire _wrLegal_addr_T_2 = _wrLegal_addr_T_1; // @[Parameters.scala:92:{33,38}] wire [128:0] _wrLegal_addr_T_5 = {1'h0, _wrLegal_addr_T_4}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_6 = _wrLegal_addr_T_5 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFE000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_7 = _wrLegal_addr_T_6; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_8 = _wrLegal_addr_T_7 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_10 = {1'h0, _wrLegal_addr_T_9}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_11 = _wrLegal_addr_T_10 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_12 = _wrLegal_addr_T_11; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_13 = _wrLegal_addr_T_12 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_15 = {1'h0, _wrLegal_addr_T_14}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_16 = _wrLegal_addr_T_15 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFEF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_17 = _wrLegal_addr_T_16; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_18 = _wrLegal_addr_T_17 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_20 = {1'h0, _wrLegal_addr_T_19}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_21 = _wrLegal_addr_T_20 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_22 = _wrLegal_addr_T_21; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_23 = _wrLegal_addr_T_22 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_25 = {1'h0, _wrLegal_addr_T_24}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_26 = _wrLegal_addr_T_25 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_27 = _wrLegal_addr_T_26; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_28 = _wrLegal_addr_T_27 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_30 = {1'h0, _wrLegal_addr_T_29}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_31 = _wrLegal_addr_T_30 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_32 = _wrLegal_addr_T_31; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_33 = _wrLegal_addr_T_32 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_35 = {1'h0, _wrLegal_addr_T_34}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_36 = _wrLegal_addr_T_35 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFC000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_37 = _wrLegal_addr_T_36; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_38 = _wrLegal_addr_T_37 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_40 = {1'h0, _wrLegal_addr_T_39}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_41 = _wrLegal_addr_T_40 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_42 = _wrLegal_addr_T_41; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_43 = _wrLegal_addr_T_42 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_45 = {1'h0, _wrLegal_addr_T_44}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_46 = _wrLegal_addr_T_45 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFF0000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_47 = _wrLegal_addr_T_46; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_48 = _wrLegal_addr_T_47 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _wrLegal_addr_T_49 = _wrLegal_addr_T_8 | _wrLegal_addr_T_13; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_50 = _wrLegal_addr_T_49 | _wrLegal_addr_T_18; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_51 = _wrLegal_addr_T_50 | _wrLegal_addr_T_23; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_52 = _wrLegal_addr_T_51 | _wrLegal_addr_T_28; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_53 = _wrLegal_addr_T_52 | _wrLegal_addr_T_33; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_54 = _wrLegal_addr_T_53 | _wrLegal_addr_T_38; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_55 = _wrLegal_addr_T_54 | _wrLegal_addr_T_43; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_56 = _wrLegal_addr_T_55 | _wrLegal_addr_T_48; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_57 = _wrLegal_addr_T_56; // @[Parameters.scala:684:54, :685:42] wire _wrLegal_addr_T_65 = _wrLegal_addr_T_57; // @[Parameters.scala:684:54, :686:26] wire [128:0] _wrLegal_addr_T_60 = {1'h0, _wrLegal_addr_T_59}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_61 = _wrLegal_addr_T_60 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_62 = _wrLegal_addr_T_61; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_63 = _wrLegal_addr_T_62 == 129'h0; // @[Parameters.scala:137:{46,59}] assign wrLegal_addr = _wrLegal_addr_T_65; // @[Parameters.scala:686:26] assign io_wrLegal_0 = wrLegal_addr; // @[Parameters.scala:686:26] wire [128:0] _gbits_legal_T_5 = {1'h0, _gbits_legal_T_4}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_6 = _gbits_legal_T_5 & 129'h9A013000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_7 = _gbits_legal_T_6; // @[Parameters.scala:137:46] wire _gbits_legal_T_8 = _gbits_legal_T_7 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _gbits_legal_T_9 = _gbits_legal_T_8; // @[Parameters.scala:684:54] wire _gbits_legal_T_62 = _gbits_legal_T_9; // @[Parameters.scala:684:54, :686:26] wire _GEN_9 = io_sizeIn_0 != 3'h7; // @[Parameters.scala:92:38] wire _gbits_legal_T_11; // @[Parameters.scala:92:38] assign _gbits_legal_T_11 = _GEN_9; // @[Parameters.scala:92:38] wire _pfbits_legal_T_11; // @[Parameters.scala:92:38] assign _pfbits_legal_T_11 = _GEN_9; // @[Parameters.scala:92:38] wire _gbits_legal_T_12 = _gbits_legal_T_11; // @[Parameters.scala:92:{33,38}] wire _gbits_legal_T_13 = _gbits_legal_T_12; // @[Parameters.scala:684:29] wire [128:0] _gbits_legal_T_15 = {1'h0, _gbits_legal_T_14}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_16 = _gbits_legal_T_15 & 129'h9A012000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_17 = _gbits_legal_T_16; // @[Parameters.scala:137:46] wire _gbits_legal_T_18 = _gbits_legal_T_17 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_20 = {1'h0, _gbits_legal_T_19}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_21 = _gbits_legal_T_20 & 129'h98013000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_22 = _gbits_legal_T_21; // @[Parameters.scala:137:46] wire _gbits_legal_T_23 = _gbits_legal_T_22 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_25 = {1'h0, _gbits_legal_T_24}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_26 = _gbits_legal_T_25 & 129'h9A010000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_27 = _gbits_legal_T_26; // @[Parameters.scala:137:46] wire _gbits_legal_T_28 = _gbits_legal_T_27 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_30 = {1'h0, _gbits_legal_T_29}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_31 = _gbits_legal_T_30 & 129'h9A010000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_32 = _gbits_legal_T_31; // @[Parameters.scala:137:46] wire _gbits_legal_T_33 = _gbits_legal_T_32 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_35 = {1'h0, _gbits_legal_T_34}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_36 = _gbits_legal_T_35 & 129'h98000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_37 = _gbits_legal_T_36; // @[Parameters.scala:137:46] wire _gbits_legal_T_38 = _gbits_legal_T_37 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_40 = {1'h0, _gbits_legal_T_39}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_41 = _gbits_legal_T_40 & 129'h9A010000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_42 = _gbits_legal_T_41; // @[Parameters.scala:137:46] wire _gbits_legal_T_43 = _gbits_legal_T_42 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_10 = {io_addrIn_0[127:29], io_addrIn_0[28:0] ^ 29'h10000000}; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_44; // @[Parameters.scala:137:31] assign _gbits_legal_T_44 = _GEN_10; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_44; // @[Parameters.scala:137:31] assign _pfbits_legal_T_44 = _GEN_10; // @[Parameters.scala:137:31] wire [128:0] _gbits_legal_T_45 = {1'h0, _gbits_legal_T_44}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_46 = _gbits_legal_T_45 & 129'h9A013000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_47 = _gbits_legal_T_46; // @[Parameters.scala:137:46] wire _gbits_legal_T_48 = _gbits_legal_T_47 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_50 = {1'h0, _gbits_legal_T_49}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_51 = _gbits_legal_T_50 & 129'h90000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_52 = _gbits_legal_T_51; // @[Parameters.scala:137:46] wire _gbits_legal_T_53 = _gbits_legal_T_52 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _gbits_legal_T_54 = _gbits_legal_T_18 | _gbits_legal_T_23; // @[Parameters.scala:685:42] wire _gbits_legal_T_55 = _gbits_legal_T_54 | _gbits_legal_T_28; // @[Parameters.scala:685:42] wire _gbits_legal_T_56 = _gbits_legal_T_55 | _gbits_legal_T_33; // @[Parameters.scala:685:42] wire _gbits_legal_T_57 = _gbits_legal_T_56 | _gbits_legal_T_38; // @[Parameters.scala:685:42] wire _gbits_legal_T_58 = _gbits_legal_T_57 | _gbits_legal_T_43; // @[Parameters.scala:685:42] wire _gbits_legal_T_59 = _gbits_legal_T_58 | _gbits_legal_T_48; // @[Parameters.scala:685:42] wire _gbits_legal_T_60 = _gbits_legal_T_59 | _gbits_legal_T_53; // @[Parameters.scala:685:42] wire _gbits_legal_T_61 = _gbits_legal_T_13 & _gbits_legal_T_60; // @[Parameters.scala:684:{29,54}, :685:42] wire gbits_legal = _gbits_legal_T_62 | _gbits_legal_T_61; // @[Parameters.scala:684:54, :686:26] wire [3:0] gbits_size; // @[Edges.scala:460:17] wire [3:0] _GEN_11 = {1'h0, io_sizeIn_0}; // @[Edges.scala:463:15] assign gbits_size = _GEN_11; // @[Edges.scala:460:17, :463:15] wire [3:0] pfbits_size; // @[Edges.scala:480:17] assign pfbits_size = _GEN_11; // @[Edges.scala:463:15, :480:17] wire [128:0] _pfbits_legal_T_5 = {1'h0, _pfbits_legal_T_4}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_6 = _pfbits_legal_T_5 & 129'h9A113000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_7 = _pfbits_legal_T_6; // @[Parameters.scala:137:46] wire _pfbits_legal_T_8 = _pfbits_legal_T_7 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _pfbits_legal_T_9 = _pfbits_legal_T_8; // @[Parameters.scala:684:54] wire _pfbits_legal_T_69 = _pfbits_legal_T_9; // @[Parameters.scala:684:54, :686:26] wire _pfbits_legal_T_12 = _pfbits_legal_T_11; // @[Parameters.scala:92:{33,38}] wire _pfbits_legal_T_13 = _pfbits_legal_T_12; // @[Parameters.scala:684:29] wire [128:0] _pfbits_legal_T_15 = {1'h0, _pfbits_legal_T_14}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_16 = _pfbits_legal_T_15 & 129'h9A112000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_17 = _pfbits_legal_T_16; // @[Parameters.scala:137:46] wire _pfbits_legal_T_18 = _pfbits_legal_T_17 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_20 = {1'h0, _pfbits_legal_T_19}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_21 = _pfbits_legal_T_20 & 129'h9A103000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_22 = _pfbits_legal_T_21; // @[Parameters.scala:137:46] wire _pfbits_legal_T_23 = _pfbits_legal_T_22 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_25 = {1'h0, _pfbits_legal_T_24}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_26 = _pfbits_legal_T_25 & 129'h9A110000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_27 = _pfbits_legal_T_26; // @[Parameters.scala:137:46] wire _pfbits_legal_T_28 = _pfbits_legal_T_27 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_30 = {1'h0, _pfbits_legal_T_29}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_31 = _pfbits_legal_T_30 & 129'h9A113000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_32 = _pfbits_legal_T_31; // @[Parameters.scala:137:46] wire _pfbits_legal_T_33 = _pfbits_legal_T_32 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_35 = {1'h0, _pfbits_legal_T_34}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_36 = _pfbits_legal_T_35 & 129'h98000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_37 = _pfbits_legal_T_36; // @[Parameters.scala:137:46] wire _pfbits_legal_T_38 = _pfbits_legal_T_37 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_40 = {1'h0, _pfbits_legal_T_39}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_41 = _pfbits_legal_T_40 & 129'h9A110000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_42 = _pfbits_legal_T_41; // @[Parameters.scala:137:46] wire _pfbits_legal_T_43 = _pfbits_legal_T_42 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_45 = {1'h0, _pfbits_legal_T_44}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_46 = _pfbits_legal_T_45 & 129'h9A113000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_47 = _pfbits_legal_T_46; // @[Parameters.scala:137:46] wire _pfbits_legal_T_48 = _pfbits_legal_T_47 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_50 = {1'h0, _pfbits_legal_T_49}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_51 = _pfbits_legal_T_50 & 129'h90000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_52 = _pfbits_legal_T_51; // @[Parameters.scala:137:46] wire _pfbits_legal_T_53 = _pfbits_legal_T_52 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _pfbits_legal_T_54 = _pfbits_legal_T_18 | _pfbits_legal_T_23; // @[Parameters.scala:685:42] wire _pfbits_legal_T_55 = _pfbits_legal_T_54 | _pfbits_legal_T_28; // @[Parameters.scala:685:42] wire _pfbits_legal_T_56 = _pfbits_legal_T_55 | _pfbits_legal_T_33; // @[Parameters.scala:685:42] wire _pfbits_legal_T_57 = _pfbits_legal_T_56 | _pfbits_legal_T_38; // @[Parameters.scala:685:42] wire _pfbits_legal_T_58 = _pfbits_legal_T_57 | _pfbits_legal_T_43; // @[Parameters.scala:685:42] wire _pfbits_legal_T_59 = _pfbits_legal_T_58 | _pfbits_legal_T_48; // @[Parameters.scala:685:42] wire _pfbits_legal_T_60 = _pfbits_legal_T_59 | _pfbits_legal_T_53; // @[Parameters.scala:685:42] wire _pfbits_legal_T_61 = _pfbits_legal_T_13 & _pfbits_legal_T_60; // @[Parameters.scala:684:{29,54}, :685:42] wire [128:0] _pfbits_legal_T_64 = {1'h0, _pfbits_legal_T_63}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_65 = _pfbits_legal_T_64 & 129'h9A110000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_66 = _pfbits_legal_T_65; // @[Parameters.scala:137:46] wire _pfbits_legal_T_67 = _pfbits_legal_T_66 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _pfbits_legal_T_70 = _pfbits_legal_T_69 | _pfbits_legal_T_61; // @[Parameters.scala:684:54, :686:26] wire pfbits_legal = _pfbits_legal_T_70; // @[Parameters.scala:686:26] wire _nodeOut_a_valid_T = sbState == 3'h1; // @[SBA.scala:295:26, :322:18, :366:28] assign nodeOut_a_bits_opcode = {_nodeOut_a_valid_T, 2'h0}; // @[SBA.scala:322:{42,54}, :323:54, :366:28] assign nodeOut_a_bits_size = _nodeOut_a_valid_T ? gbits_size : pfbits_size; // @[Edges.scala:460:17, :480:17] assign nodeOut_a_bits_address = _nodeOut_a_valid_T ? gbits_address : pfbits_address; // @[Edges.scala:460:17, :480:17] assign nodeOut_a_bits_data = _nodeOut_a_valid_T ? 8'h0 : pfbits_data; // @[Edges.scala:480:17] assign respError = _d_q_io_deq_bits_denied | _d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21] assign io_respError_0 = respError; // @[SBA.scala:273:9, :335:35] wire _T_20 = sbState == 3'h2; // @[SBA.scala:295:26, :338:29] wire _wrTxValid_T; // @[SBA.scala:338:29] assign _wrTxValid_T = _T_20; // @[SBA.scala:338:29] wire _nodeOut_a_valid_T_1; // @[SBA.scala:366:64] assign _nodeOut_a_valid_T_1 = _T_20; // @[SBA.scala:338:29, :366:64] wire _wrTxValid_T_1 = _wrTxValid_T & nodeOut_a_valid; // @[SBA.scala:338:{29,53}] wire wrTxValid = _wrTxValid_T_1 & nodeOut_a_ready; // @[SBA.scala:338:{53,69}] wire _rdTxValid_T_1 = _rdTxValid_T & _d_q_io_deq_valid; // @[Decoupled.scala:362:21] wire rdTxValid = _rdTxValid_T_1 & _q_io_deq_ready_T_2; // @[SBA.scala:299:50, :339:{53,70}] wire [7:0] _txLast_T = 8'h1 << io_sizeIn_0; // @[SBA.scala:273:9, :340:39] wire [8:0] _txLast_T_1 = {1'h0, _txLast_T} - 9'h1; // @[SBA.scala:340:{39,53}] wire [7:0] _txLast_T_2 = _txLast_T_1[7:0]; // @[SBA.scala:340:53] wire txLast = {4'h0, counter} == _txLast_T_2; // @[SBA.scala:307:26, :340:{29,53}] wire _GEN_12 = wrTxValid | rdTxValid; // @[SBA.scala:338:69, :339:70, :341:31] wire _counter_T; // @[SBA.scala:341:31] assign _counter_T = _GEN_12; // @[SBA.scala:341:31] wire _counter_T_2; // @[SBA.scala:342:31] assign _counter_T_2 = _GEN_12; // @[SBA.scala:341:31, :342:31] wire _counter_T_1 = _counter_T & txLast; // @[SBA.scala:340:29, :341:{31,45}] wire [4:0] _counter_T_3 = {1'h0, counter} + 5'h1; // @[SBA.scala:307:26, :342:63] wire [3:0] _counter_T_4 = _counter_T_3[3:0]; // @[SBA.scala:342:63] wire [3:0] _counter_T_5 = _counter_T_2 ? _counter_T_4 : counter; // @[SBA.scala:307:26, :342:{19,31,63}] wire [3:0] _counter_T_6 = _counter_T_1 ? 4'h0 : _counter_T_5; // @[SBA.scala:341:{19,45}, :342:19] wire _io_rdLoad_0_T = counter == 4'h0; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_0_T_1 = rdTxValid & _io_rdLoad_0_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_0_0 = _io_rdLoad_0_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_1_T = counter == 4'h1; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_1_T_1 = rdTxValid & _io_rdLoad_1_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_1_0 = _io_rdLoad_1_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_2_T = counter == 4'h2; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_2_T_1 = rdTxValid & _io_rdLoad_2_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_2_0 = _io_rdLoad_2_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_3_T = counter == 4'h3; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_3_T_1 = rdTxValid & _io_rdLoad_3_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_3_0 = _io_rdLoad_3_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_4_T = counter == 4'h4; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_4_T_1 = rdTxValid & _io_rdLoad_4_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_4_0 = _io_rdLoad_4_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_5_T = counter == 4'h5; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_5_T_1 = rdTxValid & _io_rdLoad_5_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_5_0 = _io_rdLoad_5_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_6_T = counter == 4'h6; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_6_T_1 = rdTxValid & _io_rdLoad_6_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_6_0 = _io_rdLoad_6_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_7_T = counter == 4'h7; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_7_T_1 = rdTxValid & _io_rdLoad_7_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_7_0 = _io_rdLoad_7_T_1; // @[SBA.scala:273:9, :345:33] wire _sbState_T = io_rdEn_0 & io_rdLegal_0; // @[SBA.scala:273:9, :350:30] wire _sbState_T_1 = io_wrEn_0 & io_wrLegal_0; // @[SBA.scala:273:9, :351:30] wire [2:0] _sbState_T_2 = _sbState_T_1 ? 3'h2 : sbState; // @[SBA.scala:295:26, :351:{21,30}] wire [2:0] _sbState_T_3 = _sbState_T ? 3'h1 : _sbState_T_2; // @[SBA.scala:350:{21,30}, :351:21] wire _sbState_T_4 = nodeOut_a_valid & nodeOut_a_ready; // @[SBA.scala:353:35] wire [2:0] _sbState_T_5 = _sbState_T_4 ? 3'h3 : sbState; // @[SBA.scala:295:26, :353:{21,35}] wire _sbState_T_6 = wrTxValid & txLast; // @[SBA.scala:338:69, :340:29, :355:32] wire [2:0] _sbState_T_7 = _sbState_T_6 ? 3'h4 : sbState; // @[SBA.scala:295:26, :355:{21,32}] wire _GEN_13 = rdTxValid & txLast; // @[SBA.scala:339:70, :340:29, :357:32] wire _sbState_T_8; // @[SBA.scala:357:32] assign _sbState_T_8 = _GEN_13; // @[SBA.scala:357:32] assign _io_rdDone_T = _GEN_13; // @[SBA.scala:357:32, :362:29] wire [2:0] _sbState_T_9 = _sbState_T_8 ? 3'h0 : sbState; // @[SBA.scala:295:26, :357:{21,32}] wire _sbState_T_10 = _d_q_io_deq_valid & _q_io_deq_ready_T_2; // @[Decoupled.scala:362:21] wire [2:0] _sbState_T_11 = _sbState_T_10 ? 3'h0 : sbState; // @[SBA.scala:295:26, :359:{21,36}] assign io_rdDone_0 = _io_rdDone_T; // @[SBA.scala:273:9, :362:29] wire _io_wrDone_T_1 = _io_wrDone_T & _d_q_io_deq_valid; // @[Decoupled.scala:362:21] assign _io_wrDone_T_2 = _io_wrDone_T_1 & _q_io_deq_ready_T_2; // @[SBA.scala:299:50, :363:{54,71}] assign io_wrDone_0 = _io_wrDone_T_2; // @[SBA.scala:273:9, :363:71] assign _nodeOut_a_valid_T_2 = _nodeOut_a_valid_T | _nodeOut_a_valid_T_1; // @[SBA.scala:366:{28,52,64}] assign nodeOut_a_valid = _nodeOut_a_valid_T_2; // @[SBA.scala:366:52]
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File RoundAnyRawFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util.Fill import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundAnyRawFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int, options: Int ) extends RawModule { override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(inExpWidth, inSigWidth)) // (allowed exponent range has limits) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0) val effectiveInSigWidth = if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1 val neverUnderflows = ((options & (flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact) ) != 0) || (inExpWidth < outExpWidth) val neverOverflows = ((options & flRoundOpt_neverOverflows) != 0) || (inExpWidth < outExpWidth) val outNaNExp = BigInt(7)<<(outExpWidth - 2) val outInfExp = BigInt(6)<<(outExpWidth - 2) val outMaxFiniteExp = outInfExp - 1 val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2 val outMinNonzeroExp = outMinNormExp - outSigWidth + 1 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_near_even = (io.roundingMode === round_near_even) val roundingMode_minMag = (io.roundingMode === round_minMag) val roundingMode_min = (io.roundingMode === round_min) val roundingMode_max = (io.roundingMode === round_max) val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag) val roundingMode_odd = (io.roundingMode === round_odd) val roundMagUp = (roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sAdjustedExp = if (inExpWidth < outExpWidth) (io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S )(outExpWidth, 0).zext else if (inExpWidth == outExpWidth) io.in.sExp else io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S val adjustedSig = if (inSigWidth <= outSigWidth + 2) io.in.sig<<(outSigWidth - inSigWidth + 2) else (io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ## io.in.sig(inSigWidth - outSigWidth - 2, 0).orR ) val doShiftSigDown1 = if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2) val common_expOut = Wire(UInt((outExpWidth + 1).W)) val common_fractOut = Wire(UInt((outSigWidth - 1).W)) val common_overflow = Wire(Bool()) val common_totalUnderflow = Wire(Bool()) val common_underflow = Wire(Bool()) val common_inexact = Wire(Bool()) if ( neverOverflows && neverUnderflows && (effectiveInSigWidth <= outSigWidth) ) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1 common_fractOut := Mux(doShiftSigDown1, adjustedSig(outSigWidth + 1, 3), adjustedSig(outSigWidth, 2) ) common_overflow := false.B common_totalUnderflow := false.B common_underflow := false.B common_inexact := false.B } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundMask = if (neverUnderflows) 0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W) else (lowMask( sAdjustedExp(outExpWidth, 0), outMinNormExp - outSigWidth - 1, outMinNormExp ) | doShiftSigDown1) ## 3.U(2.W) val shiftedRoundMask = 0.U(1.W) ## roundMask>>1 val roundPosMask = ~shiftedRoundMask & roundMask val roundPosBit = (adjustedSig & roundPosMask).orR val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR val anyRound = roundPosBit || anyRoundExtra val roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && roundPosBit) || (roundMagUp && anyRound) val roundedSig: Bits = Mux(roundIncr, (((adjustedSig | roundMask)>>2) +& 1.U) & ~Mux(roundingMode_near_even && roundPosBit && ! anyRoundExtra, roundMask>>1, 0.U((outSigWidth + 2).W) ), (adjustedSig & ~roundMask)>>2 | Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U) ) //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext common_expOut := sRoundedExp(outExpWidth, 0) common_fractOut := Mux(doShiftSigDown1, roundedSig(outSigWidth - 1, 1), roundedSig(outSigWidth - 2, 0) ) common_overflow := (if (neverOverflows) false.B else //*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?: (sRoundedExp>>(outExpWidth - 1) >= 3.S)) common_totalUnderflow := (if (neverUnderflows) false.B else //*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?: (sRoundedExp < outMinNonzeroExp.S)) val unboundedRange_roundPosBit = Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1)) val unboundedRange_anyRound = (doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR val unboundedRange_roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && unboundedRange_roundPosBit) || (roundMagUp && unboundedRange_anyRound) val roundCarry = Mux(doShiftSigDown1, roundedSig(outSigWidth + 1), roundedSig(outSigWidth) ) common_underflow := (if (neverUnderflows) false.B else common_totalUnderflow || //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? (anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) && Mux(doShiftSigDown1, roundMask(3), roundMask(2)) && ! ((io.detectTininess === tininess_afterRounding) && ! Mux(doShiftSigDown1, roundMask(4), roundMask(3) ) && roundCarry && roundPosBit && unboundedRange_roundIncr))) common_inexact := common_totalUnderflow || anyRound } //------------------------------------------------------------------------ //------------------------------------------------------------------------ val isNaNOut = io.invalidExc || io.in.isNaN val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero val overflow = commonCase && common_overflow val underflow = commonCase && common_underflow val inexact = overflow || (commonCase && common_inexact) val overflow_roundMagUp = roundingMode_near_even || roundingMode_near_maxMag || roundMagUp val pegMinNonzeroMagOut = commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd) val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp val notNaN_isInfOut = notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp) val signOut = Mux(isNaNOut, false.B, io.in.sign) val expOut = (common_expOut & ~Mux(io.in.isZero || common_totalUnderflow, (BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMinNonzeroMagOut, ~outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMaxFiniteMagOut, (BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W), 0.U ) & ~Mux(notNaN_isInfOut, (BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U )) | Mux(pegMinNonzeroMagOut, outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) | Mux(pegMaxFiniteMagOut, outMaxFiniteExp.U((outExpWidth + 1).W), 0.U ) | Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) | Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U) val fractOut = Mux(isNaNOut || io.in.isZero || common_totalUnderflow, Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U), common_fractOut ) | Fill(outSigWidth - 1, pegMaxFiniteMagOut) io.out := signOut ## expOut ## fractOut io.exceptionFlags := io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int) extends RawModule { override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(expWidth, sigWidth + 2)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( expWidth, sigWidth + 2, expWidth, sigWidth, options)) roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc roundAnyRawFNToRecFN.io.in := io.in roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags }
module RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_49( // @[RoundAnyRawFNToRecFN.scala:48:5] input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:58:16] input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:58:16] input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:58:16] input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:58:16] output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:58:16] output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:58:16] ); wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [8:0] _expOut_T_4 = 9'h194; // @[RoundAnyRawFNToRecFN.scala:258:19] wire [15:0] _roundMask_T_5 = 16'hFF; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_4 = 16'hFF00; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_10 = 16'hFF00; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_13 = 12'hFF; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_14 = 16'hFF0; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_15 = 16'hF0F; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_20 = 16'hF0F0; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_23 = 14'hF0F; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_24 = 16'h3C3C; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_25 = 16'h3333; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_30 = 16'hCCCC; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_33 = 15'h3333; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_34 = 16'h6666; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_35 = 16'h5555; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_40 = 16'hAAAA; // @[primitives.scala:77:20] wire [25:0] _roundedSig_T_15 = 26'h0; // @[RoundAnyRawFNToRecFN.scala:181:24] wire [8:0] _expOut_T_6 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14] wire [8:0] _expOut_T_9 = 9'h1FF; // @[RoundAnyRawFNToRecFN.scala:257:14, :261:14] wire [8:0] _expOut_T_5 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:257:18] wire [8:0] _expOut_T_8 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:261:18] wire [8:0] _expOut_T_14 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:269:16] wire [8:0] _expOut_T_16 = 9'h0; // @[RoundAnyRawFNToRecFN.scala:273:16] wire [22:0] _fractOut_T_4 = 23'h0; // @[RoundAnyRawFNToRecFN.scala:284:13] wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:48:5] wire roundingMode_near_even = 1'h1; // @[RoundAnyRawFNToRecFN.scala:90:53] wire _roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:169:38] wire _unboundedRange_roundIncr_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:207:38] wire _common_underflow_T_7 = 1'h1; // @[RoundAnyRawFNToRecFN.scala:222:49] wire _overflow_roundMagUp_T = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:32] wire overflow_roundMagUp = 1'h1; // @[RoundAnyRawFNToRecFN.scala:243:60] wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire roundingMode_minMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:91:53] wire roundingMode_min = 1'h0; // @[RoundAnyRawFNToRecFN.scala:92:53] wire roundingMode_max = 1'h0; // @[RoundAnyRawFNToRecFN.scala:93:53] wire roundingMode_near_maxMag = 1'h0; // @[RoundAnyRawFNToRecFN.scala:94:53] wire roundingMode_odd = 1'h0; // @[RoundAnyRawFNToRecFN.scala:95:53] wire _roundMagUp_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:27] wire _roundMagUp_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:63] wire roundMagUp = 1'h0; // @[RoundAnyRawFNToRecFN.scala:98:42] wire _roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:171:29] wire _roundedSig_T_13 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:181:42] wire _unboundedRange_roundIncr_T_2 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:209:29] wire _pegMinNonzeroMagOut_T_1 = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:60] wire pegMinNonzeroMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:245:45] wire _pegMaxFiniteMagOut_T = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:42] wire pegMaxFiniteMagOut = 1'h0; // @[RoundAnyRawFNToRecFN.scala:246:39] wire notNaN_isSpecialInfOut = io_in_isInf_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :236:49] wire [26:0] adjustedSig = io_in_sig_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :114:22] wire [32:0] _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:286:33] wire [4:0] _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:288:66] wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5] wire _roundMagUp_T_1 = ~io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :98:66] wire doShiftSigDown1 = adjustedSig[26]; // @[RoundAnyRawFNToRecFN.scala:114:22, :120:57] wire [8:0] _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:187:37] wire [8:0] common_expOut; // @[RoundAnyRawFNToRecFN.scala:122:31] wire [22:0] _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:189:16] wire [22:0] common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31] wire _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:196:50] wire common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37] wire _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:200:31] wire common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37] wire _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:217:40] wire common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37] wire _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:230:49] wire common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37] wire [8:0] _roundMask_T = io_in_sExp_0[8:0]; // @[RoundAnyRawFNToRecFN.scala:48:5, :156:37] wire [8:0] _roundMask_T_1 = ~_roundMask_T; // @[primitives.scala:52:21] wire roundMask_msb = _roundMask_T_1[8]; // @[primitives.scala:52:21, :58:25] wire [7:0] roundMask_lsbs = _roundMask_T_1[7:0]; // @[primitives.scala:52:21, :59:26] wire roundMask_msb_1 = roundMask_lsbs[7]; // @[primitives.scala:58:25, :59:26] wire [6:0] roundMask_lsbs_1 = roundMask_lsbs[6:0]; // @[primitives.scala:59:26] wire roundMask_msb_2 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26] wire roundMask_msb_3 = roundMask_lsbs_1[6]; // @[primitives.scala:58:25, :59:26] wire [5:0] roundMask_lsbs_2 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26] wire [5:0] roundMask_lsbs_3 = roundMask_lsbs_1[5:0]; // @[primitives.scala:59:26] wire [64:0] roundMask_shift = $signed(65'sh10000000000000000 >>> roundMask_lsbs_2); // @[primitives.scala:59:26, :76:56] wire [21:0] _roundMask_T_2 = roundMask_shift[63:42]; // @[primitives.scala:76:56, :78:22] wire [15:0] _roundMask_T_3 = _roundMask_T_2[15:0]; // @[primitives.scala:77:20, :78:22] wire [7:0] _roundMask_T_6 = _roundMask_T_3[15:8]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_7 = {8'h0, _roundMask_T_6}; // @[primitives.scala:77:20] wire [7:0] _roundMask_T_8 = _roundMask_T_3[7:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_9 = {_roundMask_T_8, 8'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_11 = _roundMask_T_9 & 16'hFF00; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_12 = _roundMask_T_7 | _roundMask_T_11; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_16 = _roundMask_T_12[15:4]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_17 = {4'h0, _roundMask_T_16 & 12'hF0F}; // @[primitives.scala:77:20] wire [11:0] _roundMask_T_18 = _roundMask_T_12[11:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_19 = {_roundMask_T_18, 4'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_21 = _roundMask_T_19 & 16'hF0F0; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_22 = _roundMask_T_17 | _roundMask_T_21; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_26 = _roundMask_T_22[15:2]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_27 = {2'h0, _roundMask_T_26 & 14'h3333}; // @[primitives.scala:77:20] wire [13:0] _roundMask_T_28 = _roundMask_T_22[13:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_29 = {_roundMask_T_28, 2'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_31 = _roundMask_T_29 & 16'hCCCC; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_32 = _roundMask_T_27 | _roundMask_T_31; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_36 = _roundMask_T_32[15:1]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_37 = {1'h0, _roundMask_T_36 & 15'h5555}; // @[primitives.scala:77:20] wire [14:0] _roundMask_T_38 = _roundMask_T_32[14:0]; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_39 = {_roundMask_T_38, 1'h0}; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_41 = _roundMask_T_39 & 16'hAAAA; // @[primitives.scala:77:20] wire [15:0] _roundMask_T_42 = _roundMask_T_37 | _roundMask_T_41; // @[primitives.scala:77:20] wire [5:0] _roundMask_T_43 = _roundMask_T_2[21:16]; // @[primitives.scala:77:20, :78:22] wire [3:0] _roundMask_T_44 = _roundMask_T_43[3:0]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_45 = _roundMask_T_44[1:0]; // @[primitives.scala:77:20] wire _roundMask_T_46 = _roundMask_T_45[0]; // @[primitives.scala:77:20] wire _roundMask_T_47 = _roundMask_T_45[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_48 = {_roundMask_T_46, _roundMask_T_47}; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_49 = _roundMask_T_44[3:2]; // @[primitives.scala:77:20] wire _roundMask_T_50 = _roundMask_T_49[0]; // @[primitives.scala:77:20] wire _roundMask_T_51 = _roundMask_T_49[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_52 = {_roundMask_T_50, _roundMask_T_51}; // @[primitives.scala:77:20] wire [3:0] _roundMask_T_53 = {_roundMask_T_48, _roundMask_T_52}; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_54 = _roundMask_T_43[5:4]; // @[primitives.scala:77:20] wire _roundMask_T_55 = _roundMask_T_54[0]; // @[primitives.scala:77:20] wire _roundMask_T_56 = _roundMask_T_54[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_57 = {_roundMask_T_55, _roundMask_T_56}; // @[primitives.scala:77:20] wire [5:0] _roundMask_T_58 = {_roundMask_T_53, _roundMask_T_57}; // @[primitives.scala:77:20] wire [21:0] _roundMask_T_59 = {_roundMask_T_42, _roundMask_T_58}; // @[primitives.scala:77:20] wire [21:0] _roundMask_T_60 = ~_roundMask_T_59; // @[primitives.scala:73:32, :77:20] wire [21:0] _roundMask_T_61 = roundMask_msb_2 ? 22'h0 : _roundMask_T_60; // @[primitives.scala:58:25, :73:{21,32}] wire [21:0] _roundMask_T_62 = ~_roundMask_T_61; // @[primitives.scala:73:{17,21}] wire [24:0] _roundMask_T_63 = {_roundMask_T_62, 3'h7}; // @[primitives.scala:68:58, :73:17] wire [64:0] roundMask_shift_1 = $signed(65'sh10000000000000000 >>> roundMask_lsbs_3); // @[primitives.scala:59:26, :76:56] wire [2:0] _roundMask_T_64 = roundMask_shift_1[2:0]; // @[primitives.scala:76:56, :78:22] wire [1:0] _roundMask_T_65 = _roundMask_T_64[1:0]; // @[primitives.scala:77:20, :78:22] wire _roundMask_T_66 = _roundMask_T_65[0]; // @[primitives.scala:77:20] wire _roundMask_T_67 = _roundMask_T_65[1]; // @[primitives.scala:77:20] wire [1:0] _roundMask_T_68 = {_roundMask_T_66, _roundMask_T_67}; // @[primitives.scala:77:20] wire _roundMask_T_69 = _roundMask_T_64[2]; // @[primitives.scala:77:20, :78:22] wire [2:0] _roundMask_T_70 = {_roundMask_T_68, _roundMask_T_69}; // @[primitives.scala:77:20] wire [2:0] _roundMask_T_71 = roundMask_msb_3 ? _roundMask_T_70 : 3'h0; // @[primitives.scala:58:25, :62:24, :77:20] wire [24:0] _roundMask_T_72 = roundMask_msb_1 ? _roundMask_T_63 : {22'h0, _roundMask_T_71}; // @[primitives.scala:58:25, :62:24, :67:24, :68:58] wire [24:0] _roundMask_T_73 = roundMask_msb ? _roundMask_T_72 : 25'h0; // @[primitives.scala:58:25, :62:24, :67:24] wire [24:0] _roundMask_T_74 = {_roundMask_T_73[24:1], _roundMask_T_73[0] | doShiftSigDown1}; // @[primitives.scala:62:24] wire [26:0] roundMask = {_roundMask_T_74, 2'h3}; // @[RoundAnyRawFNToRecFN.scala:159:{23,42}] wire [27:0] _shiftedRoundMask_T = {1'h0, roundMask}; // @[RoundAnyRawFNToRecFN.scala:159:42, :162:41] wire [26:0] shiftedRoundMask = _shiftedRoundMask_T[27:1]; // @[RoundAnyRawFNToRecFN.scala:162:{41,53}] wire [26:0] _roundPosMask_T = ~shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:162:53, :163:28] wire [26:0] roundPosMask = _roundPosMask_T & roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :163:{28,46}] wire [26:0] _roundPosBit_T = adjustedSig & roundPosMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :163:46, :164:40] wire roundPosBit = |_roundPosBit_T; // @[RoundAnyRawFNToRecFN.scala:164:{40,56}] wire _roundIncr_T_1 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :169:67] wire _roundedSig_T_3 = roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :175:49] wire [26:0] _anyRoundExtra_T = adjustedSig & shiftedRoundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :162:53, :165:42] wire anyRoundExtra = |_anyRoundExtra_T; // @[RoundAnyRawFNToRecFN.scala:165:{42,62}] wire anyRound = roundPosBit | anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:164:56, :165:62, :166:36] wire roundIncr = _roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:169:67, :170:31] wire [26:0] _roundedSig_T = adjustedSig | roundMask; // @[RoundAnyRawFNToRecFN.scala:114:22, :159:42, :174:32] wire [24:0] _roundedSig_T_1 = _roundedSig_T[26:2]; // @[RoundAnyRawFNToRecFN.scala:174:{32,44}] wire [25:0] _roundedSig_T_2 = {1'h0, _roundedSig_T_1} + 26'h1; // @[RoundAnyRawFNToRecFN.scala:174:{44,49}] wire _roundedSig_T_4 = ~anyRoundExtra; // @[RoundAnyRawFNToRecFN.scala:165:62, :176:30] wire _roundedSig_T_5 = _roundedSig_T_3 & _roundedSig_T_4; // @[RoundAnyRawFNToRecFN.scala:175:{49,64}, :176:30] wire [25:0] _roundedSig_T_6 = roundMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:159:42, :177:35] wire [25:0] _roundedSig_T_7 = _roundedSig_T_5 ? _roundedSig_T_6 : 26'h0; // @[RoundAnyRawFNToRecFN.scala:175:{25,64}, :177:35] wire [25:0] _roundedSig_T_8 = ~_roundedSig_T_7; // @[RoundAnyRawFNToRecFN.scala:175:{21,25}] wire [25:0] _roundedSig_T_9 = _roundedSig_T_2 & _roundedSig_T_8; // @[RoundAnyRawFNToRecFN.scala:174:{49,57}, :175:21] wire [26:0] _roundedSig_T_10 = ~roundMask; // @[RoundAnyRawFNToRecFN.scala:159:42, :180:32] wire [26:0] _roundedSig_T_11 = adjustedSig & _roundedSig_T_10; // @[RoundAnyRawFNToRecFN.scala:114:22, :180:{30,32}] wire [24:0] _roundedSig_T_12 = _roundedSig_T_11[26:2]; // @[RoundAnyRawFNToRecFN.scala:180:{30,43}] wire [25:0] _roundedSig_T_14 = roundPosMask[26:1]; // @[RoundAnyRawFNToRecFN.scala:163:46, :181:67] wire [25:0] _roundedSig_T_16 = {1'h0, _roundedSig_T_12}; // @[RoundAnyRawFNToRecFN.scala:180:{43,47}] wire [25:0] roundedSig = roundIncr ? _roundedSig_T_9 : _roundedSig_T_16; // @[RoundAnyRawFNToRecFN.scala:170:31, :173:16, :174:57, :180:47] wire [1:0] _sRoundedExp_T = roundedSig[25:24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :185:54] wire [2:0] _sRoundedExp_T_1 = {1'h0, _sRoundedExp_T}; // @[RoundAnyRawFNToRecFN.scala:185:{54,76}] wire [10:0] sRoundedExp = {io_in_sExp_0[9], io_in_sExp_0} + {{8{_sRoundedExp_T_1[2]}}, _sRoundedExp_T_1}; // @[RoundAnyRawFNToRecFN.scala:48:5, :185:{40,76}] assign _common_expOut_T = sRoundedExp[8:0]; // @[RoundAnyRawFNToRecFN.scala:185:40, :187:37] assign common_expOut = _common_expOut_T; // @[RoundAnyRawFNToRecFN.scala:122:31, :187:37] wire [22:0] _common_fractOut_T = roundedSig[23:1]; // @[RoundAnyRawFNToRecFN.scala:173:16, :190:27] wire [22:0] _common_fractOut_T_1 = roundedSig[22:0]; // @[RoundAnyRawFNToRecFN.scala:173:16, :191:27] assign _common_fractOut_T_2 = doShiftSigDown1 ? _common_fractOut_T : _common_fractOut_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :189:16, :190:27, :191:27] assign common_fractOut = _common_fractOut_T_2; // @[RoundAnyRawFNToRecFN.scala:123:31, :189:16] wire [3:0] _common_overflow_T = sRoundedExp[10:7]; // @[RoundAnyRawFNToRecFN.scala:185:40, :196:30] assign _common_overflow_T_1 = $signed(_common_overflow_T) > 4'sh2; // @[RoundAnyRawFNToRecFN.scala:196:{30,50}] assign common_overflow = _common_overflow_T_1; // @[RoundAnyRawFNToRecFN.scala:124:37, :196:50] assign _common_totalUnderflow_T = $signed(sRoundedExp) < 11'sh6B; // @[RoundAnyRawFNToRecFN.scala:185:40, :200:31] assign common_totalUnderflow = _common_totalUnderflow_T; // @[RoundAnyRawFNToRecFN.scala:125:37, :200:31] wire _unboundedRange_roundPosBit_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45] wire _unboundedRange_anyRound_T = adjustedSig[2]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:45, :205:44] wire _unboundedRange_roundPosBit_T_1 = adjustedSig[1]; // @[RoundAnyRawFNToRecFN.scala:114:22, :203:61] wire unboundedRange_roundPosBit = doShiftSigDown1 ? _unboundedRange_roundPosBit_T : _unboundedRange_roundPosBit_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :203:{16,45,61}] wire _unboundedRange_roundIncr_T_1 = unboundedRange_roundPosBit; // @[RoundAnyRawFNToRecFN.scala:203:16, :207:67] wire _unboundedRange_anyRound_T_1 = doShiftSigDown1 & _unboundedRange_anyRound_T; // @[RoundAnyRawFNToRecFN.scala:120:57, :205:{30,44}] wire [1:0] _unboundedRange_anyRound_T_2 = adjustedSig[1:0]; // @[RoundAnyRawFNToRecFN.scala:114:22, :205:63] wire _unboundedRange_anyRound_T_3 = |_unboundedRange_anyRound_T_2; // @[RoundAnyRawFNToRecFN.scala:205:{63,70}] wire unboundedRange_anyRound = _unboundedRange_anyRound_T_1 | _unboundedRange_anyRound_T_3; // @[RoundAnyRawFNToRecFN.scala:205:{30,49,70}] wire unboundedRange_roundIncr = _unboundedRange_roundIncr_T_1; // @[RoundAnyRawFNToRecFN.scala:207:67, :208:46] wire _roundCarry_T = roundedSig[25]; // @[RoundAnyRawFNToRecFN.scala:173:16, :212:27] wire _roundCarry_T_1 = roundedSig[24]; // @[RoundAnyRawFNToRecFN.scala:173:16, :213:27] wire roundCarry = doShiftSigDown1 ? _roundCarry_T : _roundCarry_T_1; // @[RoundAnyRawFNToRecFN.scala:120:57, :211:16, :212:27, :213:27] wire [1:0] _common_underflow_T = io_in_sExp_0[9:8]; // @[RoundAnyRawFNToRecFN.scala:48:5, :220:49] wire _common_underflow_T_1 = _common_underflow_T != 2'h1; // @[RoundAnyRawFNToRecFN.scala:220:{49,64}] wire _common_underflow_T_2 = anyRound & _common_underflow_T_1; // @[RoundAnyRawFNToRecFN.scala:166:36, :220:{32,64}] wire _common_underflow_T_3 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57] wire _common_underflow_T_9 = roundMask[3]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:57, :225:49] wire _common_underflow_T_4 = roundMask[2]; // @[RoundAnyRawFNToRecFN.scala:159:42, :221:71] wire _common_underflow_T_5 = doShiftSigDown1 ? _common_underflow_T_3 : _common_underflow_T_4; // @[RoundAnyRawFNToRecFN.scala:120:57, :221:{30,57,71}] wire _common_underflow_T_6 = _common_underflow_T_2 & _common_underflow_T_5; // @[RoundAnyRawFNToRecFN.scala:220:{32,72}, :221:30] wire _common_underflow_T_8 = roundMask[4]; // @[RoundAnyRawFNToRecFN.scala:159:42, :224:49] wire _common_underflow_T_10 = doShiftSigDown1 ? _common_underflow_T_8 : _common_underflow_T_9; // @[RoundAnyRawFNToRecFN.scala:120:57, :223:39, :224:49, :225:49] wire _common_underflow_T_11 = ~_common_underflow_T_10; // @[RoundAnyRawFNToRecFN.scala:223:{34,39}] wire _common_underflow_T_12 = _common_underflow_T_11; // @[RoundAnyRawFNToRecFN.scala:222:77, :223:34] wire _common_underflow_T_13 = _common_underflow_T_12 & roundCarry; // @[RoundAnyRawFNToRecFN.scala:211:16, :222:77, :226:38] wire _common_underflow_T_14 = _common_underflow_T_13 & roundPosBit; // @[RoundAnyRawFNToRecFN.scala:164:56, :226:38, :227:45] wire _common_underflow_T_15 = _common_underflow_T_14 & unboundedRange_roundIncr; // @[RoundAnyRawFNToRecFN.scala:208:46, :227:{45,60}] wire _common_underflow_T_16 = ~_common_underflow_T_15; // @[RoundAnyRawFNToRecFN.scala:222:27, :227:60] wire _common_underflow_T_17 = _common_underflow_T_6 & _common_underflow_T_16; // @[RoundAnyRawFNToRecFN.scala:220:72, :221:76, :222:27] assign _common_underflow_T_18 = common_totalUnderflow | _common_underflow_T_17; // @[RoundAnyRawFNToRecFN.scala:125:37, :217:40, :221:76] assign common_underflow = _common_underflow_T_18; // @[RoundAnyRawFNToRecFN.scala:126:37, :217:40] assign _common_inexact_T = common_totalUnderflow | anyRound; // @[RoundAnyRawFNToRecFN.scala:125:37, :166:36, :230:49] assign common_inexact = _common_inexact_T; // @[RoundAnyRawFNToRecFN.scala:127:37, :230:49] wire isNaNOut = io_invalidExc_0 | io_in_isNaN_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34] wire _commonCase_T = ~isNaNOut; // @[RoundAnyRawFNToRecFN.scala:235:34, :237:22] wire _commonCase_T_1 = ~notNaN_isSpecialInfOut; // @[RoundAnyRawFNToRecFN.scala:236:49, :237:36] wire _commonCase_T_2 = _commonCase_T & _commonCase_T_1; // @[RoundAnyRawFNToRecFN.scala:237:{22,33,36}] wire _commonCase_T_3 = ~io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :237:64] wire commonCase = _commonCase_T_2 & _commonCase_T_3; // @[RoundAnyRawFNToRecFN.scala:237:{33,61,64}] wire overflow = commonCase & common_overflow; // @[RoundAnyRawFNToRecFN.scala:124:37, :237:61, :238:32] wire _notNaN_isInfOut_T = overflow; // @[RoundAnyRawFNToRecFN.scala:238:32, :248:45] wire underflow = commonCase & common_underflow; // @[RoundAnyRawFNToRecFN.scala:126:37, :237:61, :239:32] wire _inexact_T = commonCase & common_inexact; // @[RoundAnyRawFNToRecFN.scala:127:37, :237:61, :240:43] wire inexact = overflow | _inexact_T; // @[RoundAnyRawFNToRecFN.scala:238:32, :240:{28,43}] wire _pegMinNonzeroMagOut_T = commonCase & common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :237:61, :245:20] wire notNaN_isInfOut = notNaN_isSpecialInfOut | _notNaN_isInfOut_T; // @[RoundAnyRawFNToRecFN.scala:236:49, :248:{32,45}] wire signOut = ~isNaNOut & io_in_sign_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :250:22] wire _expOut_T = io_in_isZero_0 | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:48:5, :125:37, :253:32] wire [8:0] _expOut_T_1 = _expOut_T ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:253:{18,32}] wire [8:0] _expOut_T_2 = ~_expOut_T_1; // @[RoundAnyRawFNToRecFN.scala:253:{14,18}] wire [8:0] _expOut_T_3 = common_expOut & _expOut_T_2; // @[RoundAnyRawFNToRecFN.scala:122:31, :252:24, :253:14] wire [8:0] _expOut_T_7 = _expOut_T_3; // @[RoundAnyRawFNToRecFN.scala:252:24, :256:17] wire [8:0] _expOut_T_10 = _expOut_T_7; // @[RoundAnyRawFNToRecFN.scala:256:17, :260:17] wire [8:0] _expOut_T_11 = {2'h0, notNaN_isInfOut, 6'h0}; // @[RoundAnyRawFNToRecFN.scala:248:32, :265:18] wire [8:0] _expOut_T_12 = ~_expOut_T_11; // @[RoundAnyRawFNToRecFN.scala:265:{14,18}] wire [8:0] _expOut_T_13 = _expOut_T_10 & _expOut_T_12; // @[RoundAnyRawFNToRecFN.scala:260:17, :264:17, :265:14] wire [8:0] _expOut_T_15 = _expOut_T_13; // @[RoundAnyRawFNToRecFN.scala:264:17, :268:18] wire [8:0] _expOut_T_17 = _expOut_T_15; // @[RoundAnyRawFNToRecFN.scala:268:18, :272:15] wire [8:0] _expOut_T_18 = notNaN_isInfOut ? 9'h180 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:248:32, :277:16] wire [8:0] _expOut_T_19 = _expOut_T_17 | _expOut_T_18; // @[RoundAnyRawFNToRecFN.scala:272:15, :276:15, :277:16] wire [8:0] _expOut_T_20 = isNaNOut ? 9'h1C0 : 9'h0; // @[RoundAnyRawFNToRecFN.scala:235:34, :278:16] wire [8:0] expOut = _expOut_T_19 | _expOut_T_20; // @[RoundAnyRawFNToRecFN.scala:276:15, :277:73, :278:16] wire _fractOut_T = isNaNOut | io_in_isZero_0; // @[RoundAnyRawFNToRecFN.scala:48:5, :235:34, :280:22] wire _fractOut_T_1 = _fractOut_T | common_totalUnderflow; // @[RoundAnyRawFNToRecFN.scala:125:37, :280:{22,38}] wire [22:0] _fractOut_T_2 = {isNaNOut, 22'h0}; // @[RoundAnyRawFNToRecFN.scala:235:34, :281:16] wire [22:0] _fractOut_T_3 = _fractOut_T_1 ? _fractOut_T_2 : common_fractOut; // @[RoundAnyRawFNToRecFN.scala:123:31, :280:{12,38}, :281:16] wire [22:0] fractOut = _fractOut_T_3; // @[RoundAnyRawFNToRecFN.scala:280:12, :283:11] wire [9:0] _io_out_T = {signOut, expOut}; // @[RoundAnyRawFNToRecFN.scala:250:22, :277:73, :286:23] assign _io_out_T_1 = {_io_out_T, fractOut}; // @[RoundAnyRawFNToRecFN.scala:283:11, :286:{23,33}] assign io_out_0 = _io_out_T_1; // @[RoundAnyRawFNToRecFN.scala:48:5, :286:33] wire [1:0] _io_exceptionFlags_T = {io_invalidExc_0, 1'h0}; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:23] wire [2:0] _io_exceptionFlags_T_1 = {_io_exceptionFlags_T, overflow}; // @[RoundAnyRawFNToRecFN.scala:238:32, :288:{23,41}] wire [3:0] _io_exceptionFlags_T_2 = {_io_exceptionFlags_T_1, underflow}; // @[RoundAnyRawFNToRecFN.scala:239:32, :288:{41,53}] assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, inexact}; // @[RoundAnyRawFNToRecFN.scala:240:28, :288:{53,66}] assign io_exceptionFlags_0 = _io_exceptionFlags_T_3; // @[RoundAnyRawFNToRecFN.scala:48:5, :288:66] assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:48:5] assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:48:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_154( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_266 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File ToAXI4.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.amba.{AMBACorrupt, AMBACorruptField, AMBAProt, AMBAProtField} import freechips.rocketchip.amba.axi4.{AXI4BundleARW, AXI4MasterParameters, AXI4MasterPortParameters, AXI4Parameters, AXI4Imp} import freechips.rocketchip.diplomacy.{IdMap, IdMapEntry, IdRange} import freechips.rocketchip.util.{BundleField, ControlKey, ElaborationArtefacts, UIntToOH1} import freechips.rocketchip.util.DataToAugmentedData class AXI4TLStateBundle(val sourceBits: Int) extends Bundle { val size = UInt(4.W) val source = UInt((sourceBits max 1).W) } case object AXI4TLState extends ControlKey[AXI4TLStateBundle]("tl_state") case class AXI4TLStateField(sourceBits: Int) extends BundleField[AXI4TLStateBundle](AXI4TLState, Output(new AXI4TLStateBundle(sourceBits)), x => { x.size := 0.U x.source := 0.U }) /** TLtoAXI4IdMap serves as a record for the translation performed between id spaces. * * Its member [axi4Masters] is used as the new AXI4MasterParameters in diplomacy. * Its member [mapping] is used as the template for the circuit generated in TLToAXI4Node.module. */ class TLtoAXI4IdMap(tlPort: TLMasterPortParameters) extends IdMap[TLToAXI4IdMapEntry] { val tlMasters = tlPort.masters.sortBy(_.sourceId).sortWith(TLToAXI4.sortByType) private val axi4IdSize = tlMasters.map { tl => if (tl.requestFifo) 1 else tl.sourceId.size } private val axi4IdStart = axi4IdSize.scanLeft(0)(_+_).init val axi4Masters = axi4IdStart.zip(axi4IdSize).zip(tlMasters).map { case ((start, size), tl) => AXI4MasterParameters( name = tl.name, id = IdRange(start, start+size), aligned = true, maxFlight = Some(if (tl.requestFifo) tl.sourceId.size else 1), nodePath = tl.nodePath) } private val axi4IdEnd = axi4Masters.map(_.id.end).max private val axiDigits = String.valueOf(axi4IdEnd-1).length() private val tlDigits = String.valueOf(tlPort.endSourceId-1).length() protected val fmt = s"\t[%${axiDigits}d, %${axiDigits}d) <= [%${tlDigits}d, %${tlDigits}d) %s%s%s" val mapping: Seq[TLToAXI4IdMapEntry] = tlMasters.zip(axi4Masters).map { case (tl, axi) => TLToAXI4IdMapEntry(axi.id, tl.sourceId, tl.name, tl.supports.probe, tl.requestFifo) } } case class TLToAXI4IdMapEntry(axi4Id: IdRange, tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean) extends IdMapEntry { val from = tlId val to = axi4Id val maxTransactionsInFlight = Some(tlId.size) } case class TLToAXI4Node(wcorrupt: Boolean = true)(implicit valName: ValName) extends MixedAdapterNode(TLImp, AXI4Imp)( dFn = { p => AXI4MasterPortParameters( masters = (new TLtoAXI4IdMap(p)).axi4Masters, requestFields = (if (wcorrupt) Seq(AMBACorruptField()) else Seq()) ++ p.requestFields.filter(!_.isInstanceOf[AMBAProtField]), echoFields = AXI4TLStateField(log2Ceil(p.endSourceId)) +: p.echoFields, responseKeys = p.responseKeys) }, uFn = { p => TLSlavePortParameters.v1( managers = p.slaves.map { case s => TLSlaveParameters.v1( address = s.address, resources = s.resources, regionType = s.regionType, executable = s.executable, nodePath = s.nodePath, supportsGet = s.supportsRead, supportsPutFull = s.supportsWrite, supportsPutPartial = s.supportsWrite, fifoId = Some(0), mayDenyPut = true, mayDenyGet = true)}, beatBytes = p.beatBytes, minLatency = p.minLatency, responseFields = p.responseFields, requestKeys = AMBAProt +: p.requestKeys) }) // wcorrupt alone is not enough; a slave must include AMBACorrupt in the slave port's requestKeys class TLToAXI4(val combinational: Boolean = true, val adapterName: Option[String] = None, val stripBits: Int = 0, val wcorrupt: Boolean = true)(implicit p: Parameters) extends LazyModule { require(stripBits == 0, "stripBits > 0 is no longer supported on TLToAXI4") val node = TLToAXI4Node(wcorrupt) lazy val module = new Impl class Impl extends LazyModuleImp(this) { (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => val slaves = edgeOut.slave.slaves // All pairs of slaves must promise that they will never interleave data require (slaves(0).interleavedId.isDefined) slaves.foreach { s => require (s.interleavedId == slaves(0).interleavedId) } // Construct the source=>ID mapping table val map = new TLtoAXI4IdMap(edgeIn.client) val sourceStall = WireDefault(VecInit.fill(edgeIn.client.endSourceId)(false.B)) val sourceTable = WireDefault(VecInit.fill(edgeIn.client.endSourceId)(0.U.asTypeOf(out.aw.bits.id))) val idStall = WireDefault(VecInit.fill(edgeOut.master.endId)(false.B)) var idCount = Array.fill(edgeOut.master.endId) { None:Option[Int] } map.mapping.foreach { case TLToAXI4IdMapEntry(axi4Id, tlId, _, _, fifo) => for (i <- 0 until tlId.size) { val id = axi4Id.start + (if (fifo) 0 else i) sourceStall(tlId.start + i) := idStall(id) sourceTable(tlId.start + i) := id.U } if (fifo) { idCount(axi4Id.start) = Some(tlId.size) } } adapterName.foreach { n => println(s"$n AXI4-ID <= TL-Source mapping:\n${map.pretty}\n") ElaborationArtefacts.add(s"$n.axi4.json", s"""{"mapping":[${map.mapping.mkString(",")}]}""") } // We need to keep the following state from A => D: (size, source) // All of those fields could potentially require 0 bits (argh. Chisel.) // We will pack all of that extra information into the echo bits. require (log2Ceil(edgeIn.maxLgSize+1) <= 4) val a_address = edgeIn.address(in.a.bits) val a_source = in.a.bits.source val a_size = edgeIn.size(in.a.bits) val a_isPut = edgeIn.hasData(in.a.bits) val (a_first, a_last, _) = edgeIn.firstlast(in.a) val r_state = out.r.bits.echo(AXI4TLState) val r_source = r_state.source val r_size = r_state.size val b_state = out.b.bits.echo(AXI4TLState) val b_source = b_state.source val b_size = b_state.size // We need these Queues because AXI4 queues are irrevocable val depth = if (combinational) 1 else 2 val out_arw = Wire(Decoupled(new AXI4BundleARW(out.params))) val out_w = Wire(chiselTypeOf(out.w)) out.w :<>= Queue.irrevocable(out_w, entries=depth, flow=combinational) val queue_arw = Queue.irrevocable(out_arw, entries=depth, flow=combinational) // Fan out the ARW channel to AR and AW out.ar.bits := queue_arw.bits out.aw.bits := queue_arw.bits out.ar.valid := queue_arw.valid && !queue_arw.bits.wen out.aw.valid := queue_arw.valid && queue_arw.bits.wen queue_arw.ready := Mux(queue_arw.bits.wen, out.aw.ready, out.ar.ready) val beatBytes = edgeIn.manager.beatBytes val maxSize = log2Ceil(beatBytes).U val doneAW = RegInit(false.B) when (in.a.fire) { doneAW := !a_last } val arw = out_arw.bits arw.wen := a_isPut arw.id := sourceTable(a_source) arw.addr := a_address arw.len := UIntToOH1(a_size, AXI4Parameters.lenBits + log2Ceil(beatBytes)) >> log2Ceil(beatBytes) arw.size := Mux(a_size >= maxSize, maxSize, a_size) arw.burst := AXI4Parameters.BURST_INCR arw.lock := 0.U // not exclusive (LR/SC unsupported b/c no forward progress guarantee) arw.cache := 0.U // do not allow AXI to modify our transactions arw.prot := AXI4Parameters.PROT_PRIVILEGED arw.qos := 0.U // no QoS Connectable.waiveUnmatched(arw.user, in.a.bits.user) match { case (lhs, rhs) => lhs :<= rhs } Connectable.waiveUnmatched(arw.echo, in.a.bits.echo) match { case (lhs, rhs) => lhs :<= rhs } val a_extra = arw.echo(AXI4TLState) a_extra.source := a_source a_extra.size := a_size in.a.bits.user.lift(AMBAProt).foreach { x => val prot = Wire(Vec(3, Bool())) val cache = Wire(Vec(4, Bool())) prot(0) := x.privileged prot(1) := !x.secure prot(2) := x.fetch cache(0) := x.bufferable cache(1) := x.modifiable cache(2) := x.readalloc cache(3) := x.writealloc arw.prot := Cat(prot.reverse) arw.cache := Cat(cache.reverse) } val stall = sourceStall(in.a.bits.source) && a_first in.a.ready := !stall && Mux(a_isPut, (doneAW || out_arw.ready) && out_w.ready, out_arw.ready) out_arw.valid := !stall && in.a.valid && Mux(a_isPut, !doneAW && out_w.ready, true.B) out_w.valid := !stall && in.a.valid && a_isPut && (doneAW || out_arw.ready) out_w.bits.data := in.a.bits.data out_w.bits.strb := in.a.bits.mask out_w.bits.last := a_last out_w.bits.user.lift(AMBACorrupt).foreach { _ := in.a.bits.corrupt } // R and B => D arbitration val r_holds_d = RegInit(false.B) when (out.r.fire) { r_holds_d := !out.r.bits.last } // Give R higher priority than B, unless B has been delayed for 8 cycles val b_delay = Reg(UInt(3.W)) when (out.b.valid && !out.b.ready) { b_delay := b_delay + 1.U } .otherwise { b_delay := 0.U } val r_wins = (out.r.valid && b_delay =/= 7.U) || r_holds_d out.r.ready := in.d.ready && r_wins out.b.ready := in.d.ready && !r_wins in.d.valid := Mux(r_wins, out.r.valid, out.b.valid) // If the first beat of the AXI RRESP is RESP_DECERR, treat this as a denied // request. We must pulse extend this value as AXI is allowed to change the // value of RRESP on every beat, and ChipLink may not. val r_first = RegInit(true.B) when (out.r.fire) { r_first := out.r.bits.last } val r_denied = out.r.bits.resp === AXI4Parameters.RESP_DECERR holdUnless r_first val r_corrupt = out.r.bits.resp =/= AXI4Parameters.RESP_OKAY val b_denied = out.b.bits.resp =/= AXI4Parameters.RESP_OKAY val r_d = edgeIn.AccessAck(r_source, r_size, 0.U, denied = r_denied, corrupt = r_corrupt || r_denied) val b_d = edgeIn.AccessAck(b_source, b_size, denied = b_denied) Connectable.waiveUnmatched(r_d.user, out.r.bits.user) match { case (lhs, rhs) => lhs.squeezeAll :<= rhs.squeezeAll } Connectable.waiveUnmatched(r_d.echo, out.r.bits.echo) match { case (lhs, rhs) => lhs.squeezeAll :<= rhs.squeezeAll } Connectable.waiveUnmatched(b_d.user, out.b.bits.user) match { case (lhs, rhs) => lhs.squeezeAll :<= rhs.squeezeAll } Connectable.waiveUnmatched(b_d.echo, out.b.bits.echo) match { case (lhs, rhs) => lhs.squeezeAll :<= rhs.squeezeAll } in.d.bits := Mux(r_wins, r_d, b_d) in.d.bits.data := out.r.bits.data // avoid a costly Mux // We need to track if any reads or writes are inflight for a given ID. // If the opposite type arrives, we must stall until it completes. val a_sel = UIntToOH(arw.id, edgeOut.master.endId).asBools val d_sel = UIntToOH(Mux(r_wins, out.r.bits.id, out.b.bits.id), edgeOut.master.endId).asBools val d_last = Mux(r_wins, out.r.bits.last, true.B) // If FIFO was requested, ensure that R+W ordering is preserved (a_sel zip d_sel zip idStall zip idCount) foreach { case (((as, ds), s), n) => // AXI does not guarantee read vs. write ordering. In particular, if we // are in the middle of receiving a read burst and then issue a write, // the write might affect the read burst. This violates FIFO behaviour. // To solve this, we must wait until the last beat of a burst, but this // means that a TileLink master which performs early source reuse can // have one more transaction inflight than we promised AXI; stall it too. val maxCount = n.getOrElse(1) val count = RegInit(0.U(log2Ceil(maxCount + 1).W)) val write = Reg(Bool()) val idle = count === 0.U val inc = as && out_arw.fire val dec = ds && d_last && in.d.fire count := count + inc.asUInt - dec.asUInt assert (!dec || count =/= 0.U) // underflow assert (!inc || count =/= maxCount.U) // overflow when (inc) { write := arw.wen } // If only one transaction can be inflight, it can't mismatch val mismatch = if (maxCount > 1) { write =/= arw.wen } else { false.B } s := (!idle && mismatch) || (count === maxCount.U) } // Tie off unused channels in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B } } } object TLToAXI4 { def apply(combinational: Boolean = true, adapterName: Option[String] = None, stripBits: Int = 0, wcorrupt: Boolean = true)(implicit p: Parameters) = { val tl2axi4 = LazyModule(new TLToAXI4(combinational, adapterName, stripBits, wcorrupt)) tl2axi4.node } def sortByType(a: TLMasterParameters, b: TLMasterParameters): Boolean = { if ( a.supports.probe && !b.supports.probe) return false if (!a.supports.probe && b.supports.probe) return true if ( a.requestFifo && !b.requestFifo ) return false if (!a.requestFifo && b.requestFifo ) return true return false } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLToAXI4( // @[ToAXI4.scala:103:9] input clock, // @[ToAXI4.scala:103:9] input reset, // @[ToAXI4.scala:103:9] output auto_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [1:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [10:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [14:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_user_amba_prot_bufferable, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_user_amba_prot_modifiable, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_user_amba_prot_readalloc, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_user_amba_prot_writealloc, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_user_amba_prot_privileged, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_user_amba_prot_secure, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_user_amba_prot_fetch, // @[LazyModuleImp.scala:107:25] input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [10:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_out_aw_ready, // @[LazyModuleImp.scala:107:25] output auto_out_aw_valid, // @[LazyModuleImp.scala:107:25] output auto_out_aw_bits_id, // @[LazyModuleImp.scala:107:25] output [14:0] auto_out_aw_bits_addr, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_aw_bits_len, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_aw_bits_size, // @[LazyModuleImp.scala:107:25] output [1:0] auto_out_aw_bits_burst, // @[LazyModuleImp.scala:107:25] output auto_out_aw_bits_lock, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_aw_bits_cache, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_aw_bits_prot, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_aw_bits_qos, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_aw_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25] output [10:0] auto_out_aw_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25] input auto_out_w_ready, // @[LazyModuleImp.scala:107:25] output auto_out_w_valid, // @[LazyModuleImp.scala:107:25] output [63:0] auto_out_w_bits_data, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_w_bits_strb, // @[LazyModuleImp.scala:107:25] output auto_out_w_bits_last, // @[LazyModuleImp.scala:107:25] output auto_out_b_ready, // @[LazyModuleImp.scala:107:25] input auto_out_b_valid, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_b_bits_resp, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_b_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25] input [10:0] auto_out_b_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25] input auto_out_ar_ready, // @[LazyModuleImp.scala:107:25] output auto_out_ar_valid, // @[LazyModuleImp.scala:107:25] output auto_out_ar_bits_id, // @[LazyModuleImp.scala:107:25] output [14:0] auto_out_ar_bits_addr, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_ar_bits_len, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_ar_bits_size, // @[LazyModuleImp.scala:107:25] output [1:0] auto_out_ar_bits_burst, // @[LazyModuleImp.scala:107:25] output auto_out_ar_bits_lock, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_ar_bits_cache, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_ar_bits_prot, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_ar_bits_qos, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_ar_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25] output [10:0] auto_out_ar_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25] output auto_out_r_ready, // @[LazyModuleImp.scala:107:25] input auto_out_r_valid, // @[LazyModuleImp.scala:107:25] input [63:0] auto_out_r_bits_data, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_r_bits_resp, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_r_bits_echo_tl_state_size, // @[LazyModuleImp.scala:107:25] input [10:0] auto_out_r_bits_echo_tl_state_source, // @[LazyModuleImp.scala:107:25] input auto_out_r_bits_last // @[LazyModuleImp.scala:107:25] ); wire idStall_0; // @[ToAXI4.scala:286:34] wire _queue_arw_deq_q_io_enq_ready; // @[Decoupled.scala:362:21] wire _queue_arw_deq_q_io_deq_valid; // @[Decoupled.scala:362:21] wire _queue_arw_deq_q_io_deq_bits_id; // @[Decoupled.scala:362:21] wire [14:0] _queue_arw_deq_q_io_deq_bits_addr; // @[Decoupled.scala:362:21] wire [7:0] _queue_arw_deq_q_io_deq_bits_len; // @[Decoupled.scala:362:21] wire [2:0] _queue_arw_deq_q_io_deq_bits_size; // @[Decoupled.scala:362:21] wire [1:0] _queue_arw_deq_q_io_deq_bits_burst; // @[Decoupled.scala:362:21] wire _queue_arw_deq_q_io_deq_bits_lock; // @[Decoupled.scala:362:21] wire [3:0] _queue_arw_deq_q_io_deq_bits_cache; // @[Decoupled.scala:362:21] wire [2:0] _queue_arw_deq_q_io_deq_bits_prot; // @[Decoupled.scala:362:21] wire [3:0] _queue_arw_deq_q_io_deq_bits_qos; // @[Decoupled.scala:362:21] wire [3:0] _queue_arw_deq_q_io_deq_bits_echo_tl_state_size; // @[Decoupled.scala:362:21] wire [10:0] _queue_arw_deq_q_io_deq_bits_echo_tl_state_source; // @[Decoupled.scala:362:21] wire _queue_arw_deq_q_io_deq_bits_wen; // @[Decoupled.scala:362:21] wire _nodeOut_w_deq_q_io_enq_ready; // @[Decoupled.scala:362:21] reg r_counter; // @[Edges.scala:229:27] wire [13:0] _out_arw_bits_len_T = 14'h7FF << auto_in_a_bits_size; // @[package.scala:243:71] wire stall = idStall_0 & ~r_counter; // @[ToAXI4.scala:205:49, :286:34] wire nodeIn_a_ready = ~stall & (auto_in_a_bits_opcode[2] | _nodeOut_w_deq_q_io_enq_ready) & _queue_arw_deq_q_io_enq_ready; // @[Decoupled.scala:362:21] wire out_arw_valid = ~stall & auto_in_a_valid & (auto_in_a_bits_opcode[2] | _nodeOut_w_deq_q_io_enq_ready); // @[Decoupled.scala:362:21] reg r_holds_d; // @[ToAXI4.scala:216:30] reg [2:0] b_delay; // @[ToAXI4.scala:219:24] wire r_wins = auto_out_r_valid & b_delay != 3'h7 | r_holds_d; // @[ToAXI4.scala:216:30, :219:24, :225:{33,44,53}] wire nodeOut_r_ready = auto_in_d_ready & r_wins; // @[ToAXI4.scala:225:53, :227:33] wire nodeOut_b_ready = auto_in_d_ready & ~r_wins; // @[ToAXI4.scala:225:53, :228:{33,36}] wire nodeIn_d_valid = r_wins ? auto_out_r_valid : auto_out_b_valid; // @[ToAXI4.scala:225:53, :229:24] reg r_first; // @[ToAXI4.scala:234:28] reg r_denied_r; // @[package.scala:88:63] wire r_denied = r_first ? (&auto_out_r_bits_resp) : r_denied_r; // @[package.scala:88:{42,63}] wire [2:0] nodeIn_d_bits_opcode = {2'h0, r_wins}; // @[ToAXI4.scala:225:53, :255:23] wire [1:0] nodeIn_d_bits_size = r_wins ? auto_out_r_bits_echo_tl_state_size[1:0] : auto_out_b_bits_echo_tl_state_size[1:0]; // @[ToAXI4.scala:225:53, :255:23] wire [10:0] nodeIn_d_bits_source = r_wins ? auto_out_r_bits_echo_tl_state_source : auto_out_b_bits_echo_tl_state_source; // @[ToAXI4.scala:225:53, :255:23] wire nodeIn_d_bits_denied = r_wins ? r_denied : (|auto_out_b_bits_resp); // @[package.scala:88:42] wire nodeIn_d_bits_corrupt = r_wins & ((|auto_out_r_bits_resp) | r_denied); // @[package.scala:88:42] reg [10:0] count; // @[ToAXI4.scala:272:28] reg write; // @[ToAXI4.scala:273:24] wire inc = _queue_arw_deq_q_io_enq_ready & out_arw_valid; // @[Decoupled.scala:51:35, :362:21] wire dec = (~r_wins | auto_out_r_bits_last) & auto_in_d_ready & nodeIn_d_valid; // @[Decoupled.scala:51:35]
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_42( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [5:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_b_ready, // @[Monitor.scala:20:14] input io_in_b_valid, // @[Monitor.scala:20:14] input [1:0] io_in_b_bits_param, // @[Monitor.scala:20:14] input [5:0] io_in_b_bits_source, // @[Monitor.scala:20:14] input [31:0] io_in_b_bits_address, // @[Monitor.scala:20:14] input io_in_c_ready, // @[Monitor.scala:20:14] input io_in_c_valid, // @[Monitor.scala:20:14] input [2:0] io_in_c_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_c_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_c_bits_size, // @[Monitor.scala:20:14] input [5:0] io_in_c_bits_source, // @[Monitor.scala:20:14] input [31:0] io_in_c_bits_address, // @[Monitor.scala:20:14] input io_in_c_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [5:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt, // @[Monitor.scala:20:14] input io_in_e_valid, // @[Monitor.scala:20:14] input [2:0] io_in_e_bits_sink // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire [12:0] _GEN = {10'h0, io_in_a_bits_size}; // @[package.scala:243:71] wire [12:0] _GEN_0 = {10'h0, io_in_c_bits_size}; // @[package.scala:243:71] wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35] reg [2:0] a_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [2:0] size; // @[Monitor.scala:389:22] reg [5:0] source; // @[Monitor.scala:390:22] reg [31:0] address; // @[Monitor.scala:391:22] wire _d_first_T_3 = io_in_d_ready & io_in_d_valid; // @[Decoupled.scala:51:35] reg [2:0] d_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [2:0] size_1; // @[Monitor.scala:540:22] reg [5:0] source_1; // @[Monitor.scala:541:22] reg [2:0] sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [2:0] b_first_counter; // @[Edges.scala:229:27] reg [1:0] param_2; // @[Monitor.scala:411:22] reg [5:0] source_2; // @[Monitor.scala:413:22] reg [31:0] address_1; // @[Monitor.scala:414:22] wire _c_first_T_1 = io_in_c_ready & io_in_c_valid; // @[Decoupled.scala:51:35] reg [2:0] c_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_3; // @[Monitor.scala:515:22] reg [2:0] param_3; // @[Monitor.scala:516:22] reg [2:0] size_3; // @[Monitor.scala:517:22] reg [5:0] source_3; // @[Monitor.scala:518:22] reg [31:0] address_2; // @[Monitor.scala:519:22] reg [46:0] inflight; // @[Monitor.scala:614:27] reg [187:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [187:0] inflight_sizes; // @[Monitor.scala:618:33] reg [2:0] a_first_counter_1; // @[Edges.scala:229:27] wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] reg [2:0] d_first_counter_1; // @[Edges.scala:229:27] wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire [63:0] _GEN_1 = {58'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35] wire _GEN_2 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35] wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46] wire _GEN_3 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74] wire [63:0] _GEN_4 = {58'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35] reg [31:0] watchdog; // @[Monitor.scala:709:27] reg [46:0] inflight_1; // @[Monitor.scala:726:35] reg [187:0] inflight_sizes_1; // @[Monitor.scala:728:35] reg [2:0] c_first_counter_1; // @[Edges.scala:229:27] wire c_first_1 = c_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] reg [2:0] d_first_counter_2; // @[Edges.scala:229:27] wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _GEN_5 = io_in_c_bits_opcode[2] & io_in_c_bits_opcode[1]; // @[Edges.scala:68:{36,40,51}] wire [63:0] _GEN_6 = {58'h0, io_in_c_bits_source}; // @[OneHot.scala:58:35] wire _GEN_7 = _c_first_T_1 & c_first_1 & _GEN_5; // @[Decoupled.scala:51:35] reg [31:0] watchdog_1; // @[Monitor.scala:818:27] reg [6:0] inflight_2; // @[Monitor.scala:828:27] reg [2:0] d_first_counter_3; // @[Edges.scala:229:27] wire d_first_3 = d_first_counter_3 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _GEN_8 = _d_first_T_3 & d_first_3 & io_in_d_bits_opcode[2] & ~(io_in_d_bits_opcode[1]); // @[Decoupled.scala:51:35] wire [7:0] _d_set_T = 8'h1 << io_in_d_bits_sink; // @[OneHot.scala:58:35] wire [6:0] d_set = _GEN_8 ? _d_set_T[6:0] : 7'h0; // @[OneHot.scala:58:35]
Generate the Verilog code corresponding to the following Chisel files. File Repeater.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{Decoupled, DecoupledIO} // A Repeater passes its input to its output, unless repeat is asserted. // When repeat is asserted, the Repeater copies the input and repeats it next cycle. class Repeater[T <: Data](gen: T) extends Module { override def desiredName = s"Repeater_${gen.typeName}" val io = IO( new Bundle { val repeat = Input(Bool()) val full = Output(Bool()) val enq = Flipped(Decoupled(gen.cloneType)) val deq = Decoupled(gen.cloneType) } ) val full = RegInit(false.B) val saved = Reg(gen.cloneType) // When !full, a repeater is pass-through io.deq.valid := io.enq.valid || full io.enq.ready := io.deq.ready && !full io.deq.bits := Mux(full, saved, io.enq.bits) io.full := full when (io.enq.fire && io.repeat) { full := true.B; saved := io.enq.bits } when (io.deq.fire && !io.repeat) { full := false.B } } object Repeater { def apply[T <: Data](enq: DecoupledIO[T], repeat: Bool): DecoupledIO[T] = { val repeater = Module(new Repeater(chiselTypeOf(enq.bits))) repeater.io.repeat := repeat repeater.io.enq <> enq repeater.io.deq } }
module Repeater_TLBundleA_a28d64s6k1z3u( // @[Repeater.scala:10:7] input clock, // @[Repeater.scala:10:7] input reset, // @[Repeater.scala:10:7] input io_repeat, // @[Repeater.scala:13:14] output io_full, // @[Repeater.scala:13:14] output io_enq_ready, // @[Repeater.scala:13:14] input io_enq_valid, // @[Repeater.scala:13:14] input [2:0] io_enq_bits_opcode, // @[Repeater.scala:13:14] input [2:0] io_enq_bits_param, // @[Repeater.scala:13:14] input [2:0] io_enq_bits_size, // @[Repeater.scala:13:14] input [5:0] io_enq_bits_source, // @[Repeater.scala:13:14] input [27:0] io_enq_bits_address, // @[Repeater.scala:13:14] input [7:0] io_enq_bits_mask, // @[Repeater.scala:13:14] input io_enq_bits_corrupt, // @[Repeater.scala:13:14] input io_deq_ready, // @[Repeater.scala:13:14] output io_deq_valid, // @[Repeater.scala:13:14] output [2:0] io_deq_bits_opcode, // @[Repeater.scala:13:14] output [2:0] io_deq_bits_param, // @[Repeater.scala:13:14] output [2:0] io_deq_bits_size, // @[Repeater.scala:13:14] output [5:0] io_deq_bits_source, // @[Repeater.scala:13:14] output [27:0] io_deq_bits_address, // @[Repeater.scala:13:14] output [7:0] io_deq_bits_mask, // @[Repeater.scala:13:14] output io_deq_bits_corrupt // @[Repeater.scala:13:14] ); reg full; // @[Repeater.scala:20:21] reg [2:0] saved_opcode; // @[Repeater.scala:21:18] reg [2:0] saved_param; // @[Repeater.scala:21:18] reg [2:0] saved_size; // @[Repeater.scala:21:18] reg [5:0] saved_source; // @[Repeater.scala:21:18] reg [27:0] saved_address; // @[Repeater.scala:21:18] reg [7:0] saved_mask; // @[Repeater.scala:21:18] reg saved_corrupt; // @[Repeater.scala:21:18] wire io_deq_valid_0 = io_enq_valid | full; // @[Repeater.scala:20:21, :24:32] wire io_enq_ready_0 = io_deq_ready & ~full; // @[Repeater.scala:20:21, :25:{32,35}] wire _GEN = io_enq_ready_0 & io_enq_valid & io_repeat; // @[Decoupled.scala:51:35] always @(posedge clock) begin // @[Repeater.scala:10:7] if (reset) // @[Repeater.scala:10:7] full <= 1'h0; // @[Repeater.scala:20:21] else // @[Repeater.scala:10:7] full <= ~(io_deq_ready & io_deq_valid_0 & ~io_repeat) & (_GEN | full); // @[Decoupled.scala:51:35] if (_GEN) begin // @[Decoupled.scala:51:35] saved_opcode <= io_enq_bits_opcode; // @[Repeater.scala:21:18] saved_param <= io_enq_bits_param; // @[Repeater.scala:21:18] saved_size <= io_enq_bits_size; // @[Repeater.scala:21:18] saved_source <= io_enq_bits_source; // @[Repeater.scala:21:18] saved_address <= io_enq_bits_address; // @[Repeater.scala:21:18] saved_mask <= io_enq_bits_mask; // @[Repeater.scala:21:18] saved_corrupt <= io_enq_bits_corrupt; // @[Repeater.scala:21:18] end always @(posedge)
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File MulAddRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle { //*** ENCODE SOME OF THESE CASES IN FEWER BITS?: val isSigNaNAny = Bool() val isNaNAOrB = Bool() val isInfA = Bool() val isZeroA = Bool() val isInfB = Bool() val isZeroB = Bool() val signProd = Bool() val isNaNC = Bool() val isInfC = Bool() val isZeroC = Bool() val sExpSum = SInt((expWidth + 2).W) val doSubMags = Bool() val CIsDominant = Bool() val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W) val highAlignedSigC = UInt((sigWidth + 2).W) val bit0AlignedSigC = UInt(1.W) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val mulAddA = Output(UInt(sigWidth.W)) val mulAddB = Output(UInt(sigWidth.W)) val mulAddC = Output(UInt((sigWidth * 2).W)) val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ //*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN //*** UNSHIFTED C AND PRODUCT): val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a) val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b) val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c) val signProd = rawA.sign ^ rawB.sign ^ io.op(1) //*** REVIEW THE BIAS FOR 'sExpAlignedProd': val sExpAlignedProd = rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S val doSubMags = signProd ^ rawC.sign ^ io.op(0) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sNatCAlignDist = sExpAlignedProd - rawC.sExp val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0) val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S) val CIsDominant = ! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U)) val CAlignDist = Mux(isMinCAlign, 0.U, Mux(posNatCAlignDist < (sigSumWidth - 1).U, posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0), (sigSumWidth - 1).U ) ) val mainAlignedSigC = (Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist val reduced4CExtra = (orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) & lowMask( CAlignDist>>2, //*** NOT NEEDED?: // (sigSumWidth + 2)>>2, (sigSumWidth - 1)>>2, (sigSumWidth - sigWidth - 1)>>2 ) ).orR val alignedSigC = Cat(mainAlignedSigC>>3, Mux(doSubMags, mainAlignedSigC(2, 0).andR && ! reduced4CExtra, mainAlignedSigC(2, 0).orR || reduced4CExtra ) ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.mulAddA := rawA.sig io.mulAddB := rawB.sig io.mulAddC := alignedSigC(sigWidth * 2, 1) io.toPostMul.isSigNaNAny := isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) || isSigNaNRawFloat(rawC) io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN io.toPostMul.isInfA := rawA.isInf io.toPostMul.isZeroA := rawA.isZero io.toPostMul.isInfB := rawB.isInf io.toPostMul.isZeroB := rawB.isZero io.toPostMul.signProd := signProd io.toPostMul.isNaNC := rawC.isNaN io.toPostMul.isInfC := rawC.isInf io.toPostMul.isZeroC := rawC.isZero io.toPostMul.sExpSum := Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S) io.toPostMul.doSubMags := doSubMags io.toPostMul.CIsDominant := CIsDominant io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0) io.toPostMul.highAlignedSigC := alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1) io.toPostMul.bit0AlignedSigC := alignedSigC(0) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth)) val mulAddResult = Input(UInt((sigWidth * 2 + 1).W)) val roundingMode = Input(UInt(3.W)) val invalidExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_min = (io.roundingMode === round_min) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags val sigSum = Cat(Mux(io.mulAddResult(sigWidth * 2), io.fromPreMul.highAlignedSigC + 1.U, io.fromPreMul.highAlignedSigC ), io.mulAddResult(sigWidth * 2 - 1, 0), io.fromPreMul.bit0AlignedSigC ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val CDom_sign = opSignC val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext val CDom_absSigSum = Mux(io.fromPreMul.doSubMags, ~sigSum(sigSumWidth - 1, sigWidth + 1), 0.U(1.W) ## //*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO: io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ## sigSum(sigSumWidth - 3, sigWidth + 2) ) val CDom_absSigSumExtra = Mux(io.fromPreMul.doSubMags, (~sigSum(sigWidth, 1)).orR, sigSum(sigWidth + 1, 1).orR ) val CDom_mainSig = (CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)( sigWidth * 2 + 1, sigWidth - 3) val CDom_reduced4SigExtra = (orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) & lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR val CDom_sig = Cat(CDom_mainSig>>3, CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra || CDom_absSigSumExtra ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notCDom_signSigSum = sigSum(sigWidth * 2 + 3) val notCDom_absSigSum = Mux(notCDom_signSigSum, ~sigSum(sigWidth * 2 + 2, 0), sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags ) val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum) val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum) val notCDom_nearNormDist = notCDom_normDistReduced2<<1 val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext val notCDom_mainSig = (notCDom_absSigSum<<notCDom_nearNormDist)( sigWidth * 2 + 3, sigWidth - 1) val notCDom_reduced4SigExtra = (orReduceBy2( notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) & lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2) ).orR val notCDom_sig = Cat(notCDom_mainSig>>3, notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra ) val notCDom_completeCancellation = (notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U) val notCDom_sign = Mux(notCDom_completeCancellation, roundingMode_min, io.fromPreMul.signProd ^ notCDom_signSigSum ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC val notNaN_addZeros = (io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) && io.fromPreMul.isZeroC io.invalidExc := io.fromPreMul.isSigNaNAny || (io.fromPreMul.isInfA && io.fromPreMul.isZeroB) || (io.fromPreMul.isZeroA && io.fromPreMul.isInfB) || (! io.fromPreMul.isNaNAOrB && (io.fromPreMul.isInfA || io.fromPreMul.isInfB) && io.fromPreMul.isInfC && io.fromPreMul.doSubMags) io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC io.rawOut.isInf := notNaN_isInfOut //*** IMPROVE?: io.rawOut.isZero := notNaN_addZeros || (! io.fromPreMul.CIsDominant && notCDom_completeCancellation) io.rawOut.sign := (notNaN_isInfProd && io.fromPreMul.signProd) || (io.fromPreMul.isInfC && opSignC) || (notNaN_addZeros && ! roundingMode_min && io.fromPreMul.signProd && opSignC) || (notNaN_addZeros && roundingMode_min && (io.fromPreMul.signProd || opSignC)) || (! notNaN_isInfOut && ! notNaN_addZeros && Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign)) io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp) io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC mulAddRecFNToRaw_postMul.io.fromPreMul := mulAddRecFNToRaw_preMul.io.toPostMul mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc roundRawFNToRecFN.io.infiniteExc := false.B roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut roundRawFNToRecFN.io.roundingMode := io.roundingMode roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags }
module MulAddRecFNToRaw_postMul_e8_s24_16(); // @[MulAddRecFN.scala:169:7] wire [25:0] _sigSum_T_2 = 26'h0; // @[MulAddRecFN.scala:192:16, :193:47] wire [25:0] _sigSum_T_3 = 26'h0; // @[MulAddRecFN.scala:192:16, :193:47] wire [47:0] _sigSum_T_4 = 48'h3FFFFFFFFFFF; // @[MulAddRecFN.scala:196:28] wire [73:0] sigSum_hi = 74'h3FFFFFFFFFFF; // @[MulAddRecFN.scala:192:12] wire [74:0] sigSum = 75'h7FFFFFFFFFFF; // @[MulAddRecFN.scala:192:12] wire [10:0] _CDom_sExp_T_1 = 11'h102; // @[MulAddRecFN.scala:203:43] wire [9:0] _CDom_sExp_T_2 = 10'h102; // @[MulAddRecFN.scala:203:43] wire [9:0] CDom_sExp = 10'h102; // @[MulAddRecFN.scala:203:43] wire [49:0] _CDom_absSigSum_T = 50'h3FFFFF; // @[MulAddRecFN.scala:206:20] wire [2:0] _CDom_absSigSum_T_3 = 3'h3; // @[MulAddRecFN.scala:207:22] wire [46:0] _CDom_absSigSum_T_4 = 47'h1FFFFF; // @[MulAddRecFN.scala:210:23] wire [49:0] _CDom_absSigSum_T_5 = 50'h18000001FFFFF; // @[MulAddRecFN.scala:209:71] wire [49:0] _CDom_absSigSum_T_1 = 50'h3FFFFFFC00000; // @[MulAddRecFN.scala:205:12, :206:13] wire [49:0] CDom_absSigSum = 50'h3FFFFFFC00000; // @[MulAddRecFN.scala:205:12, :206:13] wire [23:0] _CDom_absSigSumExtra_T = 24'hFFFFFF; // @[MulAddRecFN.scala:215:21] wire [23:0] _CDom_absSigSumExtra_T_1 = 24'h0; // @[MulAddRecFN.scala:215:14] wire [24:0] _CDom_absSigSumExtra_T_3 = 25'h1FFFFFF; // @[MulAddRecFN.scala:216:19] wire [80:0] _CDom_mainSig_T = 81'hFFFFFFF00000000; // @[MulAddRecFN.scala:219:24] wire [28:0] CDom_mainSig = 29'h1FFFF800; // @[MulAddRecFN.scala:219:56] wire [23:0] _CDom_reduced4SigExtra_T = 24'hC00000; // @[MulAddRecFN.scala:222:36] wire [26:0] _CDom_reduced4SigExtra_T_1 = 27'h6000000; // @[MulAddRecFN.scala:222:53] wire [2:0] _CDom_reduced4SigExtra_reducedVec_6_T = 3'h6; // @[primitives.scala:123:15] wire [3:0] CDom_reduced4SigExtra_hi = 4'h8; // @[primitives.scala:124:20] wire [6:0] _CDom_reduced4SigExtra_T_2 = 7'h40; // @[primitives.scala:124:20] wire [2:0] _CDom_reduced4SigExtra_T_3 = 3'h2; // @[MulAddRecFN.scala:223:51] wire [2:0] _CDom_reduced4SigExtra_T_4 = 3'h5; // @[primitives.scala:52:21] wire [8:0] CDom_reduced4SigExtra_shift = 9'h1F8; // @[primitives.scala:76:56] wire [5:0] _CDom_reduced4SigExtra_T_5 = 6'h3C; // @[primitives.scala:78:22] wire [3:0] _CDom_reduced4SigExtra_T_6 = 4'hC; // @[primitives.scala:77:20] wire [3:0] _CDom_reduced4SigExtra_T_15 = 4'h3; // @[primitives.scala:77:20] wire [5:0] _CDom_reduced4SigExtra_T_20 = 6'hF; // @[primitives.scala:77:20] wire [25:0] _CDom_sig_T = 26'h3FFFF00; // @[MulAddRecFN.scala:225:25] wire [26:0] CDom_sig = 27'h7FFFE00; // @[MulAddRecFN.scala:225:12] wire [50:0] _notCDom_absSigSum_T_1 = 51'h7800000000000; // @[MulAddRecFN.scala:235:13] wire [50:0] _notCDom_absSigSum_T = 51'h7FFFFFFFFFFF; // @[MulAddRecFN.scala:235:20, :236:19] wire [50:0] _notCDom_absSigSum_T_2 = 51'h7FFFFFFFFFFF; // @[MulAddRecFN.scala:235:20, :236:19] wire [51:0] _notCDom_absSigSum_T_3 = 52'h800000000000; // @[MulAddRecFN.scala:236:41] wire [50:0] _notCDom_absSigSum_T_4 = 51'h800000000000; // @[MulAddRecFN.scala:234:12, :236:41] wire [50:0] notCDom_absSigSum = 51'h800000000000; // @[MulAddRecFN.scala:234:12, :236:41] wire [5:0] notCDom_reduced2AbsSigSum_lo_lo = 6'h0; // @[primitives.scala:107:20] wire [5:0] notCDom_reduced2AbsSigSum_hi_lo = 6'h0; // @[primitives.scala:107:20] wire [3:0] notCDom_reduced2AbsSigSum_hi_hi_hi = 4'h2; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_hi_hi = 7'h10; // @[primitives.scala:107:20] wire [12:0] notCDom_reduced2AbsSigSum_hi = 13'h400; // @[primitives.scala:107:20] wire [25:0] notCDom_reduced2AbsSigSum = 26'h800000; // @[primitives.scala:107:20] wire [4:0] _notCDom_normDistReduced2_T_26 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_27 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_28 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_29 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_30 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_31 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_32 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_33 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_34 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_35 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_36 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_37 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_38 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_39 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_40 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_41 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_42 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_43 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_44 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_45 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_46 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_47 = 5'h19; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_48 = 5'h2; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_49 = 5'h2; // @[Mux.scala:50:70] wire [4:0] notCDom_normDistReduced2 = 5'h2; // @[Mux.scala:50:70] wire [5:0] notCDom_nearNormDist = 6'h4; // @[MulAddRecFN.scala:240:56] wire [6:0] _notCDom_sExp_T = 7'h4; // @[MulAddRecFN.scala:241:76] wire [10:0] _notCDom_sExp_T_1 = 11'hFF; // @[MulAddRecFN.scala:241:46] wire [113:0] _notCDom_mainSig_T = 114'h8000000000000; // @[MulAddRecFN.scala:243:27] wire [28:0] notCDom_mainSig = 29'h10000000; // @[MulAddRecFN.scala:243:50] wire [12:0] notCDom_reduced2AbsSigSum_lo = 13'h0; // @[primitives.scala:107:20] wire [12:0] _notCDom_reduced4SigExtra_T = 13'h0; // @[primitives.scala:107:20] wire [12:0] _notCDom_reduced4SigExtra_T_1 = 13'h0; // @[primitives.scala:107:20] wire [1:0] CDom_reduced4SigExtra_lo_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] CDom_reduced4SigExtra_hi_lo = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _CDom_reduced4SigExtra_T_7 = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _CDom_reduced4SigExtra_T_10 = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_0_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_1_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_2_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_3_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_4_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_5_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_6_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_7_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_8_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_9_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_10_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_11_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_12_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_13_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_14_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_15_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_16_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_17_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_18_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_19_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_20_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_21_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_22_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_24_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_lo_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_hi_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_lo_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_lo = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_lo_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_hi_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_lo_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_0_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_1_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_2_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_3_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_4_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_5_T = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced4SigExtra_lo_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced4SigExtra_hi_lo = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced4SigExtra_hi_hi = 2'h0; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [3:0] _CDom_reduced4SigExtra_reducedVec_0_T = 4'h0; // @[primitives.scala:107:20, :120:33] wire [3:0] _CDom_reduced4SigExtra_reducedVec_1_T = 4'h0; // @[primitives.scala:107:20, :120:33] wire [3:0] _CDom_reduced4SigExtra_reducedVec_2_T = 4'h0; // @[primitives.scala:107:20, :120:33] wire [3:0] _CDom_reduced4SigExtra_reducedVec_3_T = 4'h0; // @[primitives.scala:107:20, :120:33] wire [3:0] _CDom_reduced4SigExtra_reducedVec_4_T = 4'h0; // @[primitives.scala:107:20, :120:33] wire [3:0] _CDom_reduced4SigExtra_reducedVec_5_T = 4'h0; // @[primitives.scala:107:20, :120:33] wire [3:0] notCDom_reduced2AbsSigSum_lo_hi_hi = 4'h0; // @[primitives.scala:107:20, :120:33] wire [3:0] notCDom_reduced4SigExtra_hi = 4'h0; // @[primitives.scala:107:20, :120:33] wire [3:0] _notCDom_reduced4SigExtra_T_3 = 4'h1; // @[MulAddRecFN.scala:248:46] wire [16:0] notCDom_reduced4SigExtra_shift = 17'h1FFFC; // @[primitives.scala:76:56] wire [5:0] _notCDom_reduced4SigExtra_T_5 = 6'h3E; // @[primitives.scala:78:22] wire [3:0] _notCDom_reduced4SigExtra_T_4 = 4'hE; // @[primitives.scala:52:21, :77:20] wire [3:0] _notCDom_reduced4SigExtra_T_6 = 4'hE; // @[primitives.scala:52:21, :77:20] wire [1:0] _CDom_sExp_T = 2'h1; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_10 = 2'h1; // @[primitives.scala:77:20] wire [3:0] _notCDom_reduced4SigExtra_T_15 = 4'h7; // @[primitives.scala:77:20] wire [1:0] _CDom_absSigSum_T_2 = 2'h3; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_11 = 2'h3; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_14 = 2'h3; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_16 = 2'h3; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_19 = 2'h3; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_11 = 2'h3; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_14 = 2'h3; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_16 = 2'h3; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_19 = 2'h3; // @[primitives.scala:77:20] wire [5:0] _notCDom_reduced4SigExtra_T_20 = 6'h1F; // @[primitives.scala:77:20] wire [6:0] _CDom_reduced4SigExtra_T_21 = 7'h0; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_lo_hi = 7'h0; // @[primitives.scala:107:20] wire [6:0] _notCDom_reduced4SigExtra_T_2 = 7'h0; // @[primitives.scala:107:20] wire [6:0] _notCDom_reduced4SigExtra_T_21 = 7'h0; // @[primitives.scala:107:20] wire [25:0] _notCDom_sig_T = 26'h2000000; // @[MulAddRecFN.scala:251:28] wire [1:0] CDom_reduced4SigExtra_hi_hi = 2'h2; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_23_T = 2'h2; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_lo = 2'h2; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_reduced4SigExtra_T_7 = 2'h2; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [1:0] _notCDom_completeCancellation_T = 2'h2; // @[primitives.scala:77:20, :103:33, :107:20, :124:20] wire [26:0] io_rawOut_sig = 27'h4000000; // @[MulAddRecFN.scala:169:7, :172:16, :193:47, :251:12, :294:25] wire [26:0] _sigSum_T_1 = 27'h4000000; // @[MulAddRecFN.scala:169:7, :172:16, :193:47, :251:12, :294:25] wire [26:0] notCDom_sig = 27'h4000000; // @[MulAddRecFN.scala:169:7, :172:16, :193:47, :251:12, :294:25] wire [26:0] _io_rawOut_sig_T = 27'h4000000; // @[MulAddRecFN.scala:169:7, :172:16, :193:47, :251:12, :294:25] wire [9:0] io_rawOut_sExp = 10'hFF; // @[MulAddRecFN.scala:169:7, :172:16, :241:46, :293:26] wire [9:0] _notCDom_sExp_T_2 = 10'hFF; // @[MulAddRecFN.scala:169:7, :172:16, :241:46, :293:26] wire [9:0] notCDom_sExp = 10'hFF; // @[MulAddRecFN.scala:169:7, :172:16, :241:46, :293:26] wire [9:0] _io_rawOut_sExp_T = 10'hFF; // @[MulAddRecFN.scala:169:7, :172:16, :241:46, :293:26] wire [2:0] io_roundingMode = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] CDom_reduced4SigExtra_lo = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] _CDom_sig_T_1 = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_lo = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_hi = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_hi_lo = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_lo = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_hi = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_hi_lo = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] notCDom_reduced4SigExtra_lo = 3'h0; // @[primitives.scala:107:20, :124:20] wire [2:0] _notCDom_sig_T_1 = 3'h0; // @[primitives.scala:107:20, :124:20] wire [48:0] io_mulAddResult = 49'h13FFFFFFFFFFF; // @[MulAddRecFN.scala:169:7, :172:16] wire [25:0] io_fromPreMul_highAlignedSigC = 26'h3FFFFFF; // @[MulAddRecFN.scala:169:7, :172:16] wire [4:0] io_fromPreMul_CDom_CAlignDist = 5'hA; // @[MulAddRecFN.scala:169:7, :172:16] wire [9:0] io_fromPreMul_sExpSum = 10'h103; // @[MulAddRecFN.scala:169:7, :172:16] wire io_fromPreMul_signProd = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire io_fromPreMul_isZeroC = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire io_fromPreMul_doSubMags = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire io_fromPreMul_bit0AlignedSigC = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire io_rawOut_sign = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _sigSum_T = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _CDom_absSigSumExtra_T_4 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire CDom_reduced4SigExtra_reducedVec_6 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _CDom_reduced4SigExtra_reducedVec_6_T_1 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _CDom_reduced4SigExtra_T_12 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _CDom_reduced4SigExtra_T_13 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _CDom_reduced4SigExtra_T_17 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _CDom_reduced4SigExtra_T_18 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire notCDom_reduced2AbsSigSum_reducedVec_23 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _notCDom_reduced2AbsSigSum_reducedVec_23_T_1 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _notCDom_normDistReduced2_T_23 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _notCDom_reduced4SigExtra_T_9 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _notCDom_reduced4SigExtra_T_12 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _notCDom_reduced4SigExtra_T_13 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _notCDom_reduced4SigExtra_T_17 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _notCDom_reduced4SigExtra_T_18 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _notCDom_sign_T = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire notCDom_sign = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_invalidExc_T_4 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_rawOut_isZero_T = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_rawOut_sign_T_3 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_rawOut_sign_T_9 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_rawOut_sign_T_12 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_rawOut_sign_T_13 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_rawOut_sign_T_14 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_rawOut_sign_T_15 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_rawOut_sign_T_16 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire _io_rawOut_sign_T_17 = 1'h1; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :118:30, :123:57] wire io_fromPreMul_isSigNaNAny = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_fromPreMul_isNaNAOrB = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_fromPreMul_isInfA = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_fromPreMul_isZeroA = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_fromPreMul_isInfB = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_fromPreMul_isZeroB = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_fromPreMul_isNaNC = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_fromPreMul_isInfC = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_fromPreMul_CIsDominant = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_invalidExc = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_rawOut_isNaN = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_rawOut_isInf = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire io_rawOut_isZero = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire roundingMode_min = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire opSignC = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_absSigSumExtra_T_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire CDom_absSigSumExtra = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire CDom_reduced4SigExtra_reducedVec_0 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire CDom_reduced4SigExtra_reducedVec_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire CDom_reduced4SigExtra_reducedVec_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire CDom_reduced4SigExtra_reducedVec_3 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire CDom_reduced4SigExtra_reducedVec_4 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire CDom_reduced4SigExtra_reducedVec_5 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_reduced4SigExtra_reducedVec_0_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_reduced4SigExtra_reducedVec_1_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_reduced4SigExtra_reducedVec_2_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_reduced4SigExtra_reducedVec_3_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_reduced4SigExtra_reducedVec_4_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_reduced4SigExtra_reducedVec_5_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_reduced4SigExtra_T_8 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_reduced4SigExtra_T_9 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire CDom_reduced4SigExtra = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_sig_T_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_sig_T_3 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _CDom_sig_T_4 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_signSigSum = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_0 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_3 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_4 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_5 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_6 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_7 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_8 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_9 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_10 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_11 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_12 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_13 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_14 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_15 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_16 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_17 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_18 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_19 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_20 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_21 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_22 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_24 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced2AbsSigSum_reducedVec_25 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_0_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_1_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_2_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_3_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_4_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_5_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_6_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_7_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_8_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_9_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_10_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_11_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_12_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_13_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_14_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_15_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_16_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_17_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_18_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_19_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_20_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_21_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_22_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_24_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_3 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_4 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_5 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_6 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_7 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_8 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_9 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_10 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_11 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_12 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_13 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_14 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_15 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_16 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_17 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_18 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_19 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_20 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_21 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_22 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_24 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_normDistReduced2_T_25 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced4SigExtra_reducedVec_0 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced4SigExtra_reducedVec_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced4SigExtra_reducedVec_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced4SigExtra_reducedVec_3 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced4SigExtra_reducedVec_4 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced4SigExtra_reducedVec_5 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced4SigExtra_reducedVec_6 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced4SigExtra_reducedVec_0_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced4SigExtra_reducedVec_1_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced4SigExtra_reducedVec_2_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced4SigExtra_reducedVec_3_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced4SigExtra_reducedVec_4_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced4SigExtra_reducedVec_5_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_reduced4SigExtra_T_8 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_reduced4SigExtra = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_sig_T_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notCDom_sig_T_3 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notCDom_completeCancellation = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notNaN_isInfProd = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notNaN_isInfOut = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _notNaN_addZeros_T = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire notNaN_addZeros = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_invalidExc_T = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_invalidExc_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_invalidExc_T_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_invalidExc_T_3 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_invalidExc_T_5 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_invalidExc_T_6 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_invalidExc_T_7 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_invalidExc_T_8 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_invalidExc_T_9 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_isNaN_T = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_isZero_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_isZero_T_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T_1 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T_2 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T_4 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T_5 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T_6 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T_7 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T_8 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T_10 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] wire _io_rawOut_sign_T_11 = 1'h0; // @[primitives.scala:77:20, :91:52, :101:30, :103:54, :106:{15,57}, :118:30, :120:54] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_25( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [27:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [6:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [27:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [6:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59] wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14] wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27] wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25] wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_45 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_47 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_51 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_53 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_57 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_59 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_63 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_65 = 1'h1; // @[Parameters.scala:57:20] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28] wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28] wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [27:0] _c_first_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_first_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_first_WIRE_2_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_first_WIRE_3_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_set_wo_ready_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_set_wo_ready_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_set_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_set_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_opcodes_set_interm_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_opcodes_set_interm_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_sizes_set_interm_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_sizes_set_interm_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_opcodes_set_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_opcodes_set_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_sizes_set_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_sizes_set_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_probe_ack_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_probe_ack_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _c_probe_ack_WIRE_2_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _c_probe_ack_WIRE_3_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _same_cycle_resp_WIRE_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _same_cycle_resp_WIRE_1_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _same_cycle_resp_WIRE_2_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _same_cycle_resp_WIRE_3_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [27:0] _same_cycle_resp_WIRE_4_bits_address = 28'h0; // @[Bundles.scala:265:74] wire [27:0] _same_cycle_resp_WIRE_5_bits_address = 28'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_wo_ready_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_wo_ready_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_4_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_5_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [1026:0] _c_opcodes_set_T_1 = 1027'h0; // @[Monitor.scala:767:54] wire [1026:0] _c_sizes_set_T_1 = 1027'h0; // @[Monitor.scala:768:52] wire [9:0] _c_opcodes_set_T = 10'h0; // @[Monitor.scala:767:79] wire [9:0] _c_sizes_set_T = 10'h0; // @[Monitor.scala:768:77] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51] wire [127:0] _c_set_wo_ready_T = 128'h1; // @[OneHot.scala:58:35] wire [127:0] _c_set_T = 128'h1; // @[OneHot.scala:58:35] wire [259:0] c_opcodes_set = 260'h0; // @[Monitor.scala:740:34] wire [259:0] c_sizes_set = 260'h0; // @[Monitor.scala:741:34] wire [64:0] c_set = 65'h0; // @[Monitor.scala:738:34] wire [64:0] c_set_wo_ready = 65'h0; // @[Monitor.scala:739:34] wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46] wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76] wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [6:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_4 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_5 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire _source_ok_T = io_in_a_bits_source_0 == 7'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_1 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_7 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_13 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_19 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire _source_ok_T_2 = _source_ok_T_1 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_8 = _source_ok_T_7 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_14 = _source_ok_T_13 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_20 = _source_ok_T_19 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31] wire _source_ok_T_25 = io_in_a_bits_source_0 == 7'h24; // @[Monitor.scala:36:7] wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31] wire _source_ok_T_26 = io_in_a_bits_source_0 == 7'h25; // @[Monitor.scala:36:7] wire _source_ok_WIRE_6 = _source_ok_T_26; // @[Parameters.scala:1138:31] wire _source_ok_T_27 = io_in_a_bits_source_0 == 7'h26; // @[Monitor.scala:36:7] wire _source_ok_WIRE_7 = _source_ok_T_27; // @[Parameters.scala:1138:31] wire _source_ok_T_28 = io_in_a_bits_source_0 == 7'h20; // @[Monitor.scala:36:7] wire _source_ok_WIRE_8 = _source_ok_T_28; // @[Parameters.scala:1138:31] wire _source_ok_T_29 = io_in_a_bits_source_0 == 7'h21; // @[Monitor.scala:36:7] wire _source_ok_WIRE_9 = _source_ok_T_29; // @[Parameters.scala:1138:31] wire _source_ok_T_30 = io_in_a_bits_source_0 == 7'h22; // @[Monitor.scala:36:7] wire _source_ok_WIRE_10 = _source_ok_T_30; // @[Parameters.scala:1138:31] wire _source_ok_T_31 = io_in_a_bits_source_0 == 7'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_11 = _source_ok_T_31; // @[Parameters.scala:1138:31] wire _source_ok_T_32 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_33 = _source_ok_T_32 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_34 = _source_ok_T_33 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_35 = _source_ok_T_34 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_36 = _source_ok_T_35 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_37 = _source_ok_T_36 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_38 = _source_ok_T_37 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_39 = _source_ok_T_38 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_40 = _source_ok_T_39 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_41 = _source_ok_T_40 | _source_ok_WIRE_10; // @[Parameters.scala:1138:31, :1139:46] wire source_ok = _source_ok_T_41 | _source_ok_WIRE_11; // @[Parameters.scala:1138:31, :1139:46] wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71] wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [27:0] _is_aligned_T = {22'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 28'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_4 = _uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_11 = _uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_29 = _uncommonBits_T_29[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_34 = _uncommonBits_T_34[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_40 = _uncommonBits_T_40[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_41 = _uncommonBits_T_41[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_42 = io_in_d_bits_source_0 == 7'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_0 = _source_ok_T_42; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_43 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_49 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_55 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_61 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire _source_ok_T_44 = _source_ok_T_43 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_46 = _source_ok_T_44; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_48 = _source_ok_T_46; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_1 = _source_ok_T_48; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_50 = _source_ok_T_49 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_52 = _source_ok_T_50; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_54 = _source_ok_T_52; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_2 = _source_ok_T_54; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_56 = _source_ok_T_55 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_58 = _source_ok_T_56; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_60 = _source_ok_T_58; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_3 = _source_ok_T_60; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_62 = _source_ok_T_61 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_64 = _source_ok_T_62; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_66 = _source_ok_T_64; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_4 = _source_ok_T_66; // @[Parameters.scala:1138:31] wire _source_ok_T_67 = io_in_d_bits_source_0 == 7'h24; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_5 = _source_ok_T_67; // @[Parameters.scala:1138:31] wire _source_ok_T_68 = io_in_d_bits_source_0 == 7'h25; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_6 = _source_ok_T_68; // @[Parameters.scala:1138:31] wire _source_ok_T_69 = io_in_d_bits_source_0 == 7'h26; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_7 = _source_ok_T_69; // @[Parameters.scala:1138:31] wire _source_ok_T_70 = io_in_d_bits_source_0 == 7'h20; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_8 = _source_ok_T_70; // @[Parameters.scala:1138:31] wire _source_ok_T_71 = io_in_d_bits_source_0 == 7'h21; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_9 = _source_ok_T_71; // @[Parameters.scala:1138:31] wire _source_ok_T_72 = io_in_d_bits_source_0 == 7'h22; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_10 = _source_ok_T_72; // @[Parameters.scala:1138:31] wire _source_ok_T_73 = io_in_d_bits_source_0 == 7'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_11 = _source_ok_T_73; // @[Parameters.scala:1138:31] wire _source_ok_T_74 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_75 = _source_ok_T_74 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_76 = _source_ok_T_75 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_77 = _source_ok_T_76 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_78 = _source_ok_T_77 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_79 = _source_ok_T_78 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_80 = _source_ok_T_79 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_81 = _source_ok_T_80 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_82 = _source_ok_T_81 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_83 = _source_ok_T_82 | _source_ok_WIRE_1_10; // @[Parameters.scala:1138:31, :1139:46] wire source_ok_1 = _source_ok_T_83 | _source_ok_WIRE_1_11; // @[Parameters.scala:1138:31, :1139:46] wire _T_1196 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1196; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1196; // @[Decoupled.scala:51:35] wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [2:0] size; // @[Monitor.scala:389:22] reg [6:0] source; // @[Monitor.scala:390:22] reg [27:0] address; // @[Monitor.scala:391:22] wire _T_1269 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1269; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1269; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1269; // @[Decoupled.scala:51:35] wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [2:0] size_1; // @[Monitor.scala:540:22] reg [6:0] source_1; // @[Monitor.scala:541:22] reg [64:0] inflight; // @[Monitor.scala:614:27] reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [259:0] inflight_sizes; // @[Monitor.scala:618:33] wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [64:0] a_set; // @[Monitor.scala:626:34] wire [64:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [259:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [259:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [9:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [9:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [9:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65] wire [9:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [9:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99] wire [9:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [9:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67] wire [9:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [9:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99] wire [259:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [259:0] _a_opcode_lookup_T_6 = {256'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [259:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [259:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [259:0] _a_size_lookup_T_6 = {256'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}] wire [259:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[259:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [127:0] _GEN_2 = 128'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [127:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35] wire [127:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1122 = _T_1196 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1122 ? _a_set_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1122 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1122 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [9:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [9:0] _a_opcodes_set_T; // @[Monitor.scala:659:79] assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79] wire [9:0] _a_sizes_set_T; // @[Monitor.scala:660:77] assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77] wire [1026:0] _a_opcodes_set_T_1 = {1023'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1122 ? _a_opcodes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [1026:0] _a_sizes_set_T_1 = {1023'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1122 ? _a_sizes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [64:0] d_clr; // @[Monitor.scala:664:34] wire [64:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [259:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [259:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_1168 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [127:0] _GEN_5 = 128'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [127:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1168 & ~d_release_ack ? _d_clr_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1137 = _T_1269 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1137 ? _d_clr_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [1038:0] _d_opcodes_clr_T_5 = 1039'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1137 ? _d_opcodes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [1038:0] _d_sizes_clr_T_5 = 1039'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1137 ? _d_sizes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [64:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [64:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [64:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [259:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [259:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [259:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [259:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [259:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [259:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [64:0] inflight_1; // @[Monitor.scala:726:35] wire [64:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [259:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [259:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [259:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [259:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_2; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [259:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [259:0] _c_opcode_lookup_T_6 = {256'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [259:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [259:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [259:0] _c_size_lookup_T_6 = {256'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}] wire [259:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[259:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [64:0] d_clr_1; // @[Monitor.scala:774:34] wire [64:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [259:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [259:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1240 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1240 & d_release_ack_1 ? _d_clr_wo_ready_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1222 = _T_1269 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1222 ? _d_clr_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [1038:0] _d_opcodes_clr_T_11 = 1039'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1222 ? _d_opcodes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [1038:0] _d_sizes_clr_T_11 = 1039'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1222 ? _d_sizes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 7'h0; // @[Monitor.scala:36:7, :795:113] wire [64:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [64:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [259:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [259:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [259:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [259:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File TLSerdes.scala: package testchipip.serdes import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy._ import org.chipsalliance.cde.config._ import freechips.rocketchip.util._ import freechips.rocketchip.tilelink._ object TLSerdesser { // This should be the standard bundle type for TLSerdesser val STANDARD_TLBUNDLE_PARAMS = TLBundleParameters( addressBits=64, dataBits=64, sourceBits=8, sinkBits=8, sizeBits=8, echoFields=Nil, requestFields=Nil, responseFields=Nil, hasBCE=true) } class SerdesDebugIO extends Bundle { val ser_busy = Output(Bool()) val des_busy = Output(Bool()) } class TLSerdesser( val flitWidth: Int, clientPortParams: Option[TLMasterPortParameters], managerPortParams: Option[TLSlavePortParameters], val bundleParams: TLBundleParameters = TLSerdesser.STANDARD_TLBUNDLE_PARAMS, nameSuffix: Option[String] = None ) (implicit p: Parameters) extends LazyModule { require (clientPortParams.isDefined || managerPortParams.isDefined) val clientNode = clientPortParams.map { c => TLClientNode(Seq(c)) } val managerNode = managerPortParams.map { m => TLManagerNode(Seq(m)) } override lazy val desiredName = (Seq("TLSerdesser") ++ nameSuffix).mkString("_") lazy val module = new Impl class Impl extends LazyModuleImp(this) { val io = IO(new Bundle { val ser = Vec(5, new DecoupledFlitIO(flitWidth)) val debug = new SerdesDebugIO }) val client_tl = clientNode.map(_.out(0)._1).getOrElse(0.U.asTypeOf(new TLBundle(bundleParams))) val client_edge = clientNode.map(_.out(0)._2) val manager_tl = managerNode.map(_.in(0)._1).getOrElse(0.U.asTypeOf(new TLBundle(bundleParams))) val manager_edge = managerNode.map(_.in(0)._2) val clientParams = client_edge.map(_.bundle).getOrElse(bundleParams) val managerParams = manager_edge.map(_.bundle).getOrElse(bundleParams) val mergedParams = clientParams.union(managerParams).union(bundleParams) require(mergedParams.echoFields.isEmpty, "TLSerdesser does not support TileLink with echo fields") require(mergedParams.requestFields.isEmpty, "TLSerdesser does not support TileLink with request fields") require(mergedParams.responseFields.isEmpty, "TLSerdesser does not support TileLink with response fields") require(mergedParams == bundleParams, s"TLSerdesser is misconfigured, the combined inwards/outwards parameters cannot be serialized using the provided bundle params\n$mergedParams > $bundleParams") val out_channels = Seq( (manager_tl.e, manager_edge.map(e => Module(new TLEToBeat(e, mergedParams, nameSuffix)))), (client_tl.d, client_edge.map (e => Module(new TLDToBeat(e, mergedParams, nameSuffix)))), (manager_tl.c, manager_edge.map(e => Module(new TLCToBeat(e, mergedParams, nameSuffix)))), (client_tl.b, client_edge.map (e => Module(new TLBToBeat(e, mergedParams, nameSuffix)))), (manager_tl.a, manager_edge.map(e => Module(new TLAToBeat(e, mergedParams, nameSuffix)))) ) io.ser.map(_.out.valid := false.B) io.ser.map(_.out.bits := DontCare) val out_sers = out_channels.zipWithIndex.map { case ((c,b),i) => b.map { b => b.io.protocol <> c val ser = Module(new GenericSerializer(b.io.beat.bits.cloneType, flitWidth)).suggestName(s"ser_$i") ser.io.in <> b.io.beat io.ser(i).out <> ser.io.out ser }}.flatten io.debug.ser_busy := out_sers.map(_.io.busy).orR val in_channels = Seq( (client_tl.e, Module(new TLEFromBeat(mergedParams, nameSuffix))), (manager_tl.d, Module(new TLDFromBeat(mergedParams, nameSuffix))), (client_tl.c, Module(new TLCFromBeat(mergedParams, nameSuffix))), (manager_tl.b, Module(new TLBFromBeat(mergedParams, nameSuffix))), (client_tl.a, Module(new TLAFromBeat(mergedParams, nameSuffix))) ) val in_desers = in_channels.zipWithIndex.map { case ((c,b),i) => c <> b.io.protocol val des = Module(new GenericDeserializer(b.io.beat.bits.cloneType, flitWidth)).suggestName(s"des_$i") des.io.in <> io.ser(i).in b.io.beat <> des.io.out des } io.debug.des_busy := in_desers.map(_.io.busy).orR } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } }
module TLSerdesser_SerialRAM( // @[TLSerdes.scala:39:9] input clock, // @[TLSerdes.scala:39:9] input reset, // @[TLSerdes.scala:39:9] output auto_manager_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_manager_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_manager_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_manager_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_manager_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input auto_manager_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_manager_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_manager_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_manager_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_manager_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_manager_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_manager_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_manager_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_manager_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [63:0] auto_manager_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_manager_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] output io_ser_0_in_ready, // @[TLSerdes.scala:40:16] input io_ser_0_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_0_in_bits_flit, // @[TLSerdes.scala:40:16] input io_ser_0_out_ready, // @[TLSerdes.scala:40:16] output [31:0] io_ser_0_out_bits_flit, // @[TLSerdes.scala:40:16] output io_ser_1_in_ready, // @[TLSerdes.scala:40:16] input io_ser_1_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_1_in_bits_flit, // @[TLSerdes.scala:40:16] output io_ser_2_in_ready, // @[TLSerdes.scala:40:16] input io_ser_2_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_2_in_bits_flit, // @[TLSerdes.scala:40:16] input io_ser_2_out_ready, // @[TLSerdes.scala:40:16] output io_ser_2_out_valid, // @[TLSerdes.scala:40:16] output [31:0] io_ser_2_out_bits_flit, // @[TLSerdes.scala:40:16] output io_ser_3_in_ready, // @[TLSerdes.scala:40:16] input io_ser_3_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_3_in_bits_flit, // @[TLSerdes.scala:40:16] output io_ser_4_in_ready, // @[TLSerdes.scala:40:16] input io_ser_4_in_valid, // @[TLSerdes.scala:40:16] input [31:0] io_ser_4_in_bits_flit, // @[TLSerdes.scala:40:16] input io_ser_4_out_ready, // @[TLSerdes.scala:40:16] output io_ser_4_out_valid, // @[TLSerdes.scala:40:16] output [31:0] io_ser_4_out_bits_flit // @[TLSerdes.scala:40:16] ); wire _des_4_io_out_valid; // @[TLSerdes.scala:86:23] wire [85:0] _des_4_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_4_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_4_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _des_4_io_busy; // @[TLSerdes.scala:86:23] wire _des_3_io_out_valid; // @[TLSerdes.scala:86:23] wire [84:0] _des_3_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_3_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_3_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _des_3_io_busy; // @[TLSerdes.scala:86:23] wire _des_2_io_out_valid; // @[TLSerdes.scala:86:23] wire [85:0] _des_2_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_2_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_2_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _des_2_io_busy; // @[TLSerdes.scala:86:23] wire _des_1_io_out_valid; // @[TLSerdes.scala:86:23] wire [64:0] _des_1_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_1_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_1_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _des_0_io_out_valid; // @[TLSerdes.scala:86:23] wire [7:0] _des_0_io_out_bits_payload; // @[TLSerdes.scala:86:23] wire _des_0_io_out_bits_head; // @[TLSerdes.scala:86:23] wire _des_0_io_out_bits_tail; // @[TLSerdes.scala:86:23] wire _in_channels_4_2_io_beat_ready; // @[TLSerdes.scala:82:28] wire [7:0] _in_channels_3_2_io_protocol_bits_size; // @[TLSerdes.scala:81:28] wire [7:0] _in_channels_3_2_io_protocol_bits_source; // @[TLSerdes.scala:81:28] wire [63:0] _in_channels_3_2_io_protocol_bits_address; // @[TLSerdes.scala:81:28] wire _in_channels_3_2_io_beat_ready; // @[TLSerdes.scala:81:28] wire _in_channels_2_2_io_beat_ready; // @[TLSerdes.scala:80:28] wire [7:0] _in_channels_1_2_io_protocol_bits_size; // @[TLSerdes.scala:79:28] wire [7:0] _in_channels_1_2_io_protocol_bits_source; // @[TLSerdes.scala:79:28] wire [7:0] _in_channels_1_2_io_protocol_bits_sink; // @[TLSerdes.scala:79:28] wire _in_channels_1_2_io_beat_ready; // @[TLSerdes.scala:79:28] wire _in_channels_0_2_io_beat_ready; // @[TLSerdes.scala:78:28] wire _ser_4_io_in_ready; // @[TLSerdes.scala:69:23] wire _ser_4_io_busy; // @[TLSerdes.scala:69:23] wire _ser_2_io_in_ready; // @[TLSerdes.scala:69:23] wire _ser_0_io_in_ready; // @[TLSerdes.scala:69:23] wire _out_channels_4_2_io_beat_valid; // @[TLSerdes.scala:63:50] wire [85:0] _out_channels_4_2_io_beat_bits_payload; // @[TLSerdes.scala:63:50] wire _out_channels_4_2_io_beat_bits_head; // @[TLSerdes.scala:63:50] wire _out_channels_4_2_io_beat_bits_tail; // @[TLSerdes.scala:63:50] wire _out_channels_2_2_io_beat_bits_head; // @[TLSerdes.scala:61:50] wire _out_channels_0_2_io_beat_bits_head; // @[TLSerdes.scala:59:50] wire auto_manager_in_a_valid_0 = auto_manager_in_a_valid; // @[TLSerdes.scala:39:9] wire [2:0] auto_manager_in_a_bits_opcode_0 = auto_manager_in_a_bits_opcode; // @[TLSerdes.scala:39:9] wire [2:0] auto_manager_in_a_bits_param_0 = auto_manager_in_a_bits_param; // @[TLSerdes.scala:39:9] wire [3:0] auto_manager_in_a_bits_size_0 = auto_manager_in_a_bits_size; // @[TLSerdes.scala:39:9] wire auto_manager_in_a_bits_source_0 = auto_manager_in_a_bits_source; // @[TLSerdes.scala:39:9] wire [31:0] auto_manager_in_a_bits_address_0 = auto_manager_in_a_bits_address; // @[TLSerdes.scala:39:9] wire [7:0] auto_manager_in_a_bits_mask_0 = auto_manager_in_a_bits_mask; // @[TLSerdes.scala:39:9] wire [63:0] auto_manager_in_a_bits_data_0 = auto_manager_in_a_bits_data; // @[TLSerdes.scala:39:9] wire auto_manager_in_a_bits_corrupt_0 = auto_manager_in_a_bits_corrupt; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_ready_0 = auto_manager_in_d_ready; // @[TLSerdes.scala:39:9] wire io_ser_0_in_valid_0 = io_ser_0_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_0_in_bits_flit_0 = io_ser_0_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_0_out_ready_0 = io_ser_0_out_ready; // @[TLSerdes.scala:39:9] wire io_ser_1_in_valid_0 = io_ser_1_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_1_in_bits_flit_0 = io_ser_1_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_2_in_valid_0 = io_ser_2_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_2_in_bits_flit_0 = io_ser_2_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_2_out_ready_0 = io_ser_2_out_ready; // @[TLSerdes.scala:39:9] wire io_ser_3_in_valid_0 = io_ser_3_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_3_in_bits_flit_0 = io_ser_3_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_4_in_valid_0 = io_ser_4_in_valid; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_4_in_bits_flit_0 = io_ser_4_in_bits_flit; // @[TLSerdes.scala:39:9] wire io_ser_4_out_ready_0 = io_ser_4_out_ready; // @[TLSerdes.scala:39:9] wire [2:0] client_tl_b_bits_opcode = 3'h0; // @[TLSerdes.scala:45:71] wire [2:0] client_tl_d_bits_opcode = 3'h0; // @[TLSerdes.scala:45:71] wire [2:0] _out_channels_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _out_channels_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] out_channels_2_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] out_channels_2_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _in_channels_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:264:74] wire [1:0] client_tl_b_bits_param = 2'h0; // @[TLSerdes.scala:45:71] wire [1:0] client_tl_d_bits_param = 2'h0; // @[TLSerdes.scala:45:71] wire [1:0] _in_channels_WIRE_bits_param = 2'h0; // @[Bundles.scala:264:74] wire [3:0] _out_channels_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] out_channels_2_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _in_channels_WIRE_bits_size = 4'h0; // @[Bundles.scala:264:74] wire [7:0] client_tl_b_bits_size = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_b_bits_source = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_b_bits_mask = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_d_bits_size = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_d_bits_source = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_d_bits_sink = 8'h0; // @[TLSerdes.scala:45:71] wire [7:0] _in_channels_WIRE_bits_mask = 8'h0; // @[Bundles.scala:264:74] wire [63:0] client_tl_b_bits_address = 64'h0; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_b_bits_data = 64'h0; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_d_bits_data = 64'h0; // @[TLSerdes.scala:45:71] wire [63:0] _out_channels_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] out_channels_2_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _in_channels_WIRE_bits_data = 64'h0; // @[Bundles.scala:264:74] wire [31:0] io_ser_1_out_bits_flit = 32'h0; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_3_out_bits_flit = 32'h0; // @[TLSerdes.scala:39:9] wire [31:0] _out_channels_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] out_channels_2_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _in_channels_WIRE_bits_address = 32'h0; // @[Bundles.scala:264:74] wire io_ser_1_out_ready = 1'h1; // @[TLSerdes.scala:39:9, :40:16, :59:50, :61:50] wire io_ser_3_out_ready = 1'h1; // @[TLSerdes.scala:39:9, :40:16, :59:50, :61:50] wire out_channels_0_1_ready = 1'h1; // @[TLSerdes.scala:39:9, :40:16, :59:50, :61:50] wire out_channels_2_1_ready = 1'h1; // @[TLSerdes.scala:39:9, :40:16, :59:50, :61:50] wire io_ser_0_out_valid = 1'h0; // @[TLSerdes.scala:39:9] wire io_ser_1_out_valid = 1'h0; // @[TLSerdes.scala:39:9] wire io_ser_3_out_valid = 1'h0; // @[TLSerdes.scala:39:9] wire managerNodeIn_a_ready; // @[MixedNode.scala:551:17] wire client_tl_a_ready = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_b_ready = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_b_valid = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_b_bits_corrupt = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_c_ready = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_d_ready = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_d_valid = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_d_bits_denied = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_d_bits_corrupt = 1'h0; // @[TLSerdes.scala:45:71] wire client_tl_e_ready = 1'h0; // @[TLSerdes.scala:45:71] wire _out_channels_WIRE_ready = 1'h0; // @[Bundles.scala:267:74] wire _out_channels_WIRE_valid = 1'h0; // @[Bundles.scala:267:74] wire _out_channels_WIRE_bits_sink = 1'h0; // @[Bundles.scala:267:74] wire out_channels_0_1_valid = 1'h0; // @[Bundles.scala:267:61] wire out_channels_0_1_bits_sink = 1'h0; // @[Bundles.scala:267:61] wire _out_channels_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:74] wire _out_channels_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:74] wire _out_channels_WIRE_1_bits_source = 1'h0; // @[Bundles.scala:265:74] wire _out_channels_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire out_channels_2_1_valid = 1'h0; // @[Bundles.scala:265:61] wire out_channels_2_1_bits_source = 1'h0; // @[Bundles.scala:265:61] wire out_channels_2_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _in_channels_WIRE_ready = 1'h0; // @[Bundles.scala:264:74] wire _in_channels_WIRE_valid = 1'h0; // @[Bundles.scala:264:74] wire _in_channels_WIRE_bits_source = 1'h0; // @[Bundles.scala:264:74] wire _in_channels_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:264:74] wire in_channels_3_1_ready = 1'h0; // @[Bundles.scala:264:61] wire managerNodeIn_a_valid = auto_manager_in_a_valid_0; // @[TLSerdes.scala:39:9] wire [2:0] managerNodeIn_a_bits_opcode = auto_manager_in_a_bits_opcode_0; // @[TLSerdes.scala:39:9] wire [2:0] managerNodeIn_a_bits_param = auto_manager_in_a_bits_param_0; // @[TLSerdes.scala:39:9] wire [3:0] managerNodeIn_a_bits_size = auto_manager_in_a_bits_size_0; // @[TLSerdes.scala:39:9] wire managerNodeIn_a_bits_source = auto_manager_in_a_bits_source_0; // @[TLSerdes.scala:39:9] wire [31:0] managerNodeIn_a_bits_address = auto_manager_in_a_bits_address_0; // @[TLSerdes.scala:39:9] wire [7:0] managerNodeIn_a_bits_mask = auto_manager_in_a_bits_mask_0; // @[TLSerdes.scala:39:9] wire [63:0] managerNodeIn_a_bits_data = auto_manager_in_a_bits_data_0; // @[TLSerdes.scala:39:9] wire managerNodeIn_a_bits_corrupt = auto_manager_in_a_bits_corrupt_0; // @[TLSerdes.scala:39:9] wire managerNodeIn_d_ready = auto_manager_in_d_ready_0; // @[TLSerdes.scala:39:9] wire managerNodeIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] managerNodeIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] managerNodeIn_d_bits_param; // @[MixedNode.scala:551:17] wire [3:0] managerNodeIn_d_bits_size; // @[MixedNode.scala:551:17] wire managerNodeIn_d_bits_source; // @[MixedNode.scala:551:17] wire managerNodeIn_d_bits_sink; // @[MixedNode.scala:551:17] wire managerNodeIn_d_bits_denied; // @[MixedNode.scala:551:17] wire [63:0] managerNodeIn_d_bits_data; // @[MixedNode.scala:551:17] wire managerNodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17] wire _io_debug_ser_busy_T_1; // @[package.scala:81:59] wire _io_debug_des_busy_T_3; // @[package.scala:81:59] wire auto_manager_in_a_ready_0; // @[TLSerdes.scala:39:9] wire [2:0] auto_manager_in_d_bits_opcode_0; // @[TLSerdes.scala:39:9] wire [1:0] auto_manager_in_d_bits_param_0; // @[TLSerdes.scala:39:9] wire [3:0] auto_manager_in_d_bits_size_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_bits_source_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_bits_sink_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_bits_denied_0; // @[TLSerdes.scala:39:9] wire [63:0] auto_manager_in_d_bits_data_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_bits_corrupt_0; // @[TLSerdes.scala:39:9] wire auto_manager_in_d_valid_0; // @[TLSerdes.scala:39:9] wire io_ser_0_in_ready_0; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_0_out_bits_flit_0; // @[TLSerdes.scala:39:9] wire io_ser_1_in_ready_0; // @[TLSerdes.scala:39:9] wire io_ser_2_in_ready_0; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_2_out_bits_flit_0; // @[TLSerdes.scala:39:9] wire io_ser_2_out_valid_0; // @[TLSerdes.scala:39:9] wire io_ser_3_in_ready_0; // @[TLSerdes.scala:39:9] wire io_ser_4_in_ready_0; // @[TLSerdes.scala:39:9] wire [31:0] io_ser_4_out_bits_flit_0; // @[TLSerdes.scala:39:9] wire io_ser_4_out_valid_0; // @[TLSerdes.scala:39:9] wire io_debug_ser_busy; // @[TLSerdes.scala:39:9] wire io_debug_des_busy; // @[TLSerdes.scala:39:9] assign auto_manager_in_a_ready_0 = managerNodeIn_a_ready; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_valid_0 = managerNodeIn_d_valid; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_opcode_0 = managerNodeIn_d_bits_opcode; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_param_0 = managerNodeIn_d_bits_param; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_size_0 = managerNodeIn_d_bits_size; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_source_0 = managerNodeIn_d_bits_source; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_sink_0 = managerNodeIn_d_bits_sink; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_denied_0 = managerNodeIn_d_bits_denied; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_data_0 = managerNodeIn_d_bits_data; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_corrupt_0 = managerNodeIn_d_bits_corrupt; // @[TLSerdes.scala:39:9] wire [2:0] client_tl_a_bits_opcode; // @[TLSerdes.scala:45:71] wire [2:0] client_tl_a_bits_param; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_a_bits_size; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_a_bits_source; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_a_bits_address; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_a_bits_mask; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_a_bits_data; // @[TLSerdes.scala:45:71] wire client_tl_a_bits_corrupt; // @[TLSerdes.scala:45:71] wire client_tl_a_valid; // @[TLSerdes.scala:45:71] wire [2:0] client_tl_c_bits_opcode; // @[TLSerdes.scala:45:71] wire [2:0] client_tl_c_bits_param; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_c_bits_size; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_c_bits_source; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_c_bits_address; // @[TLSerdes.scala:45:71] wire [63:0] client_tl_c_bits_data; // @[TLSerdes.scala:45:71] wire client_tl_c_bits_corrupt; // @[TLSerdes.scala:45:71] wire client_tl_c_valid; // @[TLSerdes.scala:45:71] wire [7:0] client_tl_e_bits_sink; // @[TLSerdes.scala:45:71] wire client_tl_e_valid; // @[TLSerdes.scala:45:71] wire _io_debug_ser_busy_T; // @[package.scala:81:59] assign _io_debug_ser_busy_T_1 = _io_debug_ser_busy_T | _ser_4_io_busy; // @[TLSerdes.scala:69:23] assign io_debug_ser_busy = _io_debug_ser_busy_T_1; // @[TLSerdes.scala:39:9] wire [2:0] in_channels_3_1_bits_opcode; // @[Bundles.scala:264:61] wire [1:0] in_channels_3_1_bits_param; // @[Bundles.scala:264:61] wire [3:0] in_channels_3_1_bits_size; // @[Bundles.scala:264:61] wire in_channels_3_1_bits_source; // @[Bundles.scala:264:61] wire [31:0] in_channels_3_1_bits_address; // @[Bundles.scala:264:61] wire [7:0] in_channels_3_1_bits_mask; // @[Bundles.scala:264:61] wire [63:0] in_channels_3_1_bits_data; // @[Bundles.scala:264:61] wire in_channels_3_1_bits_corrupt; // @[Bundles.scala:264:61] wire in_channels_3_1_valid; // @[Bundles.scala:264:61] assign managerNodeIn_d_bits_size = _in_channels_1_2_io_protocol_bits_size[3:0]; // @[TLSerdes.scala:79:28, :85:9] assign managerNodeIn_d_bits_source = _in_channels_1_2_io_protocol_bits_source[0]; // @[TLSerdes.scala:79:28, :85:9] assign managerNodeIn_d_bits_sink = _in_channels_1_2_io_protocol_bits_sink[0]; // @[TLSerdes.scala:79:28, :85:9] assign in_channels_3_1_bits_size = _in_channels_3_2_io_protocol_bits_size[3:0]; // @[TLSerdes.scala:81:28, :85:9] assign in_channels_3_1_bits_source = _in_channels_3_2_io_protocol_bits_source[0]; // @[TLSerdes.scala:81:28, :85:9] assign in_channels_3_1_bits_address = _in_channels_3_2_io_protocol_bits_address[31:0]; // @[TLSerdes.scala:81:28, :85:9] wire _io_debug_des_busy_T; // @[package.scala:81:59] wire _io_debug_des_busy_T_1 = _io_debug_des_busy_T | _des_2_io_busy; // @[TLSerdes.scala:86:23] wire _io_debug_des_busy_T_2 = _io_debug_des_busy_T_1 | _des_3_io_busy; // @[TLSerdes.scala:86:23] assign _io_debug_des_busy_T_3 = _io_debug_des_busy_T_2 | _des_4_io_busy; // @[TLSerdes.scala:86:23] assign io_debug_des_busy = _io_debug_des_busy_T_3; // @[TLSerdes.scala:39:9] TLMonitor_54 monitor ( // @[Nodes.scala:27:25] .clock (clock), .reset (reset), .io_in_a_ready (managerNodeIn_a_ready), // @[MixedNode.scala:551:17] .io_in_a_valid (managerNodeIn_a_valid), // @[MixedNode.scala:551:17] .io_in_a_bits_opcode (managerNodeIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_in_a_bits_param (managerNodeIn_a_bits_param), // @[MixedNode.scala:551:17] .io_in_a_bits_size (managerNodeIn_a_bits_size), // @[MixedNode.scala:551:17] .io_in_a_bits_source (managerNodeIn_a_bits_source), // @[MixedNode.scala:551:17] .io_in_a_bits_address (managerNodeIn_a_bits_address), // @[MixedNode.scala:551:17] .io_in_a_bits_mask (managerNodeIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_in_a_bits_data (managerNodeIn_a_bits_data), // @[MixedNode.scala:551:17] .io_in_a_bits_corrupt (managerNodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_d_ready (managerNodeIn_d_ready), // @[MixedNode.scala:551:17] .io_in_d_valid (managerNodeIn_d_valid), // @[MixedNode.scala:551:17] .io_in_d_bits_opcode (managerNodeIn_d_bits_opcode), // @[MixedNode.scala:551:17] .io_in_d_bits_param (managerNodeIn_d_bits_param), // @[MixedNode.scala:551:17] .io_in_d_bits_size (managerNodeIn_d_bits_size), // @[MixedNode.scala:551:17] .io_in_d_bits_source (managerNodeIn_d_bits_source), // @[MixedNode.scala:551:17] .io_in_d_bits_sink (managerNodeIn_d_bits_sink), // @[MixedNode.scala:551:17] .io_in_d_bits_denied (managerNodeIn_d_bits_denied), // @[MixedNode.scala:551:17] .io_in_d_bits_data (managerNodeIn_d_bits_data), // @[MixedNode.scala:551:17] .io_in_d_bits_corrupt (managerNodeIn_d_bits_corrupt) // @[MixedNode.scala:551:17] ); // @[Nodes.scala:27:25] TLEToBeat_SerialRAM_a64d64s8k8z8c out_channels_0_2 ( // @[TLSerdes.scala:59:50] .clock (clock), .reset (reset), .io_beat_ready (_ser_0_io_in_ready), // @[TLSerdes.scala:69:23] .io_beat_bits_head (_out_channels_0_2_io_beat_bits_head) ); // @[TLSerdes.scala:59:50] TLCToBeat_SerialRAM_a64d64s8k8z8c out_channels_2_2 ( // @[TLSerdes.scala:61:50] .clock (clock), .reset (reset), .io_beat_ready (_ser_2_io_in_ready), // @[TLSerdes.scala:69:23] .io_beat_bits_head (_out_channels_2_2_io_beat_bits_head) ); // @[TLSerdes.scala:61:50] TLAToBeat_SerialRAM_a64d64s8k8z8c out_channels_4_2 ( // @[TLSerdes.scala:63:50] .clock (clock), .reset (reset), .io_protocol_ready (managerNodeIn_a_ready), .io_protocol_valid (managerNodeIn_a_valid), // @[MixedNode.scala:551:17] .io_protocol_bits_opcode (managerNodeIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_protocol_bits_param (managerNodeIn_a_bits_param), // @[MixedNode.scala:551:17] .io_protocol_bits_size ({4'h0, managerNodeIn_a_bits_size}), // @[TLSerdes.scala:68:21] .io_protocol_bits_source ({7'h0, managerNodeIn_a_bits_source}), // @[TLSerdes.scala:68:21] .io_protocol_bits_address ({32'h0, managerNodeIn_a_bits_address}), // @[TLSerdes.scala:68:21] .io_protocol_bits_mask (managerNodeIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_protocol_bits_data (managerNodeIn_a_bits_data), // @[MixedNode.scala:551:17] .io_protocol_bits_corrupt (managerNodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_beat_ready (_ser_4_io_in_ready), // @[TLSerdes.scala:69:23] .io_beat_valid (_out_channels_4_2_io_beat_valid), .io_beat_bits_payload (_out_channels_4_2_io_beat_bits_payload), .io_beat_bits_head (_out_channels_4_2_io_beat_bits_head), .io_beat_bits_tail (_out_channels_4_2_io_beat_bits_tail) ); // @[TLSerdes.scala:63:50] GenericSerializer_TLBeatw10_f32 ser_0 ( // @[TLSerdes.scala:69:23] .clock (clock), .reset (reset), .io_in_ready (_ser_0_io_in_ready), .io_in_bits_head (_out_channels_0_2_io_beat_bits_head), // @[TLSerdes.scala:59:50] .io_out_ready (io_ser_0_out_ready_0), // @[TLSerdes.scala:39:9] .io_out_bits_flit (io_ser_0_out_bits_flit_0) ); // @[TLSerdes.scala:69:23] GenericSerializer_TLBeatw88_f32 ser_2 ( // @[TLSerdes.scala:69:23] .clock (clock), .reset (reset), .io_in_ready (_ser_2_io_in_ready), .io_in_bits_head (_out_channels_2_2_io_beat_bits_head), // @[TLSerdes.scala:61:50] .io_out_ready (io_ser_2_out_ready_0), // @[TLSerdes.scala:39:9] .io_out_valid (io_ser_2_out_valid_0), .io_out_bits_flit (io_ser_2_out_bits_flit_0), .io_busy (_io_debug_ser_busy_T) ); // @[TLSerdes.scala:69:23] GenericSerializer_TLBeatw88_f32_1 ser_4 ( // @[TLSerdes.scala:69:23] .clock (clock), .reset (reset), .io_in_ready (_ser_4_io_in_ready), .io_in_valid (_out_channels_4_2_io_beat_valid), // @[TLSerdes.scala:63:50] .io_in_bits_payload (_out_channels_4_2_io_beat_bits_payload), // @[TLSerdes.scala:63:50] .io_in_bits_head (_out_channels_4_2_io_beat_bits_head), // @[TLSerdes.scala:63:50] .io_in_bits_tail (_out_channels_4_2_io_beat_bits_tail), // @[TLSerdes.scala:63:50] .io_out_ready (io_ser_4_out_ready_0), // @[TLSerdes.scala:39:9] .io_out_valid (io_ser_4_out_valid_0), .io_out_bits_flit (io_ser_4_out_bits_flit_0), .io_busy (_ser_4_io_busy) ); // @[TLSerdes.scala:69:23] TLEFromBeat_SerialRAM_a64d64s8k8z8c in_channels_0_2 ( // @[TLSerdes.scala:78:28] .clock (clock), .reset (reset), .io_protocol_valid (client_tl_e_valid), .io_protocol_bits_sink (client_tl_e_bits_sink), .io_beat_ready (_in_channels_0_2_io_beat_ready), .io_beat_valid (_des_0_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_0_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_0_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_0_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:78:28] TLDFromBeat_SerialRAM_a64d64s8k8z8c in_channels_1_2 ( // @[TLSerdes.scala:79:28] .clock (clock), .reset (reset), .io_protocol_ready (managerNodeIn_d_ready), // @[MixedNode.scala:551:17] .io_protocol_valid (managerNodeIn_d_valid), .io_protocol_bits_opcode (managerNodeIn_d_bits_opcode), .io_protocol_bits_param (managerNodeIn_d_bits_param), .io_protocol_bits_size (_in_channels_1_2_io_protocol_bits_size), .io_protocol_bits_source (_in_channels_1_2_io_protocol_bits_source), .io_protocol_bits_sink (_in_channels_1_2_io_protocol_bits_sink), .io_protocol_bits_denied (managerNodeIn_d_bits_denied), .io_protocol_bits_data (managerNodeIn_d_bits_data), .io_protocol_bits_corrupt (managerNodeIn_d_bits_corrupt), .io_beat_ready (_in_channels_1_2_io_beat_ready), .io_beat_valid (_des_1_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_1_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_1_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_1_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:79:28] TLCFromBeat_SerialRAM_a64d64s8k8z8c in_channels_2_2 ( // @[TLSerdes.scala:80:28] .clock (clock), .reset (reset), .io_protocol_valid (client_tl_c_valid), .io_protocol_bits_opcode (client_tl_c_bits_opcode), .io_protocol_bits_param (client_tl_c_bits_param), .io_protocol_bits_size (client_tl_c_bits_size), .io_protocol_bits_source (client_tl_c_bits_source), .io_protocol_bits_address (client_tl_c_bits_address), .io_protocol_bits_data (client_tl_c_bits_data), .io_protocol_bits_corrupt (client_tl_c_bits_corrupt), .io_beat_ready (_in_channels_2_2_io_beat_ready), .io_beat_valid (_des_2_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_2_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_2_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_2_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:80:28] TLBFromBeat_SerialRAM_a64d64s8k8z8c in_channels_3_2 ( // @[TLSerdes.scala:81:28] .clock (clock), .reset (reset), .io_protocol_valid (in_channels_3_1_valid), .io_protocol_bits_opcode (in_channels_3_1_bits_opcode), .io_protocol_bits_param (in_channels_3_1_bits_param), .io_protocol_bits_size (_in_channels_3_2_io_protocol_bits_size), .io_protocol_bits_source (_in_channels_3_2_io_protocol_bits_source), .io_protocol_bits_address (_in_channels_3_2_io_protocol_bits_address), .io_protocol_bits_mask (in_channels_3_1_bits_mask), .io_protocol_bits_data (in_channels_3_1_bits_data), .io_protocol_bits_corrupt (in_channels_3_1_bits_corrupt), .io_beat_ready (_in_channels_3_2_io_beat_ready), .io_beat_valid (_des_3_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_3_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_3_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_3_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:81:28] TLAFromBeat_SerialRAM_a64d64s8k8z8c in_channels_4_2 ( // @[TLSerdes.scala:82:28] .clock (clock), .reset (reset), .io_protocol_valid (client_tl_a_valid), .io_protocol_bits_opcode (client_tl_a_bits_opcode), .io_protocol_bits_param (client_tl_a_bits_param), .io_protocol_bits_size (client_tl_a_bits_size), .io_protocol_bits_source (client_tl_a_bits_source), .io_protocol_bits_address (client_tl_a_bits_address), .io_protocol_bits_mask (client_tl_a_bits_mask), .io_protocol_bits_data (client_tl_a_bits_data), .io_protocol_bits_corrupt (client_tl_a_bits_corrupt), .io_beat_ready (_in_channels_4_2_io_beat_ready), .io_beat_valid (_des_4_io_out_valid), // @[TLSerdes.scala:86:23] .io_beat_bits_payload (_des_4_io_out_bits_payload), // @[TLSerdes.scala:86:23] .io_beat_bits_head (_des_4_io_out_bits_head), // @[TLSerdes.scala:86:23] .io_beat_bits_tail (_des_4_io_out_bits_tail) // @[TLSerdes.scala:86:23] ); // @[TLSerdes.scala:82:28] GenericDeserializer_TLBeatw10_f32_1 des_0 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_0_in_ready_0), .io_in_valid (io_ser_0_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_0_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_0_2_io_beat_ready), // @[TLSerdes.scala:78:28] .io_out_valid (_des_0_io_out_valid), .io_out_bits_payload (_des_0_io_out_bits_payload), .io_out_bits_head (_des_0_io_out_bits_head), .io_out_bits_tail (_des_0_io_out_bits_tail) ); // @[TLSerdes.scala:86:23] GenericDeserializer_TLBeatw67_f32_1 des_1 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_1_in_ready_0), .io_in_valid (io_ser_1_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_1_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_1_2_io_beat_ready), // @[TLSerdes.scala:79:28] .io_out_valid (_des_1_io_out_valid), .io_out_bits_payload (_des_1_io_out_bits_payload), .io_out_bits_head (_des_1_io_out_bits_head), .io_out_bits_tail (_des_1_io_out_bits_tail), .io_busy (_io_debug_des_busy_T) ); // @[TLSerdes.scala:86:23] GenericDeserializer_TLBeatw88_f32_2 des_2 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_2_in_ready_0), .io_in_valid (io_ser_2_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_2_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_2_2_io_beat_ready), // @[TLSerdes.scala:80:28] .io_out_valid (_des_2_io_out_valid), .io_out_bits_payload (_des_2_io_out_bits_payload), .io_out_bits_head (_des_2_io_out_bits_head), .io_out_bits_tail (_des_2_io_out_bits_tail), .io_busy (_des_2_io_busy) ); // @[TLSerdes.scala:86:23] GenericDeserializer_TLBeatw87_f32_1 des_3 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_3_in_ready_0), .io_in_valid (io_ser_3_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_3_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_3_2_io_beat_ready), // @[TLSerdes.scala:81:28] .io_out_valid (_des_3_io_out_valid), .io_out_bits_payload (_des_3_io_out_bits_payload), .io_out_bits_head (_des_3_io_out_bits_head), .io_out_bits_tail (_des_3_io_out_bits_tail), .io_busy (_des_3_io_busy) ); // @[TLSerdes.scala:86:23] GenericDeserializer_TLBeatw88_f32_3 des_4 ( // @[TLSerdes.scala:86:23] .clock (clock), .reset (reset), .io_in_ready (io_ser_4_in_ready_0), .io_in_valid (io_ser_4_in_valid_0), // @[TLSerdes.scala:39:9] .io_in_bits_flit (io_ser_4_in_bits_flit_0), // @[TLSerdes.scala:39:9] .io_out_ready (_in_channels_4_2_io_beat_ready), // @[TLSerdes.scala:82:28] .io_out_valid (_des_4_io_out_valid), .io_out_bits_payload (_des_4_io_out_bits_payload), .io_out_bits_head (_des_4_io_out_bits_head), .io_out_bits_tail (_des_4_io_out_bits_tail), .io_busy (_des_4_io_busy) ); // @[TLSerdes.scala:86:23] assign auto_manager_in_a_ready = auto_manager_in_a_ready_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_valid = auto_manager_in_d_valid_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_opcode = auto_manager_in_d_bits_opcode_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_param = auto_manager_in_d_bits_param_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_size = auto_manager_in_d_bits_size_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_source = auto_manager_in_d_bits_source_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_sink = auto_manager_in_d_bits_sink_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_denied = auto_manager_in_d_bits_denied_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_data = auto_manager_in_d_bits_data_0; // @[TLSerdes.scala:39:9] assign auto_manager_in_d_bits_corrupt = auto_manager_in_d_bits_corrupt_0; // @[TLSerdes.scala:39:9] assign io_ser_0_in_ready = io_ser_0_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_0_out_bits_flit = io_ser_0_out_bits_flit_0; // @[TLSerdes.scala:39:9] assign io_ser_1_in_ready = io_ser_1_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_2_in_ready = io_ser_2_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_2_out_valid = io_ser_2_out_valid_0; // @[TLSerdes.scala:39:9] assign io_ser_2_out_bits_flit = io_ser_2_out_bits_flit_0; // @[TLSerdes.scala:39:9] assign io_ser_3_in_ready = io_ser_3_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_4_in_ready = io_ser_4_in_ready_0; // @[TLSerdes.scala:39:9] assign io_ser_4_out_valid = io_ser_4_out_valid_0; // @[TLSerdes.scala:39:9] assign io_ser_4_out_bits_flit = io_ser_4_out_bits_flit_0; // @[TLSerdes.scala:39:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Tilelink.scala: package constellation.protocol import chisel3._ import chisel3.util._ import constellation.channel._ import constellation.noc._ import constellation.soc.{CanAttachToGlobalNoC} import org.chipsalliance.cde.config._ import freechips.rocketchip.diplomacy._ import freechips.rocketchip.util._ import freechips.rocketchip.tilelink._ import scala.collection.immutable.{ListMap} trait TLFieldHelper { def getBodyFields(b: TLChannel): Seq[Data] = b match { case b: TLBundleA => Seq(b.mask, b.data, b.corrupt) case b: TLBundleB => Seq(b.mask, b.data, b.corrupt) case b: TLBundleC => Seq( b.data, b.corrupt) case b: TLBundleD => Seq( b.data, b.corrupt) case b: TLBundleE => Seq() } def getConstFields(b: TLChannel): Seq[Data] = b match { case b: TLBundleA => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo ) case b: TLBundleB => Seq(b.opcode, b.param, b.size, b.source, b.address ) case b: TLBundleC => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo ) case b: TLBundleD => Seq(b.opcode, b.param, b.size, b.source, b.user, b.echo, b.sink, b.denied) case b: TLBundleE => Seq( b.sink ) } def minTLPayloadWidth(b: TLChannel): Int = Seq(getBodyFields(b), getConstFields(b)).map(_.map(_.getWidth).sum).max def minTLPayloadWidth(bs: Seq[TLChannel]): Int = bs.map(b => minTLPayloadWidth(b)).max def minTLPayloadWidth(b: TLBundle): Int = minTLPayloadWidth(Seq(b.a, b.b, b.c, b.d, b.e).map(_.bits)) } class TLMasterToNoC( edgeIn: TLEdge, edgesOut: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, slaveToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = Flipped(new TLBundle(wideBundle)) val flits = new Bundle { val a = Decoupled(new IngressFlit(flitWidth)) val b = Flipped(Decoupled(new EgressFlit(flitWidth))) val c = Decoupled(new IngressFlit(flitWidth)) val d = Flipped(Decoupled(new EgressFlit(flitWidth))) val e = Decoupled(new IngressFlit(flitWidth)) } }) val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart)) val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize)) val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart)) val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize)) val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 2)) a.io.protocol <> io.tilelink.a io.tilelink.b <> b.io.protocol c.io.protocol <> io.tilelink.c io.tilelink.d <> d.io.protocol e.io.protocol <> io.tilelink.e io.flits.a <> a.io.flit b.io.flit <> io.flits.b io.flits.c <> c.io.flit d.io.flit <> io.flits.d io.flits.e <> e.io.flit } class TLMasterACDToNoC( edgeIn: TLEdge, edgesOut: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, slaveToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = Flipped(new TLBundle(wideBundle)) val flits = new Bundle { val a = Decoupled(new IngressFlit(flitWidth)) val c = Decoupled(new IngressFlit(flitWidth)) val d = Flipped(Decoupled(new EgressFlit(flitWidth))) } }) io.tilelink := DontCare val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart)) val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart)) val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize)) a.io.protocol <> io.tilelink.a c.io.protocol <> io.tilelink.c io.tilelink.d <> d.io.protocol io.flits.a <> a.io.flit io.flits.c <> c.io.flit d.io.flit <> io.flits.d } class TLMasterBEToNoC( edgeIn: TLEdge, edgesOut: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, slaveToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = Flipped(new TLBundle(wideBundle)) val flits = new Bundle { val b = Flipped(Decoupled(new EgressFlit(flitWidth))) val e = Decoupled(new IngressFlit(flitWidth)) } }) io.tilelink := DontCare val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize)) val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0)) io.tilelink.b <> b.io.protocol e.io.protocol <> io.tilelink.e b.io.flit <> io.flits.b io.flits.e <> e.io.flit } class TLSlaveToNoC( edgeOut: TLEdge, edgesIn: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, masterToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = new TLBundle(wideBundle) val flits = new Bundle { val a = Flipped(Decoupled(new EgressFlit(flitWidth))) val b = Decoupled(new IngressFlit(flitWidth)) val c = Flipped(Decoupled(new EgressFlit(flitWidth))) val d = Decoupled(new IngressFlit(flitWidth)) val e = Flipped(Decoupled(new EgressFlit(flitWidth))) } }) val a = Module(new TLAFromNoC(edgeOut, wideBundle)) val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0)) val c = Module(new TLCFromNoC(edgeOut, wideBundle)) val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 1, sourceStart)) val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize)) io.tilelink.a <> a.io.protocol b.io.protocol <> io.tilelink.b io.tilelink.c <> c.io.protocol d.io.protocol <> io.tilelink.d io.tilelink.e <> e.io.protocol a.io.flit <> io.flits.a io.flits.b <> b.io.flit c.io.flit <> io.flits.c io.flits.d <> d.io.flit e.io.flit <> io.flits.e } class TLSlaveACDToNoC( edgeOut: TLEdge, edgesIn: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, masterToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = new TLBundle(wideBundle) val flits = new Bundle { val a = Flipped(Decoupled(new EgressFlit(flitWidth))) val c = Flipped(Decoupled(new EgressFlit(flitWidth))) val d = Decoupled(new IngressFlit(flitWidth)) } }) io.tilelink := DontCare val a = Module(new TLAFromNoC(edgeOut, wideBundle)) val c = Module(new TLCFromNoC(edgeOut, wideBundle)) val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0, sourceStart)) io.tilelink.a <> a.io.protocol io.tilelink.c <> c.io.protocol d.io.protocol <> io.tilelink.d a.io.flit <> io.flits.a c.io.flit <> io.flits.c io.flits.d <> d.io.flit } class TLSlaveBEToNoC( edgeOut: TLEdge, edgesIn: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, masterToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = new TLBundle(wideBundle) val flits = new Bundle { val b = Decoupled(new IngressFlit(flitWidth)) val e = Flipped(Decoupled(new EgressFlit(flitWidth))) } }) io.tilelink := DontCare val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0)) val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize)) b.io.protocol <> io.tilelink.b io.tilelink.e <> e.io.protocol io.flits.b <> b.io.flit e.io.flit <> io.flits.e } class TileLinkInterconnectInterface(edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge])(implicit val p: Parameters) extends Bundle { val in = MixedVec(edgesIn.map { e => Flipped(new TLBundle(e.bundle)) }) val out = MixedVec(edgesOut.map { e => new TLBundle(e.bundle) }) } trait TileLinkProtocolParams extends ProtocolParams with TLFieldHelper { def edgesIn: Seq[TLEdge] def edgesOut: Seq[TLEdge] def edgeInNodes: Seq[Int] def edgeOutNodes: Seq[Int] require(edgesIn.size == edgeInNodes.size && edgesOut.size == edgeOutNodes.size) def wideBundle = TLBundleParameters.union(edgesIn.map(_.bundle) ++ edgesOut.map(_.bundle)) def genBundle = new TLBundle(wideBundle) def inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client)) def outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager)) val vNetBlocking = (blocker: Int, blockee: Int) => blocker < blockee def genIO()(implicit p: Parameters): Data = new TileLinkInterconnectInterface(edgesIn, edgesOut) } object TLConnect { def apply[T <: TLBundleBase](l: DecoupledIO[T], r: DecoupledIO[T]) = { l.valid := r.valid r.ready := l.ready l.bits.squeezeAll.waiveAll :<>= r.bits.squeezeAll.waiveAll } } // BEGIN: TileLinkProtocolParams case class TileLinkABCDEProtocolParams( edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge], edgeInNodes: Seq[Int], edgeOutNodes: Seq[Int] ) extends TileLinkProtocolParams { // END: TileLinkProtocolParams val minPayloadWidth = minTLPayloadWidth(new TLBundle(wideBundle)) val ingressNodes = (edgeInNodes.map(u => Seq.fill(3) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten val egressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (3) {u})).flatten val nVirtualNetworks = 5 val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) => val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m => c.visibility.exists { ca => m.address.exists { ma => ca.overlaps(ma) }} }} val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED) val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB ( (if (reachable) Some(FlowParams(ii * 3 + 0 , oi * 3 + 0 + edgesIn.size * 2, 4)) else None) ++ // A (if (probe ) Some(FlowParams(oi * 2 + 0 + edgesIn.size * 3, ii * 2 + 0 , 3)) else None) ++ // B (if (release ) Some(FlowParams(ii * 3 + 1 , oi * 3 + 1 + edgesIn.size * 2, 2)) else None) ++ // C (if (reachable) Some(FlowParams(oi * 2 + 1 + edgesIn.size * 3, ii * 2 + 1 , 1)) else None) ++ // D (if (release ) Some(FlowParams(ii * 3 + 2 , oi * 3 + 2 + edgesIn.size * 2, 0)) else None)) // E }}.flatten.flatten def interface(terminals: NoCTerminalIO, ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = { val ingresses = terminals.ingress val egresses = terminals.egress protocol match { case protocol: TileLinkInterconnectInterface => { edgesIn.zipWithIndex.map { case (e,i) => val nif_master = Module(new TLMasterToNoC( e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size, wideBundle, (s) => s * 3 + edgesIn.size * 2 + egressOffset, minPayloadWidth )) nif_master.io.tilelink := DontCare nif_master.io.tilelink.a.valid := false.B nif_master.io.tilelink.c.valid := false.B nif_master.io.tilelink.e.valid := false.B TLConnect(nif_master.io.tilelink.a, protocol.in(i).a) TLConnect(protocol.in(i).d, nif_master.io.tilelink.d) if (protocol.in(i).params.hasBCE) { TLConnect(protocol.in(i).b, nif_master.io.tilelink.b) TLConnect(nif_master.io.tilelink.c, protocol.in(i).c) TLConnect(nif_master.io.tilelink.e, protocol.in(i).e) } ingresses(i * 3 + 0).flit <> nif_master.io.flits.a ingresses(i * 3 + 1).flit <> nif_master.io.flits.c ingresses(i * 3 + 2).flit <> nif_master.io.flits.e nif_master.io.flits.b <> egresses(i * 2 + 0).flit nif_master.io.flits.d <> egresses(i * 2 + 1).flit } edgesOut.zipWithIndex.map { case (e,i) => val nif_slave = Module(new TLSlaveToNoC( e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size, wideBundle, (s) => s * 2 + egressOffset, minPayloadWidth )) nif_slave.io.tilelink := DontCare nif_slave.io.tilelink.b.valid := false.B nif_slave.io.tilelink.d.valid := false.B TLConnect(protocol.out(i).a, nif_slave.io.tilelink.a) TLConnect(nif_slave.io.tilelink.d, protocol.out(i).d) if (protocol.out(i).params.hasBCE) { TLConnect(nif_slave.io.tilelink.b, protocol.out(i).b) TLConnect(protocol.out(i).c, nif_slave.io.tilelink.c) TLConnect(protocol.out(i).e, nif_slave.io.tilelink.e) } ingresses(i * 2 + 0 + edgesIn.size * 3).flit <> nif_slave.io.flits.b ingresses(i * 2 + 1 + edgesIn.size * 3).flit <> nif_slave.io.flits.d nif_slave.io.flits.a <> egresses(i * 3 + 0 + edgesIn.size * 2).flit nif_slave.io.flits.c <> egresses(i * 3 + 1 + edgesIn.size * 2).flit nif_slave.io.flits.e <> egresses(i * 3 + 2 + edgesIn.size * 2).flit } } } } } case class TileLinkACDProtocolParams( edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge], edgeInNodes: Seq[Int], edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams { val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.a, genBundle.c, genBundle.d).map(_.bits)) val ingressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten val nVirtualNetworks = 3 val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) => val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m => c.visibility.exists { ca => m.address.exists { ma => ca.overlaps(ma) }} }} val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB ( (if (reachable) Some(FlowParams(ii * 2 + 0 , oi * 2 + 0 + edgesIn.size * 1, 2)) else None) ++ // A (if (release ) Some(FlowParams(ii * 2 + 1 , oi * 2 + 1 + edgesIn.size * 1, 1)) else None) ++ // C (if (reachable) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 2, ii * 1 + 0 , 0)) else None)) // D }}.flatten.flatten def interface(terminals: NoCTerminalIO, ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = { val ingresses = terminals.ingress val egresses = terminals.egress protocol match { case protocol: TileLinkInterconnectInterface => { protocol := DontCare edgesIn.zipWithIndex.map { case (e,i) => val nif_master_acd = Module(new TLMasterACDToNoC( e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size, wideBundle, (s) => s * 2 + edgesIn.size * 1 + egressOffset, minPayloadWidth )) nif_master_acd.io.tilelink := DontCare nif_master_acd.io.tilelink.a.valid := false.B nif_master_acd.io.tilelink.c.valid := false.B nif_master_acd.io.tilelink.e.valid := false.B TLConnect(nif_master_acd.io.tilelink.a, protocol.in(i).a) TLConnect(protocol.in(i).d, nif_master_acd.io.tilelink.d) if (protocol.in(i).params.hasBCE) { TLConnect(nif_master_acd.io.tilelink.c, protocol.in(i).c) } ingresses(i * 2 + 0).flit <> nif_master_acd.io.flits.a ingresses(i * 2 + 1).flit <> nif_master_acd.io.flits.c nif_master_acd.io.flits.d <> egresses(i * 1 + 0).flit } edgesOut.zipWithIndex.map { case (e,i) => val nif_slave_acd = Module(new TLSlaveACDToNoC( e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size, wideBundle, (s) => s * 1 + egressOffset, minPayloadWidth )) nif_slave_acd.io.tilelink := DontCare nif_slave_acd.io.tilelink.b.valid := false.B nif_slave_acd.io.tilelink.d.valid := false.B TLConnect(protocol.out(i).a, nif_slave_acd.io.tilelink.a) TLConnect(nif_slave_acd.io.tilelink.d, protocol.out(i).d) if (protocol.out(i).params.hasBCE) { TLConnect(protocol.out(i).c, nif_slave_acd.io.tilelink.c) } ingresses(i * 1 + 0 + edgesIn.size * 2).flit <> nif_slave_acd.io.flits.d nif_slave_acd.io.flits.a <> egresses(i * 2 + 0 + edgesIn.size * 1).flit nif_slave_acd.io.flits.c <> egresses(i * 2 + 1 + edgesIn.size * 1).flit } }} } } case class TileLinkBEProtocolParams( edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge], edgeInNodes: Seq[Int], edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams { val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.b, genBundle.e).map(_.bits)) val ingressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten val nVirtualNetworks = 2 val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) => val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED) val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB ( (if (probe ) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 1, ii * 1 + 0 , 1)) else None) ++ // B (if (release ) Some(FlowParams(ii * 1 + 0 , oi * 1 + 0 + edgesIn.size * 1, 0)) else None)) // E }}.flatten.flatten def interface(terminals: NoCTerminalIO, ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = { val ingresses = terminals.ingress val egresses = terminals.egress protocol match { case protocol: TileLinkInterconnectInterface => { protocol := DontCare edgesIn.zipWithIndex.map { case (e,i) => val nif_master_be = Module(new TLMasterBEToNoC( e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size, wideBundle, (s) => s * 1 + edgesIn.size * 1 + egressOffset, minPayloadWidth )) nif_master_be.io.tilelink := DontCare nif_master_be.io.tilelink.a.valid := false.B nif_master_be.io.tilelink.c.valid := false.B nif_master_be.io.tilelink.e.valid := false.B if (protocol.in(i).params.hasBCE) { TLConnect(protocol.in(i).b, nif_master_be.io.tilelink.b) TLConnect(nif_master_be.io.tilelink.e, protocol.in(i).e) } ingresses(i * 1 + 0).flit <> nif_master_be.io.flits.e nif_master_be.io.flits.b <> egresses(i * 1 + 0).flit } edgesOut.zipWithIndex.map { case (e,i) => val nif_slave_be = Module(new TLSlaveBEToNoC( e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size, wideBundle, (s) => s * 1 + egressOffset, minPayloadWidth )) nif_slave_be.io.tilelink := DontCare nif_slave_be.io.tilelink.b.valid := false.B nif_slave_be.io.tilelink.d.valid := false.B if (protocol.out(i).params.hasBCE) { TLConnect(protocol.out(i).e, nif_slave_be.io.tilelink.e) TLConnect(nif_slave_be.io.tilelink.b, protocol.out(i).b) } ingresses(i * 1 + 0 + edgesIn.size * 1).flit <> nif_slave_be.io.flits.b nif_slave_be.io.flits.e <> egresses(i * 1 + 0 + edgesIn.size * 1).flit } }} } } abstract class TLNoCLike(implicit p: Parameters) extends LazyModule { val node = new TLNexusNode( clientFn = { seq => seq(0).v1copy( echoFields = BundleField.union(seq.flatMap(_.echoFields)), requestFields = BundleField.union(seq.flatMap(_.requestFields)), responseKeys = seq.flatMap(_.responseKeys).distinct, minLatency = seq.map(_.minLatency).min, clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) => port.clients map { client => client.v1copy( sourceId = client.sourceId.shift(range.start) )} } ) }, managerFn = { seq => val fifoIdFactory = TLXbar.relabeler() seq(0).v1copy( responseFields = BundleField.union(seq.flatMap(_.responseFields)), requestKeys = seq.flatMap(_.requestKeys).distinct, minLatency = seq.map(_.minLatency).min, endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max, managers = seq.flatMap { port => require (port.beatBytes == seq(0).beatBytes, s"TLNoC (data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B") // TileLink NoC does not preserve FIFO-ness, masters to this NoC should instantiate FIFOFixers port.managers map { manager => manager.v1copy(fifoId = None) } } ) } ) } abstract class TLNoCModuleImp(outer: LazyModule) extends LazyModuleImp(outer) { val edgesIn: Seq[TLEdge] val edgesOut: Seq[TLEdge] val nodeMapping: DiplomaticNetworkNodeMapping val nocName: String lazy val inNames = nodeMapping.genUniqueName(edgesIn.map(_.master.masters.map(_.name))) lazy val outNames = nodeMapping.genUniqueName(edgesOut.map(_.slave.slaves.map(_.name))) lazy val edgeInNodes = nodeMapping.getNodesIn(inNames) lazy val edgeOutNodes = nodeMapping.getNodesOut(outNames) def printNodeMappings() { println(s"Constellation: TLNoC $nocName inwards mapping:") for ((n, i) <- inNames zip edgeInNodes) { val node = i.map(_.toString).getOrElse("X") println(s" $node <- $n") } println(s"Constellation: TLNoC $nocName outwards mapping:") for ((n, i) <- outNames zip edgeOutNodes) { val node = i.map(_.toString).getOrElse("X") println(s" $node <- $n") } } } trait TLNoCParams // Instantiates a private TLNoC. Replaces the TLXbar // BEGIN: TLNoCParams case class SimpleTLNoCParams( nodeMappings: DiplomaticNetworkNodeMapping, nocParams: NoCParams = NoCParams(), ) extends TLNoCParams class TLNoC(params: SimpleTLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike { // END: TLNoCParams override def shouldBeInlined = inlineNoC lazy val module = new TLNoCModuleImp(this) { val (io_in, edgesIn) = node.in.unzip val (io_out, edgesOut) = node.out.unzip val nodeMapping = params.nodeMappings val nocName = name printNodeMappings() val protocolParams = TileLinkABCDEProtocolParams( edgesIn = edgesIn, edgesOut = edgesOut, edgeInNodes = edgeInNodes.flatten, edgeOutNodes = edgeOutNodes.flatten ) val noc = Module(new ProtocolNoC(ProtocolNoCParams( params.nocParams.copy(hasCtrl = false, nocName=name, inlineNoC = inlineNoC), Seq(protocolParams), inlineNoC = inlineNoC ))) noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => { (protocol.in zip io_in).foreach { case (l,r) => l <> r } (io_out zip protocol.out).foreach { case (l,r) => l <> r } } } } } case class SplitACDxBETLNoCParams( nodeMappings: DiplomaticNetworkNodeMapping, acdNoCParams: NoCParams = NoCParams(), beNoCParams: NoCParams = NoCParams(), beDivision: Int = 2 ) extends TLNoCParams class TLSplitACDxBENoC(params: SplitACDxBETLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike { override def shouldBeInlined = inlineNoC lazy val module = new TLNoCModuleImp(this) { val (io_in, edgesIn) = node.in.unzip val (io_out, edgesOut) = node.out.unzip val nodeMapping = params.nodeMappings val nocName = name printNodeMappings() val acdProtocolParams = TileLinkACDProtocolParams( edgesIn = edgesIn, edgesOut = edgesOut, edgeInNodes = edgeInNodes.flatten, edgeOutNodes = edgeOutNodes.flatten ) val beProtocolParams = TileLinkBEProtocolParams( edgesIn = edgesIn, edgesOut = edgesOut, edgeInNodes = edgeInNodes.flatten, edgeOutNodes = edgeOutNodes.flatten ) val acd_noc = Module(new ProtocolNoC(ProtocolNoCParams( params.acdNoCParams.copy(hasCtrl = false, nocName=s"${name}_acd", inlineNoC = inlineNoC), Seq(acdProtocolParams), inlineNoC = inlineNoC ))) val be_noc = Module(new ProtocolNoC(ProtocolNoCParams( params.beNoCParams.copy(hasCtrl = false, nocName=s"${name}_be", inlineNoC = inlineNoC), Seq(beProtocolParams), widthDivision = params.beDivision, inlineNoC = inlineNoC ))) acd_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => { (protocol.in zip io_in).foreach { case (l,r) => l := DontCare l.a <> r.a l.c <> r.c l.d <> r.d } (io_out zip protocol.out).foreach { case (l,r) => r := DontCare l.a <> r.a l.c <> r.c l.d <> r.d } }} be_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => { (protocol.in zip io_in).foreach { case (l,r) => l := DontCare l.b <> r.b l.e <> r.e } (io_out zip protocol.out).foreach { case (l,r) => r := DontCare l.b <> r.b l.e <> r.e } }} } } case class GlobalTLNoCParams( nodeMappings: DiplomaticNetworkNodeMapping ) extends TLNoCParams // Maps this interconnect onto a global NoC class TLGlobalNoC(params: GlobalTLNoCParams, name: String = "test")(implicit p: Parameters) extends TLNoCLike { lazy val module = new TLNoCModuleImp(this) with CanAttachToGlobalNoC { val (io_in, edgesIn) = node.in.unzip val (io_out, edgesOut) = node.out.unzip val nodeMapping = params.nodeMappings val nocName = name val protocolParams = TileLinkABCDEProtocolParams( edgesIn = edgesIn, edgesOut = edgesOut, edgeInNodes = edgeInNodes.flatten, edgeOutNodes = edgeOutNodes.flatten ) printNodeMappings() val io_global = IO(Flipped(protocolParams.genIO())) io_global match { case protocol: TileLinkInterconnectInterface => { (protocol.in zip io_in).foreach { case (l,r) => l <> r } (io_out zip protocol.out).foreach { case (l,r) => l <> r } } } } }
module TLSlaveACDToNoC_2( // @[Tilelink.scala:161:7] input clock, // @[Tilelink.scala:161:7] input reset, // @[Tilelink.scala:161:7] input io_tilelink_a_ready, // @[Tilelink.scala:168:14] output io_tilelink_a_valid, // @[Tilelink.scala:168:14] output [2:0] io_tilelink_a_bits_opcode, // @[Tilelink.scala:168:14] output [2:0] io_tilelink_a_bits_param, // @[Tilelink.scala:168:14] output [3:0] io_tilelink_a_bits_size, // @[Tilelink.scala:168:14] output [5:0] io_tilelink_a_bits_source, // @[Tilelink.scala:168:14] output [31:0] io_tilelink_a_bits_address, // @[Tilelink.scala:168:14] output [7:0] io_tilelink_a_bits_mask, // @[Tilelink.scala:168:14] output [63:0] io_tilelink_a_bits_data, // @[Tilelink.scala:168:14] output io_tilelink_a_bits_corrupt, // @[Tilelink.scala:168:14] input io_tilelink_c_ready, // @[Tilelink.scala:168:14] output io_tilelink_c_valid, // @[Tilelink.scala:168:14] output [2:0] io_tilelink_c_bits_opcode, // @[Tilelink.scala:168:14] output [2:0] io_tilelink_c_bits_param, // @[Tilelink.scala:168:14] output [3:0] io_tilelink_c_bits_size, // @[Tilelink.scala:168:14] output [5:0] io_tilelink_c_bits_source, // @[Tilelink.scala:168:14] output [31:0] io_tilelink_c_bits_address, // @[Tilelink.scala:168:14] output [63:0] io_tilelink_c_bits_data, // @[Tilelink.scala:168:14] output io_tilelink_c_bits_corrupt, // @[Tilelink.scala:168:14] output io_tilelink_d_ready, // @[Tilelink.scala:168:14] input io_tilelink_d_valid, // @[Tilelink.scala:168:14] input [2:0] io_tilelink_d_bits_opcode, // @[Tilelink.scala:168:14] input [1:0] io_tilelink_d_bits_param, // @[Tilelink.scala:168:14] input [3:0] io_tilelink_d_bits_size, // @[Tilelink.scala:168:14] input [5:0] io_tilelink_d_bits_source, // @[Tilelink.scala:168:14] input [4:0] io_tilelink_d_bits_sink, // @[Tilelink.scala:168:14] input io_tilelink_d_bits_denied, // @[Tilelink.scala:168:14] input [63:0] io_tilelink_d_bits_data, // @[Tilelink.scala:168:14] input io_tilelink_d_bits_corrupt, // @[Tilelink.scala:168:14] output io_flits_a_ready, // @[Tilelink.scala:168:14] input io_flits_a_valid, // @[Tilelink.scala:168:14] input io_flits_a_bits_head, // @[Tilelink.scala:168:14] input io_flits_a_bits_tail, // @[Tilelink.scala:168:14] input [72:0] io_flits_a_bits_payload, // @[Tilelink.scala:168:14] output io_flits_c_ready, // @[Tilelink.scala:168:14] input io_flits_c_valid, // @[Tilelink.scala:168:14] input io_flits_c_bits_head, // @[Tilelink.scala:168:14] input io_flits_c_bits_tail, // @[Tilelink.scala:168:14] input [72:0] io_flits_c_bits_payload, // @[Tilelink.scala:168:14] input io_flits_d_ready, // @[Tilelink.scala:168:14] output io_flits_d_valid, // @[Tilelink.scala:168:14] output io_flits_d_bits_head, // @[Tilelink.scala:168:14] output io_flits_d_bits_tail, // @[Tilelink.scala:168:14] output [72:0] io_flits_d_bits_payload, // @[Tilelink.scala:168:14] output [3:0] io_flits_d_bits_egress_id // @[Tilelink.scala:168:14] ); wire [64:0] _d_io_flit_bits_payload; // @[Tilelink.scala:179:17] TLAFromNoC a ( // @[Tilelink.scala:177:17] .clock (clock), .reset (reset), .io_protocol_ready (io_tilelink_a_ready), .io_protocol_valid (io_tilelink_a_valid), .io_protocol_bits_opcode (io_tilelink_a_bits_opcode), .io_protocol_bits_param (io_tilelink_a_bits_param), .io_protocol_bits_size (io_tilelink_a_bits_size), .io_protocol_bits_source (io_tilelink_a_bits_source), .io_protocol_bits_address (io_tilelink_a_bits_address), .io_protocol_bits_mask (io_tilelink_a_bits_mask), .io_protocol_bits_data (io_tilelink_a_bits_data), .io_protocol_bits_corrupt (io_tilelink_a_bits_corrupt), .io_flit_ready (io_flits_a_ready), .io_flit_valid (io_flits_a_valid), .io_flit_bits_head (io_flits_a_bits_head), .io_flit_bits_tail (io_flits_a_bits_tail), .io_flit_bits_payload (io_flits_a_bits_payload) ); // @[Tilelink.scala:177:17] TLCFromNoC_1 c ( // @[Tilelink.scala:178:17] .clock (clock), .reset (reset), .io_protocol_ready (io_tilelink_c_ready), .io_protocol_valid (io_tilelink_c_valid), .io_protocol_bits_opcode (io_tilelink_c_bits_opcode), .io_protocol_bits_param (io_tilelink_c_bits_param), .io_protocol_bits_size (io_tilelink_c_bits_size), .io_protocol_bits_source (io_tilelink_c_bits_source), .io_protocol_bits_address (io_tilelink_c_bits_address), .io_protocol_bits_data (io_tilelink_c_bits_data), .io_protocol_bits_corrupt (io_tilelink_c_bits_corrupt), .io_flit_ready (io_flits_c_ready), .io_flit_valid (io_flits_c_valid), .io_flit_bits_head (io_flits_c_bits_head), .io_flit_bits_tail (io_flits_c_bits_tail), .io_flit_bits_payload (io_flits_c_bits_payload[64:0]) // @[Tilelink.scala:185:14] ); // @[Tilelink.scala:178:17] TLDToNoC_2 d ( // @[Tilelink.scala:179:17] .clock (clock), .reset (reset), .io_protocol_ready (io_tilelink_d_ready), .io_protocol_valid (io_tilelink_d_valid), .io_protocol_bits_opcode (io_tilelink_d_bits_opcode), .io_protocol_bits_param (io_tilelink_d_bits_param), .io_protocol_bits_size (io_tilelink_d_bits_size), .io_protocol_bits_source (io_tilelink_d_bits_source), .io_protocol_bits_sink (io_tilelink_d_bits_sink), .io_protocol_bits_denied (io_tilelink_d_bits_denied), .io_protocol_bits_data (io_tilelink_d_bits_data), .io_protocol_bits_corrupt (io_tilelink_d_bits_corrupt), .io_flit_ready (io_flits_d_ready), .io_flit_valid (io_flits_d_valid), .io_flit_bits_head (io_flits_d_bits_head), .io_flit_bits_tail (io_flits_d_bits_tail), .io_flit_bits_payload (_d_io_flit_bits_payload), .io_flit_bits_egress_id (io_flits_d_bits_egress_id) ); // @[Tilelink.scala:179:17] assign io_flits_d_bits_payload = {8'h0, _d_io_flit_bits_payload}; // @[Tilelink.scala:161:7, :179:17, :186:14] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_334( // @[SynchronizerReg.scala:68:19] input clock, // @[SynchronizerReg.scala:68:19] input reset, // @[SynchronizerReg.scala:68:19] output io_q // @[ShiftReg.scala:36:14] ); wire io_d = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19] wire _sync_2_T = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19] wire io_q_0; // @[SynchronizerReg.scala:68:19] reg sync_0; // @[SynchronizerReg.scala:51:87] assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19] reg sync_1; // @[SynchronizerReg.scala:51:87] reg sync_2; // @[SynchronizerReg.scala:51:87] always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19] if (reset) begin // @[SynchronizerReg.scala:68:19] sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87] end else begin // @[SynchronizerReg.scala:68:19] sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87] sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h1; // @[SynchronizerReg.scala:51:87, :54:22, :68:19] end always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_TLBEntryData_74( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae_ptw, // @[package.scala:268:18] input io_x_ae_final, // @[package.scala:268:18] input io_x_ae_stage2, // @[package.scala:268:18] input io_x_pf, // @[package.scala:268:18] input io_x_gf, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_hw, // @[package.scala:268:18] input io_x_hx, // @[package.scala:268:18] input io_x_hr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_ppp, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_ae_ptw, // @[package.scala:268:18] output io_y_ae_final, // @[package.scala:268:18] output io_y_ae_stage2, // @[package.scala:268:18] output io_y_pf, // @[package.scala:268:18] output io_y_gf, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_hw, // @[package.scala:268:18] output io_y_hx, // @[package.scala:268:18] output io_y_hr, // @[package.scala:268:18] output io_y_pw, // @[package.scala:268:18] output io_y_px, // @[package.scala:268:18] output io_y_pr, // @[package.scala:268:18] output io_y_ppp, // @[package.scala:268:18] output io_y_pal, // @[package.scala:268:18] output io_y_paa, // @[package.scala:268:18] output io_y_eff, // @[package.scala:268:18] output io_y_c // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30] wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30] wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30] wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30] wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30] wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30] wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30] wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30] wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30] wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30] wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30] wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30] wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30] wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30] wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30] wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30] wire io_y_ppp_0 = io_x_ppp_0; // @[package.scala:267:30] wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30] wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30] assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30] assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30] assign io_y_pf = io_y_pf_0; // @[package.scala:267:30] assign io_y_gf = io_y_gf_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_hw = io_y_hw_0; // @[package.scala:267:30] assign io_y_hx = io_y_hx_0; // @[package.scala:267:30] assign io_y_hr = io_y_hr_0; // @[package.scala:267:30] assign io_y_pw = io_y_pw_0; // @[package.scala:267:30] assign io_y_px = io_y_px_0; // @[package.scala:267:30] assign io_y_pr = io_y_pr_0; // @[package.scala:267:30] assign io_y_ppp = io_y_ppp_0; // @[package.scala:267:30] assign io_y_pal = io_y_pal_0; // @[package.scala:267:30] assign io_y_paa = io_y_paa_0; // @[package.scala:267:30] assign io_y_eff = io_y_eff_0; // @[package.scala:267:30] assign io_y_c = io_y_c_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File UnsafeAXI4ToTL.scala: package ara import chisel3._ import chisel3.util._ import freechips.rocketchip.amba._ import freechips.rocketchip.amba.axi4._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle { val data = UInt(dataWidth.W) val resp = UInt(respWidth.W) val last = Bool() val user = BundleMap(userFields) } /** Parameters for [[BaseReservableListBuffer]] and all child classes. * * @param numEntries Total number of elements that can be stored in the 'data' RAM * @param numLists Maximum number of linked lists * @param numBeats Maximum number of beats per entry */ case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) { // Avoid zero-width wires when we call 'log2Ceil' val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries) val listBits = if (numLists == 1) 1 else log2Ceil(numLists) val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats) } case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName) extends MixedAdapterNode(AXI4Imp, TLImp)( dFn = { case mp => TLMasterPortParameters.v2( masters = mp.masters.zipWithIndex.map { case (m, i) => // Support 'numTlTxns' read requests and 'numTlTxns' write requests at once. val numSourceIds = numTlTxns * 2 TLMasterParameters.v2( name = m.name, sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds), nodePath = m.nodePath ) }, echoFields = mp.echoFields, requestFields = AMBAProtField() +: mp.requestFields, responseKeys = mp.responseKeys ) }, uFn = { mp => AXI4SlavePortParameters( slaves = mp.managers.map { m => val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits)) AXI4SlaveParameters( address = m.address, resources = m.resources, regionType = m.regionType, executable = m.executable, nodePath = m.nodePath, supportsWrite = m.supportsPutPartial.intersect(maxXfer), supportsRead = m.supportsGet.intersect(maxXfer), interleavedId = Some(0) // TL2 never interleaves D beats ) }, beatBytes = mp.beatBytes, minLatency = mp.minLatency, responseFields = mp.responseFields, requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt) ) } ) class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule { require(numTlTxns >= 1) require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2") val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt) lazy val module = new LazyModuleImp(this) { (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => edgeIn.master.masters.foreach { m => require(m.aligned, "AXI4ToTL requires aligned requests") } val numIds = edgeIn.master.endId val beatBytes = edgeOut.slave.beatBytes val maxTransfer = edgeOut.slave.maxTransfer val maxBeats = maxTransfer / beatBytes // Look for an Error device to redirect bad requests val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError") require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.") val errorDev = errorDevs.maxBy(_.maxTransfer) val errorDevAddr = errorDev.address.head.base require( errorDev.supportsPutPartial.contains(maxTransfer), s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer" ) require( errorDev.supportsGet.contains(maxTransfer), s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer" ) // All of the read-response reordering logic. val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields) val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats) val listBuffer = if (numTlTxns > 1) { Module(new ReservableListBuffer(listBufData, listBufParams)) } else { Module(new PassthroughListBuffer(listBufData, listBufParams)) } // To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to // 0 for read requests and 1 for write requests. val isReadSourceBit = 0.U(1.W) val isWriteSourceBit = 1.U(1.W) /* Read request logic */ val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val rBytes1 = in.ar.bits.bytes1() val rSize = OH1ToUInt(rBytes1) val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize) val rId = if (numTlTxns > 1) { Cat(isReadSourceBit, listBuffer.ioReservedIndex) } else { isReadSourceBit } val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Indicates if there are still valid TileLink source IDs left to use. val canIssueR = listBuffer.ioReserve.ready listBuffer.ioReserve.bits := in.ar.bits.id listBuffer.ioReserve.valid := in.ar.valid && rOut.ready in.ar.ready := rOut.ready && canIssueR rOut.valid := in.ar.valid && canIssueR rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2 rOut.bits.user :<= in.ar.bits.user rOut.bits.user.lift(AMBAProt).foreach { rProt => rProt.privileged := in.ar.bits.prot(0) rProt.secure := !in.ar.bits.prot(1) rProt.fetch := in.ar.bits.prot(2) rProt.bufferable := in.ar.bits.cache(0) rProt.modifiable := in.ar.bits.cache(1) rProt.readalloc := in.ar.bits.cache(2) rProt.writealloc := in.ar.bits.cache(3) } /* Write request logic */ // Strip off the MSB, which identifies the transaction as read vs write. val strippedResponseSourceId = if (numTlTxns > 1) { out.d.bits.source((out.d.bits.source).getWidth - 2, 0) } else { // When there's only 1 TileLink transaction allowed for read/write, then this field is always 0. 0.U(1.W) } // Track when a write request burst is in progress. val writeBurstBusy = RegInit(false.B) when(in.w.fire) { writeBurstBusy := !in.w.bits.last } val usedWriteIds = RegInit(0.U(numTlTxns.W)) val canIssueW = !usedWriteIds.andR val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W)) val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W)) usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet // Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't // change mid-burst. val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W)) val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy val freeWriteIdIndex = OHToUInt(freeWriteIdOH) freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val wBytes1 = in.aw.bits.bytes1() val wSize = OH1ToUInt(wBytes1) val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize) val wId = if (numTlTxns > 1) { Cat(isWriteSourceBit, freeWriteIdIndex) } else { isWriteSourceBit } val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain // asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but // the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb // bits during a W-channel burst. in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW in.w.ready := wOut.ready && in.aw.valid && canIssueW wOut.valid := in.aw.valid && in.w.valid && canIssueW wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2 in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ } wOut.bits.user :<= in.aw.bits.user wOut.bits.user.lift(AMBAProt).foreach { wProt => wProt.privileged := in.aw.bits.prot(0) wProt.secure := !in.aw.bits.prot(1) wProt.fetch := in.aw.bits.prot(2) wProt.bufferable := in.aw.bits.cache(0) wProt.modifiable := in.aw.bits.cache(1) wProt.readalloc := in.aw.bits.cache(2) wProt.writealloc := in.aw.bits.cache(3) } // Merge the AXI4 read/write requests into the TL-A channel. TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut)) /* Read/write response logic */ val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle))) val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle))) val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY) val dHasData = edgeOut.hasData(out.d.bits) val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d) val dNumBeats1 = edgeOut.numBeats1(out.d.bits) // Handle cases where writeack arrives before write is done val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck) listBuffer.ioDataOut.ready := okR.ready okR.valid := listBuffer.ioDataOut.valid okB.valid := out.d.valid && !dHasData && !writeEarlyAck listBuffer.ioResponse.valid := out.d.valid && dHasData listBuffer.ioResponse.bits.index := strippedResponseSourceId listBuffer.ioResponse.bits.data.data := out.d.bits.data listBuffer.ioResponse.bits.data.resp := dResp listBuffer.ioResponse.bits.data.last := dLast listBuffer.ioResponse.bits.data.user :<= out.d.bits.user listBuffer.ioResponse.bits.count := dCount listBuffer.ioResponse.bits.numBeats1 := dNumBeats1 okR.bits.id := listBuffer.ioDataOut.bits.listIndex okR.bits.data := listBuffer.ioDataOut.bits.payload.data okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp okR.bits.last := listBuffer.ioDataOut.bits.payload.last okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user // Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write // response, mark the write transaction as complete. val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W)) val writeResponseId = writeIdMap.read(strippedResponseSourceId) when(wOut.fire) { writeIdMap.write(freeWriteIdIndex, in.aw.bits.id) } when(edgeOut.done(wOut)) { usedWriteIdsSet := freeWriteIdOH } when(okB.fire) { usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns) } okB.bits.id := writeResponseId okB.bits.resp := dResp okB.bits.user :<= out.d.bits.user // AXI4 needs irrevocable behaviour in.r <> Queue.irrevocable(okR, 1, flow = true) in.b <> Queue.irrevocable(okB, 1, flow = true) // Unused channels out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B /* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */ def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = { val lReqType = reqType.toLowerCase when(a.valid) { assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U) // Narrow transfers and FIXED bursts must be single-beat bursts. when(a.bits.len =/= 0.U) { assert( a.bits.size === log2Ceil(beatBytes).U, s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)", 1.U << a.bits.size, a.bits.len + 1.U ) assert( a.bits.burst =/= AXI4Parameters.BURST_FIXED, s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)", a.bits.len + 1.U ) } // Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in // particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink // Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts. } } checkRequest(in.ar, "Read") checkRequest(in.aw, "Write") } } } object UnsafeAXI4ToTL { def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = { val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt)) axi42tl.node } } /* ReservableListBuffer logic, and associated classes. */ class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle { val index = UInt(params.entryBits.W) val count = UInt(params.beatBits.W) val numBeats1 = UInt(params.beatBits.W) } class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle { val listIndex = UInt(params.listBits.W) } /** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */ abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends Module { require(params.numEntries > 0) require(params.numLists > 0) val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W)))) val ioReservedIndex = IO(Output(UInt(params.entryBits.W))) val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params)))) val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params))) } /** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve * linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the * 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a * given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order. * * ==Constructor== * @param gen Chisel type of linked list data element * @param params Other parameters * * ==Module IO== * @param ioReserve Index of list to reserve a new element in * @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire' * @param ioResponse Payload containing response data and linked-list-entry index * @param ioDataOut Payload containing data read from response linked list and linked list index */ class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { val valid = RegInit(0.U(params.numLists.W)) val head = Mem(params.numLists, UInt(params.entryBits.W)) val tail = Mem(params.numLists, UInt(params.entryBits.W)) val used = RegInit(0.U(params.numEntries.W)) val next = Mem(params.numEntries, UInt(params.entryBits.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) } val dataIsPresent = RegInit(0.U(params.numEntries.W)) val beats = Mem(params.numEntries, UInt(params.beatBits.W)) // The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower. val dataMemReadEnable = WireDefault(false.B) val dataMemWriteEnable = WireDefault(false.B) assert(!(dataMemReadEnable && dataMemWriteEnable)) // 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the // lowest-index entry in the 'data' RAM which is free. val freeOH = Wire(UInt(params.numEntries.W)) val freeIndex = OHToUInt(freeOH) freeOH := ~(leftOR(~used) << 1) & ~used ioReservedIndex := freeIndex val validSet = WireDefault(0.U(params.numLists.W)) val validClr = WireDefault(0.U(params.numLists.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) val dataIsPresentSet = WireDefault(0.U(params.numEntries.W)) val dataIsPresentClr = WireDefault(0.U(params.numEntries.W)) valid := (valid & ~validClr) | validSet used := (used & ~usedClr) | usedSet dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet /* Reservation logic signals */ val reserveTail = Wire(UInt(params.entryBits.W)) val reserveIsValid = Wire(Bool()) /* Response logic signals */ val responseIndex = Wire(UInt(params.entryBits.W)) val responseListIndex = Wire(UInt(params.listBits.W)) val responseHead = Wire(UInt(params.entryBits.W)) val responseTail = Wire(UInt(params.entryBits.W)) val nextResponseHead = Wire(UInt(params.entryBits.W)) val nextDataIsPresent = Wire(Bool()) val isResponseInOrder = Wire(Bool()) val isEndOfList = Wire(Bool()) val isLastBeat = Wire(Bool()) val isLastResponseBeat = Wire(Bool()) val isLastUnwindBeat = Wire(Bool()) /* Reservation logic */ reserveTail := tail.read(ioReserve.bits) reserveIsValid := valid(ioReserve.bits) ioReserve.ready := !used.andR // When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we // actually start a new list, rather than appending to a list that's about to disappear. val reserveResponseSameList = ioReserve.bits === responseListIndex val appendToAndDestroyList = ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat when(ioReserve.fire) { validSet := UIntToOH(ioReserve.bits, params.numLists) usedSet := freeOH when(reserveIsValid && !appendToAndDestroyList) { next.write(reserveTail, freeIndex) }.otherwise { head.write(ioReserve.bits, freeIndex) } tail.write(ioReserve.bits, freeIndex) map.write(freeIndex, ioReserve.bits) } /* Response logic */ // The majority of the response logic (reading from and writing to the various RAMs) is common between the // response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid). // The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the // 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and // response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after // two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker. responseHead := head.read(responseListIndex) responseTail := tail.read(responseListIndex) nextResponseHead := next.read(responseIndex) nextDataIsPresent := dataIsPresent(nextResponseHead) // Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since // there isn't a next element in the linked list. isResponseInOrder := responseHead === responseIndex isEndOfList := responseHead === responseTail isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1 // When a response's last beat is sent to the output channel, mark it as completed. This can happen in two // situations: // 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM // reservation was never needed. // 2. An entry is read out of the 'data' SRAM (within the unwind FSM). when(ioDataOut.fire && isLastBeat) { // Mark the reservation as no-longer-used. usedClr := UIntToOH(responseIndex, params.numEntries) // If the response is in-order, then we're popping an element from this linked list. when(isEndOfList) { // Once we pop the last element from a linked list, mark it as no-longer-present. validClr := UIntToOH(responseListIndex, params.numLists) }.otherwise { // Move the linked list's head pointer to the new head pointer. head.write(responseListIndex, nextResponseHead) } } // If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding. when(ioResponse.fire && !isResponseInOrder) { dataMemWriteEnable := true.B when(isLastResponseBeat) { dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries) beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1) } } // Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to. val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats) (responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) => when(select && dataMemWriteEnable) { seqMem.write(ioResponse.bits.index, ioResponse.bits.data) } } /* Response unwind logic */ // Unwind FSM state definitions val sIdle :: sUnwinding :: Nil = Enum(2) val unwindState = RegInit(sIdle) val busyUnwinding = unwindState === sUnwinding val startUnwind = Wire(Bool()) val stopUnwind = Wire(Bool()) when(startUnwind) { unwindState := sUnwinding }.elsewhen(stopUnwind) { unwindState := sIdle } assert(!(startUnwind && stopUnwind)) // Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to // become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is // invalid. // // Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to // worry about overwriting the 'data' SRAM's output when we start the unwind FSM. startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent // Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of // two things happens: // 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent) // 2. There are no more outstanding responses in this list (isEndOfList) // // Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are // passing from 'ioResponse' to 'ioDataOut'. stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList) val isUnwindBurstOver = Wire(Bool()) val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable) // Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of // beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we // increment 'beatCounter' until it reaches 'unwindBeats1'. val unwindBeats1 = Reg(UInt(params.beatBits.W)) val nextBeatCounter = Wire(UInt(params.beatBits.W)) val beatCounter = RegNext(nextBeatCounter) isUnwindBurstOver := beatCounter === unwindBeats1 when(startNewBurst) { unwindBeats1 := beats.read(nextResponseHead) nextBeatCounter := 0.U }.elsewhen(dataMemReadEnable) { nextBeatCounter := beatCounter + 1.U }.otherwise { nextBeatCounter := beatCounter } // When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next // entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which // happens at the start of reading a new stored burst). val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst) responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index) // Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the // SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead // holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'. val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex) // The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid // until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle). val unwindDataIsValid = RegInit(false.B) when(dataMemReadEnable) { unwindDataIsValid := true.B }.elsewhen(ioDataOut.fire) { unwindDataIsValid := false.B } isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid // Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats. isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat) // Select which SRAM to read from based on the beat counter. val dataOutputVec = Wire(Vec(params.numBeats, gen)) val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats) (nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) => dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable) } // Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured // by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading // from. val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable) // Mark 'data' burst entries as no-longer-present as they get read out of the SRAM. when(dataMemReadEnable) { dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries) } // As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue // a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know // we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be // consumed by the output channel). val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem) // While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need // 'responseListIndex' to be coherent for the entire unwind process. val rawResponseListIndex = map.read(responseIndex) val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst) responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex) // Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are // just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that // could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be // single-ported. ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding // Either pass an in-order response to the output channel, or data read from the unwind FSM. ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder) ioDataOut.bits.listIndex := responseListIndex ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data) // It's an error to get a response that isn't associated with a valid linked list. when(ioResponse.fire || unwindDataIsValid) { assert( valid(responseListIndex), "No linked list exists at index %d, mapped from %d", responseListIndex, responseIndex ) } when(busyUnwinding && dataMemReadEnable) { assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order") } } /** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1. * * Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to * reorder any responses, or store any linked lists. */ class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1") val used = RegInit(0.U(params.numEntries.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) used := (used & ~usedClr) | usedSet ioReserve.ready := used === 0.U // Store which list index was reserved, we need to return this value when we get a response. when(ioReserve.fire) { usedSet := 1.U map.write(0.U, ioReserve.bits) } // There's only one valid linked list entry, which is at index 0. ioReservedIndex := 0.U val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1 // Mark the linked list as empty when we get the last beat in a response. // Note that 'ioResponse.fire === ioDataOut.fire'. when(ioResponse.fire && isLastResponseBeat) { usedClr := 1.U } // Always pass the response data straight through, since we never need to reorder the response data. ioDataOut.bits.listIndex := map.read(0.U) ioDataOut.bits.payload := ioResponse.bits.data ioDataOut.valid := ioResponse.valid ioResponse.ready := ioDataOut.ready }
module dataMems_181( // @[UnsafeAXI4ToTL.scala:365:62] input [4:0] R0_addr, input R0_en, input R0_clk, output [66:0] R0_data, input [4:0] W0_addr, input W0_en, input W0_clk, input [66:0] W0_data ); dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62] .R0_addr (R0_addr), .R0_en (R0_en), .R0_clk (R0_clk), .R0_data (R0_data), .W0_addr (W0_addr), .W0_en (W0_en), .W0_clk (W0_clk), .W0_data (W0_data) ); // @[UnsafeAXI4ToTL.scala:365:62] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module PE_506( // @[PE.scala:31:7] input clock, // @[PE.scala:31:7] input reset, // @[PE.scala:31:7] input [7:0] io_in_a, // @[PE.scala:35:14] input [19:0] io_in_b, // @[PE.scala:35:14] input [19:0] io_in_d, // @[PE.scala:35:14] output [7:0] io_out_a, // @[PE.scala:35:14] output [19:0] io_out_b, // @[PE.scala:35:14] output [19:0] io_out_c, // @[PE.scala:35:14] input io_in_control_dataflow, // @[PE.scala:35:14] input io_in_control_propagate, // @[PE.scala:35:14] input [4:0] io_in_control_shift, // @[PE.scala:35:14] output io_out_control_dataflow, // @[PE.scala:35:14] output io_out_control_propagate, // @[PE.scala:35:14] output [4:0] io_out_control_shift, // @[PE.scala:35:14] input [2:0] io_in_id, // @[PE.scala:35:14] output [2:0] io_out_id, // @[PE.scala:35:14] input io_in_last, // @[PE.scala:35:14] output io_out_last, // @[PE.scala:35:14] input io_in_valid, // @[PE.scala:35:14] output io_out_valid, // @[PE.scala:35:14] output io_bad_dataflow // @[PE.scala:35:14] ); wire [19:0] _mac_unit_io_out_d; // @[PE.scala:64:24] wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7] wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7] wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7] wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7] wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7] wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7] wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7] wire io_in_last_0 = io_in_last; // @[PE.scala:31:7] wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7] wire io_bad_dataflow_0 = 1'h0; // @[PE.scala:31:7] wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7] wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37] wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37] wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35] wire [19:0] c1_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire [19:0] c2_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7] wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7] wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7] wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7] wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7] wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7] wire [19:0] io_out_b_0; // @[PE.scala:31:7] wire [19:0] io_out_c_0; // @[PE.scala:31:7] reg [31:0] c1; // @[PE.scala:70:15] wire [31:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15] wire [31:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38] reg [31:0] c2; // @[PE.scala:71:15] wire [31:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15] wire [31:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38] reg last_s; // @[PE.scala:89:25] wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21] wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25] wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25] wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32] wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32] wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25] wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15] wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}] wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25] wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27] wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27] wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_7 = _io_out_c_zeros_T_1 & _io_out_c_zeros_T_6; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_2 = {27'h0, shift_offset}; // @[PE.scala:91:25] wire [31:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15] wire [31:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T; // @[Arithmetic.scala:107:15] assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_2 = {_io_out_c_T[31], _io_out_c_T} + {{31{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_3 = _io_out_c_T_2[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28] wire _io_out_c_T_5 = $signed(_io_out_c_T_4) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_6 = $signed(_io_out_c_T_4) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_7 = _io_out_c_T_6 ? 32'hFFF80000 : _io_out_c_T_4; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_8 = _io_out_c_T_5 ? 32'h7FFFF : _io_out_c_T_7; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_9 = _io_out_c_T_8[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37] wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37] wire c1_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire c2_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire [1:0] _GEN_4 = {2{c1_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c1_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c1_lo_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c1_lo_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c1_hi_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c1_hi_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [2:0] c1_lo_lo = {c1_lo_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_lo_hi = {c1_lo_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_lo = {c1_lo_hi, c1_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c1_hi_lo = {c1_hi_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_hi_hi = {c1_hi_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_hi = {c1_hi_hi, c1_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c1_T = {c1_hi, c1_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c1_T_1 = {_c1_T, c1_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c1_T_2 = _c1_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c1_WIRE = _c1_T_2; // @[Arithmetic.scala:118:61] wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15] wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}] wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_16 = _io_out_c_zeros_T_10 & _io_out_c_zeros_T_15; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_5 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15] wire [31:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T_1 = _GEN_5; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15] assign _io_out_c_T_11 = _GEN_5; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_13 = {_io_out_c_T_11[31], _io_out_c_T_11} + {{31{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_14 = _io_out_c_T_13[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28] wire _io_out_c_T_16 = $signed(_io_out_c_T_15) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_17 = $signed(_io_out_c_T_15) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_18 = _io_out_c_T_17 ? 32'hFFF80000 : _io_out_c_T_15; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_19 = _io_out_c_T_16 ? 32'h7FFFF : _io_out_c_T_18; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_20 = _io_out_c_T_19[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37] wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37] wire [1:0] _GEN_6 = {2{c2_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c2_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c2_lo_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c2_lo_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c2_hi_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c2_hi_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [2:0] c2_lo_lo = {c2_lo_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_lo_hi = {c2_lo_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_lo = {c2_lo_hi, c2_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c2_hi_lo = {c2_hi_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_hi_hi = {c2_hi_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_hi = {c2_hi_hi, c2_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c2_T = {c2_hi, c2_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c2_T_1 = {_c2_T, c2_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c2_T_2 = _c2_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c2_WIRE = _c2_T_2; // @[Arithmetic.scala:118:61] wire [31:0] _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38] wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5[7:0]; // @[PE.scala:121:38] wire [31:0] _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38] wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7[7:0]; // @[PE.scala:127:38] assign io_out_c_0 = io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? c1[19:0] : c2[19:0]) : io_in_control_propagate_0 ? _io_out_c_T_10 : _io_out_c_T_21; // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :104:16, :111:16, :118:101, :119:30, :120:16, :126:16] assign io_out_b_0 = io_in_control_dataflow_0 ? _mac_unit_io_out_d : io_in_b_0; // @[PE.scala:31:7, :64:24, :102:95, :103:30, :118:101] wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35] wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35] wire [31:0] _GEN_7 = {{12{io_in_d_0[19]}}, io_in_d_0}; // @[PE.scala:31:7, :124:10] wire [31:0] _GEN_8 = {{12{_mac_unit_io_out_d[19]}}, _mac_unit_io_out_d}; // @[PE.scala:64:24, :108:10] always @(posedge clock) begin // @[PE.scala:31:7] if (io_in_valid_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :70:15, :118:101, :119:30, :124:10] c1 <= _GEN_7; // @[PE.scala:70:15, :124:10] if (~io_in_control_dataflow_0 | io_in_control_propagate_0) begin // @[PE.scala:31:7, :71:15, :118:101, :119:30] end else // @[PE.scala:71:15, :118:101, :119:30] c2 <= _GEN_7; // @[PE.scala:71:15, :124:10] end else begin // @[PE.scala:31:7] c1 <= io_in_control_propagate_0 ? _c1_WIRE : _GEN_8; // @[PE.scala:31:7, :70:15, :103:30, :108:10, :109:10, :115:10] c2 <= io_in_control_propagate_0 ? _GEN_8 : _c2_WIRE; // @[PE.scala:31:7, :71:15, :103:30, :108:10, :116:10] end last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25] end always @(posedge) MacUnit_250 mac_unit ( // @[PE.scala:64:24] .clock (clock), .reset (reset), .io_in_a (io_in_a_0), // @[PE.scala:31:7] .io_in_b (io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3) : io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE : _mac_unit_io_in_b_WIRE_1), // @[PE.scala:31:7, :102:95, :103:30, :106:{24,37}, :113:{24,37}, :118:101, :119:30, :121:{24,38}, :127:{24,38}] .io_in_c (io_in_control_dataflow_0 ? {{12{io_in_b_0[19]}}, io_in_b_0} : io_in_control_propagate_0 ? c2 : c1), // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :107:24, :114:24, :118:101, :122:24] .io_out_d (_mac_unit_io_out_d) ); // @[PE.scala:64:24] assign io_out_a = io_out_a_0; // @[PE.scala:31:7] assign io_out_b = io_out_b_0; // @[PE.scala:31:7] assign io_out_c = io_out_c_0; // @[PE.scala:31:7] assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7] assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7] assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7] assign io_out_id = io_out_id_0; // @[PE.scala:31:7] assign io_out_last = io_out_last_0; // @[PE.scala:31:7] assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7] assign io_bad_dataflow = io_bad_dataflow_0; // @[PE.scala:31:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File MulAddRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle { //*** ENCODE SOME OF THESE CASES IN FEWER BITS?: val isSigNaNAny = Bool() val isNaNAOrB = Bool() val isInfA = Bool() val isZeroA = Bool() val isInfB = Bool() val isZeroB = Bool() val signProd = Bool() val isNaNC = Bool() val isInfC = Bool() val isZeroC = Bool() val sExpSum = SInt((expWidth + 2).W) val doSubMags = Bool() val CIsDominant = Bool() val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W) val highAlignedSigC = UInt((sigWidth + 2).W) val bit0AlignedSigC = UInt(1.W) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val mulAddA = Output(UInt(sigWidth.W)) val mulAddB = Output(UInt(sigWidth.W)) val mulAddC = Output(UInt((sigWidth * 2).W)) val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ //*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN //*** UNSHIFTED C AND PRODUCT): val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a) val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b) val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c) val signProd = rawA.sign ^ rawB.sign ^ io.op(1) //*** REVIEW THE BIAS FOR 'sExpAlignedProd': val sExpAlignedProd = rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S val doSubMags = signProd ^ rawC.sign ^ io.op(0) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sNatCAlignDist = sExpAlignedProd - rawC.sExp val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0) val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S) val CIsDominant = ! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U)) val CAlignDist = Mux(isMinCAlign, 0.U, Mux(posNatCAlignDist < (sigSumWidth - 1).U, posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0), (sigSumWidth - 1).U ) ) val mainAlignedSigC = (Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist val reduced4CExtra = (orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) & lowMask( CAlignDist>>2, //*** NOT NEEDED?: // (sigSumWidth + 2)>>2, (sigSumWidth - 1)>>2, (sigSumWidth - sigWidth - 1)>>2 ) ).orR val alignedSigC = Cat(mainAlignedSigC>>3, Mux(doSubMags, mainAlignedSigC(2, 0).andR && ! reduced4CExtra, mainAlignedSigC(2, 0).orR || reduced4CExtra ) ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.mulAddA := rawA.sig io.mulAddB := rawB.sig io.mulAddC := alignedSigC(sigWidth * 2, 1) io.toPostMul.isSigNaNAny := isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) || isSigNaNRawFloat(rawC) io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN io.toPostMul.isInfA := rawA.isInf io.toPostMul.isZeroA := rawA.isZero io.toPostMul.isInfB := rawB.isInf io.toPostMul.isZeroB := rawB.isZero io.toPostMul.signProd := signProd io.toPostMul.isNaNC := rawC.isNaN io.toPostMul.isInfC := rawC.isInf io.toPostMul.isZeroC := rawC.isZero io.toPostMul.sExpSum := Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S) io.toPostMul.doSubMags := doSubMags io.toPostMul.CIsDominant := CIsDominant io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0) io.toPostMul.highAlignedSigC := alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1) io.toPostMul.bit0AlignedSigC := alignedSigC(0) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth)) val mulAddResult = Input(UInt((sigWidth * 2 + 1).W)) val roundingMode = Input(UInt(3.W)) val invalidExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_min = (io.roundingMode === round_min) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags val sigSum = Cat(Mux(io.mulAddResult(sigWidth * 2), io.fromPreMul.highAlignedSigC + 1.U, io.fromPreMul.highAlignedSigC ), io.mulAddResult(sigWidth * 2 - 1, 0), io.fromPreMul.bit0AlignedSigC ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val CDom_sign = opSignC val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext val CDom_absSigSum = Mux(io.fromPreMul.doSubMags, ~sigSum(sigSumWidth - 1, sigWidth + 1), 0.U(1.W) ## //*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO: io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ## sigSum(sigSumWidth - 3, sigWidth + 2) ) val CDom_absSigSumExtra = Mux(io.fromPreMul.doSubMags, (~sigSum(sigWidth, 1)).orR, sigSum(sigWidth + 1, 1).orR ) val CDom_mainSig = (CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)( sigWidth * 2 + 1, sigWidth - 3) val CDom_reduced4SigExtra = (orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) & lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR val CDom_sig = Cat(CDom_mainSig>>3, CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra || CDom_absSigSumExtra ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notCDom_signSigSum = sigSum(sigWidth * 2 + 3) val notCDom_absSigSum = Mux(notCDom_signSigSum, ~sigSum(sigWidth * 2 + 2, 0), sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags ) val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum) val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum) val notCDom_nearNormDist = notCDom_normDistReduced2<<1 val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext val notCDom_mainSig = (notCDom_absSigSum<<notCDom_nearNormDist)( sigWidth * 2 + 3, sigWidth - 1) val notCDom_reduced4SigExtra = (orReduceBy2( notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) & lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2) ).orR val notCDom_sig = Cat(notCDom_mainSig>>3, notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra ) val notCDom_completeCancellation = (notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U) val notCDom_sign = Mux(notCDom_completeCancellation, roundingMode_min, io.fromPreMul.signProd ^ notCDom_signSigSum ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC val notNaN_addZeros = (io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) && io.fromPreMul.isZeroC io.invalidExc := io.fromPreMul.isSigNaNAny || (io.fromPreMul.isInfA && io.fromPreMul.isZeroB) || (io.fromPreMul.isZeroA && io.fromPreMul.isInfB) || (! io.fromPreMul.isNaNAOrB && (io.fromPreMul.isInfA || io.fromPreMul.isInfB) && io.fromPreMul.isInfC && io.fromPreMul.doSubMags) io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC io.rawOut.isInf := notNaN_isInfOut //*** IMPROVE?: io.rawOut.isZero := notNaN_addZeros || (! io.fromPreMul.CIsDominant && notCDom_completeCancellation) io.rawOut.sign := (notNaN_isInfProd && io.fromPreMul.signProd) || (io.fromPreMul.isInfC && opSignC) || (notNaN_addZeros && ! roundingMode_min && io.fromPreMul.signProd && opSignC) || (notNaN_addZeros && roundingMode_min && (io.fromPreMul.signProd || opSignC)) || (! notNaN_isInfOut && ! notNaN_addZeros && Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign)) io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp) io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC mulAddRecFNToRaw_postMul.io.fromPreMul := mulAddRecFNToRaw_preMul.io.toPostMul mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc roundRawFNToRecFN.io.infiniteExc := false.B roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut roundRawFNToRecFN.io.roundingMode := io.roundingMode roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags }
module MulAddRecFN_e8_s24_51( // @[MulAddRecFN.scala:300:7] input [32:0] io_a, // @[MulAddRecFN.scala:303:16] input [32:0] io_c, // @[MulAddRecFN.scala:303:16] output [32:0] io_out // @[MulAddRecFN.scala:303:16] ); wire _mulAddRecFNToRaw_postMul_io_invalidExc; // @[MulAddRecFN.scala:319:15] wire _mulAddRecFNToRaw_postMul_io_rawOut_isNaN; // @[MulAddRecFN.scala:319:15] wire _mulAddRecFNToRaw_postMul_io_rawOut_isInf; // @[MulAddRecFN.scala:319:15] wire _mulAddRecFNToRaw_postMul_io_rawOut_isZero; // @[MulAddRecFN.scala:319:15] wire _mulAddRecFNToRaw_postMul_io_rawOut_sign; // @[MulAddRecFN.scala:319:15] wire [9:0] _mulAddRecFNToRaw_postMul_io_rawOut_sExp; // @[MulAddRecFN.scala:319:15] wire [26:0] _mulAddRecFNToRaw_postMul_io_rawOut_sig; // @[MulAddRecFN.scala:319:15] wire [23:0] _mulAddRecFNToRaw_preMul_io_mulAddA; // @[MulAddRecFN.scala:317:15] wire [47:0] _mulAddRecFNToRaw_preMul_io_mulAddC; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isSigNaNAny; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isNaNAOrB; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isInfA; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isZeroA; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_signProd; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isNaNC; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isInfC; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_isZeroC; // @[MulAddRecFN.scala:317:15] wire [9:0] _mulAddRecFNToRaw_preMul_io_toPostMul_sExpSum; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_doSubMags; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_CIsDominant; // @[MulAddRecFN.scala:317:15] wire [4:0] _mulAddRecFNToRaw_preMul_io_toPostMul_CDom_CAlignDist; // @[MulAddRecFN.scala:317:15] wire [25:0] _mulAddRecFNToRaw_preMul_io_toPostMul_highAlignedSigC; // @[MulAddRecFN.scala:317:15] wire _mulAddRecFNToRaw_preMul_io_toPostMul_bit0AlignedSigC; // @[MulAddRecFN.scala:317:15] wire [32:0] io_a_0 = io_a; // @[MulAddRecFN.scala:300:7] wire [32:0] io_c_0 = io_c; // @[MulAddRecFN.scala:300:7] wire io_detectTininess = 1'h1; // @[MulAddRecFN.scala:300:7, :303:16, :339:15] wire [2:0] io_roundingMode = 3'h0; // @[MulAddRecFN.scala:300:7, :303:16, :319:15, :339:15] wire [32:0] io_b = 33'h80000000; // @[MulAddRecFN.scala:300:7, :303:16, :317:15] wire [1:0] io_op = 2'h0; // @[MulAddRecFN.scala:300:7, :303:16, :317:15] wire [32:0] io_out_0; // @[MulAddRecFN.scala:300:7] wire [4:0] io_exceptionFlags; // @[MulAddRecFN.scala:300:7] wire [47:0] _mulAddResult_T = {1'h0, _mulAddRecFNToRaw_preMul_io_mulAddA, 23'h0}; // @[MulAddRecFN.scala:317:15, :327:45] wire [48:0] mulAddResult = {1'h0, _mulAddResult_T} + {1'h0, _mulAddRecFNToRaw_preMul_io_mulAddC}; // @[MulAddRecFN.scala:317:15, :327:45, :328:50] MulAddRecFNToRaw_preMul_e8_s24_51 mulAddRecFNToRaw_preMul ( // @[MulAddRecFN.scala:317:15] .io_a (io_a_0), // @[MulAddRecFN.scala:300:7] .io_c (io_c_0), // @[MulAddRecFN.scala:300:7] .io_mulAddA (_mulAddRecFNToRaw_preMul_io_mulAddA), .io_mulAddC (_mulAddRecFNToRaw_preMul_io_mulAddC), .io_toPostMul_isSigNaNAny (_mulAddRecFNToRaw_preMul_io_toPostMul_isSigNaNAny), .io_toPostMul_isNaNAOrB (_mulAddRecFNToRaw_preMul_io_toPostMul_isNaNAOrB), .io_toPostMul_isInfA (_mulAddRecFNToRaw_preMul_io_toPostMul_isInfA), .io_toPostMul_isZeroA (_mulAddRecFNToRaw_preMul_io_toPostMul_isZeroA), .io_toPostMul_signProd (_mulAddRecFNToRaw_preMul_io_toPostMul_signProd), .io_toPostMul_isNaNC (_mulAddRecFNToRaw_preMul_io_toPostMul_isNaNC), .io_toPostMul_isInfC (_mulAddRecFNToRaw_preMul_io_toPostMul_isInfC), .io_toPostMul_isZeroC (_mulAddRecFNToRaw_preMul_io_toPostMul_isZeroC), .io_toPostMul_sExpSum (_mulAddRecFNToRaw_preMul_io_toPostMul_sExpSum), .io_toPostMul_doSubMags (_mulAddRecFNToRaw_preMul_io_toPostMul_doSubMags), .io_toPostMul_CIsDominant (_mulAddRecFNToRaw_preMul_io_toPostMul_CIsDominant), .io_toPostMul_CDom_CAlignDist (_mulAddRecFNToRaw_preMul_io_toPostMul_CDom_CAlignDist), .io_toPostMul_highAlignedSigC (_mulAddRecFNToRaw_preMul_io_toPostMul_highAlignedSigC), .io_toPostMul_bit0AlignedSigC (_mulAddRecFNToRaw_preMul_io_toPostMul_bit0AlignedSigC) ); // @[MulAddRecFN.scala:317:15] MulAddRecFNToRaw_postMul_e8_s24_51 mulAddRecFNToRaw_postMul ( // @[MulAddRecFN.scala:319:15] .io_fromPreMul_isSigNaNAny (_mulAddRecFNToRaw_preMul_io_toPostMul_isSigNaNAny), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_isNaNAOrB (_mulAddRecFNToRaw_preMul_io_toPostMul_isNaNAOrB), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_isInfA (_mulAddRecFNToRaw_preMul_io_toPostMul_isInfA), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_isZeroA (_mulAddRecFNToRaw_preMul_io_toPostMul_isZeroA), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_signProd (_mulAddRecFNToRaw_preMul_io_toPostMul_signProd), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_isNaNC (_mulAddRecFNToRaw_preMul_io_toPostMul_isNaNC), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_isInfC (_mulAddRecFNToRaw_preMul_io_toPostMul_isInfC), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_isZeroC (_mulAddRecFNToRaw_preMul_io_toPostMul_isZeroC), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_sExpSum (_mulAddRecFNToRaw_preMul_io_toPostMul_sExpSum), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_doSubMags (_mulAddRecFNToRaw_preMul_io_toPostMul_doSubMags), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_CIsDominant (_mulAddRecFNToRaw_preMul_io_toPostMul_CIsDominant), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_CDom_CAlignDist (_mulAddRecFNToRaw_preMul_io_toPostMul_CDom_CAlignDist), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_highAlignedSigC (_mulAddRecFNToRaw_preMul_io_toPostMul_highAlignedSigC), // @[MulAddRecFN.scala:317:15] .io_fromPreMul_bit0AlignedSigC (_mulAddRecFNToRaw_preMul_io_toPostMul_bit0AlignedSigC), // @[MulAddRecFN.scala:317:15] .io_mulAddResult (mulAddResult), // @[MulAddRecFN.scala:328:50] .io_invalidExc (_mulAddRecFNToRaw_postMul_io_invalidExc), .io_rawOut_isNaN (_mulAddRecFNToRaw_postMul_io_rawOut_isNaN), .io_rawOut_isInf (_mulAddRecFNToRaw_postMul_io_rawOut_isInf), .io_rawOut_isZero (_mulAddRecFNToRaw_postMul_io_rawOut_isZero), .io_rawOut_sign (_mulAddRecFNToRaw_postMul_io_rawOut_sign), .io_rawOut_sExp (_mulAddRecFNToRaw_postMul_io_rawOut_sExp), .io_rawOut_sig (_mulAddRecFNToRaw_postMul_io_rawOut_sig) ); // @[MulAddRecFN.scala:319:15] RoundRawFNToRecFN_e8_s24_71 roundRawFNToRecFN ( // @[MulAddRecFN.scala:339:15] .io_invalidExc (_mulAddRecFNToRaw_postMul_io_invalidExc), // @[MulAddRecFN.scala:319:15] .io_in_isNaN (_mulAddRecFNToRaw_postMul_io_rawOut_isNaN), // @[MulAddRecFN.scala:319:15] .io_in_isInf (_mulAddRecFNToRaw_postMul_io_rawOut_isInf), // @[MulAddRecFN.scala:319:15] .io_in_isZero (_mulAddRecFNToRaw_postMul_io_rawOut_isZero), // @[MulAddRecFN.scala:319:15] .io_in_sign (_mulAddRecFNToRaw_postMul_io_rawOut_sign), // @[MulAddRecFN.scala:319:15] .io_in_sExp (_mulAddRecFNToRaw_postMul_io_rawOut_sExp), // @[MulAddRecFN.scala:319:15] .io_in_sig (_mulAddRecFNToRaw_postMul_io_rawOut_sig), // @[MulAddRecFN.scala:319:15] .io_out (io_out_0), .io_exceptionFlags (io_exceptionFlags) ); // @[MulAddRecFN.scala:339:15] assign io_out = io_out_0; // @[MulAddRecFN.scala:300:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_22( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [9:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [9:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [9:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [28:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [9:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7] wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59] wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14] wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27] wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25] wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_27 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_29 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_33 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_35 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_39 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_41 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_45 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_47 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_51 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_53 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_57 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_59 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_63 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_65 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_69 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_71 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_75 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_77 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_81 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_83 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_87 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_89 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_93 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_95 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_99 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_101 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_105 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_107 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_111 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_113 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_117 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_119 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_123 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_125 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_129 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_131 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_165 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_167 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_171 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_173 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_177 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_179 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_183 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_185 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_189 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_191 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_195 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_197 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_201 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_203 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_207 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_209 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_213 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_215 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_219 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_221 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_225 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_227 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_231 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_233 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_237 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_239 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_243 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_245 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_249 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_251 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_255 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_257 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_261 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_263 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_267 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_269 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_273 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_275 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_279 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_281 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_285 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_287 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_291 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_293 = 1'h1; // @[Parameters.scala:57:20] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28] wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [28:0] _c_first_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_first_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_first_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_first_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_set_wo_ready_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_set_wo_ready_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_opcodes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_opcodes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_sizes_set_interm_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_sizes_set_interm_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_opcodes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_opcodes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_sizes_set_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_sizes_set_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_probe_ack_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_probe_ack_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _c_probe_ack_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _c_probe_ack_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _same_cycle_resp_WIRE_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _same_cycle_resp_WIRE_1_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _same_cycle_resp_WIRE_2_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _same_cycle_resp_WIRE_3_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [28:0] _same_cycle_resp_WIRE_4_bits_address = 29'h0; // @[Bundles.scala:265:74] wire [28:0] _same_cycle_resp_WIRE_5_bits_address = 29'h0; // @[Bundles.scala:265:61] wire [9:0] _c_first_WIRE_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_first_WIRE_1_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _c_first_WIRE_2_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_first_WIRE_3_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _c_set_wo_ready_WIRE_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_set_wo_ready_WIRE_1_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _c_set_WIRE_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_set_WIRE_1_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _c_opcodes_set_interm_WIRE_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_opcodes_set_interm_WIRE_1_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _c_sizes_set_interm_WIRE_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_sizes_set_interm_WIRE_1_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _c_opcodes_set_WIRE_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_opcodes_set_WIRE_1_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _c_sizes_set_WIRE_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_sizes_set_WIRE_1_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _c_probe_ack_WIRE_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_probe_ack_WIRE_1_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _c_probe_ack_WIRE_2_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _c_probe_ack_WIRE_3_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _same_cycle_resp_WIRE_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _same_cycle_resp_WIRE_1_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _same_cycle_resp_WIRE_2_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _same_cycle_resp_WIRE_3_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [9:0] _same_cycle_resp_WIRE_4_bits_source = 10'h0; // @[Bundles.scala:265:74] wire [9:0] _same_cycle_resp_WIRE_5_bits_source = 10'h0; // @[Bundles.scala:265:61] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [8194:0] _c_opcodes_set_T_1 = 8195'h0; // @[Monitor.scala:767:54] wire [8194:0] _c_sizes_set_T_1 = 8195'h0; // @[Monitor.scala:768:52] wire [12:0] _c_opcodes_set_T = 13'h0; // @[Monitor.scala:767:79] wire [12:0] _c_sizes_set_T = 13'h0; // @[Monitor.scala:768:77] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51] wire [1023:0] _c_set_wo_ready_T = 1024'h1; // @[OneHot.scala:58:35] wire [1023:0] _c_set_T = 1024'h1; // @[OneHot.scala:58:35] wire [2051:0] c_opcodes_set = 2052'h0; // @[Monitor.scala:740:34] wire [2051:0] c_sizes_set = 2052'h0; // @[Monitor.scala:741:34] wire [512:0] c_set = 513'h0; // @[Monitor.scala:738:34] wire [512:0] c_set_wo_ready = 513'h0; // @[Monitor.scala:739:34] wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46] wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76] wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [9:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_55 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_56 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_57 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_58 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_59 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_60 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_61 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_62 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_63 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_64 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_65 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_66 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_67 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_68 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_69 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_70 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_71 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_72 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_73 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_74 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_75 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_76 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_77 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_78 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_79 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_80 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_81 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_82 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_83 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_84 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_85 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_86 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_87 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_88 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_89 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_90 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_91 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_92 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_93 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_94 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_95 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_96 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_97 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_98 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_99 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_100 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_101 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_102 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_103 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_104 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_105 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_106 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_107 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_108 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_109 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_110 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_111 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_112 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_113 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_114 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_115 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_116 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_117 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_118 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_119 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_120 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_121 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_122 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_123 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_124 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_125 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_126 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_127 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_128 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_129 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_130 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_131 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_132 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_133 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_134 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_135 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_136 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_137 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_138 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_139 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_140 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_141 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_142 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_143 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_144 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_145 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_146 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_147 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_148 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_149 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_150 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_151 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_152 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_153 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_154 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_155 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_156 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_157 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_158 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_159 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_160 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_161 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_162 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_163 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_164 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_165 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_166 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_167 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_168 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_169 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_170 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_171 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_172 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_173 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_174 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_175 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_176 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_177 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_178 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_179 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_180 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_181 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_182 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_183 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_184 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_185 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_186 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_187 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_188 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_189 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_190 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_191 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_192 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_193 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_194 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_195 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_196 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_197 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_198 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_199 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_200 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_201 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_202 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_203 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_204 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_205 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_206 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_207 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_208 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_209 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_210 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_211 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_212 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_213 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_214 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_215 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_216 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_217 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_218 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_219 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_220 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_221 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_222 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_223 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_224 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_225 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_226 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_227 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_228 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_229 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_230 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_231 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_232 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_233 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_234 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_235 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_236 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_237 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_238 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_239 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_240 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _uncommonBits_T_241 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_22 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_23 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_24 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_25 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_26 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_27 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_28 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_29 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_30 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_31 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_32 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_33 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_34 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_35 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_36 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_37 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_38 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_39 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_40 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_41 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_42 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [9:0] _source_ok_uncommonBits_T_43 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire _source_ok_T = io_in_a_bits_source_0 == 10'h1D0; // @[Monitor.scala:36:7] wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [7:0] _source_ok_T_1 = io_in_a_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_7 = io_in_a_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_13 = io_in_a_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_19 = io_in_a_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_25 = io_in_a_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_31 = io_in_a_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_73 = io_in_a_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_79 = io_in_a_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire _source_ok_T_2 = _source_ok_T_1 == 8'h70; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_8 = _source_ok_T_7 == 8'h71; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_14 = _source_ok_T_13 == 8'h72; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_20 = _source_ok_T_19 == 8'h73; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_26 = _source_ok_T_25 == 8'h7C; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_28 = _source_ok_T_26; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_30 = _source_ok_T_28; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_5 = _source_ok_T_30; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_32 = _source_ok_T_31 == 8'h7B; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_34 = _source_ok_T_32; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_36 = _source_ok_T_34; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_6 = _source_ok_T_36; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_37 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_43 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_49 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_55 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_61 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_67 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_85 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_91 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_97 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_103 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_109 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_115 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_121 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_127 = io_in_a_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire _source_ok_T_38 = _source_ok_T_37 == 5'hD; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_40 = _source_ok_T_38; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_42 = _source_ok_T_40; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_7 = _source_ok_T_42; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_44 = _source_ok_T_43 == 5'hC; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_46 = _source_ok_T_44; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_48 = _source_ok_T_46; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_8 = _source_ok_T_48; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_50 = _source_ok_T_49 == 5'hB; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_52 = _source_ok_T_50; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_54 = _source_ok_T_52; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_9 = _source_ok_T_54; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_56 = _source_ok_T_55 == 5'hA; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_58 = _source_ok_T_56; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_60 = _source_ok_T_58; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_10 = _source_ok_T_60; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_10 = _source_ok_uncommonBits_T_10[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_62 = _source_ok_T_61 == 5'h9; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_64 = _source_ok_T_62; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_66 = _source_ok_T_64; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_11 = _source_ok_T_66; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_11 = _source_ok_uncommonBits_T_11[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_68 = _source_ok_T_67 == 5'h8; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_70 = _source_ok_T_68; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_72 = _source_ok_T_70; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_12 = _source_ok_T_72; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_12 = _source_ok_uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_74 = _source_ok_T_73 == 8'h7A; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_76 = _source_ok_T_74; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_78 = _source_ok_T_76; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_13 = _source_ok_T_78; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_13 = _source_ok_uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_80 = _source_ok_T_79 == 8'h79; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_82 = _source_ok_T_80; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_84 = _source_ok_T_82; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_14 = _source_ok_T_84; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_14 = _source_ok_uncommonBits_T_14[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_86 = _source_ok_T_85 == 5'h7; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_88 = _source_ok_T_86; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_90 = _source_ok_T_88; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_15 = _source_ok_T_90; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_15 = _source_ok_uncommonBits_T_15[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_92 = _source_ok_T_91 == 5'h6; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_94 = _source_ok_T_92; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_96 = _source_ok_T_94; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_16 = _source_ok_T_96; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_16 = _source_ok_uncommonBits_T_16[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_98 = _source_ok_T_97 == 5'h5; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_100 = _source_ok_T_98; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_102 = _source_ok_T_100; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_17 = _source_ok_T_102; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_17 = _source_ok_uncommonBits_T_17[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_104 = _source_ok_T_103 == 5'h4; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_106 = _source_ok_T_104; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_108 = _source_ok_T_106; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_18 = _source_ok_T_108; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_18 = _source_ok_uncommonBits_T_18[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_110 = _source_ok_T_109 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_112 = _source_ok_T_110; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_114 = _source_ok_T_112; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_19 = _source_ok_T_114; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_19 = _source_ok_uncommonBits_T_19[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_116 = _source_ok_T_115 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_118 = _source_ok_T_116; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_120 = _source_ok_T_118; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_20 = _source_ok_T_120; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_20 = _source_ok_uncommonBits_T_20[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_122 = _source_ok_T_121 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_124 = _source_ok_T_122; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_126 = _source_ok_T_124; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_21 = _source_ok_T_126; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_21 = _source_ok_uncommonBits_T_21[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_128 = _source_ok_T_127 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_130 = _source_ok_T_128; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_132 = _source_ok_T_130; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_22 = _source_ok_T_132; // @[Parameters.scala:1138:31] wire _source_ok_T_133 = io_in_a_bits_source_0 == 10'h1E0; // @[Monitor.scala:36:7] wire _source_ok_WIRE_23 = _source_ok_T_133; // @[Parameters.scala:1138:31] wire _source_ok_T_134 = io_in_a_bits_source_0 == 10'h1E1; // @[Monitor.scala:36:7] wire _source_ok_WIRE_24 = _source_ok_T_134; // @[Parameters.scala:1138:31] wire _source_ok_T_135 = io_in_a_bits_source_0 == 10'h1E2; // @[Monitor.scala:36:7] wire _source_ok_WIRE_25 = _source_ok_T_135; // @[Parameters.scala:1138:31] wire _source_ok_T_136 = io_in_a_bits_source_0 == 10'h200; // @[Monitor.scala:36:7] wire _source_ok_WIRE_26 = _source_ok_T_136; // @[Parameters.scala:1138:31] wire _source_ok_T_137 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_138 = _source_ok_T_137 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_139 = _source_ok_T_138 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_140 = _source_ok_T_139 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_141 = _source_ok_T_140 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_142 = _source_ok_T_141 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_143 = _source_ok_T_142 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_144 = _source_ok_T_143 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_145 = _source_ok_T_144 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_146 = _source_ok_T_145 | _source_ok_WIRE_10; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_147 = _source_ok_T_146 | _source_ok_WIRE_11; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_148 = _source_ok_T_147 | _source_ok_WIRE_12; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_149 = _source_ok_T_148 | _source_ok_WIRE_13; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_150 = _source_ok_T_149 | _source_ok_WIRE_14; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_151 = _source_ok_T_150 | _source_ok_WIRE_15; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_152 = _source_ok_T_151 | _source_ok_WIRE_16; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_153 = _source_ok_T_152 | _source_ok_WIRE_17; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_154 = _source_ok_T_153 | _source_ok_WIRE_18; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_155 = _source_ok_T_154 | _source_ok_WIRE_19; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_156 = _source_ok_T_155 | _source_ok_WIRE_20; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_157 = _source_ok_T_156 | _source_ok_WIRE_21; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_158 = _source_ok_T_157 | _source_ok_WIRE_22; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_159 = _source_ok_T_158 | _source_ok_WIRE_23; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_160 = _source_ok_T_159 | _source_ok_WIRE_24; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_161 = _source_ok_T_160 | _source_ok_WIRE_25; // @[Parameters.scala:1138:31, :1139:46] wire source_ok = _source_ok_T_161 | _source_ok_WIRE_26; // @[Parameters.scala:1138:31, :1139:46] wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71] wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [28:0] _is_aligned_T = {23'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 29'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_4 = _uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_6 = _uncommonBits_T_6[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_7 = _uncommonBits_T_7[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_8 = _uncommonBits_T_8[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_9 = _uncommonBits_T_9[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_10 = _uncommonBits_T_10[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_11 = _uncommonBits_T_11[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_14 = _uncommonBits_T_14[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_15 = _uncommonBits_T_15[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_16 = _uncommonBits_T_16[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_17 = _uncommonBits_T_17[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_18 = _uncommonBits_T_18[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_19 = _uncommonBits_T_19[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_20 = _uncommonBits_T_20[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_21 = _uncommonBits_T_21[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_28 = _uncommonBits_T_28[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_29 = _uncommonBits_T_29[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_30 = _uncommonBits_T_30[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_31 = _uncommonBits_T_31[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_32 = _uncommonBits_T_32[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_33 = _uncommonBits_T_33[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_34 = _uncommonBits_T_34[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_36 = _uncommonBits_T_36[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_37 = _uncommonBits_T_37[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_38 = _uncommonBits_T_38[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_39 = _uncommonBits_T_39[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_40 = _uncommonBits_T_40[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_41 = _uncommonBits_T_41[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_42 = _uncommonBits_T_42[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_43 = _uncommonBits_T_43[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_44 = _uncommonBits_T_44[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_46 = _uncommonBits_T_46[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_47 = _uncommonBits_T_47[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_48 = _uncommonBits_T_48[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_49 = _uncommonBits_T_49[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_50 = _uncommonBits_T_50[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_51 = _uncommonBits_T_51[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_52 = _uncommonBits_T_52[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_53 = _uncommonBits_T_53[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_54 = _uncommonBits_T_54[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_55 = _uncommonBits_T_55[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_56 = _uncommonBits_T_56[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_57 = _uncommonBits_T_57[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_58 = _uncommonBits_T_58[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_59 = _uncommonBits_T_59[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_60 = _uncommonBits_T_60[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_61 = _uncommonBits_T_61[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_62 = _uncommonBits_T_62[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_63 = _uncommonBits_T_63[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_64 = _uncommonBits_T_64[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_65 = _uncommonBits_T_65[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_66 = _uncommonBits_T_66[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_67 = _uncommonBits_T_67[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_68 = _uncommonBits_T_68[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_69 = _uncommonBits_T_69[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_70 = _uncommonBits_T_70[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_71 = _uncommonBits_T_71[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_72 = _uncommonBits_T_72[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_73 = _uncommonBits_T_73[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_74 = _uncommonBits_T_74[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_75 = _uncommonBits_T_75[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_76 = _uncommonBits_T_76[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_77 = _uncommonBits_T_77[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_78 = _uncommonBits_T_78[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_79 = _uncommonBits_T_79[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_80 = _uncommonBits_T_80[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_81 = _uncommonBits_T_81[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_82 = _uncommonBits_T_82[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_83 = _uncommonBits_T_83[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_84 = _uncommonBits_T_84[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_85 = _uncommonBits_T_85[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_86 = _uncommonBits_T_86[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_87 = _uncommonBits_T_87[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_88 = _uncommonBits_T_88[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_89 = _uncommonBits_T_89[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_90 = _uncommonBits_T_90[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_91 = _uncommonBits_T_91[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_92 = _uncommonBits_T_92[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_93 = _uncommonBits_T_93[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_94 = _uncommonBits_T_94[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_95 = _uncommonBits_T_95[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_96 = _uncommonBits_T_96[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_97 = _uncommonBits_T_97[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_98 = _uncommonBits_T_98[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_99 = _uncommonBits_T_99[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_100 = _uncommonBits_T_100[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_101 = _uncommonBits_T_101[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_102 = _uncommonBits_T_102[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_103 = _uncommonBits_T_103[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_104 = _uncommonBits_T_104[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_105 = _uncommonBits_T_105[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_106 = _uncommonBits_T_106[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_107 = _uncommonBits_T_107[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_108 = _uncommonBits_T_108[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_109 = _uncommonBits_T_109[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_110 = _uncommonBits_T_110[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_111 = _uncommonBits_T_111[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_112 = _uncommonBits_T_112[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_113 = _uncommonBits_T_113[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_114 = _uncommonBits_T_114[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_115 = _uncommonBits_T_115[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_116 = _uncommonBits_T_116[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_117 = _uncommonBits_T_117[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_118 = _uncommonBits_T_118[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_119 = _uncommonBits_T_119[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_120 = _uncommonBits_T_120[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_121 = _uncommonBits_T_121[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_122 = _uncommonBits_T_122[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_123 = _uncommonBits_T_123[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_124 = _uncommonBits_T_124[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_125 = _uncommonBits_T_125[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_126 = _uncommonBits_T_126[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_127 = _uncommonBits_T_127[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_128 = _uncommonBits_T_128[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_129 = _uncommonBits_T_129[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_130 = _uncommonBits_T_130[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_131 = _uncommonBits_T_131[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_132 = _uncommonBits_T_132[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_133 = _uncommonBits_T_133[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_134 = _uncommonBits_T_134[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_135 = _uncommonBits_T_135[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_136 = _uncommonBits_T_136[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_137 = _uncommonBits_T_137[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_138 = _uncommonBits_T_138[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_139 = _uncommonBits_T_139[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_140 = _uncommonBits_T_140[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_141 = _uncommonBits_T_141[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_142 = _uncommonBits_T_142[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_143 = _uncommonBits_T_143[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_144 = _uncommonBits_T_144[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_145 = _uncommonBits_T_145[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_146 = _uncommonBits_T_146[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_147 = _uncommonBits_T_147[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_148 = _uncommonBits_T_148[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_149 = _uncommonBits_T_149[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_150 = _uncommonBits_T_150[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_151 = _uncommonBits_T_151[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_152 = _uncommonBits_T_152[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_153 = _uncommonBits_T_153[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_154 = _uncommonBits_T_154[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_155 = _uncommonBits_T_155[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_156 = _uncommonBits_T_156[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_157 = _uncommonBits_T_157[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_158 = _uncommonBits_T_158[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_159 = _uncommonBits_T_159[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_160 = _uncommonBits_T_160[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_161 = _uncommonBits_T_161[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_162 = _uncommonBits_T_162[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_163 = _uncommonBits_T_163[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_164 = _uncommonBits_T_164[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_165 = _uncommonBits_T_165[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_166 = _uncommonBits_T_166[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_167 = _uncommonBits_T_167[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_168 = _uncommonBits_T_168[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_169 = _uncommonBits_T_169[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_170 = _uncommonBits_T_170[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_171 = _uncommonBits_T_171[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_172 = _uncommonBits_T_172[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_173 = _uncommonBits_T_173[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_174 = _uncommonBits_T_174[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_175 = _uncommonBits_T_175[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_176 = _uncommonBits_T_176[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_177 = _uncommonBits_T_177[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_178 = _uncommonBits_T_178[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_179 = _uncommonBits_T_179[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_180 = _uncommonBits_T_180[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_181 = _uncommonBits_T_181[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_182 = _uncommonBits_T_182[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_183 = _uncommonBits_T_183[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_184 = _uncommonBits_T_184[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_185 = _uncommonBits_T_185[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_186 = _uncommonBits_T_186[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_187 = _uncommonBits_T_187[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_188 = _uncommonBits_T_188[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_189 = _uncommonBits_T_189[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_190 = _uncommonBits_T_190[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_191 = _uncommonBits_T_191[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_192 = _uncommonBits_T_192[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_193 = _uncommonBits_T_193[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_194 = _uncommonBits_T_194[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_195 = _uncommonBits_T_195[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_196 = _uncommonBits_T_196[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_197 = _uncommonBits_T_197[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_198 = _uncommonBits_T_198[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_199 = _uncommonBits_T_199[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_200 = _uncommonBits_T_200[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_201 = _uncommonBits_T_201[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_202 = _uncommonBits_T_202[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_203 = _uncommonBits_T_203[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_204 = _uncommonBits_T_204[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_205 = _uncommonBits_T_205[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_206 = _uncommonBits_T_206[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_207 = _uncommonBits_T_207[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_208 = _uncommonBits_T_208[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_209 = _uncommonBits_T_209[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_210 = _uncommonBits_T_210[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_211 = _uncommonBits_T_211[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_212 = _uncommonBits_T_212[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_213 = _uncommonBits_T_213[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_214 = _uncommonBits_T_214[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_215 = _uncommonBits_T_215[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_216 = _uncommonBits_T_216[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_217 = _uncommonBits_T_217[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_218 = _uncommonBits_T_218[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_219 = _uncommonBits_T_219[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_220 = _uncommonBits_T_220[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_221 = _uncommonBits_T_221[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_222 = _uncommonBits_T_222[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_223 = _uncommonBits_T_223[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_224 = _uncommonBits_T_224[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_225 = _uncommonBits_T_225[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_226 = _uncommonBits_T_226[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_227 = _uncommonBits_T_227[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_228 = _uncommonBits_T_228[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_229 = _uncommonBits_T_229[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_230 = _uncommonBits_T_230[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_231 = _uncommonBits_T_231[4:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_232 = _uncommonBits_T_232[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_233 = _uncommonBits_T_233[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_234 = _uncommonBits_T_234[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_235 = _uncommonBits_T_235[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_236 = _uncommonBits_T_236[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_237 = _uncommonBits_T_237[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_238 = _uncommonBits_T_238[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_239 = _uncommonBits_T_239[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_240 = _uncommonBits_T_240[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_241 = _uncommonBits_T_241[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_162 = io_in_d_bits_source_0 == 10'h1D0; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_0 = _source_ok_T_162; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_22 = _source_ok_uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}] wire [7:0] _source_ok_T_163 = io_in_d_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_169 = io_in_d_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_175 = io_in_d_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_181 = io_in_d_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_187 = io_in_d_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_193 = io_in_d_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_235 = io_in_d_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire [7:0] _source_ok_T_241 = io_in_d_bits_source_0[9:2]; // @[Monitor.scala:36:7] wire _source_ok_T_164 = _source_ok_T_163 == 8'h70; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_166 = _source_ok_T_164; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_168 = _source_ok_T_166; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_1 = _source_ok_T_168; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_23 = _source_ok_uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_170 = _source_ok_T_169 == 8'h71; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_172 = _source_ok_T_170; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_174 = _source_ok_T_172; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_2 = _source_ok_T_174; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_24 = _source_ok_uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_176 = _source_ok_T_175 == 8'h72; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_178 = _source_ok_T_176; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_180 = _source_ok_T_178; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_3 = _source_ok_T_180; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_25 = _source_ok_uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_182 = _source_ok_T_181 == 8'h73; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_184 = _source_ok_T_182; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_186 = _source_ok_T_184; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_4 = _source_ok_T_186; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_26 = _source_ok_uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_188 = _source_ok_T_187 == 8'h7C; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_190 = _source_ok_T_188; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_192 = _source_ok_T_190; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_5 = _source_ok_T_192; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_27 = _source_ok_uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_194 = _source_ok_T_193 == 8'h7B; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_196 = _source_ok_T_194; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_198 = _source_ok_T_196; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_6 = _source_ok_T_198; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_28 = _source_ok_uncommonBits_T_28[4:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_199 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_205 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_211 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_217 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_223 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_229 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_247 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_253 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_259 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_265 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_271 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_277 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_283 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_289 = io_in_d_bits_source_0[9:5]; // @[Monitor.scala:36:7] wire _source_ok_T_200 = _source_ok_T_199 == 5'hD; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_202 = _source_ok_T_200; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_204 = _source_ok_T_202; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_7 = _source_ok_T_204; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_29 = _source_ok_uncommonBits_T_29[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_206 = _source_ok_T_205 == 5'hC; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_208 = _source_ok_T_206; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_210 = _source_ok_T_208; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_8 = _source_ok_T_210; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_30 = _source_ok_uncommonBits_T_30[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_212 = _source_ok_T_211 == 5'hB; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_214 = _source_ok_T_212; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_216 = _source_ok_T_214; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_9 = _source_ok_T_216; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_31 = _source_ok_uncommonBits_T_31[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_218 = _source_ok_T_217 == 5'hA; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_220 = _source_ok_T_218; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_222 = _source_ok_T_220; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_10 = _source_ok_T_222; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_32 = _source_ok_uncommonBits_T_32[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_224 = _source_ok_T_223 == 5'h9; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_226 = _source_ok_T_224; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_228 = _source_ok_T_226; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_11 = _source_ok_T_228; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_33 = _source_ok_uncommonBits_T_33[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_230 = _source_ok_T_229 == 5'h8; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_232 = _source_ok_T_230; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_234 = _source_ok_T_232; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_12 = _source_ok_T_234; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_34 = _source_ok_uncommonBits_T_34[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_236 = _source_ok_T_235 == 8'h7A; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_238 = _source_ok_T_236; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_240 = _source_ok_T_238; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_13 = _source_ok_T_240; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_35 = _source_ok_uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_242 = _source_ok_T_241 == 8'h79; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_244 = _source_ok_T_242; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_246 = _source_ok_T_244; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_14 = _source_ok_T_246; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_36 = _source_ok_uncommonBits_T_36[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_248 = _source_ok_T_247 == 5'h7; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_250 = _source_ok_T_248; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_252 = _source_ok_T_250; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_15 = _source_ok_T_252; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_37 = _source_ok_uncommonBits_T_37[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_254 = _source_ok_T_253 == 5'h6; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_256 = _source_ok_T_254; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_258 = _source_ok_T_256; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_16 = _source_ok_T_258; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_38 = _source_ok_uncommonBits_T_38[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_260 = _source_ok_T_259 == 5'h5; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_262 = _source_ok_T_260; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_264 = _source_ok_T_262; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_17 = _source_ok_T_264; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_39 = _source_ok_uncommonBits_T_39[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_266 = _source_ok_T_265 == 5'h4; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_268 = _source_ok_T_266; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_270 = _source_ok_T_268; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_18 = _source_ok_T_270; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_40 = _source_ok_uncommonBits_T_40[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_272 = _source_ok_T_271 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_274 = _source_ok_T_272; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_276 = _source_ok_T_274; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_19 = _source_ok_T_276; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_41 = _source_ok_uncommonBits_T_41[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_278 = _source_ok_T_277 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_280 = _source_ok_T_278; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_282 = _source_ok_T_280; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_20 = _source_ok_T_282; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_42 = _source_ok_uncommonBits_T_42[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_284 = _source_ok_T_283 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_286 = _source_ok_T_284; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_288 = _source_ok_T_286; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_21 = _source_ok_T_288; // @[Parameters.scala:1138:31] wire [4:0] source_ok_uncommonBits_43 = _source_ok_uncommonBits_T_43[4:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_290 = _source_ok_T_289 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_292 = _source_ok_T_290; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_294 = _source_ok_T_292; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_22 = _source_ok_T_294; // @[Parameters.scala:1138:31] wire _source_ok_T_295 = io_in_d_bits_source_0 == 10'h1E0; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_23 = _source_ok_T_295; // @[Parameters.scala:1138:31] wire _source_ok_T_296 = io_in_d_bits_source_0 == 10'h1E1; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_24 = _source_ok_T_296; // @[Parameters.scala:1138:31] wire _source_ok_T_297 = io_in_d_bits_source_0 == 10'h1E2; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_25 = _source_ok_T_297; // @[Parameters.scala:1138:31] wire _source_ok_T_298 = io_in_d_bits_source_0 == 10'h200; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_26 = _source_ok_T_298; // @[Parameters.scala:1138:31] wire _source_ok_T_299 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_300 = _source_ok_T_299 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_301 = _source_ok_T_300 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_302 = _source_ok_T_301 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_303 = _source_ok_T_302 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_304 = _source_ok_T_303 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_305 = _source_ok_T_304 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_306 = _source_ok_T_305 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_307 = _source_ok_T_306 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_308 = _source_ok_T_307 | _source_ok_WIRE_1_10; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_309 = _source_ok_T_308 | _source_ok_WIRE_1_11; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_310 = _source_ok_T_309 | _source_ok_WIRE_1_12; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_311 = _source_ok_T_310 | _source_ok_WIRE_1_13; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_312 = _source_ok_T_311 | _source_ok_WIRE_1_14; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_313 = _source_ok_T_312 | _source_ok_WIRE_1_15; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_314 = _source_ok_T_313 | _source_ok_WIRE_1_16; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_315 = _source_ok_T_314 | _source_ok_WIRE_1_17; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_316 = _source_ok_T_315 | _source_ok_WIRE_1_18; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_317 = _source_ok_T_316 | _source_ok_WIRE_1_19; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_318 = _source_ok_T_317 | _source_ok_WIRE_1_20; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_319 = _source_ok_T_318 | _source_ok_WIRE_1_21; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_320 = _source_ok_T_319 | _source_ok_WIRE_1_22; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_321 = _source_ok_T_320 | _source_ok_WIRE_1_23; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_322 = _source_ok_T_321 | _source_ok_WIRE_1_24; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_323 = _source_ok_T_322 | _source_ok_WIRE_1_25; // @[Parameters.scala:1138:31, :1139:46] wire source_ok_1 = _source_ok_T_323 | _source_ok_WIRE_1_26; // @[Parameters.scala:1138:31, :1139:46] wire _T_2715 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_2715; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_2715; // @[Decoupled.scala:51:35] wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [2:0] size; // @[Monitor.scala:389:22] reg [9:0] source; // @[Monitor.scala:390:22] reg [28:0] address; // @[Monitor.scala:391:22] wire _T_2788 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_2788; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_2788; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_2788; // @[Decoupled.scala:51:35] wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [2:0] size_1; // @[Monitor.scala:540:22] reg [9:0] source_1; // @[Monitor.scala:541:22] reg sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [512:0] inflight; // @[Monitor.scala:614:27] reg [2051:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [2051:0] inflight_sizes; // @[Monitor.scala:618:33] wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [512:0] a_set; // @[Monitor.scala:626:34] wire [512:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [2051:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [2051:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [12:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [12:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [12:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65] wire [12:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [12:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99] wire [12:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [12:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67] wire [12:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [12:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99] wire [2051:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [2051:0] _a_opcode_lookup_T_6 = {2048'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [2051:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[2051:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [2051:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [2051:0] _a_size_lookup_T_6 = {2048'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}] wire [2051:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[2051:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [1023:0] _GEN_2 = 1024'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [1023:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35] wire [1023:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[512:0] : 513'h0; // @[OneHot.scala:58:35] wire _T_2641 = _T_2715 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_2641 ? _a_set_T[512:0] : 513'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_2641 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_2641 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [12:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [12:0] _a_opcodes_set_T; // @[Monitor.scala:659:79] assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79] wire [12:0] _a_sizes_set_T; // @[Monitor.scala:660:77] assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77] wire [8194:0] _a_opcodes_set_T_1 = {8191'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_2641 ? _a_opcodes_set_T_1[2051:0] : 2052'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [8194:0] _a_sizes_set_T_1 = {8191'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_2641 ? _a_sizes_set_T_1[2051:0] : 2052'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [512:0] d_clr; // @[Monitor.scala:664:34] wire [512:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [2051:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [2051:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_2687 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [1023:0] _GEN_5 = 1024'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [1023:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [1023:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [1023:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [1023:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_2687 & ~d_release_ack ? _d_clr_wo_ready_T[512:0] : 513'h0; // @[OneHot.scala:58:35] wire _T_2656 = _T_2788 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_2656 ? _d_clr_T[512:0] : 513'h0; // @[OneHot.scala:58:35] wire [8206:0] _d_opcodes_clr_T_5 = 8207'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_2656 ? _d_opcodes_clr_T_5[2051:0] : 2052'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [8206:0] _d_sizes_clr_T_5 = 8207'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_2656 ? _d_sizes_clr_T_5[2051:0] : 2052'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [512:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [512:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [512:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [2051:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [2051:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [2051:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [2051:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [2051:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [2051:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [512:0] inflight_1; // @[Monitor.scala:726:35] wire [512:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [2051:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [2051:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [2051:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [2051:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_2; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [2051:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [2051:0] _c_opcode_lookup_T_6 = {2048'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [2051:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[2051:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [2051:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [2051:0] _c_size_lookup_T_6 = {2048'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}] wire [2051:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[2051:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [512:0] d_clr_1; // @[Monitor.scala:774:34] wire [512:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [2051:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [2051:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_2759 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_2759 & d_release_ack_1 ? _d_clr_wo_ready_T_1[512:0] : 513'h0; // @[OneHot.scala:58:35] wire _T_2741 = _T_2788 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_2741 ? _d_clr_T_1[512:0] : 513'h0; // @[OneHot.scala:58:35] wire [8206:0] _d_opcodes_clr_T_11 = 8207'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_2741 ? _d_opcodes_clr_T_11[2051:0] : 2052'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [8206:0] _d_sizes_clr_T_11 = 8207'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_2741 ? _d_sizes_clr_T_11[2051:0] : 2052'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 10'h0; // @[Monitor.scala:36:7, :795:113] wire [512:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [512:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [2051:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [2051:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [2051:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [2051:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File AsyncQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ case class AsyncQueueParams( depth: Int = 8, sync: Int = 3, safe: Boolean = true, // If safe is true, then effort is made to resynchronize the crossing indices when either side is reset. // This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty. narrow: Boolean = false) // If narrow is true then the read mux is moved to the source side of the crossing. // This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing, // at the expense of a combinational path from the sink to the source and back to the sink. { require (depth > 0 && isPow2(depth)) require (sync >= 2) val bits = log2Ceil(depth) val wires = if (narrow) 1 else depth } object AsyncQueueParams { // When there is only one entry, we don't need narrow. def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false) } class AsyncBundleSafety extends Bundle { val ridx_valid = Input (Bool()) val widx_valid = Output(Bool()) val source_reset_n = Output(Bool()) val sink_reset_n = Input (Bool()) } class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle { // Data-path synchronization val mem = Output(Vec(params.wires, gen)) val ridx = Input (UInt((params.bits+1).W)) val widx = Output(UInt((params.bits+1).W)) val index = params.narrow.option(Input(UInt(params.bits.W))) // Signals used to self-stabilize a safe AsyncQueue val safe = params.safe.option(new AsyncBundleSafety) } object GrayCounter { def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = { val incremented = Wire(UInt(bits.W)) val binary = RegNext(next=incremented, init=0.U).suggestName(name) incremented := Mux(clear, 0.U, binary + increment.asUInt) incremented ^ (incremented >> 1) } } class AsyncValidSync(sync: Int, desc: String) extends RawModule { val io = IO(new Bundle { val in = Input(Bool()) val out = Output(Bool()) }) val clock = IO(Input(Clock())) val reset = IO(Input(AsyncReset())) withClockAndReset(clock, reset){ io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc)) } } class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSource_${gen.typeName}" val io = IO(new Bundle { // These come from the source domain val enq = Flipped(Decoupled(gen)) // These cross to the sink clock domain val async = new AsyncBundle(gen, params) }) val bits = params.bits val sink_ready = WireInit(true.B) val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all. val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin")) val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray")) val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U) val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1)) when (io.enq.fire) { mem(index) := io.enq.bits } val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg")) io.enq.ready := ready_reg && sink_ready val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray")) io.async.widx := widx_reg io.async.index match { case Some(index) => io.async.mem(0) := mem(index) case None => io.async.mem := mem } io.async.safe.foreach { sio => val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0")) val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1")) val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend")) val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid")) source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_valid .reset := reset.asAsyncReset source_valid_0.clock := clock source_valid_1.clock := clock sink_extend .clock := clock sink_valid .clock := clock source_valid_0.io.in := true.B source_valid_1.io.in := source_valid_0.io.out sio.widx_valid := source_valid_1.io.out sink_extend.io.in := sio.ridx_valid sink_valid.io.in := sink_extend.io.out sink_ready := sink_valid.io.out sio.source_reset_n := !reset.asBool // Assert that if there is stuff in the queue, then reset cannot happen // Impossible to write because dequeue can occur on the receiving side, // then reset allowed to happen, but write side cannot know that dequeue // occurred. // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected") // assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty") } } class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSink_${gen.typeName}" val io = IO(new Bundle { // These come from the sink domain val deq = Decoupled(gen) // These cross to the source clock domain val async = Flipped(new AsyncBundle(gen, params)) }) val bits = params.bits val source_ready = WireInit(true.B) val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin")) val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray")) val valid = source_ready && ridx =/= widx // The mux is safe because timing analysis ensures ridx has reached the register // On an ASIC, changes to the unread location cannot affect the selected value // On an FPGA, only one input changes at a time => mem updates don't cause glitches // The register only latches when the selected valued is not being written val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1)) io.async.index.foreach { _ := index } // This register does not NEED to be reset, as its contents will not // be considered unless the asynchronously reset deq valid register is set. // It is possible that bits latches when the source domain is reset / has power cut // This is safe, because isolation gates brought mem low before the zeroed widx reached us val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index) io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg")) val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg")) io.deq.valid := valid_reg && source_ready val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray")) io.async.ridx := ridx_reg io.async.safe.foreach { sio => val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0")) val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1")) val source_extend = Module(new AsyncValidSync(params.sync, "source_extend")) val source_valid = Module(new AsyncValidSync(params.sync, "source_valid")) sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_valid .reset := reset.asAsyncReset sink_valid_0 .clock := clock sink_valid_1 .clock := clock source_extend.clock := clock source_valid .clock := clock sink_valid_0.io.in := true.B sink_valid_1.io.in := sink_valid_0.io.out sio.ridx_valid := sink_valid_1.io.out source_extend.io.in := sio.widx_valid source_valid.io.in := source_extend.io.out source_ready := source_valid.io.out sio.sink_reset_n := !reset.asBool // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // // val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool // val reset_and_extend_prev = RegNext(reset_and_extend, true.B) // val reset_rise = !reset_and_extend_prev && reset_and_extend // val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0) // assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty") } } object FromAsyncBundle { // Sometimes it makes sense for the sink to have different sync than the source def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync) def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = { val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync))) sink.io.async <> x sink.io.deq } } object ToAsyncBundle { def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = { val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params)) source.io.enq <> x source.io.async } } class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] { val io = IO(new CrossingIO(gen)) val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) } val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) } source.io.enq <> io.enq io.deq <> sink.io.deq sink.io.async <> source.io.async }
module AsyncValidSync_172( // @[AsyncQueue.scala:58:7] output io_out, // @[AsyncQueue.scala:59:14] input clock, // @[AsyncQueue.scala:63:17] input reset // @[AsyncQueue.scala:64:17] ); wire io_in = 1'h1; // @[ShiftReg.scala:45:23] wire _io_out_WIRE; // @[ShiftReg.scala:48:24] wire io_out_0; // @[AsyncQueue.scala:58:7] assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24] AsyncResetSynchronizerShiftReg_w1_d3_i0_189 io_out_sink_valid_0 ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (reset), .io_q (_io_out_WIRE) ); // @[ShiftReg.scala:45:23] assign io_out = io_out_0; // @[AsyncQueue.scala:58:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File DivSqrtRecFN_small.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2017 SiFive, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of SiFive nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY SIFIVE AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL SIFIVE OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ /* s = sigWidth c_i = newBit Division: width of a is (s+2) Normal ------ (qi + ci * 2^(-i))*b <= a q0 = 0 r0 = a q(i+1) = qi + ci*2^(-i) ri = a - qi*b r(i+1) = a - q(i+1)*b = a - qi*b - ci*2^(-i)*b r(i+1) = ri - ci*2^(-i)*b ci = ri >= 2^(-i)*b summary_i = ri != 0 i = 0 to s+1 (s+1)th bit plus summary_(i+1) gives enough information for rounding If (a < b), then we need to calculate (s+2)th bit and summary_(i+1) because we need s bits ignoring the leading zero. (This is skipCycle2 part of Hauser's code.) Hauser ------ sig_i = qi rem_i = 2^(i-2)*ri cycle_i = s+3-i sig_0 = 0 rem_0 = a/4 cycle_0 = s+3 bit_0 = 2^0 (= 2^(s+1), since we represent a, b and q with (s+2) bits) sig(i+1) = sig(i) + ci*bit_i rem(i+1) = 2rem_i - ci*b/2 ci = 2rem_i >= b/2 bit_i = 2^-i (=2^(cycle_i-2), since we represent a, b and q with (s+2) bits) cycle(i+1) = cycle_i-1 summary_1 = a <> b summary(i+1) = if ci then 2rem_i-b/2 <> 0 else summary_i, i <> 0 Proof: 2^i*r(i+1) = 2^i*ri - ci*b. Qed ci = 2^i*ri >= b. Qed summary(i+1) = if ci then rem(i+1) else summary_i, i <> 0 Now, note that all of ck's cannot be 0, since that means a is 0. So when you traverse through a chain of 0 ck's, from the end, eventually, you reach a non-zero cj. That is exactly the value of ri as the reminder remains the same. When all ck's are 0 except c0 (which must be 1) then summary_1 is set correctly according to r1 = a-b != 0. So summary(i+1) is always set correctly according to r(i+1) Square root: width of a is (s+1) Normal ------ (xi + ci*2^(-i))^2 <= a xi^2 + ci*2^(-i)*(2xi+ci*2^(-i)) <= a x0 = 0 x(i+1) = xi + ci*2^(-i) ri = a - xi^2 r(i+1) = a - x(i+1)^2 = a - (xi^2 + ci*2^(-i)*(2xi+ci*2^(-i))) = ri - ci*2^(-i)*(2xi+ci*2^(-i)) = ri - ci*2^(-i)*(2xi+2^(-i)) // ci is always 0 or 1 ci = ri >= 2^(-i)*(2xi + 2^(-i)) summary_i = ri != 0 i = 0 to s+1 For odd expression, do 2 steps initially. (s+1)th bit plus summary_(i+1) gives enough information for rounding. Hauser ------ sig_i = xi rem_i = ri*2^(i-1) cycle_i = s+2-i bit_i = 2^(-i) (= 2^(s-i) = 2^(cycle_i-2) in terms of bit representation) sig_0 = 0 rem_0 = a/2 cycle_0 = s+2 bit_0 = 1 (= 2^s in terms of bit representation) sig(i+1) = sig_i + ci * bit_i rem(i+1) = 2rem_i - ci*(2sig_i + bit_i) ci = 2*sig_i + bit_i <= 2*rem_i bit_i = 2^(cycle_i-2) (in terms of bit representation) cycle(i+1) = cycle_i-1 summary_1 = a - (2^s) (in terms of bit representation) summary(i+1) = if ci then rem(i+1) <> 0 else summary_i, i <> 0 Proof: ci = 2*sig_i + bit_i <= 2*rem_i ci = 2xi + 2^(-i) <= ri*2^i. Qed sig(i+1) = sig_i + ci * bit_i x(i+1) = xi + ci*2^(-i). Qed rem(i+1) = 2rem_i - ci*(2sig_i + bit_i) r(i+1)*2^i = ri*2^i - ci*(2xi + 2^(-i)) r(i+1) = ri - ci*2^(-i)*(2xi + 2^(-i)). Qed Same argument as before for summary. ------------------------------ Note that all registers are updated normally until cycle == 2. At cycle == 2, rem is not updated, but all other registers are updated normally. But, cycle == 1 does not read rem to calculate anything (note that final summary is calculated using the values at cycle = 2). */ package hardfloat import chisel3._ import chisel3.util._ import consts._ /*---------------------------------------------------------------------------- | Computes a division or square root for floating-point in recoded form. | Multiple clock cycles are needed for each division or square-root operation, | except possibly in special cases. *----------------------------------------------------------------------------*/ class DivSqrtRawFN_small(expWidth: Int, sigWidth: Int, options: Int) extends Module { override def desiredName = s"DivSqrtRawFN_small_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val inReady = Output(Bool()) val inValid = Input(Bool()) val sqrtOp = Input(Bool()) val a = Input(new RawFloat(expWidth, sigWidth)) val b = Input(new RawFloat(expWidth, sigWidth)) val roundingMode = Input(UInt(3.W)) /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val rawOutValid_div = Output(Bool()) val rawOutValid_sqrt = Output(Bool()) val roundingModeOut = Output(UInt(3.W)) val invalidExc = Output(Bool()) val infiniteExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ val cycleNum = RegInit(0.U(log2Ceil(sigWidth + 3).W)) val inReady = RegInit(true.B) // <-> (cycleNum <= 1) val rawOutValid = RegInit(false.B) // <-> (cycleNum === 1) val sqrtOp_Z = Reg(Bool()) val majorExc_Z = Reg(Bool()) //*** REDUCE 3 BITS TO 2-BIT CODE: val isNaN_Z = Reg(Bool()) val isInf_Z = Reg(Bool()) val isZero_Z = Reg(Bool()) val sign_Z = Reg(Bool()) val sExp_Z = Reg(SInt((expWidth + 2).W)) val fractB_Z = Reg(UInt(sigWidth.W)) val roundingMode_Z = Reg(UInt(3.W)) /*------------------------------------------------------------------------ | (The most-significant and least-significant bits of 'rem_Z' are needed | only for square roots.) *------------------------------------------------------------------------*/ val rem_Z = Reg(UInt((sigWidth + 2).W)) val notZeroRem_Z = Reg(Bool()) val sigX_Z = Reg(UInt((sigWidth + 2).W)) /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ val rawA_S = io.a val rawB_S = io.b //*** IMPROVE THESE: val notSigNaNIn_invalidExc_S_div = (rawA_S.isZero && rawB_S.isZero) || (rawA_S.isInf && rawB_S.isInf) val notSigNaNIn_invalidExc_S_sqrt = ! rawA_S.isNaN && ! rawA_S.isZero && rawA_S.sign val majorExc_S = Mux(io.sqrtOp, isSigNaNRawFloat(rawA_S) || notSigNaNIn_invalidExc_S_sqrt, isSigNaNRawFloat(rawA_S) || isSigNaNRawFloat(rawB_S) || notSigNaNIn_invalidExc_S_div || (! rawA_S.isNaN && ! rawA_S.isInf && rawB_S.isZero) ) val isNaN_S = Mux(io.sqrtOp, rawA_S.isNaN || notSigNaNIn_invalidExc_S_sqrt, rawA_S.isNaN || rawB_S.isNaN || notSigNaNIn_invalidExc_S_div ) val isInf_S = Mux(io.sqrtOp, rawA_S.isInf, rawA_S.isInf || rawB_S.isZero) val isZero_S = Mux(io.sqrtOp, rawA_S.isZero, rawA_S.isZero || rawB_S.isInf) val sign_S = rawA_S.sign ^ (! io.sqrtOp && rawB_S.sign) val specialCaseA_S = rawA_S.isNaN || rawA_S.isInf || rawA_S.isZero val specialCaseB_S = rawB_S.isNaN || rawB_S.isInf || rawB_S.isZero val normalCase_S_div = ! specialCaseA_S && ! specialCaseB_S val normalCase_S_sqrt = ! specialCaseA_S && ! rawA_S.sign val normalCase_S = Mux(io.sqrtOp, normalCase_S_sqrt, normalCase_S_div) val sExpQuot_S_div = rawA_S.sExp +& Cat(rawB_S.sExp(expWidth), ~rawB_S.sExp(expWidth - 1, 0)).asSInt //*** IS THIS OPTIMAL?: val sSatExpQuot_S_div = Cat(Mux(((BigInt(7)<<(expWidth - 2)).S <= sExpQuot_S_div), 6.U, sExpQuot_S_div(expWidth + 1, expWidth - 2) ), sExpQuot_S_div(expWidth - 3, 0) ).asSInt val evenSqrt_S = io.sqrtOp && ! rawA_S.sExp(0) val oddSqrt_S = io.sqrtOp && rawA_S.sExp(0) /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ val idle = cycleNum === 0.U val entering = inReady && io.inValid val entering_normalCase = entering && normalCase_S val processTwoBits = cycleNum >= 3.U && ((options & divSqrtOpt_twoBitsPerCycle) != 0).B val skipCycle2 = cycleNum === 3.U && sigX_Z(sigWidth + 1) && ((options & divSqrtOpt_twoBitsPerCycle) == 0).B when (! idle || entering) { def computeCycleNum(f: UInt => UInt): UInt = { Mux(entering & ! normalCase_S, f(1.U), 0.U) | Mux(entering_normalCase, Mux(io.sqrtOp, Mux(rawA_S.sExp(0), f(sigWidth.U), f((sigWidth + 1).U)), f((sigWidth + 2).U) ), 0.U ) | Mux(! entering && ! skipCycle2, f(cycleNum - Mux(processTwoBits, 2.U, 1.U)), 0.U) | Mux(skipCycle2, f(1.U), 0.U) } inReady := computeCycleNum(_ <= 1.U).asBool rawOutValid := computeCycleNum(_ === 1.U).asBool cycleNum := computeCycleNum(x => x) } io.inReady := inReady /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ when (entering) { sqrtOp_Z := io.sqrtOp majorExc_Z := majorExc_S isNaN_Z := isNaN_S isInf_Z := isInf_S isZero_Z := isZero_S sign_Z := sign_S sExp_Z := Mux(io.sqrtOp, (rawA_S.sExp>>1) +& (BigInt(1)<<(expWidth - 1)).S, sSatExpQuot_S_div ) roundingMode_Z := io.roundingMode } when (entering || ! inReady && sqrtOp_Z) { fractB_Z := Mux(inReady && ! io.sqrtOp, rawB_S.sig(sigWidth - 2, 0)<<1, 0.U) | Mux(inReady && io.sqrtOp && rawA_S.sExp(0), (BigInt(1)<<(sigWidth - 2)).U, 0.U) | Mux(inReady && io.sqrtOp && ! rawA_S.sExp(0), (BigInt(1)<<(sigWidth - 1)).U, 0.U) | Mux(! inReady /* sqrtOp_Z */ && processTwoBits, fractB_Z>>2, 0.U) | Mux(! inReady /* sqrtOp_Z */ && ! processTwoBits, fractB_Z>>1, 0.U) } /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ val rem = Mux(inReady && ! oddSqrt_S, rawA_S.sig<<1, 0.U) | Mux(inReady && oddSqrt_S, Cat(rawA_S.sig(sigWidth - 1, sigWidth - 2) - 1.U, rawA_S.sig(sigWidth - 3, 0)<<3 ), 0.U ) | Mux(! inReady, rem_Z<<1, 0.U) val bitMask = (1.U<<cycleNum)>>2 val trialTerm = Mux(inReady && ! io.sqrtOp, rawB_S.sig<<1, 0.U) | Mux(inReady && evenSqrt_S, (BigInt(1)<<sigWidth).U, 0.U) | Mux(inReady && oddSqrt_S, (BigInt(5)<<(sigWidth - 1)).U, 0.U) | Mux(! inReady, fractB_Z, 0.U) | Mux(! inReady && ! sqrtOp_Z, 1.U << sigWidth, 0.U) | Mux(! inReady && sqrtOp_Z, sigX_Z<<1, 0.U) val trialRem = rem.zext -& trialTerm.zext val newBit = (0.S <= trialRem) val nextRem_Z = Mux(newBit, trialRem.asUInt, rem)(sigWidth + 1, 0) val rem2 = nextRem_Z<<1 val trialTerm2_newBit0 = Mux(sqrtOp_Z, fractB_Z>>1 | sigX_Z<<1, fractB_Z | (1.U << sigWidth)) val trialTerm2_newBit1 = trialTerm2_newBit0 | Mux(sqrtOp_Z, fractB_Z<<1, 0.U) val trialRem2 = Mux(newBit, (trialRem<<1) - trialTerm2_newBit1.zext, (rem_Z<<2)(sigWidth+2, 0).zext - trialTerm2_newBit0.zext) val newBit2 = (0.S <= trialRem2) val nextNotZeroRem_Z = Mux(inReady || newBit, trialRem =/= 0.S, notZeroRem_Z) val nextNotZeroRem_Z_2 = // <-> Mux(newBit2, trialRem2 =/= 0.S, nextNotZeroRem_Z) processTwoBits && newBit && (0.S < (trialRem<<1) - trialTerm2_newBit1.zext) || processTwoBits && !newBit && (0.S < (rem_Z<<2)(sigWidth+2, 0).zext - trialTerm2_newBit0.zext) || !(processTwoBits && newBit2) && nextNotZeroRem_Z val nextRem_Z_2 = Mux(processTwoBits && newBit2, trialRem2.asUInt(sigWidth + 1, 0), 0.U) | Mux(processTwoBits && !newBit2, rem2(sigWidth + 1, 0), 0.U) | Mux(!processTwoBits, nextRem_Z, 0.U) when (entering || ! inReady) { notZeroRem_Z := nextNotZeroRem_Z_2 rem_Z := nextRem_Z_2 sigX_Z := Mux(inReady && ! io.sqrtOp, newBit<<(sigWidth + 1), 0.U) | Mux(inReady && io.sqrtOp, (BigInt(1)<<sigWidth).U, 0.U) | Mux(inReady && oddSqrt_S, newBit<<(sigWidth - 1), 0.U) | Mux(! inReady, sigX_Z, 0.U) | Mux(! inReady && newBit, bitMask, 0.U) | Mux(processTwoBits && newBit2, bitMask>>1, 0.U) } /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ io.rawOutValid_div := rawOutValid && ! sqrtOp_Z io.rawOutValid_sqrt := rawOutValid && sqrtOp_Z io.roundingModeOut := roundingMode_Z io.invalidExc := majorExc_Z && isNaN_Z io.infiniteExc := majorExc_Z && ! isNaN_Z io.rawOut.isNaN := isNaN_Z io.rawOut.isInf := isInf_Z io.rawOut.isZero := isZero_Z io.rawOut.sign := sign_Z io.rawOut.sExp := sExp_Z io.rawOut.sig := sigX_Z<<1 | notZeroRem_Z } /*---------------------------------------------------------------------------- *----------------------------------------------------------------------------*/ class DivSqrtRecFNToRaw_small(expWidth: Int, sigWidth: Int, options: Int) extends Module { override def desiredName = s"DivSqrtRecFMToRaw_small_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val inReady = Output(Bool()) val inValid = Input(Bool()) val sqrtOp = Input(Bool()) val a = Input(UInt((expWidth + sigWidth + 1).W)) val b = Input(UInt((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val rawOutValid_div = Output(Bool()) val rawOutValid_sqrt = Output(Bool()) val roundingModeOut = Output(UInt(3.W)) val invalidExc = Output(Bool()) val infiniteExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) val divSqrtRawFN = Module(new DivSqrtRawFN_small(expWidth, sigWidth, options)) io.inReady := divSqrtRawFN.io.inReady divSqrtRawFN.io.inValid := io.inValid divSqrtRawFN.io.sqrtOp := io.sqrtOp divSqrtRawFN.io.a := rawFloatFromRecFN(expWidth, sigWidth, io.a) divSqrtRawFN.io.b := rawFloatFromRecFN(expWidth, sigWidth, io.b) divSqrtRawFN.io.roundingMode := io.roundingMode io.rawOutValid_div := divSqrtRawFN.io.rawOutValid_div io.rawOutValid_sqrt := divSqrtRawFN.io.rawOutValid_sqrt io.roundingModeOut := divSqrtRawFN.io.roundingModeOut io.invalidExc := divSqrtRawFN.io.invalidExc io.infiniteExc := divSqrtRawFN.io.infiniteExc io.rawOut := divSqrtRawFN.io.rawOut } /*---------------------------------------------------------------------------- *----------------------------------------------------------------------------*/ class DivSqrtRecFN_small(expWidth: Int, sigWidth: Int, options: Int) extends Module { override def desiredName = s"DivSqrtRecFM_small_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val inReady = Output(Bool()) val inValid = Input(Bool()) val sqrtOp = Input(Bool()) val a = Input(UInt((expWidth + sigWidth + 1).W)) val b = Input(UInt((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val outValid_div = Output(Bool()) val outValid_sqrt = Output(Bool()) val out = Output(UInt((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(UInt(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val divSqrtRecFNToRaw = Module(new DivSqrtRecFNToRaw_small(expWidth, sigWidth, options)) io.inReady := divSqrtRecFNToRaw.io.inReady divSqrtRecFNToRaw.io.inValid := io.inValid divSqrtRecFNToRaw.io.sqrtOp := io.sqrtOp divSqrtRecFNToRaw.io.a := io.a divSqrtRecFNToRaw.io.b := io.b divSqrtRecFNToRaw.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.outValid_div := divSqrtRecFNToRaw.io.rawOutValid_div io.outValid_sqrt := divSqrtRecFNToRaw.io.rawOutValid_sqrt val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := divSqrtRecFNToRaw.io.invalidExc roundRawFNToRecFN.io.infiniteExc := divSqrtRecFNToRaw.io.infiniteExc roundRawFNToRecFN.io.in := divSqrtRecFNToRaw.io.rawOut roundRawFNToRecFN.io.roundingMode := divSqrtRecFNToRaw.io.roundingModeOut roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags }
module DivSqrtRawFN_small_e8_s24_1( // @[DivSqrtRecFN_small.scala:199:5] input clock, // @[DivSqrtRecFN_small.scala:199:5] input reset, // @[DivSqrtRecFN_small.scala:199:5] output io_inReady, // @[DivSqrtRecFN_small.scala:203:16] input io_inValid, // @[DivSqrtRecFN_small.scala:203:16] input io_sqrtOp, // @[DivSqrtRecFN_small.scala:203:16] input io_a_isNaN, // @[DivSqrtRecFN_small.scala:203:16] input io_a_isInf, // @[DivSqrtRecFN_small.scala:203:16] input io_a_isZero, // @[DivSqrtRecFN_small.scala:203:16] input io_a_sign, // @[DivSqrtRecFN_small.scala:203:16] input [9:0] io_a_sExp, // @[DivSqrtRecFN_small.scala:203:16] input [24:0] io_a_sig, // @[DivSqrtRecFN_small.scala:203:16] input io_b_isNaN, // @[DivSqrtRecFN_small.scala:203:16] input io_b_isInf, // @[DivSqrtRecFN_small.scala:203:16] input io_b_isZero, // @[DivSqrtRecFN_small.scala:203:16] input io_b_sign, // @[DivSqrtRecFN_small.scala:203:16] input [9:0] io_b_sExp, // @[DivSqrtRecFN_small.scala:203:16] input [24:0] io_b_sig, // @[DivSqrtRecFN_small.scala:203:16] input [2:0] io_roundingMode, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOutValid_div, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOutValid_sqrt, // @[DivSqrtRecFN_small.scala:203:16] output [2:0] io_roundingModeOut, // @[DivSqrtRecFN_small.scala:203:16] output io_invalidExc, // @[DivSqrtRecFN_small.scala:203:16] output io_infiniteExc, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOut_isNaN, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOut_isInf, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOut_isZero, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOut_sign, // @[DivSqrtRecFN_small.scala:203:16] output [9:0] io_rawOut_sExp, // @[DivSqrtRecFN_small.scala:203:16] output [26:0] io_rawOut_sig // @[DivSqrtRecFN_small.scala:203:16] ); wire io_inValid_0 = io_inValid; // @[DivSqrtRecFN_small.scala:199:5] wire io_sqrtOp_0 = io_sqrtOp; // @[DivSqrtRecFN_small.scala:199:5] wire io_a_isNaN_0 = io_a_isNaN; // @[DivSqrtRecFN_small.scala:199:5] wire io_a_isInf_0 = io_a_isInf; // @[DivSqrtRecFN_small.scala:199:5] wire io_a_isZero_0 = io_a_isZero; // @[DivSqrtRecFN_small.scala:199:5] wire io_a_sign_0 = io_a_sign; // @[DivSqrtRecFN_small.scala:199:5] wire [9:0] io_a_sExp_0 = io_a_sExp; // @[DivSqrtRecFN_small.scala:199:5] wire [24:0] io_a_sig_0 = io_a_sig; // @[DivSqrtRecFN_small.scala:199:5] wire io_b_isNaN_0 = io_b_isNaN; // @[DivSqrtRecFN_small.scala:199:5] wire io_b_isInf_0 = io_b_isInf; // @[DivSqrtRecFN_small.scala:199:5] wire io_b_isZero_0 = io_b_isZero; // @[DivSqrtRecFN_small.scala:199:5] wire io_b_sign_0 = io_b_sign; // @[DivSqrtRecFN_small.scala:199:5] wire [9:0] io_b_sExp_0 = io_b_sExp; // @[DivSqrtRecFN_small.scala:199:5] wire [24:0] io_b_sig_0 = io_b_sig; // @[DivSqrtRecFN_small.scala:199:5] wire [2:0] io_roundingMode_0 = io_roundingMode; // @[DivSqrtRecFN_small.scala:199:5] wire [1:0] _inReady_T_15 = 2'h1; // @[DivSqrtRecFN_small.scala:313:61] wire [1:0] _rawOutValid_T_15 = 2'h1; // @[DivSqrtRecFN_small.scala:313:61] wire [1:0] _cycleNum_T_11 = 2'h1; // @[DivSqrtRecFN_small.scala:313:61] wire [21:0] _fractB_Z_T_19 = 22'h0; // @[DivSqrtRecFN_small.scala:345:16] wire [24:0] _trialTerm_T_16 = 25'h1000000; // @[DivSqrtRecFN_small.scala:366:42] wire [24:0] _trialTerm2_newBit0_T_3 = 25'h1000000; // @[DivSqrtRecFN_small.scala:373:85] wire [25:0] _nextRem_Z_2_T_3 = 26'h0; // @[DivSqrtRecFN_small.scala:386:12] wire [25:0] _nextRem_Z_2_T_7 = 26'h0; // @[DivSqrtRecFN_small.scala:387:12] wire [25:0] _nextRem_Z_2_T_8 = 26'h0; // @[DivSqrtRecFN_small.scala:386:81] wire _inReady_T_2 = 1'h1; // @[DivSqrtRecFN_small.scala:317:38] wire _inReady_T_21 = 1'h1; // @[DivSqrtRecFN_small.scala:317:38] wire _rawOutValid_T_2 = 1'h1; // @[DivSqrtRecFN_small.scala:318:42] wire _rawOutValid_T_21 = 1'h1; // @[DivSqrtRecFN_small.scala:318:42] wire _fractB_Z_T_22 = 1'h1; // @[DivSqrtRecFN_small.scala:346:45] wire _nextNotZeroRem_Z_2_T_21 = 1'h1; // @[DivSqrtRecFN_small.scala:384:9] wire _nextRem_Z_2_T_9 = 1'h1; // @[DivSqrtRecFN_small.scala:388:13] wire processTwoBits = 1'h0; // @[DivSqrtRecFN_small.scala:300:42] wire _inReady_T_5 = 1'h0; // @[DivSqrtRecFN_small.scala:317:38] wire _inReady_T_6 = 1'h0; // @[DivSqrtRecFN_small.scala:317:38] wire _inReady_T_7 = 1'h0; // @[DivSqrtRecFN_small.scala:308:24] wire _inReady_T_8 = 1'h0; // @[DivSqrtRecFN_small.scala:317:38] wire _inReady_T_9 = 1'h0; // @[DivSqrtRecFN_small.scala:307:20] wire _inReady_T_10 = 1'h0; // @[DivSqrtRecFN_small.scala:306:16] wire _rawOutValid_T_5 = 1'h0; // @[DivSqrtRecFN_small.scala:318:42] wire _rawOutValid_T_6 = 1'h0; // @[DivSqrtRecFN_small.scala:318:42] wire _rawOutValid_T_7 = 1'h0; // @[DivSqrtRecFN_small.scala:308:24] wire _rawOutValid_T_8 = 1'h0; // @[DivSqrtRecFN_small.scala:318:42] wire _rawOutValid_T_9 = 1'h0; // @[DivSqrtRecFN_small.scala:307:20] wire _rawOutValid_T_10 = 1'h0; // @[DivSqrtRecFN_small.scala:306:16] wire _fractB_Z_T_17 = 1'h0; // @[DivSqrtRecFN_small.scala:345:42] wire _nextNotZeroRem_Z_2_T = 1'h0; // @[DivSqrtRecFN_small.scala:382:24] wire _nextNotZeroRem_Z_2_T_7 = 1'h0; // @[DivSqrtRecFN_small.scala:382:34] wire _nextNotZeroRem_Z_2_T_9 = 1'h0; // @[DivSqrtRecFN_small.scala:383:24] wire _nextNotZeroRem_Z_2_T_18 = 1'h0; // @[DivSqrtRecFN_small.scala:383:35] wire _nextNotZeroRem_Z_2_T_19 = 1'h0; // @[DivSqrtRecFN_small.scala:382:85] wire _nextNotZeroRem_Z_2_T_20 = 1'h0; // @[DivSqrtRecFN_small.scala:384:26] wire _nextRem_Z_2_T = 1'h0; // @[DivSqrtRecFN_small.scala:386:28] wire _nextRem_Z_2_T_5 = 1'h0; // @[DivSqrtRecFN_small.scala:387:28] wire _sigX_Z_T_18 = 1'h0; // @[DivSqrtRecFN_small.scala:399:32] wire [28:0] _sigX_Z_T_20 = 29'h0; // @[DivSqrtRecFN_small.scala:399:16] wire _io_rawOutValid_div_T_1; // @[DivSqrtRecFN_small.scala:404:40] wire _io_rawOutValid_sqrt_T; // @[DivSqrtRecFN_small.scala:405:40] wire _io_invalidExc_T; // @[DivSqrtRecFN_small.scala:407:36] wire _io_infiniteExc_T_1; // @[DivSqrtRecFN_small.scala:408:36] wire [26:0] _io_rawOut_sig_T_1; // @[DivSqrtRecFN_small.scala:414:35] wire io_rawOut_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOut_isInf_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOut_isZero_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOut_sign_0; // @[DivSqrtRecFN_small.scala:199:5] wire [9:0] io_rawOut_sExp_0; // @[DivSqrtRecFN_small.scala:199:5] wire [26:0] io_rawOut_sig_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_inReady_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOutValid_div_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOutValid_sqrt_0; // @[DivSqrtRecFN_small.scala:199:5] wire [2:0] io_roundingModeOut_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_invalidExc_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_infiniteExc_0; // @[DivSqrtRecFN_small.scala:199:5] reg [4:0] cycleNum; // @[DivSqrtRecFN_small.scala:224:33] reg inReady; // @[DivSqrtRecFN_small.scala:225:33] assign io_inReady_0 = inReady; // @[DivSqrtRecFN_small.scala:199:5, :225:33] reg rawOutValid; // @[DivSqrtRecFN_small.scala:226:33] reg sqrtOp_Z; // @[DivSqrtRecFN_small.scala:228:29] reg majorExc_Z; // @[DivSqrtRecFN_small.scala:229:29] reg isNaN_Z; // @[DivSqrtRecFN_small.scala:231:29] assign io_rawOut_isNaN_0 = isNaN_Z; // @[DivSqrtRecFN_small.scala:199:5, :231:29] reg isInf_Z; // @[DivSqrtRecFN_small.scala:232:29] assign io_rawOut_isInf_0 = isInf_Z; // @[DivSqrtRecFN_small.scala:199:5, :232:29] reg isZero_Z; // @[DivSqrtRecFN_small.scala:233:29] assign io_rawOut_isZero_0 = isZero_Z; // @[DivSqrtRecFN_small.scala:199:5, :233:29] reg sign_Z; // @[DivSqrtRecFN_small.scala:234:29] assign io_rawOut_sign_0 = sign_Z; // @[DivSqrtRecFN_small.scala:199:5, :234:29] reg [9:0] sExp_Z; // @[DivSqrtRecFN_small.scala:235:29] assign io_rawOut_sExp_0 = sExp_Z; // @[DivSqrtRecFN_small.scala:199:5, :235:29] reg [23:0] fractB_Z; // @[DivSqrtRecFN_small.scala:236:29] reg [2:0] roundingMode_Z; // @[DivSqrtRecFN_small.scala:237:29] assign io_roundingModeOut_0 = roundingMode_Z; // @[DivSqrtRecFN_small.scala:199:5, :237:29] reg [25:0] rem_Z; // @[DivSqrtRecFN_small.scala:243:29] reg notZeroRem_Z; // @[DivSqrtRecFN_small.scala:244:29] reg [25:0] sigX_Z; // @[DivSqrtRecFN_small.scala:245:29] wire _notSigNaNIn_invalidExc_S_div_T = io_a_isZero_0 & io_b_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :254:24] wire _notSigNaNIn_invalidExc_S_div_T_1 = io_a_isInf_0 & io_b_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :254:59] wire notSigNaNIn_invalidExc_S_div = _notSigNaNIn_invalidExc_S_div_T | _notSigNaNIn_invalidExc_S_div_T_1; // @[DivSqrtRecFN_small.scala:254:{24,42,59}] wire _notSigNaNIn_invalidExc_S_sqrt_T = ~io_a_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5, :256:9] wire _notSigNaNIn_invalidExc_S_sqrt_T_1 = ~io_a_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :256:27] wire _notSigNaNIn_invalidExc_S_sqrt_T_2 = _notSigNaNIn_invalidExc_S_sqrt_T & _notSigNaNIn_invalidExc_S_sqrt_T_1; // @[DivSqrtRecFN_small.scala:256:{9,24,27}] wire notSigNaNIn_invalidExc_S_sqrt = _notSigNaNIn_invalidExc_S_sqrt_T_2 & io_a_sign_0; // @[DivSqrtRecFN_small.scala:199:5, :256:{24,43}] wire _majorExc_S_T = io_a_sig_0[22]; // @[common.scala:82:56] wire _majorExc_S_T_4 = io_a_sig_0[22]; // @[common.scala:82:56] wire _majorExc_S_T_1 = ~_majorExc_S_T; // @[common.scala:82:{49,56}] wire _majorExc_S_T_2 = io_a_isNaN_0 & _majorExc_S_T_1; // @[common.scala:82:{46,49}] wire _majorExc_S_T_3 = _majorExc_S_T_2 | notSigNaNIn_invalidExc_S_sqrt; // @[common.scala:82:46] wire _majorExc_S_T_5 = ~_majorExc_S_T_4; // @[common.scala:82:{49,56}] wire _majorExc_S_T_6 = io_a_isNaN_0 & _majorExc_S_T_5; // @[common.scala:82:{46,49}] wire _majorExc_S_T_7 = io_b_sig_0[22]; // @[common.scala:82:56] wire _majorExc_S_T_8 = ~_majorExc_S_T_7; // @[common.scala:82:{49,56}] wire _majorExc_S_T_9 = io_b_isNaN_0 & _majorExc_S_T_8; // @[common.scala:82:{46,49}] wire _majorExc_S_T_10 = _majorExc_S_T_6 | _majorExc_S_T_9; // @[common.scala:82:46] wire _majorExc_S_T_11 = _majorExc_S_T_10 | notSigNaNIn_invalidExc_S_div; // @[DivSqrtRecFN_small.scala:254:42, :260:{38,66}] wire _majorExc_S_T_12 = ~io_a_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5, :256:9, :262:18] wire _majorExc_S_T_13 = ~io_a_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :262:36] wire _majorExc_S_T_14 = _majorExc_S_T_12 & _majorExc_S_T_13; // @[DivSqrtRecFN_small.scala:262:{18,33,36}] wire _majorExc_S_T_15 = _majorExc_S_T_14 & io_b_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :262:{33,51}] wire _majorExc_S_T_16 = _majorExc_S_T_11 | _majorExc_S_T_15; // @[DivSqrtRecFN_small.scala:260:66, :261:46, :262:51] wire majorExc_S = io_sqrtOp_0 ? _majorExc_S_T_3 : _majorExc_S_T_16; // @[DivSqrtRecFN_small.scala:199:5, :258:12, :259:38, :261:46] wire _isNaN_S_T = io_a_isNaN_0 | notSigNaNIn_invalidExc_S_sqrt; // @[DivSqrtRecFN_small.scala:199:5, :256:43, :266:26] wire _isNaN_S_T_1 = io_a_isNaN_0 | io_b_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5, :267:26] wire _isNaN_S_T_2 = _isNaN_S_T_1 | notSigNaNIn_invalidExc_S_div; // @[DivSqrtRecFN_small.scala:254:42, :267:{26,42}] wire isNaN_S = io_sqrtOp_0 ? _isNaN_S_T : _isNaN_S_T_2; // @[DivSqrtRecFN_small.scala:199:5, :265:12, :266:26, :267:42] wire _isInf_S_T = io_a_isInf_0 | io_b_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :269:63] wire isInf_S = io_sqrtOp_0 ? io_a_isInf_0 : _isInf_S_T; // @[DivSqrtRecFN_small.scala:199:5, :269:{23,63}] wire _isZero_S_T = io_a_isZero_0 | io_b_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :270:64] wire isZero_S = io_sqrtOp_0 ? io_a_isZero_0 : _isZero_S_T; // @[DivSqrtRecFN_small.scala:199:5, :270:{23,64}] wire _sign_S_T = ~io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :271:33] wire _sign_S_T_1 = _sign_S_T & io_b_sign_0; // @[DivSqrtRecFN_small.scala:199:5, :271:{33,45}] wire sign_S = io_a_sign_0 ^ _sign_S_T_1; // @[DivSqrtRecFN_small.scala:199:5, :271:{30,45}] wire _specialCaseA_S_T = io_a_isNaN_0 | io_a_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :273:39] wire specialCaseA_S = _specialCaseA_S_T | io_a_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :273:{39,55}] wire _specialCaseB_S_T = io_b_isNaN_0 | io_b_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :274:39] wire specialCaseB_S = _specialCaseB_S_T | io_b_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :274:{39,55}] wire _normalCase_S_div_T = ~specialCaseA_S; // @[DivSqrtRecFN_small.scala:273:55, :275:28] wire _normalCase_S_div_T_1 = ~specialCaseB_S; // @[DivSqrtRecFN_small.scala:274:55, :275:48] wire normalCase_S_div = _normalCase_S_div_T & _normalCase_S_div_T_1; // @[DivSqrtRecFN_small.scala:275:{28,45,48}] wire _normalCase_S_sqrt_T = ~specialCaseA_S; // @[DivSqrtRecFN_small.scala:273:55, :275:28, :276:29] wire _normalCase_S_sqrt_T_1 = ~io_a_sign_0; // @[DivSqrtRecFN_small.scala:199:5, :276:49] wire normalCase_S_sqrt = _normalCase_S_sqrt_T & _normalCase_S_sqrt_T_1; // @[DivSqrtRecFN_small.scala:276:{29,46,49}] wire normalCase_S = io_sqrtOp_0 ? normalCase_S_sqrt : normalCase_S_div; // @[DivSqrtRecFN_small.scala:199:5, :275:45, :276:46, :277:27] wire _sExpQuot_S_div_T = io_b_sExp_0[8]; // @[DivSqrtRecFN_small.scala:199:5, :281:28] wire [7:0] _sExpQuot_S_div_T_1 = io_b_sExp_0[7:0]; // @[DivSqrtRecFN_small.scala:199:5, :281:52] wire [7:0] _sExpQuot_S_div_T_2 = ~_sExpQuot_S_div_T_1; // @[DivSqrtRecFN_small.scala:281:{40,52}] wire [8:0] _sExpQuot_S_div_T_3 = {_sExpQuot_S_div_T, _sExpQuot_S_div_T_2}; // @[DivSqrtRecFN_small.scala:281:{16,28,40}] wire [8:0] _sExpQuot_S_div_T_4 = _sExpQuot_S_div_T_3; // @[DivSqrtRecFN_small.scala:281:{16,71}] wire [10:0] sExpQuot_S_div = {io_a_sExp_0[9], io_a_sExp_0} + {{2{_sExpQuot_S_div_T_4[8]}}, _sExpQuot_S_div_T_4}; // @[DivSqrtRecFN_small.scala:199:5, :280:21, :281:71] wire _sSatExpQuot_S_div_T = $signed(sExpQuot_S_div) > 11'sh1BF; // @[DivSqrtRecFN_small.scala:280:21, :284:48] wire [3:0] _sSatExpQuot_S_div_T_1 = sExpQuot_S_div[9:6]; // @[DivSqrtRecFN_small.scala:280:21, :286:31] wire [3:0] _sSatExpQuot_S_div_T_2 = _sSatExpQuot_S_div_T ? 4'h6 : _sSatExpQuot_S_div_T_1; // @[DivSqrtRecFN_small.scala:284:{16,48}, :286:31] wire [5:0] _sSatExpQuot_S_div_T_3 = sExpQuot_S_div[5:0]; // @[DivSqrtRecFN_small.scala:280:21, :288:27] wire [9:0] _sSatExpQuot_S_div_T_4 = {_sSatExpQuot_S_div_T_2, _sSatExpQuot_S_div_T_3}; // @[DivSqrtRecFN_small.scala:284:{12,16}, :288:27] wire [9:0] sSatExpQuot_S_div = _sSatExpQuot_S_div_T_4; // @[DivSqrtRecFN_small.scala:284:12, :289:11] wire _evenSqrt_S_T = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48] wire _oddSqrt_S_T = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :292:48] wire _inReady_T_4 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :308:36] wire _rawOutValid_T_4 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :308:36] wire _cycleNum_T_3 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :308:36] wire _fractB_Z_T_6 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :343:52] wire _fractB_Z_T_11 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :344:54] wire _evenSqrt_S_T_1 = ~_evenSqrt_S_T; // @[DivSqrtRecFN_small.scala:291:{35,48}] wire evenSqrt_S = io_sqrtOp_0 & _evenSqrt_S_T_1; // @[DivSqrtRecFN_small.scala:199:5, :291:{32,35}] wire oddSqrt_S = io_sqrtOp_0 & _oddSqrt_S_T; // @[DivSqrtRecFN_small.scala:199:5, :292:{32,48}] wire idle = cycleNum == 5'h0; // @[DivSqrtRecFN_small.scala:224:33, :296:25] wire entering = inReady & io_inValid_0; // @[DivSqrtRecFN_small.scala:199:5, :225:33, :297:28] wire entering_normalCase = entering & normalCase_S; // @[DivSqrtRecFN_small.scala:277:27, :297:28, :298:40] wire _processTwoBits_T = cycleNum > 5'h2; // @[DivSqrtRecFN_small.scala:224:33, :300:35] wire _skipCycle2_T = cycleNum == 5'h3; // @[DivSqrtRecFN_small.scala:224:33, :301:31] wire _skipCycle2_T_1 = sigX_Z[25]; // @[DivSqrtRecFN_small.scala:245:29, :301:48] wire _skipCycle2_T_2 = _skipCycle2_T & _skipCycle2_T_1; // @[DivSqrtRecFN_small.scala:301:{31,39,48}] wire skipCycle2 = _skipCycle2_T_2; // @[DivSqrtRecFN_small.scala:301:{39,63}] wire _inReady_T_22 = skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :314:16] wire _rawOutValid_T_22 = skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :314:16] wire _cycleNum_T_16 = skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :314:16] wire _inReady_T = ~normalCase_S; // @[DivSqrtRecFN_small.scala:277:27, :305:28] wire _inReady_T_1 = entering & _inReady_T; // @[DivSqrtRecFN_small.scala:297:28, :305:{26,28}] wire _inReady_T_3 = _inReady_T_1; // @[DivSqrtRecFN_small.scala:305:{16,26}] wire _inReady_T_11 = _inReady_T_3; // @[DivSqrtRecFN_small.scala:305:{16,57}] wire _inReady_T_12 = ~entering; // @[DivSqrtRecFN_small.scala:297:28, :313:17] wire _inReady_T_13 = ~skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :313:31] wire _inReady_T_14 = _inReady_T_12 & _inReady_T_13; // @[DivSqrtRecFN_small.scala:313:{17,28,31}] wire [5:0] _GEN = {1'h0, cycleNum} - 6'h1; // @[DivSqrtRecFN_small.scala:224:33, :313:56] wire [5:0] _inReady_T_16; // @[DivSqrtRecFN_small.scala:313:56] assign _inReady_T_16 = _GEN; // @[DivSqrtRecFN_small.scala:313:56] wire [5:0] _rawOutValid_T_16; // @[DivSqrtRecFN_small.scala:313:56] assign _rawOutValid_T_16 = _GEN; // @[DivSqrtRecFN_small.scala:313:56] wire [5:0] _cycleNum_T_12; // @[DivSqrtRecFN_small.scala:313:56] assign _cycleNum_T_12 = _GEN; // @[DivSqrtRecFN_small.scala:313:56] wire [4:0] _inReady_T_17 = _inReady_T_16[4:0]; // @[DivSqrtRecFN_small.scala:313:56] wire _inReady_T_18 = _inReady_T_17 < 5'h2; // @[DivSqrtRecFN_small.scala:313:56, :317:38] wire _inReady_T_19 = _inReady_T_14 & _inReady_T_18; // @[DivSqrtRecFN_small.scala:313:{16,28}, :317:38] wire _inReady_T_20 = _inReady_T_11 | _inReady_T_19; // @[DivSqrtRecFN_small.scala:305:57, :312:15, :313:16] wire _inReady_T_23 = _inReady_T_20 | _inReady_T_22; // @[DivSqrtRecFN_small.scala:312:15, :313:95, :314:16] wire _inReady_T_24 = _inReady_T_23; // @[DivSqrtRecFN_small.scala:313:95, :317:46] wire _rawOutValid_T = ~normalCase_S; // @[DivSqrtRecFN_small.scala:277:27, :305:28] wire _rawOutValid_T_1 = entering & _rawOutValid_T; // @[DivSqrtRecFN_small.scala:297:28, :305:{26,28}] wire _rawOutValid_T_3 = _rawOutValid_T_1; // @[DivSqrtRecFN_small.scala:305:{16,26}] wire _rawOutValid_T_11 = _rawOutValid_T_3; // @[DivSqrtRecFN_small.scala:305:{16,57}] wire _rawOutValid_T_12 = ~entering; // @[DivSqrtRecFN_small.scala:297:28, :313:17] wire _rawOutValid_T_13 = ~skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :313:31] wire _rawOutValid_T_14 = _rawOutValid_T_12 & _rawOutValid_T_13; // @[DivSqrtRecFN_small.scala:313:{17,28,31}] wire [4:0] _rawOutValid_T_17 = _rawOutValid_T_16[4:0]; // @[DivSqrtRecFN_small.scala:313:56] wire _rawOutValid_T_18 = _rawOutValid_T_17 == 5'h1; // @[DivSqrtRecFN_small.scala:313:56, :318:42] wire _rawOutValid_T_19 = _rawOutValid_T_14 & _rawOutValid_T_18; // @[DivSqrtRecFN_small.scala:313:{16,28}, :318:42] wire _rawOutValid_T_20 = _rawOutValid_T_11 | _rawOutValid_T_19; // @[DivSqrtRecFN_small.scala:305:57, :312:15, :313:16] wire _rawOutValid_T_23 = _rawOutValid_T_20 | _rawOutValid_T_22; // @[DivSqrtRecFN_small.scala:312:15, :313:95, :314:16] wire _rawOutValid_T_24 = _rawOutValid_T_23; // @[DivSqrtRecFN_small.scala:313:95, :318:51] wire _cycleNum_T = ~normalCase_S; // @[DivSqrtRecFN_small.scala:277:27, :305:28] wire _cycleNum_T_1 = entering & _cycleNum_T; // @[DivSqrtRecFN_small.scala:297:28, :305:{26,28}] wire _cycleNum_T_2 = _cycleNum_T_1; // @[DivSqrtRecFN_small.scala:305:{16,26}] wire [4:0] _cycleNum_T_4 = {4'hC, ~_cycleNum_T_3}; // @[DivSqrtRecFN_small.scala:308:{24,36}] wire [4:0] _cycleNum_T_5 = io_sqrtOp_0 ? _cycleNum_T_4 : 5'h1A; // @[DivSqrtRecFN_small.scala:199:5, :307:20, :308:24] wire [4:0] _cycleNum_T_6 = entering_normalCase ? _cycleNum_T_5 : 5'h0; // @[DivSqrtRecFN_small.scala:298:40, :306:16, :307:20] wire [4:0] _cycleNum_T_7 = {4'h0, _cycleNum_T_2} | _cycleNum_T_6; // @[DivSqrtRecFN_small.scala:305:{16,57}, :306:16, :313:56] wire _cycleNum_T_8 = ~entering; // @[DivSqrtRecFN_small.scala:297:28, :313:17] wire _cycleNum_T_9 = ~skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :313:31] wire _cycleNum_T_10 = _cycleNum_T_8 & _cycleNum_T_9; // @[DivSqrtRecFN_small.scala:313:{17,28,31}] wire [4:0] _cycleNum_T_13 = _cycleNum_T_12[4:0]; // @[DivSqrtRecFN_small.scala:313:56] wire [4:0] _cycleNum_T_14 = _cycleNum_T_10 ? _cycleNum_T_13 : 5'h0; // @[DivSqrtRecFN_small.scala:313:{16,28,56}] wire [4:0] _cycleNum_T_15 = _cycleNum_T_7 | _cycleNum_T_14; // @[DivSqrtRecFN_small.scala:305:57, :312:15, :313:16] wire [4:0] _cycleNum_T_17 = {_cycleNum_T_15[4:1], _cycleNum_T_15[0] | _cycleNum_T_16}; // @[DivSqrtRecFN_small.scala:312:15, :313:95, :314:16] wire [8:0] _sExp_Z_T = io_a_sExp_0[9:1]; // @[DivSqrtRecFN_small.scala:199:5, :335:29] wire [9:0] _sExp_Z_T_1 = {_sExp_Z_T[8], _sExp_Z_T} + 10'h80; // @[DivSqrtRecFN_small.scala:335:{29,34}] wire [9:0] _sExp_Z_T_2 = io_sqrtOp_0 ? _sExp_Z_T_1 : sSatExpQuot_S_div; // @[DivSqrtRecFN_small.scala:199:5, :289:11, :334:16, :335:34] wire _fractB_Z_T = ~io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :271:33, :342:28] wire _fractB_Z_T_1 = inReady & _fractB_Z_T; // @[DivSqrtRecFN_small.scala:225:33, :342:{25,28}] wire [22:0] _fractB_Z_T_2 = io_b_sig_0[22:0]; // @[DivSqrtRecFN_small.scala:199:5, :342:73] wire [23:0] _fractB_Z_T_3 = {_fractB_Z_T_2, 1'h0}; // @[DivSqrtRecFN_small.scala:342:{73,90}] wire [23:0] _fractB_Z_T_4 = _fractB_Z_T_1 ? _fractB_Z_T_3 : 24'h0; // @[DivSqrtRecFN_small.scala:342:{16,25,90}] wire _GEN_0 = inReady & io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :225:33, :343:25] wire _fractB_Z_T_5; // @[DivSqrtRecFN_small.scala:343:25] assign _fractB_Z_T_5 = _GEN_0; // @[DivSqrtRecFN_small.scala:343:25] wire _fractB_Z_T_10; // @[DivSqrtRecFN_small.scala:344:25] assign _fractB_Z_T_10 = _GEN_0; // @[DivSqrtRecFN_small.scala:343:25, :344:25] wire _sigX_Z_T_4; // @[DivSqrtRecFN_small.scala:395:25] assign _sigX_Z_T_4 = _GEN_0; // @[DivSqrtRecFN_small.scala:343:25, :395:25] wire _fractB_Z_T_7 = _fractB_Z_T_5 & _fractB_Z_T_6; // @[DivSqrtRecFN_small.scala:343:{25,38,52}] wire [22:0] _fractB_Z_T_8 = {_fractB_Z_T_7, 22'h0}; // @[DivSqrtRecFN_small.scala:343:{16,38}] wire [23:0] _fractB_Z_T_9 = {_fractB_Z_T_4[23], _fractB_Z_T_4[22:0] | _fractB_Z_T_8}; // @[DivSqrtRecFN_small.scala:342:{16,100}, :343:16] wire _fractB_Z_T_12 = ~_fractB_Z_T_11; // @[DivSqrtRecFN_small.scala:344:{41,54}] wire _fractB_Z_T_13 = _fractB_Z_T_10 & _fractB_Z_T_12; // @[DivSqrtRecFN_small.scala:344:{25,38,41}] wire [23:0] _fractB_Z_T_14 = {_fractB_Z_T_13, 23'h0}; // @[DivSqrtRecFN_small.scala:344:{16,38}] wire [23:0] _fractB_Z_T_15 = _fractB_Z_T_9 | _fractB_Z_T_14; // @[DivSqrtRecFN_small.scala:342:100, :343:100, :344:16] wire [23:0] _fractB_Z_T_20 = _fractB_Z_T_15; // @[DivSqrtRecFN_small.scala:343:100, :344:100] wire _fractB_Z_T_16 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :345:17] wire [21:0] _fractB_Z_T_18 = fractB_Z[23:2]; // @[DivSqrtRecFN_small.scala:236:29, :345:71] wire _fractB_Z_T_21 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :346:17] wire _fractB_Z_T_23 = _fractB_Z_T_21; // @[DivSqrtRecFN_small.scala:346:{17,42}] wire [22:0] _fractB_Z_T_24 = fractB_Z[23:1]; // @[DivSqrtRecFN_small.scala:236:29, :346:71] wire [22:0] _trialTerm2_newBit0_T = fractB_Z[23:1]; // @[DivSqrtRecFN_small.scala:236:29, :346:71, :373:52] wire [22:0] _fractB_Z_T_25 = _fractB_Z_T_23 ? _fractB_Z_T_24 : 23'h0; // @[DivSqrtRecFN_small.scala:346:{16,42,71}] wire [23:0] _fractB_Z_T_26 = {_fractB_Z_T_20[23], _fractB_Z_T_20[22:0] | _fractB_Z_T_25}; // @[DivSqrtRecFN_small.scala:344:100, :345:100, :346:16] wire _rem_T = ~oddSqrt_S; // @[DivSqrtRecFN_small.scala:292:32, :352:24] wire _rem_T_1 = inReady & _rem_T; // @[DivSqrtRecFN_small.scala:225:33, :352:{21,24}] wire [25:0] _rem_T_2 = {io_a_sig_0, 1'h0}; // @[DivSqrtRecFN_small.scala:199:5, :352:47] wire [25:0] _rem_T_3 = _rem_T_1 ? _rem_T_2 : 26'h0; // @[DivSqrtRecFN_small.scala:352:{12,21,47}] wire _GEN_1 = inReady & oddSqrt_S; // @[DivSqrtRecFN_small.scala:225:33, :292:32, :353:21] wire _rem_T_4; // @[DivSqrtRecFN_small.scala:353:21] assign _rem_T_4 = _GEN_1; // @[DivSqrtRecFN_small.scala:353:21] wire _trialTerm_T_7; // @[DivSqrtRecFN_small.scala:364:21] assign _trialTerm_T_7 = _GEN_1; // @[DivSqrtRecFN_small.scala:353:21, :364:21] wire _sigX_Z_T_7; // @[DivSqrtRecFN_small.scala:396:25] assign _sigX_Z_T_7 = _GEN_1; // @[DivSqrtRecFN_small.scala:353:21, :396:25] wire [1:0] _rem_T_5 = io_a_sig_0[23:22]; // @[DivSqrtRecFN_small.scala:199:5, :354:27] wire [2:0] _rem_T_6 = {1'h0, _rem_T_5} - 3'h1; // @[DivSqrtRecFN_small.scala:354:{27,56}] wire [1:0] _rem_T_7 = _rem_T_6[1:0]; // @[DivSqrtRecFN_small.scala:354:56] wire [21:0] _rem_T_8 = io_a_sig_0[21:0]; // @[DivSqrtRecFN_small.scala:199:5, :355:27] wire [24:0] _rem_T_9 = {_rem_T_8, 3'h0}; // @[DivSqrtRecFN_small.scala:300:35, :355:{27,44}] wire [26:0] _rem_T_10 = {_rem_T_7, _rem_T_9}; // @[DivSqrtRecFN_small.scala:354:{16,56}, :355:44] wire [26:0] _rem_T_11 = _rem_T_4 ? _rem_T_10 : 27'h0; // @[DivSqrtRecFN_small.scala:353:{12,21}, :354:16] wire [26:0] _rem_T_12 = {1'h0, _rem_T_3} | _rem_T_11; // @[DivSqrtRecFN_small.scala:352:{12,57}, :353:12] wire _rem_T_13 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :359:13] wire [26:0] _rem_T_14 = {rem_Z, 1'h0}; // @[DivSqrtRecFN_small.scala:243:29, :359:29] wire [26:0] _rem_T_15 = _rem_T_13 ? _rem_T_14 : 27'h0; // @[DivSqrtRecFN_small.scala:359:{12,13,29}] wire [26:0] rem = _rem_T_12 | _rem_T_15; // @[DivSqrtRecFN_small.scala:352:57, :358:11, :359:12] wire [31:0] _bitMask_T = 32'h1 << cycleNum; // @[DivSqrtRecFN_small.scala:224:33, :360:23] wire [29:0] bitMask = _bitMask_T[31:2]; // @[DivSqrtRecFN_small.scala:360:{23,34}] wire _trialTerm_T = ~io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :271:33, :362:24] wire _trialTerm_T_1 = inReady & _trialTerm_T; // @[DivSqrtRecFN_small.scala:225:33, :362:{21,24}] wire [25:0] _trialTerm_T_2 = {io_b_sig_0, 1'h0}; // @[DivSqrtRecFN_small.scala:199:5, :362:48] wire [25:0] _trialTerm_T_3 = _trialTerm_T_1 ? _trialTerm_T_2 : 26'h0; // @[DivSqrtRecFN_small.scala:362:{12,21,48}] wire _trialTerm_T_4 = inReady & evenSqrt_S; // @[DivSqrtRecFN_small.scala:225:33, :291:32, :363:21] wire [24:0] _trialTerm_T_5 = {_trialTerm_T_4, 24'h0}; // @[DivSqrtRecFN_small.scala:363:{12,21}] wire [25:0] _trialTerm_T_6 = {_trialTerm_T_3[25], _trialTerm_T_3[24:0] | _trialTerm_T_5}; // @[DivSqrtRecFN_small.scala:362:{12,74}, :363:12] wire [25:0] _trialTerm_T_8 = _trialTerm_T_7 ? 26'h2800000 : 26'h0; // @[DivSqrtRecFN_small.scala:364:{12,21}] wire [25:0] _trialTerm_T_9 = _trialTerm_T_6 | _trialTerm_T_8; // @[DivSqrtRecFN_small.scala:362:74, :363:74, :364:12] wire _trialTerm_T_10 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :365:13] wire [23:0] _trialTerm_T_11 = _trialTerm_T_10 ? fractB_Z : 24'h0; // @[DivSqrtRecFN_small.scala:236:29, :365:{12,13}] wire [25:0] _trialTerm_T_12 = {_trialTerm_T_9[25:24], _trialTerm_T_9[23:0] | _trialTerm_T_11}; // @[DivSqrtRecFN_small.scala:363:74, :364:74, :365:12] wire _trialTerm_T_13 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :366:13] wire _trialTerm_T_14 = ~sqrtOp_Z; // @[DivSqrtRecFN_small.scala:228:29, :366:26] wire _trialTerm_T_15 = _trialTerm_T_13 & _trialTerm_T_14; // @[DivSqrtRecFN_small.scala:366:{13,23,26}] wire [24:0] _trialTerm_T_17 = {_trialTerm_T_15, 24'h0}; // @[DivSqrtRecFN_small.scala:366:{12,23}] wire [25:0] _trialTerm_T_18 = {_trialTerm_T_12[25], _trialTerm_T_12[24:0] | _trialTerm_T_17}; // @[DivSqrtRecFN_small.scala:364:74, :365:74, :366:12] wire _trialTerm_T_19 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :367:13] wire _trialTerm_T_20 = _trialTerm_T_19 & sqrtOp_Z; // @[DivSqrtRecFN_small.scala:228:29, :367:{13,23}] wire [26:0] _GEN_2 = {sigX_Z, 1'h0}; // @[DivSqrtRecFN_small.scala:245:29, :367:44] wire [26:0] _trialTerm_T_21; // @[DivSqrtRecFN_small.scala:367:44] assign _trialTerm_T_21 = _GEN_2; // @[DivSqrtRecFN_small.scala:367:44] wire [26:0] _trialTerm2_newBit0_T_1; // @[DivSqrtRecFN_small.scala:373:64] assign _trialTerm2_newBit0_T_1 = _GEN_2; // @[DivSqrtRecFN_small.scala:367:44, :373:64] wire [26:0] _io_rawOut_sig_T; // @[DivSqrtRecFN_small.scala:414:31] assign _io_rawOut_sig_T = _GEN_2; // @[DivSqrtRecFN_small.scala:367:44, :414:31] wire [26:0] _trialTerm_T_22 = _trialTerm_T_20 ? _trialTerm_T_21 : 27'h0; // @[DivSqrtRecFN_small.scala:367:{12,23,44}] wire [26:0] trialTerm = {1'h0, _trialTerm_T_18} | _trialTerm_T_22; // @[DivSqrtRecFN_small.scala:365:74, :366:74, :367:12] wire [27:0] _trialRem_T = {1'h0, rem}; // @[DivSqrtRecFN_small.scala:358:11, :368:24] wire [27:0] _trialRem_T_1 = {1'h0, trialTerm}; // @[DivSqrtRecFN_small.scala:366:74, :368:42] wire [28:0] trialRem = {_trialRem_T[27], _trialRem_T} - {_trialRem_T_1[27], _trialRem_T_1}; // @[DivSqrtRecFN_small.scala:368:{24,29,42}] wire [28:0] _nextRem_Z_T = trialRem; // @[DivSqrtRecFN_small.scala:368:29, :371:42] wire newBit = $signed(trialRem) > -29'sh1; // @[DivSqrtRecFN_small.scala:368:29, :369:23] wire [28:0] _nextRem_Z_T_1 = newBit ? _nextRem_Z_T : {2'h0, rem}; // @[DivSqrtRecFN_small.scala:354:56, :358:11, :369:23, :371:{24,42}] wire [25:0] nextRem_Z = _nextRem_Z_T_1[25:0]; // @[DivSqrtRecFN_small.scala:371:{24,54}] wire [25:0] _nextRem_Z_2_T_10 = nextRem_Z; // @[DivSqrtRecFN_small.scala:371:54, :388:12] wire [26:0] rem2 = {nextRem_Z, 1'h0}; // @[DivSqrtRecFN_small.scala:371:54, :372:25] wire [26:0] _trialTerm2_newBit0_T_2 = {4'h0, _trialTerm2_newBit0_T} | _trialTerm2_newBit0_T_1; // @[DivSqrtRecFN_small.scala:313:56, :373:{52,56,64}] wire [24:0] _trialTerm2_newBit0_T_4 = {1'h1, fractB_Z}; // @[DivSqrtRecFN_small.scala:236:29, :373:78] wire [26:0] trialTerm2_newBit0 = sqrtOp_Z ? _trialTerm2_newBit0_T_2 : {2'h0, _trialTerm2_newBit0_T_4}; // @[DivSqrtRecFN_small.scala:228:29, :354:56, :373:{33,56,78}] wire [24:0] _trialTerm2_newBit1_T = {fractB_Z, 1'h0}; // @[DivSqrtRecFN_small.scala:236:29, :374:73] wire [24:0] _trialTerm2_newBit1_T_1 = sqrtOp_Z ? _trialTerm2_newBit1_T : 25'h0; // @[DivSqrtRecFN_small.scala:228:29, :374:{54,73}] wire [26:0] trialTerm2_newBit1 = {trialTerm2_newBit0[26:25], trialTerm2_newBit0[24:0] | _trialTerm2_newBit1_T_1}; // @[DivSqrtRecFN_small.scala:373:33, :374:{49,54}] wire [29:0] _GEN_3 = {trialRem, 1'h0}; // @[DivSqrtRecFN_small.scala:368:29, :377:22] wire [29:0] _trialRem2_T; // @[DivSqrtRecFN_small.scala:377:22] assign _trialRem2_T = _GEN_3; // @[DivSqrtRecFN_small.scala:377:22] wire [29:0] _nextNotZeroRem_Z_2_T_1; // @[DivSqrtRecFN_small.scala:382:53] assign _nextNotZeroRem_Z_2_T_1 = _GEN_3; // @[DivSqrtRecFN_small.scala:377:22, :382:53] wire [27:0] _GEN_4 = {1'h0, trialTerm2_newBit1}; // @[DivSqrtRecFN_small.scala:374:49, :377:48] wire [27:0] _trialRem2_T_1; // @[DivSqrtRecFN_small.scala:377:48] assign _trialRem2_T_1 = _GEN_4; // @[DivSqrtRecFN_small.scala:377:48] wire [27:0] _nextNotZeroRem_Z_2_T_2; // @[DivSqrtRecFN_small.scala:382:79] assign _nextNotZeroRem_Z_2_T_2 = _GEN_4; // @[DivSqrtRecFN_small.scala:377:48, :382:79] wire [30:0] _trialRem2_T_2 = {_trialRem2_T[29], _trialRem2_T} - {{3{_trialRem2_T_1[27]}}, _trialRem2_T_1}; // @[DivSqrtRecFN_small.scala:377:{22,27,48}] wire [29:0] _trialRem2_T_3 = _trialRem2_T_2[29:0]; // @[DivSqrtRecFN_small.scala:377:27] wire [29:0] _trialRem2_T_4 = _trialRem2_T_3; // @[DivSqrtRecFN_small.scala:377:27] wire [27:0] _GEN_5 = {rem_Z, 2'h0}; // @[DivSqrtRecFN_small.scala:243:29, :354:56, :378:19] wire [27:0] _trialRem2_T_5; // @[DivSqrtRecFN_small.scala:378:19] assign _trialRem2_T_5 = _GEN_5; // @[DivSqrtRecFN_small.scala:378:19] wire [27:0] _nextNotZeroRem_Z_2_T_10; // @[DivSqrtRecFN_small.scala:383:51] assign _nextNotZeroRem_Z_2_T_10 = _GEN_5; // @[DivSqrtRecFN_small.scala:378:19, :383:51] wire [26:0] _trialRem2_T_6 = _trialRem2_T_5[26:0]; // @[DivSqrtRecFN_small.scala:378:{19,23}] wire [27:0] _trialRem2_T_7 = {1'h0, _trialRem2_T_6}; // @[DivSqrtRecFN_small.scala:378:{23,39}] wire [27:0] _GEN_6 = {1'h0, trialTerm2_newBit0}; // @[DivSqrtRecFN_small.scala:373:33, :378:65] wire [27:0] _trialRem2_T_8; // @[DivSqrtRecFN_small.scala:378:65] assign _trialRem2_T_8 = _GEN_6; // @[DivSqrtRecFN_small.scala:378:65] wire [27:0] _nextNotZeroRem_Z_2_T_13; // @[DivSqrtRecFN_small.scala:383:97] assign _nextNotZeroRem_Z_2_T_13 = _GEN_6; // @[DivSqrtRecFN_small.scala:378:65, :383:97] wire [28:0] _trialRem2_T_9 = {_trialRem2_T_7[27], _trialRem2_T_7} - {_trialRem2_T_8[27], _trialRem2_T_8}; // @[DivSqrtRecFN_small.scala:378:{39,44,65}] wire [27:0] _trialRem2_T_10 = _trialRem2_T_9[27:0]; // @[DivSqrtRecFN_small.scala:378:44] wire [27:0] _trialRem2_T_11 = _trialRem2_T_10; // @[DivSqrtRecFN_small.scala:378:44] wire [29:0] trialRem2 = newBit ? _trialRem2_T_4 : {{2{_trialRem2_T_11[27]}}, _trialRem2_T_11}; // @[DivSqrtRecFN_small.scala:369:23, :376:12, :377:27, :378:44] wire [29:0] _nextRem_Z_2_T_1 = trialRem2; // @[DivSqrtRecFN_small.scala:376:12, :386:51] wire newBit2 = $signed(trialRem2) > -30'sh1; // @[DivSqrtRecFN_small.scala:376:12, :379:24] wire _nextNotZeroRem_Z_T = inReady | newBit; // @[DivSqrtRecFN_small.scala:225:33, :369:23, :380:40] wire _nextNotZeroRem_Z_T_1 = |trialRem; // @[DivSqrtRecFN_small.scala:368:29, :380:60] wire nextNotZeroRem_Z = _nextNotZeroRem_Z_T ? _nextNotZeroRem_Z_T_1 : notZeroRem_Z; // @[DivSqrtRecFN_small.scala:244:29, :380:{31,40,60}] wire _nextNotZeroRem_Z_2_T_22 = nextNotZeroRem_Z; // @[DivSqrtRecFN_small.scala:380:31, :384:38] wire [30:0] _nextNotZeroRem_Z_2_T_3 = {_nextNotZeroRem_Z_2_T_1[29], _nextNotZeroRem_Z_2_T_1} - {{3{_nextNotZeroRem_Z_2_T_2[27]}}, _nextNotZeroRem_Z_2_T_2}; // @[DivSqrtRecFN_small.scala:382:{53,58,79}] wire [29:0] _nextNotZeroRem_Z_2_T_4 = _nextNotZeroRem_Z_2_T_3[29:0]; // @[DivSqrtRecFN_small.scala:382:58] wire [29:0] _nextNotZeroRem_Z_2_T_5 = _nextNotZeroRem_Z_2_T_4; // @[DivSqrtRecFN_small.scala:382:58] wire _nextNotZeroRem_Z_2_T_6 = $signed(_nextNotZeroRem_Z_2_T_5) > 30'sh0; // @[DivSqrtRecFN_small.scala:379:24, :382:{42,58}] wire _nextNotZeroRem_Z_2_T_8 = ~newBit; // @[DivSqrtRecFN_small.scala:369:23, :383:27] wire [26:0] _nextNotZeroRem_Z_2_T_11 = _nextNotZeroRem_Z_2_T_10[26:0]; // @[DivSqrtRecFN_small.scala:383:{51,55}] wire [27:0] _nextNotZeroRem_Z_2_T_12 = {1'h0, _nextNotZeroRem_Z_2_T_11}; // @[DivSqrtRecFN_small.scala:383:{55,71}] wire [28:0] _nextNotZeroRem_Z_2_T_14 = {_nextNotZeroRem_Z_2_T_12[27], _nextNotZeroRem_Z_2_T_12} - {_nextNotZeroRem_Z_2_T_13[27], _nextNotZeroRem_Z_2_T_13}; // @[DivSqrtRecFN_small.scala:383:{71,76,97}] wire [27:0] _nextNotZeroRem_Z_2_T_15 = _nextNotZeroRem_Z_2_T_14[27:0]; // @[DivSqrtRecFN_small.scala:383:76] wire [27:0] _nextNotZeroRem_Z_2_T_16 = _nextNotZeroRem_Z_2_T_15; // @[DivSqrtRecFN_small.scala:383:76] wire _nextNotZeroRem_Z_2_T_17 = $signed(_nextNotZeroRem_Z_2_T_16) > 28'sh0; // @[DivSqrtRecFN_small.scala:383:{43,76}] wire nextNotZeroRem_Z_2 = _nextNotZeroRem_Z_2_T_22; // @[DivSqrtRecFN_small.scala:383:103, :384:38] wire [25:0] _nextRem_Z_2_T_2 = _nextRem_Z_2_T_1[25:0]; // @[DivSqrtRecFN_small.scala:386:{51,57}] wire _nextRem_Z_2_T_4 = ~newBit2; // @[DivSqrtRecFN_small.scala:379:24, :387:31] wire [25:0] _nextRem_Z_2_T_6 = rem2[25:0]; // @[DivSqrtRecFN_small.scala:372:25, :387:45] wire [25:0] nextRem_Z_2 = _nextRem_Z_2_T_10; // @[DivSqrtRecFN_small.scala:387:83, :388:12] wire _sigX_Z_T = ~io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :271:33, :394:28] wire _sigX_Z_T_1 = inReady & _sigX_Z_T; // @[DivSqrtRecFN_small.scala:225:33, :394:{25,28}] wire [25:0] _sigX_Z_T_2 = {newBit, 25'h0}; // @[DivSqrtRecFN_small.scala:369:23, :394:50] wire [25:0] _sigX_Z_T_3 = _sigX_Z_T_1 ? _sigX_Z_T_2 : 26'h0; // @[DivSqrtRecFN_small.scala:394:{16,25,50}] wire [24:0] _sigX_Z_T_5 = {_sigX_Z_T_4, 24'h0}; // @[DivSqrtRecFN_small.scala:395:{16,25}] wire [25:0] _sigX_Z_T_6 = {_sigX_Z_T_3[25], _sigX_Z_T_3[24:0] | _sigX_Z_T_5}; // @[DivSqrtRecFN_small.scala:394:{16,74}, :395:16] wire [23:0] _sigX_Z_T_8 = {newBit, 23'h0}; // @[DivSqrtRecFN_small.scala:369:23, :396:50] wire [23:0] _sigX_Z_T_9 = _sigX_Z_T_7 ? _sigX_Z_T_8 : 24'h0; // @[DivSqrtRecFN_small.scala:396:{16,25,50}] wire [25:0] _sigX_Z_T_10 = {_sigX_Z_T_6[25:24], _sigX_Z_T_6[23:0] | _sigX_Z_T_9}; // @[DivSqrtRecFN_small.scala:394:74, :395:74, :396:16] wire _sigX_Z_T_11 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :397:17] wire [25:0] _sigX_Z_T_12 = _sigX_Z_T_11 ? sigX_Z : 26'h0; // @[DivSqrtRecFN_small.scala:245:29, :397:{16,17}] wire [25:0] _sigX_Z_T_13 = _sigX_Z_T_10 | _sigX_Z_T_12; // @[DivSqrtRecFN_small.scala:395:74, :396:74, :397:16] wire _sigX_Z_T_14 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :398:17] wire _sigX_Z_T_15 = _sigX_Z_T_14 & newBit; // @[DivSqrtRecFN_small.scala:369:23, :398:{17,27}] wire [29:0] _sigX_Z_T_16 = _sigX_Z_T_15 ? bitMask : 30'h0; // @[DivSqrtRecFN_small.scala:360:34, :379:24, :398:{16,27}] wire [29:0] _sigX_Z_T_17 = {4'h0, _sigX_Z_T_13} | _sigX_Z_T_16; // @[DivSqrtRecFN_small.scala:313:56, :396:74, :397:74, :398:16] wire [29:0] _sigX_Z_T_21 = _sigX_Z_T_17; // @[DivSqrtRecFN_small.scala:397:74, :398:74] wire [28:0] _sigX_Z_T_19 = bitMask[29:1]; // @[DivSqrtRecFN_small.scala:360:34, :399:51] wire _io_rawOutValid_div_T = ~sqrtOp_Z; // @[DivSqrtRecFN_small.scala:228:29, :366:26, :404:43] assign _io_rawOutValid_div_T_1 = rawOutValid & _io_rawOutValid_div_T; // @[DivSqrtRecFN_small.scala:226:33, :404:{40,43}] assign io_rawOutValid_div_0 = _io_rawOutValid_div_T_1; // @[DivSqrtRecFN_small.scala:199:5, :404:40] assign _io_rawOutValid_sqrt_T = rawOutValid & sqrtOp_Z; // @[DivSqrtRecFN_small.scala:226:33, :228:29, :405:40] assign io_rawOutValid_sqrt_0 = _io_rawOutValid_sqrt_T; // @[DivSqrtRecFN_small.scala:199:5, :405:40] assign _io_invalidExc_T = majorExc_Z & isNaN_Z; // @[DivSqrtRecFN_small.scala:229:29, :231:29, :407:36] assign io_invalidExc_0 = _io_invalidExc_T; // @[DivSqrtRecFN_small.scala:199:5, :407:36] wire _io_infiniteExc_T = ~isNaN_Z; // @[DivSqrtRecFN_small.scala:231:29, :408:39] assign _io_infiniteExc_T_1 = majorExc_Z & _io_infiniteExc_T; // @[DivSqrtRecFN_small.scala:229:29, :408:{36,39}] assign io_infiniteExc_0 = _io_infiniteExc_T_1; // @[DivSqrtRecFN_small.scala:199:5, :408:36] assign _io_rawOut_sig_T_1 = {_io_rawOut_sig_T[26:1], _io_rawOut_sig_T[0] | notZeroRem_Z}; // @[DivSqrtRecFN_small.scala:244:29, :414:{31,35}] assign io_rawOut_sig_0 = _io_rawOut_sig_T_1; // @[DivSqrtRecFN_small.scala:199:5, :414:35] always @(posedge clock) begin // @[DivSqrtRecFN_small.scala:199:5] if (reset) begin // @[DivSqrtRecFN_small.scala:199:5] cycleNum <= 5'h0; // @[DivSqrtRecFN_small.scala:224:33] inReady <= 1'h1; // @[DivSqrtRecFN_small.scala:225:33] rawOutValid <= 1'h0; // @[DivSqrtRecFN_small.scala:226:33] end else if (~idle | entering) begin // @[DivSqrtRecFN_small.scala:296:25, :297:28, :303:{11,18}] cycleNum <= _cycleNum_T_17; // @[DivSqrtRecFN_small.scala:224:33, :313:95] inReady <= _inReady_T_24; // @[DivSqrtRecFN_small.scala:225:33, :317:46] rawOutValid <= _rawOutValid_T_24; // @[DivSqrtRecFN_small.scala:226:33, :318:51] end if (entering) begin // @[DivSqrtRecFN_small.scala:297:28] sqrtOp_Z <= io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :228:29] majorExc_Z <= majorExc_S; // @[DivSqrtRecFN_small.scala:229:29, :258:12] isNaN_Z <= isNaN_S; // @[DivSqrtRecFN_small.scala:231:29, :265:12] isInf_Z <= isInf_S; // @[DivSqrtRecFN_small.scala:232:29, :269:23] isZero_Z <= isZero_S; // @[DivSqrtRecFN_small.scala:233:29, :270:23] sign_Z <= sign_S; // @[DivSqrtRecFN_small.scala:234:29, :271:30] sExp_Z <= _sExp_Z_T_2; // @[DivSqrtRecFN_small.scala:235:29, :334:16] roundingMode_Z <= io_roundingMode_0; // @[DivSqrtRecFN_small.scala:199:5, :237:29] end if (entering | ~inReady & sqrtOp_Z) // @[DivSqrtRecFN_small.scala:225:33, :228:29, :297:28, :340:{20,23,33}] fractB_Z <= _fractB_Z_T_26; // @[DivSqrtRecFN_small.scala:236:29, :345:100] if (entering | ~inReady) begin // @[DivSqrtRecFN_small.scala:225:33, :297:28, :340:23, :390:20] rem_Z <= nextRem_Z_2; // @[DivSqrtRecFN_small.scala:243:29, :387:83] notZeroRem_Z <= nextNotZeroRem_Z_2; // @[DivSqrtRecFN_small.scala:244:29, :383:103] sigX_Z <= _sigX_Z_T_21[25:0]; // @[DivSqrtRecFN_small.scala:245:29, :393:16, :398:74] end always @(posedge) assign io_inReady = io_inReady_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOutValid_div = io_rawOutValid_div_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOutValid_sqrt = io_rawOutValid_sqrt_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_roundingModeOut = io_roundingModeOut_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_invalidExc = io_invalidExc_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_infiniteExc = io_infiniteExc_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_isNaN = io_rawOut_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_isInf = io_rawOut_isInf_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_isZero = io_rawOut_isZero_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_sign = io_rawOut_sign_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_sExp = io_rawOut_sExp_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_sig = io_rawOut_sig_0; // @[DivSqrtRecFN_small.scala:199:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: package constellation.channel import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy._ import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.util._ import constellation.noc.{HasNoCParams} class NoCMonitor(val cParam: ChannelParams)(implicit val p: Parameters) extends Module with HasNoCParams { val io = IO(new Bundle { val in = Input(new Channel(cParam)) }) val in_flight = RegInit(VecInit(Seq.fill(cParam.nVirtualChannels) { false.B })) for (i <- 0 until cParam.srcSpeedup) { val flit = io.in.flit(i) when (flit.valid) { when (flit.bits.head) { in_flight(flit.bits.virt_channel_id) := true.B assert (!in_flight(flit.bits.virt_channel_id), "Flit head/tail sequencing is broken") } when (flit.bits.tail) { in_flight(flit.bits.virt_channel_id) := false.B } } val possibleFlows = cParam.possibleFlows when (flit.valid && flit.bits.head) { cParam match { case n: ChannelParams => n.virtualChannelParams.zipWithIndex.foreach { case (v,i) => assert(flit.bits.virt_channel_id =/= i.U || v.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } case _ => assert(cParam.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } } } }
module NoCMonitor_123( // @[Monitor.scala:11:7] input clock, // @[Monitor.scala:11:7] input reset, // @[Monitor.scala:11:7] input io_in_flit_0_valid, // @[Monitor.scala:12:14] input io_in_flit_0_bits_head, // @[Monitor.scala:12:14] input io_in_flit_0_bits_tail, // @[Monitor.scala:12:14] input [3:0] io_in_flit_0_bits_flow_ingress_node, // @[Monitor.scala:12:14] input [1:0] io_in_flit_0_bits_flow_ingress_node_id, // @[Monitor.scala:12:14] input [3:0] io_in_flit_0_bits_flow_egress_node, // @[Monitor.scala:12:14] input [2:0] io_in_flit_0_bits_flow_egress_node_id, // @[Monitor.scala:12:14] input [3:0] io_in_flit_0_bits_virt_channel_id // @[Monitor.scala:12:14] ); reg in_flight_0; // @[Monitor.scala:16:26] reg in_flight_1; // @[Monitor.scala:16:26] reg in_flight_2; // @[Monitor.scala:16:26] reg in_flight_3; // @[Monitor.scala:16:26] reg in_flight_4; // @[Monitor.scala:16:26] reg in_flight_5; // @[Monitor.scala:16:26] reg in_flight_6; // @[Monitor.scala:16:26] reg in_flight_7; // @[Monitor.scala:16:26] reg in_flight_8; // @[Monitor.scala:16:26] reg in_flight_9; // @[Monitor.scala:16:26] wire _GEN = io_in_flit_0_bits_virt_channel_id == 4'h0; // @[Monitor.scala:21:46] wire _GEN_0 = io_in_flit_0_bits_virt_channel_id == 4'h1; // @[Monitor.scala:21:46]
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_TLBEntryData_109( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae_ptw, // @[package.scala:268:18] input io_x_ae_final, // @[package.scala:268:18] input io_x_ae_stage2, // @[package.scala:268:18] input io_x_pf, // @[package.scala:268:18] input io_x_gf, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_hw, // @[package.scala:268:18] input io_x_hx, // @[package.scala:268:18] input io_x_hr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_ppp, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_ae_ptw, // @[package.scala:268:18] output io_y_ae_final, // @[package.scala:268:18] output io_y_ae_stage2, // @[package.scala:268:18] output io_y_pf, // @[package.scala:268:18] output io_y_gf, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_hw, // @[package.scala:268:18] output io_y_hx, // @[package.scala:268:18] output io_y_hr, // @[package.scala:268:18] output io_y_pw, // @[package.scala:268:18] output io_y_px, // @[package.scala:268:18] output io_y_pr, // @[package.scala:268:18] output io_y_ppp, // @[package.scala:268:18] output io_y_pal, // @[package.scala:268:18] output io_y_paa, // @[package.scala:268:18] output io_y_eff, // @[package.scala:268:18] output io_y_c // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30] wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30] wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30] wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30] wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30] wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30] wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30] wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30] wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30] wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30] wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30] wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30] wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30] wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30] wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30] wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30] wire io_y_ppp_0 = io_x_ppp_0; // @[package.scala:267:30] wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30] wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30] assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30] assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30] assign io_y_pf = io_y_pf_0; // @[package.scala:267:30] assign io_y_gf = io_y_gf_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_hw = io_y_hw_0; // @[package.scala:267:30] assign io_y_hx = io_y_hx_0; // @[package.scala:267:30] assign io_y_hr = io_y_hr_0; // @[package.scala:267:30] assign io_y_pw = io_y_pw_0; // @[package.scala:267:30] assign io_y_px = io_y_px_0; // @[package.scala:267:30] assign io_y_pr = io_y_pr_0; // @[package.scala:267:30] assign io_y_ppp = io_y_ppp_0; // @[package.scala:267:30] assign io_y_pal = io_y_pal_0; // @[package.scala:267:30] assign io_y_paa = io_y_paa_0; // @[package.scala:267:30] assign io_y_eff = io_y_eff_0; // @[package.scala:267:30] assign io_y_c = io_y_c_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_177( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_317 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File DescribedSRAM.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3.{Data, SyncReadMem, Vec} import chisel3.util.log2Ceil object DescribedSRAM { def apply[T <: Data]( name: String, desc: String, size: BigInt, // depth data: T ): SyncReadMem[T] = { val mem = SyncReadMem(size, data) mem.suggestName(name) val granWidth = data match { case v: Vec[_] => v.head.getWidth case d => d.getWidth } val uid = 0 Annotated.srams( component = mem, name = name, address_width = log2Ceil(size), data_width = data.getWidth, depth = size, description = desc, write_mask_granularity = granWidth ) mem } }
module rockettile_dcache_tag_array( // @[DescribedSRAM.scala:17:26] input [5:0] RW0_addr, input RW0_en, input RW0_clk, input RW0_wmode, input [175:0] RW0_wdata, output [175:0] RW0_rdata, input [7:0] RW0_wmask ); rockettile_dcache_tag_array_ext rockettile_dcache_tag_array_ext ( // @[DescribedSRAM.scala:17:26] .RW0_addr (RW0_addr), .RW0_en (RW0_en), .RW0_clk (RW0_clk), .RW0_wmode (RW0_wmode), .RW0_wdata (RW0_wdata), .RW0_rdata (RW0_rdata), .RW0_wmask (RW0_wmask) ); // @[DescribedSRAM.scala:17:26] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File RegisterRouter.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes} import freechips.rocketchip.resources.{Device, Resource, ResourceBindings} import freechips.rocketchip.prci.{NoCrossing} import freechips.rocketchip.regmapper.{RegField, RegMapper, RegMapperParams, RegMapperInput, RegisterRouter} import freechips.rocketchip.util.{BundleField, ControlKey, ElaborationArtefacts, GenRegDescsAnno} import scala.math.min class TLRegisterRouterExtraBundle(val sourceBits: Int, val sizeBits: Int) extends Bundle { val source = UInt((sourceBits max 1).W) val size = UInt((sizeBits max 1).W) } case object TLRegisterRouterExtra extends ControlKey[TLRegisterRouterExtraBundle]("tlrr_extra") case class TLRegisterRouterExtraField(sourceBits: Int, sizeBits: Int) extends BundleField[TLRegisterRouterExtraBundle](TLRegisterRouterExtra, Output(new TLRegisterRouterExtraBundle(sourceBits, sizeBits)), x => { x.size := 0.U x.source := 0.U }) /** TLRegisterNode is a specialized TL SinkNode that encapsulates MMIO registers. * It provides functionality for describing and outputting metdata about the registers in several formats. * It also provides a concrete implementation of a regmap function that will be used * to wire a map of internal registers associated with this node to the node's interconnect port. */ case class TLRegisterNode( address: Seq[AddressSet], device: Device, deviceKey: String = "reg/control", concurrency: Int = 0, beatBytes: Int = 4, undefZero: Boolean = true, executable: Boolean = false)( implicit valName: ValName) extends SinkNode(TLImp)(Seq(TLSlavePortParameters.v1( Seq(TLSlaveParameters.v1( address = address, resources = Seq(Resource(device, deviceKey)), executable = executable, supportsGet = TransferSizes(1, beatBytes), supportsPutPartial = TransferSizes(1, beatBytes), supportsPutFull = TransferSizes(1, beatBytes), fifoId = Some(0))), // requests are handled in order beatBytes = beatBytes, minLatency = min(concurrency, 1)))) with TLFormatNode // the Queue adds at most one cycle { val size = 1 << log2Ceil(1 + address.map(_.max).max - address.map(_.base).min) require (size >= beatBytes) address.foreach { case a => require (a.widen(size-1).base == address.head.widen(size-1).base, s"TLRegisterNode addresses (${address}) must be aligned to its size ${size}") } // Calling this method causes the matching TL2 bundle to be // configured to route all requests to the listed RegFields. def regmap(mapping: RegField.Map*) = { val (bundleIn, edge) = this.in(0) val a = bundleIn.a val d = bundleIn.d val fields = TLRegisterRouterExtraField(edge.bundle.sourceBits, edge.bundle.sizeBits) +: a.bits.params.echoFields val params = RegMapperParams(log2Up(size/beatBytes), beatBytes, fields) val in = Wire(Decoupled(new RegMapperInput(params))) in.bits.read := a.bits.opcode === TLMessages.Get in.bits.index := edge.addr_hi(a.bits) in.bits.data := a.bits.data in.bits.mask := a.bits.mask Connectable.waiveUnmatched(in.bits.extra, a.bits.echo) match { case (lhs, rhs) => lhs :<= rhs } val a_extra = in.bits.extra(TLRegisterRouterExtra) a_extra.source := a.bits.source a_extra.size := a.bits.size // Invoke the register map builder val out = RegMapper(beatBytes, concurrency, undefZero, in, mapping:_*) // No flow control needed in.valid := a.valid a.ready := in.ready d.valid := out.valid out.ready := d.ready // We must restore the size to enable width adapters to work val d_extra = out.bits.extra(TLRegisterRouterExtra) d.bits := edge.AccessAck(toSource = d_extra.source, lgSize = d_extra.size) // avoid a Mux on the data bus by manually overriding two fields d.bits.data := out.bits.data Connectable.waiveUnmatched(d.bits.echo, out.bits.extra) match { case (lhs, rhs) => lhs :<= rhs } d.bits.opcode := Mux(out.bits.read, TLMessages.AccessAckData, TLMessages.AccessAck) // Tie off unused channels bundleIn.b.valid := false.B bundleIn.c.ready := true.B bundleIn.e.ready := true.B genRegDescsJson(mapping:_*) } def genRegDescsJson(mapping: RegField.Map*): Unit = { // Dump out the register map for documentation purposes. val base = address.head.base val baseHex = s"0x${base.toInt.toHexString}" val name = s"${device.describe(ResourceBindings()).name}.At${baseHex}" val json = GenRegDescsAnno.serialize(base, name, mapping:_*) var suffix = 0 while( ElaborationArtefacts.contains(s"${baseHex}.${suffix}.regmap.json")) { suffix = suffix + 1 } ElaborationArtefacts.add(s"${baseHex}.${suffix}.regmap.json", json) val module = Module.currentModule.get.asInstanceOf[RawModule] GenRegDescsAnno.anno( module, base, mapping:_*) } } /** Mix HasTLControlRegMap into any subclass of RegisterRouter to gain helper functions for attaching a device control register map to TileLink. * - The intended use case is that controlNode will diplomatically publish a SW-visible device's memory-mapped control registers. * - Use the clock crossing helper controlXing to externally connect controlNode to a TileLink interconnect. * - Use the mapping helper function regmap to internally fill out the space of device control registers. */ trait HasTLControlRegMap { this: RegisterRouter => protected val controlNode = TLRegisterNode( address = address, device = device, deviceKey = "reg/control", concurrency = concurrency, beatBytes = beatBytes, undefZero = undefZero, executable = executable) // Externally, this helper should be used to connect the register control port to a bus val controlXing: TLInwardClockCrossingHelper = this.crossIn(controlNode) // Backwards-compatibility default node accessor with no clock crossing lazy val node: TLInwardNode = controlXing(NoCrossing) // Internally, this function should be used to populate the control port with registers protected def regmap(mapping: RegField.Map*): Unit = { controlNode.regmap(mapping:_*) } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File CLINT.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.devices.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.{AddressSet} import freechips.rocketchip.resources.{Resource, SimpleDevice} import freechips.rocketchip.interrupts.{IntNexusNode, IntSinkParameters, IntSinkPortParameters, IntSourceParameters, IntSourcePortParameters} import freechips.rocketchip.regmapper.{RegField, RegFieldDesc, RegFieldGroup} import freechips.rocketchip.subsystem.{BaseSubsystem, CBUS, TLBusWrapperLocation} import freechips.rocketchip.tilelink.{TLFragmenter, TLRegisterNode} import freechips.rocketchip.util.Annotated object CLINTConsts { def msipOffset(hart: Int) = hart * msipBytes def timecmpOffset(hart: Int) = 0x4000 + hart * timecmpBytes def timeOffset = 0xbff8 def msipBytes = 4 def timecmpBytes = 8 def size = 0x10000 def timeWidth = 64 def ipiWidth = 32 def ints = 2 } case class CLINTParams(baseAddress: BigInt = 0x02000000, intStages: Int = 0) { def address = AddressSet(baseAddress, CLINTConsts.size-1) } case object CLINTKey extends Field[Option[CLINTParams]](None) case class CLINTAttachParams( slaveWhere: TLBusWrapperLocation = CBUS ) case object CLINTAttachKey extends Field(CLINTAttachParams()) class CLINT(params: CLINTParams, beatBytes: Int)(implicit p: Parameters) extends LazyModule { import CLINTConsts._ // clint0 => at most 4095 devices val device = new SimpleDevice("clint", Seq("riscv,clint0")) { override val alwaysExtended = true } val node: TLRegisterNode = TLRegisterNode( address = Seq(params.address), device = device, beatBytes = beatBytes) val intnode : IntNexusNode = IntNexusNode( sourceFn = { _ => IntSourcePortParameters(Seq(IntSourceParameters(ints, Seq(Resource(device, "int"))))) }, sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) }, outputRequiresInput = false) lazy val module = new Impl class Impl extends LazyModuleImp(this) { Annotated.params(this, params) require (intnode.edges.in.size == 0, "CLINT only produces interrupts; it does not accept them") val io = IO(new Bundle { val rtcTick = Input(Bool()) }) val time = RegInit(0.U(timeWidth.W)) when (io.rtcTick) { time := time + 1.U } val nTiles = intnode.out.size val timecmp = Seq.fill(nTiles) { Reg(UInt(timeWidth.W)) } val ipi = Seq.fill(nTiles) { RegInit(0.U(1.W)) } val (intnode_out, _) = intnode.out.unzip intnode_out.zipWithIndex.foreach { case (int, i) => int(0) := ShiftRegister(ipi(i)(0), params.intStages) // msip int(1) := ShiftRegister(time.asUInt >= timecmp(i).asUInt, params.intStages) // mtip } /* 0000 msip hart 0 * 0004 msip hart 1 * 4000 mtimecmp hart 0 lo * 4004 mtimecmp hart 0 hi * 4008 mtimecmp hart 1 lo * 400c mtimecmp hart 1 hi * bff8 mtime lo * bffc mtime hi */ node.regmap( 0 -> RegFieldGroup ("msip", Some("MSIP Bits"), ipi.zipWithIndex.flatMap{ case (r, i) => RegField(1, r, RegFieldDesc(s"msip_$i", s"MSIP bit for Hart $i", reset=Some(0))) :: RegField(ipiWidth - 1) :: Nil }), timecmpOffset(0) -> timecmp.zipWithIndex.flatMap{ case (t, i) => RegFieldGroup(s"mtimecmp_$i", Some(s"MTIMECMP for hart $i"), RegField.bytes(t, Some(RegFieldDesc(s"mtimecmp_$i", "", reset=None))))}, timeOffset -> RegFieldGroup("mtime", Some("Timer Register"), RegField.bytes(time, Some(RegFieldDesc("mtime", "", reset=Some(0), volatile=true)))) ) } } /** Trait that will connect a CLINT to a subsystem */ trait CanHavePeripheryCLINT { this: BaseSubsystem => val (clintOpt, clintDomainOpt, clintTickOpt) = p(CLINTKey).map { params => val tlbus = locateTLBusWrapper(p(CLINTAttachKey).slaveWhere) val clintDomainWrapper = tlbus.generateSynchronousDomain("CLINT").suggestName("clint_domain") val clint = clintDomainWrapper { LazyModule(new CLINT(params, tlbus.beatBytes)) } clintDomainWrapper { clint.node := tlbus.coupleTo("clint") { TLFragmenter(tlbus, Some("CLINT")) := _ } } val clintTick = clintDomainWrapper { InModuleBody { val tick = IO(Input(Bool())) clint.module.io.rtcTick := tick tick }} (clint, clintDomainWrapper, clintTick) }.unzip3 }
module CLINT( // @[CLINT.scala:65:9] input clock, // @[CLINT.scala:65:9] input reset, // @[CLINT.scala:65:9] output auto_int_out_11_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_11_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_10_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_10_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_9_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_9_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_8_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_8_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_7_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_7_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_6_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_6_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_5_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_5_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_4_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_4_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_3_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_3_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_2_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_2_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_1_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_1_1, // @[LazyModuleImp.scala:107:25] output auto_int_out_0_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_0_1, // @[LazyModuleImp.scala:107:25] output auto_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [1:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [11:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [25:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [11:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [63:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25] input io_rtcTick // @[CLINT.scala:69:16] ); wire out_woready_91; // @[RegisterRouter.scala:87:24] wire out_woready_99; // @[RegisterRouter.scala:87:24] wire out_woready_115; // @[RegisterRouter.scala:87:24] wire out_woready_71; // @[RegisterRouter.scala:87:24] wire out_woready_55; // @[RegisterRouter.scala:87:24] wire out_woready_63; // @[RegisterRouter.scala:87:24] wire out_woready_31; // @[RegisterRouter.scala:87:24] wire out_woready_39; // @[RegisterRouter.scala:87:24] wire out_woready_123; // @[RegisterRouter.scala:87:24] wire out_woready_79; // @[RegisterRouter.scala:87:24] wire out_woready_9; // @[RegisterRouter.scala:87:24] wire out_woready_47; // @[RegisterRouter.scala:87:24] wire out_woready_23; // @[RegisterRouter.scala:87:24] reg [63:0] time_0; // @[CLINT.scala:73:23] reg [63:0] pad; // @[CLINT.scala:77:41] reg [63:0] pad_1; // @[CLINT.scala:77:41] reg [63:0] pad_2; // @[CLINT.scala:77:41] reg [63:0] pad_3; // @[CLINT.scala:77:41] reg [63:0] pad_4; // @[CLINT.scala:77:41] reg [63:0] pad_5; // @[CLINT.scala:77:41] reg [63:0] pad_6; // @[CLINT.scala:77:41] reg [63:0] pad_7; // @[CLINT.scala:77:41] reg [63:0] pad_8; // @[CLINT.scala:77:41] reg [63:0] pad_9; // @[CLINT.scala:77:41] reg [63:0] pad_10; // @[CLINT.scala:77:41] reg [63:0] pad_11; // @[CLINT.scala:77:41] reg ipi_0; // @[CLINT.scala:78:41] reg ipi_1; // @[CLINT.scala:78:41] reg ipi_2; // @[CLINT.scala:78:41] reg ipi_3; // @[CLINT.scala:78:41] reg ipi_4; // @[CLINT.scala:78:41] reg ipi_5; // @[CLINT.scala:78:41] reg ipi_6; // @[CLINT.scala:78:41] reg ipi_7; // @[CLINT.scala:78:41] reg ipi_8; // @[CLINT.scala:78:41] reg ipi_9; // @[CLINT.scala:78:41] reg ipi_10; // @[CLINT.scala:78:41] reg ipi_11; // @[CLINT.scala:78:41] wire in_bits_read = auto_in_a_bits_opcode == 3'h4; // @[RegisterRouter.scala:74:36] wire [7:0] _GEN = {auto_in_a_bits_address[15], auto_in_a_bits_address[13:7]}; // @[RegisterRouter.scala:75:19, :87:24] wire _out_T_37 = _GEN == 8'h0; // @[RegisterRouter.scala:87:24] wire valids_1_0 = out_woready_9 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_1_1 = out_woready_9 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_1_2 = out_woready_9 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_1_3 = out_woready_9 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_1_4 = out_woready_9 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_1_5 = out_woready_9 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_1_6 = out_woready_9 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_1_7 = out_woready_9 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_12_0 = out_woready_23 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_12_1 = out_woready_23 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_12_2 = out_woready_23 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_12_3 = out_woready_23 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_12_4 = out_woready_23 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_12_5 = out_woready_23 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_12_6 = out_woready_23 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_12_7 = out_woready_23 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_5_0 = out_woready_31 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_5_1 = out_woready_31 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_5_2 = out_woready_31 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_5_3 = out_woready_31 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_5_4 = out_woready_31 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_5_5 = out_woready_31 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_5_6 = out_woready_31 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_5_7 = out_woready_31 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_4_0 = out_woready_39 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_4_1 = out_woready_39 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_4_2 = out_woready_39 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_4_3 = out_woready_39 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_4_4 = out_woready_39 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_4_5 = out_woready_39 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_4_6 = out_woready_39 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_4_7 = out_woready_39 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_0 = out_woready_47 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_1 = out_woready_47 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_2 = out_woready_47 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_3 = out_woready_47 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_4 = out_woready_47 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_5 = out_woready_47 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_6 = out_woready_47 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_7 = out_woready_47 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_7_0 = out_woready_55 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_7_1 = out_woready_55 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_7_2 = out_woready_55 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_7_3 = out_woready_55 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_7_4 = out_woready_55 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_7_5 = out_woready_55 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_7_6 = out_woready_55 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_7_7 = out_woready_55 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_6_0 = out_woready_63 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_6_1 = out_woready_63 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_6_2 = out_woready_63 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_6_3 = out_woready_63 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_6_4 = out_woready_63 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_6_5 = out_woready_63 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_6_6 = out_woready_63 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_6_7 = out_woready_63 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_8_0 = out_woready_71 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_8_1 = out_woready_71 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_8_2 = out_woready_71 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_8_3 = out_woready_71 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_8_4 = out_woready_71 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_8_5 = out_woready_71 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_8_6 = out_woready_71 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_8_7 = out_woready_71 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_2_0 = out_woready_79 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_2_1 = out_woready_79 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_2_2 = out_woready_79 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_2_3 = out_woready_79 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_2_4 = out_woready_79 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_2_5 = out_woready_79 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_2_6 = out_woready_79 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_2_7 = out_woready_79 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_11_0 = out_woready_91 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_11_1 = out_woready_91 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_11_2 = out_woready_91 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_11_3 = out_woready_91 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_11_4 = out_woready_91 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_11_5 = out_woready_91 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_11_6 = out_woready_91 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_11_7 = out_woready_91 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_10_0 = out_woready_99 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_10_1 = out_woready_99 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_10_2 = out_woready_99 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_10_3 = out_woready_99 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_10_4 = out_woready_99 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_10_5 = out_woready_99 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_10_6 = out_woready_99 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_10_7 = out_woready_99 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_9_0 = out_woready_115 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_9_1 = out_woready_115 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_9_2 = out_woready_115 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_9_3 = out_woready_115 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_9_4 = out_woready_115 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_9_5 = out_woready_115 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_9_6 = out_woready_115 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_9_7 = out_woready_115 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire valids_3_0 = out_woready_123 & auto_in_a_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire valids_3_1 = out_woready_123 & auto_in_a_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire valids_3_2 = out_woready_123 & auto_in_a_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire valids_3_3 = out_woready_123 & auto_in_a_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire valids_3_4 = out_woready_123 & auto_in_a_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire valids_3_5 = out_woready_123 & auto_in_a_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire valids_3_6 = out_woready_123 & auto_in_a_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire valids_3_7 = out_woready_123 & auto_in_a_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire [4:0] out_oindex = {auto_in_a_bits_address[14], auto_in_a_bits_address[6:3]}; // @[RegisterRouter.scala:87:24] wire [4:0] _GEN_0 = {auto_in_a_bits_address[14], auto_in_a_bits_address[6:3]}; // @[OneHot.scala:58:35] wire _out_wofireMux_T_2 = auto_in_a_valid & auto_in_d_ready & ~in_bits_read; // @[RegisterRouter.scala:74:36, :87:24] wire out_woready_2 = _out_wofireMux_T_2 & _GEN_0 == 5'h0 & _out_T_37; // @[OneHot.scala:58:35] wire out_woready_102 = _out_wofireMux_T_2 & _GEN_0 == 5'h1 & _out_T_37; // @[OneHot.scala:58:35] wire out_woready_106 = _out_wofireMux_T_2 & _GEN_0 == 5'h2 & _out_T_37; // @[OneHot.scala:58:35] wire out_woready_126 = _out_wofireMux_T_2 & _GEN_0 == 5'h3 & _out_T_37; // @[OneHot.scala:58:35] wire out_woready_82 = _out_wofireMux_T_2 & _GEN_0 == 5'h4 & _out_T_37; // @[OneHot.scala:58:35] wire out_woready_6 = _out_wofireMux_T_2 & _GEN_0 == 5'h5 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_23 = _out_wofireMux_T_2 & _GEN_0 == 5'hF & (&_GEN); // @[OneHot.scala:58:35] assign out_woready_47 = _out_wofireMux_T_2 & _GEN_0 == 5'h10 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_9 = _out_wofireMux_T_2 & _GEN_0 == 5'h11 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_79 = _out_wofireMux_T_2 & _GEN_0 == 5'h12 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_123 = _out_wofireMux_T_2 & _GEN_0 == 5'h13 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_39 = _out_wofireMux_T_2 & _GEN_0 == 5'h14 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_31 = _out_wofireMux_T_2 & _GEN_0 == 5'h15 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_63 = _out_wofireMux_T_2 & _GEN_0 == 5'h16 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_55 = _out_wofireMux_T_2 & _GEN_0 == 5'h17 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_71 = _out_wofireMux_T_2 & _GEN_0 == 5'h18 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_115 = _out_wofireMux_T_2 & _GEN_0 == 5'h19 & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_99 = _out_wofireMux_T_2 & _GEN_0 == 5'h1A & _out_T_37; // @[OneHot.scala:58:35] assign out_woready_91 = _out_wofireMux_T_2 & _GEN_0 == 5'h1B & _out_T_37; // @[OneHot.scala:58:35] wire [31:0] _GEN_1 = {{1'h1}, {1'h1}, {1'h1}, {1'h1}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {&_GEN}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {1'h1}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}, {_out_T_37}}; // @[MuxLiteral.scala:49:10] wire [31:0][63:0] _GEN_2 = {{64'h0}, {64'h0}, {64'h0}, {64'h0}, {pad_11}, {pad_10}, {pad_9}, {pad_8}, {pad_7}, {pad_6}, {pad_5}, {pad_4}, {pad_3}, {pad_2}, {pad_1}, {pad}, {time_0}, {64'h0}, {64'h0}, {64'h0}, {64'h0}, {64'h0}, {64'h0}, {64'h0}, {64'h0}, {64'h0}, {{31'h0, ipi_11, 31'h0, ipi_10}}, {{31'h0, ipi_9, 31'h0, ipi_8}}, {{31'h0, ipi_7, 31'h0, ipi_6}}, {{31'h0, ipi_5, 31'h0, ipi_4}}, {{31'h0, ipi_3, 31'h0, ipi_2}}, {{31'h0, ipi_1, 31'h0, ipi_0}}}; // @[MuxLiteral.scala:49:10] wire [2:0] nodeIn_d_bits_opcode = {2'h0, in_bits_read}; // @[RegisterRouter.scala:74:36, :105:19] always @(posedge clock) begin // @[CLINT.scala:65:9] if (reset) begin // @[CLINT.scala:65:9] time_0 <= 64'h0; // @[CLINT.scala:73:23] ipi_0 <= 1'h0; // @[CLINT.scala:78:41] ipi_1 <= 1'h0; // @[CLINT.scala:78:41] ipi_2 <= 1'h0; // @[CLINT.scala:78:41] ipi_3 <= 1'h0; // @[CLINT.scala:78:41] ipi_4 <= 1'h0; // @[CLINT.scala:78:41] ipi_5 <= 1'h0; // @[CLINT.scala:78:41] ipi_6 <= 1'h0; // @[CLINT.scala:78:41] ipi_7 <= 1'h0; // @[CLINT.scala:78:41] ipi_8 <= 1'h0; // @[CLINT.scala:78:41] ipi_9 <= 1'h0; // @[CLINT.scala:78:41] ipi_10 <= 1'h0; // @[CLINT.scala:78:41] ipi_11 <= 1'h0; // @[CLINT.scala:78:41] end else begin // @[CLINT.scala:65:9] if (valids_12_0 | valids_12_1 | valids_12_2 | valids_12_3 | valids_12_4 | valids_12_5 | valids_12_6 | valids_12_7) // @[RegisterRouter.scala:87:24] time_0 <= {valids_12_7 ? auto_in_a_bits_data[63:56] : time_0[63:56], valids_12_6 ? auto_in_a_bits_data[55:48] : time_0[55:48], valids_12_5 ? auto_in_a_bits_data[47:40] : time_0[47:40], valids_12_4 ? auto_in_a_bits_data[39:32] : time_0[39:32], valids_12_3 ? auto_in_a_bits_data[31:24] : time_0[31:24], valids_12_2 ? auto_in_a_bits_data[23:16] : time_0[23:16], valids_12_1 ? auto_in_a_bits_data[15:8] : time_0[15:8], valids_12_0 ? auto_in_a_bits_data[7:0] : time_0[7:0]}; // @[RegisterRouter.scala:87:24] else if (io_rtcTick) // @[CLINT.scala:69:16] time_0 <= time_0 + 64'h1; // @[CLINT.scala:73:23, :74:38] if (out_woready_2 & auto_in_a_bits_mask[0]) // @[RegisterRouter.scala:87:24] ipi_0 <= auto_in_a_bits_data[0]; // @[RegisterRouter.scala:87:24] if (out_woready_2 & auto_in_a_bits_mask[4]) // @[RegisterRouter.scala:87:24] ipi_1 <= auto_in_a_bits_data[32]; // @[RegisterRouter.scala:87:24] if (out_woready_102 & auto_in_a_bits_mask[0]) // @[RegisterRouter.scala:87:24] ipi_2 <= auto_in_a_bits_data[0]; // @[RegisterRouter.scala:87:24] if (out_woready_102 & auto_in_a_bits_mask[4]) // @[RegisterRouter.scala:87:24] ipi_3 <= auto_in_a_bits_data[32]; // @[RegisterRouter.scala:87:24] if (out_woready_106 & auto_in_a_bits_mask[0]) // @[RegisterRouter.scala:87:24] ipi_4 <= auto_in_a_bits_data[0]; // @[RegisterRouter.scala:87:24] if (out_woready_106 & auto_in_a_bits_mask[4]) // @[RegisterRouter.scala:87:24] ipi_5 <= auto_in_a_bits_data[32]; // @[RegisterRouter.scala:87:24] if (out_woready_126 & auto_in_a_bits_mask[0]) // @[RegisterRouter.scala:87:24] ipi_6 <= auto_in_a_bits_data[0]; // @[RegisterRouter.scala:87:24] if (out_woready_126 & auto_in_a_bits_mask[4]) // @[RegisterRouter.scala:87:24] ipi_7 <= auto_in_a_bits_data[32]; // @[RegisterRouter.scala:87:24] if (out_woready_82 & auto_in_a_bits_mask[0]) // @[RegisterRouter.scala:87:24] ipi_8 <= auto_in_a_bits_data[0]; // @[RegisterRouter.scala:87:24] if (out_woready_82 & auto_in_a_bits_mask[4]) // @[RegisterRouter.scala:87:24] ipi_9 <= auto_in_a_bits_data[32]; // @[RegisterRouter.scala:87:24] if (out_woready_6 & auto_in_a_bits_mask[0]) // @[RegisterRouter.scala:87:24] ipi_10 <= auto_in_a_bits_data[0]; // @[RegisterRouter.scala:87:24] if (out_woready_6 & auto_in_a_bits_mask[4]) // @[RegisterRouter.scala:87:24] ipi_11 <= auto_in_a_bits_data[32]; // @[RegisterRouter.scala:87:24] end if (valids_0 | valids_1 | valids_2 | valids_3 | valids_4 | valids_5 | valids_6 | valids_7) // @[RegisterRouter.scala:87:24] pad <= {valids_7 ? auto_in_a_bits_data[63:56] : pad[63:56], valids_6 ? auto_in_a_bits_data[55:48] : pad[55:48], valids_5 ? auto_in_a_bits_data[47:40] : pad[47:40], valids_4 ? auto_in_a_bits_data[39:32] : pad[39:32], valids_3 ? auto_in_a_bits_data[31:24] : pad[31:24], valids_2 ? auto_in_a_bits_data[23:16] : pad[23:16], valids_1 ? auto_in_a_bits_data[15:8] : pad[15:8], valids_0 ? auto_in_a_bits_data[7:0] : pad[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_1_0 | valids_1_1 | valids_1_2 | valids_1_3 | valids_1_4 | valids_1_5 | valids_1_6 | valids_1_7) // @[RegisterRouter.scala:87:24] pad_1 <= {valids_1_7 ? auto_in_a_bits_data[63:56] : pad_1[63:56], valids_1_6 ? auto_in_a_bits_data[55:48] : pad_1[55:48], valids_1_5 ? auto_in_a_bits_data[47:40] : pad_1[47:40], valids_1_4 ? auto_in_a_bits_data[39:32] : pad_1[39:32], valids_1_3 ? auto_in_a_bits_data[31:24] : pad_1[31:24], valids_1_2 ? auto_in_a_bits_data[23:16] : pad_1[23:16], valids_1_1 ? auto_in_a_bits_data[15:8] : pad_1[15:8], valids_1_0 ? auto_in_a_bits_data[7:0] : pad_1[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_2_0 | valids_2_1 | valids_2_2 | valids_2_3 | valids_2_4 | valids_2_5 | valids_2_6 | valids_2_7) // @[RegisterRouter.scala:87:24] pad_2 <= {valids_2_7 ? auto_in_a_bits_data[63:56] : pad_2[63:56], valids_2_6 ? auto_in_a_bits_data[55:48] : pad_2[55:48], valids_2_5 ? auto_in_a_bits_data[47:40] : pad_2[47:40], valids_2_4 ? auto_in_a_bits_data[39:32] : pad_2[39:32], valids_2_3 ? auto_in_a_bits_data[31:24] : pad_2[31:24], valids_2_2 ? auto_in_a_bits_data[23:16] : pad_2[23:16], valids_2_1 ? auto_in_a_bits_data[15:8] : pad_2[15:8], valids_2_0 ? auto_in_a_bits_data[7:0] : pad_2[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_3_0 | valids_3_1 | valids_3_2 | valids_3_3 | valids_3_4 | valids_3_5 | valids_3_6 | valids_3_7) // @[RegisterRouter.scala:87:24] pad_3 <= {valids_3_7 ? auto_in_a_bits_data[63:56] : pad_3[63:56], valids_3_6 ? auto_in_a_bits_data[55:48] : pad_3[55:48], valids_3_5 ? auto_in_a_bits_data[47:40] : pad_3[47:40], valids_3_4 ? auto_in_a_bits_data[39:32] : pad_3[39:32], valids_3_3 ? auto_in_a_bits_data[31:24] : pad_3[31:24], valids_3_2 ? auto_in_a_bits_data[23:16] : pad_3[23:16], valids_3_1 ? auto_in_a_bits_data[15:8] : pad_3[15:8], valids_3_0 ? auto_in_a_bits_data[7:0] : pad_3[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_4_0 | valids_4_1 | valids_4_2 | valids_4_3 | valids_4_4 | valids_4_5 | valids_4_6 | valids_4_7) // @[RegisterRouter.scala:87:24] pad_4 <= {valids_4_7 ? auto_in_a_bits_data[63:56] : pad_4[63:56], valids_4_6 ? auto_in_a_bits_data[55:48] : pad_4[55:48], valids_4_5 ? auto_in_a_bits_data[47:40] : pad_4[47:40], valids_4_4 ? auto_in_a_bits_data[39:32] : pad_4[39:32], valids_4_3 ? auto_in_a_bits_data[31:24] : pad_4[31:24], valids_4_2 ? auto_in_a_bits_data[23:16] : pad_4[23:16], valids_4_1 ? auto_in_a_bits_data[15:8] : pad_4[15:8], valids_4_0 ? auto_in_a_bits_data[7:0] : pad_4[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_5_0 | valids_5_1 | valids_5_2 | valids_5_3 | valids_5_4 | valids_5_5 | valids_5_6 | valids_5_7) // @[RegisterRouter.scala:87:24] pad_5 <= {valids_5_7 ? auto_in_a_bits_data[63:56] : pad_5[63:56], valids_5_6 ? auto_in_a_bits_data[55:48] : pad_5[55:48], valids_5_5 ? auto_in_a_bits_data[47:40] : pad_5[47:40], valids_5_4 ? auto_in_a_bits_data[39:32] : pad_5[39:32], valids_5_3 ? auto_in_a_bits_data[31:24] : pad_5[31:24], valids_5_2 ? auto_in_a_bits_data[23:16] : pad_5[23:16], valids_5_1 ? auto_in_a_bits_data[15:8] : pad_5[15:8], valids_5_0 ? auto_in_a_bits_data[7:0] : pad_5[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_6_0 | valids_6_1 | valids_6_2 | valids_6_3 | valids_6_4 | valids_6_5 | valids_6_6 | valids_6_7) // @[RegisterRouter.scala:87:24] pad_6 <= {valids_6_7 ? auto_in_a_bits_data[63:56] : pad_6[63:56], valids_6_6 ? auto_in_a_bits_data[55:48] : pad_6[55:48], valids_6_5 ? auto_in_a_bits_data[47:40] : pad_6[47:40], valids_6_4 ? auto_in_a_bits_data[39:32] : pad_6[39:32], valids_6_3 ? auto_in_a_bits_data[31:24] : pad_6[31:24], valids_6_2 ? auto_in_a_bits_data[23:16] : pad_6[23:16], valids_6_1 ? auto_in_a_bits_data[15:8] : pad_6[15:8], valids_6_0 ? auto_in_a_bits_data[7:0] : pad_6[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_7_0 | valids_7_1 | valids_7_2 | valids_7_3 | valids_7_4 | valids_7_5 | valids_7_6 | valids_7_7) // @[RegisterRouter.scala:87:24] pad_7 <= {valids_7_7 ? auto_in_a_bits_data[63:56] : pad_7[63:56], valids_7_6 ? auto_in_a_bits_data[55:48] : pad_7[55:48], valids_7_5 ? auto_in_a_bits_data[47:40] : pad_7[47:40], valids_7_4 ? auto_in_a_bits_data[39:32] : pad_7[39:32], valids_7_3 ? auto_in_a_bits_data[31:24] : pad_7[31:24], valids_7_2 ? auto_in_a_bits_data[23:16] : pad_7[23:16], valids_7_1 ? auto_in_a_bits_data[15:8] : pad_7[15:8], valids_7_0 ? auto_in_a_bits_data[7:0] : pad_7[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_8_0 | valids_8_1 | valids_8_2 | valids_8_3 | valids_8_4 | valids_8_5 | valids_8_6 | valids_8_7) // @[RegisterRouter.scala:87:24] pad_8 <= {valids_8_7 ? auto_in_a_bits_data[63:56] : pad_8[63:56], valids_8_6 ? auto_in_a_bits_data[55:48] : pad_8[55:48], valids_8_5 ? auto_in_a_bits_data[47:40] : pad_8[47:40], valids_8_4 ? auto_in_a_bits_data[39:32] : pad_8[39:32], valids_8_3 ? auto_in_a_bits_data[31:24] : pad_8[31:24], valids_8_2 ? auto_in_a_bits_data[23:16] : pad_8[23:16], valids_8_1 ? auto_in_a_bits_data[15:8] : pad_8[15:8], valids_8_0 ? auto_in_a_bits_data[7:0] : pad_8[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_9_0 | valids_9_1 | valids_9_2 | valids_9_3 | valids_9_4 | valids_9_5 | valids_9_6 | valids_9_7) // @[RegisterRouter.scala:87:24] pad_9 <= {valids_9_7 ? auto_in_a_bits_data[63:56] : pad_9[63:56], valids_9_6 ? auto_in_a_bits_data[55:48] : pad_9[55:48], valids_9_5 ? auto_in_a_bits_data[47:40] : pad_9[47:40], valids_9_4 ? auto_in_a_bits_data[39:32] : pad_9[39:32], valids_9_3 ? auto_in_a_bits_data[31:24] : pad_9[31:24], valids_9_2 ? auto_in_a_bits_data[23:16] : pad_9[23:16], valids_9_1 ? auto_in_a_bits_data[15:8] : pad_9[15:8], valids_9_0 ? auto_in_a_bits_data[7:0] : pad_9[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_10_0 | valids_10_1 | valids_10_2 | valids_10_3 | valids_10_4 | valids_10_5 | valids_10_6 | valids_10_7) // @[RegisterRouter.scala:87:24] pad_10 <= {valids_10_7 ? auto_in_a_bits_data[63:56] : pad_10[63:56], valids_10_6 ? auto_in_a_bits_data[55:48] : pad_10[55:48], valids_10_5 ? auto_in_a_bits_data[47:40] : pad_10[47:40], valids_10_4 ? auto_in_a_bits_data[39:32] : pad_10[39:32], valids_10_3 ? auto_in_a_bits_data[31:24] : pad_10[31:24], valids_10_2 ? auto_in_a_bits_data[23:16] : pad_10[23:16], valids_10_1 ? auto_in_a_bits_data[15:8] : pad_10[15:8], valids_10_0 ? auto_in_a_bits_data[7:0] : pad_10[7:0]}; // @[RegisterRouter.scala:87:24] if (valids_11_0 | valids_11_1 | valids_11_2 | valids_11_3 | valids_11_4 | valids_11_5 | valids_11_6 | valids_11_7) // @[RegisterRouter.scala:87:24] pad_11 <= {valids_11_7 ? auto_in_a_bits_data[63:56] : pad_11[63:56], valids_11_6 ? auto_in_a_bits_data[55:48] : pad_11[55:48], valids_11_5 ? auto_in_a_bits_data[47:40] : pad_11[47:40], valids_11_4 ? auto_in_a_bits_data[39:32] : pad_11[39:32], valids_11_3 ? auto_in_a_bits_data[31:24] : pad_11[31:24], valids_11_2 ? auto_in_a_bits_data[23:16] : pad_11[23:16], valids_11_1 ? auto_in_a_bits_data[15:8] : pad_11[15:8], valids_11_0 ? auto_in_a_bits_data[7:0] : pad_11[7:0]}; // @[RegisterRouter.scala:87:24] always @(posedge)
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_50( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_c_ready, // @[Monitor.scala:20:14] input io_in_c_valid, // @[Monitor.scala:20:14] input [2:0] io_in_c_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_c_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_c_bits_size, // @[Monitor.scala:20:14] input [2:0] io_in_c_bits_source, // @[Monitor.scala:20:14] input [31:0] io_in_c_bits_address, // @[Monitor.scala:20:14] input io_in_c_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt, // @[Monitor.scala:20:14] input io_in_e_valid, // @[Monitor.scala:20:14] input [2:0] io_in_e_bits_sink // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire [12:0] _GEN = {10'h0, io_in_a_bits_size}; // @[package.scala:243:71] wire [12:0] _GEN_0 = {10'h0, io_in_c_bits_size}; // @[package.scala:243:71] wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35] reg [2:0] a_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [2:0] size; // @[Monitor.scala:389:22] reg [2:0] source; // @[Monitor.scala:390:22] reg [31:0] address; // @[Monitor.scala:391:22] wire _d_first_T_3 = io_in_d_ready & io_in_d_valid; // @[Decoupled.scala:51:35] reg [2:0] d_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [2:0] size_1; // @[Monitor.scala:540:22] reg [2:0] source_1; // @[Monitor.scala:541:22] reg [2:0] sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] wire _c_first_T_1 = io_in_c_ready & io_in_c_valid; // @[Decoupled.scala:51:35] reg [2:0] c_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_3; // @[Monitor.scala:515:22] reg [2:0] param_3; // @[Monitor.scala:516:22] reg [2:0] size_3; // @[Monitor.scala:517:22] reg [2:0] source_3; // @[Monitor.scala:518:22] reg [31:0] address_2; // @[Monitor.scala:519:22] reg [4:0] inflight; // @[Monitor.scala:614:27] reg [19:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [19:0] inflight_sizes; // @[Monitor.scala:618:33] reg [2:0] a_first_counter_1; // @[Edges.scala:229:27] wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] reg [2:0] d_first_counter_1; // @[Edges.scala:229:27] wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire [7:0] _GEN_1 = {5'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35] wire _GEN_2 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35] wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46] wire _GEN_3 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74] wire [7:0] _GEN_4 = {5'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35] reg [31:0] watchdog; // @[Monitor.scala:709:27] reg [4:0] inflight_1; // @[Monitor.scala:726:35] reg [19:0] inflight_sizes_1; // @[Monitor.scala:728:35] reg [2:0] c_first_counter_1; // @[Edges.scala:229:27] wire c_first_1 = c_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] reg [2:0] d_first_counter_2; // @[Edges.scala:229:27] wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _GEN_5 = io_in_c_bits_opcode[2] & io_in_c_bits_opcode[1]; // @[Edges.scala:68:{36,40,51}] wire [7:0] _GEN_6 = {5'h0, io_in_c_bits_source}; // @[OneHot.scala:58:35] wire _GEN_7 = _c_first_T_1 & c_first_1 & _GEN_5; // @[Decoupled.scala:51:35] reg [31:0] watchdog_1; // @[Monitor.scala:818:27] reg [7:0] inflight_2; // @[Monitor.scala:828:27] reg [2:0] d_first_counter_3; // @[Edges.scala:229:27] wire d_first_3 = d_first_counter_3 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _GEN_8 = _d_first_T_3 & d_first_3 & io_in_d_bits_opcode[2] & ~(io_in_d_bits_opcode[1]); // @[Decoupled.scala:51:35] wire [7:0] _GEN_9 = {5'h0, io_in_d_bits_sink}; // @[OneHot.scala:58:35] wire [7:0] d_set = _GEN_8 ? 8'h1 << _GEN_9 : 8'h0; // @[OneHot.scala:58:35] wire [7:0] _GEN_10 = {5'h0, io_in_e_bits_sink}; // @[OneHot.scala:58:35]
Generate the Verilog code corresponding to the following Chisel files. File InputUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import constellation.channel._ import constellation.routing.{FlowRoutingBundle} import constellation.noc.{HasNoCParams} class AbstractInputUnitIO( val cParam: BaseChannelParams, val outParams: Seq[ChannelParams], val egressParams: Seq[EgressChannelParams], )(implicit val p: Parameters) extends Bundle with HasRouterOutputParams { val nodeId = cParam.destId val router_req = Decoupled(new RouteComputerReq) val router_resp = Input(new RouteComputerResp(outParams, egressParams)) val vcalloc_req = Decoupled(new VCAllocReq(cParam, outParams, egressParams)) val vcalloc_resp = Input(new VCAllocResp(outParams, egressParams)) val out_credit_available = Input(MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) })) val salloc_req = Vec(cParam.destSpeedup, Decoupled(new SwitchAllocReq(outParams, egressParams))) val out = Vec(cParam.destSpeedup, Valid(new SwitchBundle(outParams, egressParams))) val debug = Output(new Bundle { val va_stall = UInt(log2Ceil(cParam.nVirtualChannels).W) val sa_stall = UInt(log2Ceil(cParam.nVirtualChannels).W) }) val block = Input(Bool()) } abstract class AbstractInputUnit( val cParam: BaseChannelParams, val outParams: Seq[ChannelParams], val egressParams: Seq[EgressChannelParams] )(implicit val p: Parameters) extends Module with HasRouterOutputParams with HasNoCParams { val nodeId = cParam.destId def io: AbstractInputUnitIO } class InputBuffer(cParam: ChannelParams)(implicit p: Parameters) extends Module { val nVirtualChannels = cParam.nVirtualChannels val io = IO(new Bundle { val enq = Flipped(Vec(cParam.srcSpeedup, Valid(new Flit(cParam.payloadBits)))) val deq = Vec(cParam.nVirtualChannels, Decoupled(new BaseFlit(cParam.payloadBits))) }) val useOutputQueues = cParam.useOutputQueues val delims = if (useOutputQueues) { cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize else 0).scanLeft(0)(_+_) } else { // If no queuing, have to add an additional slot since head == tail implies empty // TODO this should be fixed, should use all slots available cParam.virtualChannelParams.map(u => if (u.traversable) u.bufferSize + 1 else 0).scanLeft(0)(_+_) } val starts = delims.dropRight(1).zipWithIndex.map { case (s,i) => if (cParam.virtualChannelParams(i).traversable) s else 0 } val ends = delims.tail.zipWithIndex.map { case (s,i) => if (cParam.virtualChannelParams(i).traversable) s else 0 } val fullSize = delims.last // Ugly case. Use multiple queues if ((cParam.srcSpeedup > 1 || cParam.destSpeedup > 1 || fullSize <= 1) || !cParam.unifiedBuffer) { require(useOutputQueues) val qs = cParam.virtualChannelParams.map(v => Module(new Queue(new BaseFlit(cParam.payloadBits), v.bufferSize))) qs.zipWithIndex.foreach { case (q,i) => val sel = io.enq.map(f => f.valid && f.bits.virt_channel_id === i.U) q.io.enq.valid := sel.orR q.io.enq.bits.head := Mux1H(sel, io.enq.map(_.bits.head)) q.io.enq.bits.tail := Mux1H(sel, io.enq.map(_.bits.tail)) q.io.enq.bits.payload := Mux1H(sel, io.enq.map(_.bits.payload)) io.deq(i) <> q.io.deq } } else { val mem = Mem(fullSize, new BaseFlit(cParam.payloadBits)) val heads = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W)))) val tails = RegInit(VecInit(starts.map(_.U(log2Ceil(fullSize).W)))) val empty = (heads zip tails).map(t => t._1 === t._2) val qs = Seq.fill(nVirtualChannels) { Module(new Queue(new BaseFlit(cParam.payloadBits), 1, pipe=true)) } qs.foreach(_.io.enq.valid := false.B) qs.foreach(_.io.enq.bits := DontCare) val vc_sel = UIntToOH(io.enq(0).bits.virt_channel_id) val flit = Wire(new BaseFlit(cParam.payloadBits)) val direct_to_q = (Mux1H(vc_sel, qs.map(_.io.enq.ready)) && Mux1H(vc_sel, empty)) && useOutputQueues.B flit.head := io.enq(0).bits.head flit.tail := io.enq(0).bits.tail flit.payload := io.enq(0).bits.payload when (io.enq(0).valid && !direct_to_q) { val tail = tails(io.enq(0).bits.virt_channel_id) mem.write(tail, flit) tails(io.enq(0).bits.virt_channel_id) := Mux( tail === Mux1H(vc_sel, ends.map(_ - 1).map(_ max 0).map(_.U)), Mux1H(vc_sel, starts.map(_.U)), tail + 1.U) } .elsewhen (io.enq(0).valid && direct_to_q) { for (i <- 0 until nVirtualChannels) { when (io.enq(0).bits.virt_channel_id === i.U) { qs(i).io.enq.valid := true.B qs(i).io.enq.bits := flit } } } if (useOutputQueues) { val can_to_q = (0 until nVirtualChannels).map { i => !empty(i) && qs(i).io.enq.ready } val to_q_oh = PriorityEncoderOH(can_to_q) val to_q = OHToUInt(to_q_oh) when (can_to_q.orR) { val head = Mux1H(to_q_oh, heads) heads(to_q) := Mux( head === Mux1H(to_q_oh, ends.map(_ - 1).map(_ max 0).map(_.U)), Mux1H(to_q_oh, starts.map(_.U)), head + 1.U) for (i <- 0 until nVirtualChannels) { when (to_q_oh(i)) { qs(i).io.enq.valid := true.B qs(i).io.enq.bits := mem.read(head) } } } for (i <- 0 until nVirtualChannels) { io.deq(i) <> qs(i).io.deq } } else { qs.map(_.io.deq.ready := false.B) val ready_sel = io.deq.map(_.ready) val fire = io.deq.map(_.fire) assert(PopCount(fire) <= 1.U) val head = Mux1H(fire, heads) when (fire.orR) { val fire_idx = OHToUInt(fire) heads(fire_idx) := Mux( head === Mux1H(fire, ends.map(_ - 1).map(_ max 0).map(_.U)), Mux1H(fire, starts.map(_.U)), head + 1.U) } val read_flit = mem.read(head) for (i <- 0 until nVirtualChannels) { io.deq(i).valid := !empty(i) io.deq(i).bits := read_flit } } } } class InputUnit(cParam: ChannelParams, outParams: Seq[ChannelParams], egressParams: Seq[EgressChannelParams], combineRCVA: Boolean, combineSAST: Boolean ) (implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) { val nVirtualChannels = cParam.nVirtualChannels val virtualChannelParams = cParam.virtualChannelParams class InputUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) { val in = Flipped(new Channel(cParam.asInstanceOf[ChannelParams])) } val io = IO(new InputUnitIO) val g_i :: g_r :: g_v :: g_a :: g_c :: Nil = Enum(5) class InputState extends Bundle { val g = UInt(3.W) val vc_sel = MixedVec(allOutParams.map { u => Vec(u.nVirtualChannels, Bool()) }) val flow = new FlowRoutingBundle val fifo_deps = UInt(nVirtualChannels.W) } val input_buffer = Module(new InputBuffer(cParam)) for (i <- 0 until cParam.srcSpeedup) { input_buffer.io.enq(i) := io.in.flit(i) } input_buffer.io.deq.foreach(_.ready := false.B) val route_arbiter = Module(new Arbiter( new RouteComputerReq, nVirtualChannels )) io.router_req <> route_arbiter.io.out val states = Reg(Vec(nVirtualChannels, new InputState)) val anyFifo = cParam.possibleFlows.map(_.fifo).reduce(_||_) val allFifo = cParam.possibleFlows.map(_.fifo).reduce(_&&_) if (anyFifo) { val idle_mask = VecInit(states.map(_.g === g_i)).asUInt for (s <- states) for (i <- 0 until nVirtualChannels) s.fifo_deps := s.fifo_deps & ~idle_mask } for (i <- 0 until cParam.srcSpeedup) { when (io.in.flit(i).fire && io.in.flit(i).bits.head) { val id = io.in.flit(i).bits.virt_channel_id assert(id < nVirtualChannels.U) assert(states(id).g === g_i) val at_dest = io.in.flit(i).bits.flow.egress_node === nodeId.U states(id).g := Mux(at_dest, g_v, g_r) states(id).vc_sel.foreach(_.foreach(_ := false.B)) for (o <- 0 until nEgress) { when (o.U === io.in.flit(i).bits.flow.egress_node_id) { states(id).vc_sel(o+nOutputs)(0) := true.B } } states(id).flow := io.in.flit(i).bits.flow if (anyFifo) { val fifo = cParam.possibleFlows.filter(_.fifo).map(_.isFlow(io.in.flit(i).bits.flow)).toSeq.orR states(id).fifo_deps := VecInit(states.zipWithIndex.map { case (s, j) => s.g =/= g_i && s.flow.asUInt === io.in.flit(i).bits.flow.asUInt && j.U =/= id }).asUInt } } } (route_arbiter.io.in zip states).zipWithIndex.map { case ((i,s),idx) => if (virtualChannelParams(idx).traversable) { i.valid := s.g === g_r i.bits.flow := s.flow i.bits.src_virt_id := idx.U when (i.fire) { s.g := g_v } } else { i.valid := false.B i.bits := DontCare } } when (io.router_req.fire) { val id = io.router_req.bits.src_virt_id assert(states(id).g === g_r) states(id).g := g_v for (i <- 0 until nVirtualChannels) { when (i.U === id) { states(i).vc_sel := io.router_resp.vc_sel } } } val mask = RegInit(0.U(nVirtualChannels.W)) val vcalloc_reqs = Wire(Vec(nVirtualChannels, new VCAllocReq(cParam, outParams, egressParams))) val vcalloc_vals = Wire(Vec(nVirtualChannels, Bool())) val vcalloc_filter = PriorityEncoderOH(Cat(vcalloc_vals.asUInt, vcalloc_vals.asUInt & ~mask)) val vcalloc_sel = vcalloc_filter(nVirtualChannels-1,0) | (vcalloc_filter >> nVirtualChannels) // Prioritize incoming packetes when (io.router_req.fire) { mask := (1.U << io.router_req.bits.src_virt_id) - 1.U } .elsewhen (vcalloc_vals.orR) { mask := Mux1H(vcalloc_sel, (0 until nVirtualChannels).map { w => ~(0.U((w+1).W)) }) } io.vcalloc_req.valid := vcalloc_vals.orR io.vcalloc_req.bits := Mux1H(vcalloc_sel, vcalloc_reqs) states.zipWithIndex.map { case (s,idx) => if (virtualChannelParams(idx).traversable) { vcalloc_vals(idx) := s.g === g_v && s.fifo_deps === 0.U vcalloc_reqs(idx).in_vc := idx.U vcalloc_reqs(idx).vc_sel := s.vc_sel vcalloc_reqs(idx).flow := s.flow when (vcalloc_vals(idx) && vcalloc_sel(idx) && io.vcalloc_req.ready) { s.g := g_a } if (combineRCVA) { when (route_arbiter.io.in(idx).fire) { vcalloc_vals(idx) := true.B vcalloc_reqs(idx).vc_sel := io.router_resp.vc_sel } } } else { vcalloc_vals(idx) := false.B vcalloc_reqs(idx) := DontCare } } io.debug.va_stall := PopCount(vcalloc_vals) - io.vcalloc_req.ready when (io.vcalloc_req.fire) { for (i <- 0 until nVirtualChannels) { when (vcalloc_sel(i)) { states(i).vc_sel := io.vcalloc_resp.vc_sel states(i).g := g_a if (!combineRCVA) { assert(states(i).g === g_v) } } } } val salloc_arb = Module(new SwitchArbiter( nVirtualChannels, cParam.destSpeedup, outParams, egressParams )) (states zip salloc_arb.io.in).zipWithIndex.map { case ((s,r),i) => if (virtualChannelParams(i).traversable) { val credit_available = (s.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U r.valid := s.g === g_a && credit_available && input_buffer.io.deq(i).valid r.bits.vc_sel := s.vc_sel val deq_tail = input_buffer.io.deq(i).bits.tail r.bits.tail := deq_tail when (r.fire && deq_tail) { s.g := g_i } input_buffer.io.deq(i).ready := r.ready } else { r.valid := false.B r.bits := DontCare } } io.debug.sa_stall := PopCount(salloc_arb.io.in.map(r => r.valid && !r.ready)) io.salloc_req <> salloc_arb.io.out when (io.block) { salloc_arb.io.out.foreach(_.ready := false.B) io.salloc_req.foreach(_.valid := false.B) } class OutBundle extends Bundle { val valid = Bool() val vid = UInt(virtualChannelBits.W) val out_vid = UInt(log2Up(allOutParams.map(_.nVirtualChannels).max).W) val flit = new Flit(cParam.payloadBits) } val salloc_outs = if (combineSAST) { Wire(Vec(cParam.destSpeedup, new OutBundle)) } else { Reg(Vec(cParam.destSpeedup, new OutBundle)) } io.in.credit_return := salloc_arb.io.out.zipWithIndex.map { case (o, i) => Mux(o.fire, salloc_arb.io.chosen_oh(i), 0.U) }.reduce(_|_) io.in.vc_free := salloc_arb.io.out.zipWithIndex.map { case (o, i) => Mux(o.fire && Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)), salloc_arb.io.chosen_oh(i), 0.U) }.reduce(_|_) for (i <- 0 until cParam.destSpeedup) { val salloc_out = salloc_outs(i) salloc_out.valid := salloc_arb.io.out(i).fire salloc_out.vid := OHToUInt(salloc_arb.io.chosen_oh(i)) val vc_sel = Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.vc_sel)) val channel_oh = vc_sel.map(_.reduce(_||_)).toSeq val virt_channel = Mux1H(channel_oh, vc_sel.map(v => OHToUInt(v)).toSeq) when (salloc_arb.io.out(i).fire) { salloc_out.out_vid := virt_channel salloc_out.flit.payload := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.payload)) salloc_out.flit.head := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.head)) salloc_out.flit.tail := Mux1H(salloc_arb.io.chosen_oh(i), input_buffer.io.deq.map(_.bits.tail)) salloc_out.flit.flow := Mux1H(salloc_arb.io.chosen_oh(i), states.map(_.flow)) } .otherwise { salloc_out.out_vid := DontCare salloc_out.flit := DontCare } salloc_out.flit.virt_channel_id := DontCare // this gets set in the switch io.out(i).valid := salloc_out.valid io.out(i).bits.flit := salloc_out.flit io.out(i).bits.out_virt_channel := salloc_out.out_vid } def filterVCSel(sel: MixedVec[Vec[Bool]], srcV: Int) = { if (virtualChannelParams(srcV).traversable) { outParams.zipWithIndex.map { case (oP, oI) => (0 until oP.nVirtualChannels).map { oV => var allow = false virtualChannelParams(srcV).possibleFlows.foreach { pI => allow = allow || routingRelation( cParam.channelRoutingInfos(srcV), oP.channelRoutingInfos(oV), pI ) } if (!allow) sel(oI)(oV) := false.B } } } } (0 until nVirtualChannels).map { i => if (!virtualChannelParams(i).traversable) states(i) := DontCare filterVCSel(states(i).vc_sel, i) } when (reset.asBool) { states.foreach(_.g := g_i) } }
module mem_60x75( // @[InputUnit.scala:85:18] input [5:0] R0_addr, input R0_en, input R0_clk, output [74:0] R0_data, input [5:0] R1_addr, input R1_en, input R1_clk, output [74:0] R1_data, input [5:0] R2_addr, input R2_en, input R2_clk, output [74:0] R2_data, input [5:0] R3_addr, input R3_en, input R3_clk, output [74:0] R3_data, input [5:0] R4_addr, input R4_en, input R4_clk, output [74:0] R4_data, input [5:0] R5_addr, input R5_en, input R5_clk, output [74:0] R5_data, input [5:0] R6_addr, input R6_en, input R6_clk, output [74:0] R6_data, input [5:0] R7_addr, input R7_en, input R7_clk, output [74:0] R7_data, input [5:0] R8_addr, input R8_en, input R8_clk, output [74:0] R8_data, input [5:0] R9_addr, input R9_en, input R9_clk, output [74:0] R9_data, input [5:0] R10_addr, input R10_en, input R10_clk, output [74:0] R10_data, input [5:0] R11_addr, input R11_en, input R11_clk, output [74:0] R11_data, input [5:0] R12_addr, input R12_en, input R12_clk, output [74:0] R12_data, input [5:0] R13_addr, input R13_en, input R13_clk, output [74:0] R13_data, input [5:0] R14_addr, input R14_en, input R14_clk, output [74:0] R14_data, input [5:0] R15_addr, input R15_en, input R15_clk, output [74:0] R15_data, input [5:0] R16_addr, input R16_en, input R16_clk, output [74:0] R16_data, input [5:0] R17_addr, input R17_en, input R17_clk, output [74:0] R17_data, input [5:0] R18_addr, input R18_en, input R18_clk, output [74:0] R18_data, input [5:0] R19_addr, input R19_en, input R19_clk, output [74:0] R19_data, input [5:0] R20_addr, input R20_en, input R20_clk, output [74:0] R20_data, input [5:0] R21_addr, input R21_en, input R21_clk, output [74:0] R21_data, input [5:0] W0_addr, input W0_en, input W0_clk, input [74:0] W0_data ); reg [74:0] Memory[0:59]; // @[InputUnit.scala:85:18] always @(posedge W0_clk) begin // @[InputUnit.scala:85:18] if (W0_en & 1'h1) // @[InputUnit.scala:85:18] Memory[W0_addr] <= W0_data; // @[InputUnit.scala:85:18] always @(posedge)
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: package constellation.channel import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy._ import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.util._ import constellation.noc.{HasNoCParams} class NoCMonitor(val cParam: ChannelParams)(implicit val p: Parameters) extends Module with HasNoCParams { val io = IO(new Bundle { val in = Input(new Channel(cParam)) }) val in_flight = RegInit(VecInit(Seq.fill(cParam.nVirtualChannels) { false.B })) for (i <- 0 until cParam.srcSpeedup) { val flit = io.in.flit(i) when (flit.valid) { when (flit.bits.head) { in_flight(flit.bits.virt_channel_id) := true.B assert (!in_flight(flit.bits.virt_channel_id), "Flit head/tail sequencing is broken") } when (flit.bits.tail) { in_flight(flit.bits.virt_channel_id) := false.B } } val possibleFlows = cParam.possibleFlows when (flit.valid && flit.bits.head) { cParam match { case n: ChannelParams => n.virtualChannelParams.zipWithIndex.foreach { case (v,i) => assert(flit.bits.virt_channel_id =/= i.U || v.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } case _ => assert(cParam.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } } } } File Types.scala: package constellation.routing import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Parameters} import constellation.noc.{HasNoCParams} import constellation.channel.{Flit} /** A representation for 1 specific virtual channel in wormhole routing * * @param src the source node * @param vc ID for the virtual channel * @param dst the destination node * @param n_vc the number of virtual channels */ // BEGIN: ChannelRoutingInfo case class ChannelRoutingInfo( src: Int, dst: Int, vc: Int, n_vc: Int ) { // END: ChannelRoutingInfo require (src >= -1 && dst >= -1 && vc >= 0, s"Illegal $this") require (!(src == -1 && dst == -1), s"Illegal $this") require (vc < n_vc, s"Illegal $this") val isIngress = src == -1 val isEgress = dst == -1 } /** Represents the properties of a packet that are relevant for routing * ingressId and egressId uniquely identify a flow, but vnet and dst are used here * to simplify the implementation of routingrelations * * @param ingressId packet's source ingress point * @param egressId packet's destination egress point * @param vNet virtual subnetwork identifier * @param dst packet's destination node ID */ // BEGIN: FlowRoutingInfo case class FlowRoutingInfo( ingressId: Int, egressId: Int, vNetId: Int, ingressNode: Int, ingressNodeId: Int, egressNode: Int, egressNodeId: Int, fifo: Boolean ) { // END: FlowRoutingInfo def isFlow(f: FlowRoutingBundle): Bool = { (f.ingress_node === ingressNode.U && f.egress_node === egressNode.U && f.ingress_node_id === ingressNodeId.U && f.egress_node_id === egressNodeId.U) } def asLiteral(b: FlowRoutingBundle): BigInt = { Seq( (vNetId , b.vnet_id), (ingressNode , b.ingress_node), (ingressNodeId , b.ingress_node_id), (egressNode , b.egress_node), (egressNodeId , b.egress_node_id) ).foldLeft(0)((l, t) => { (l << t._2.getWidth) | t._1 }) } } class FlowRoutingBundle(implicit val p: Parameters) extends Bundle with HasNoCParams { // Instead of tracking ingress/egress ID, track the physical destination id and the offset at the destination // This simplifies the routing tables val vnet_id = UInt(log2Ceil(nVirtualNetworks).W) val ingress_node = UInt(log2Ceil(nNodes).W) val ingress_node_id = UInt(log2Ceil(maxIngressesAtNode).W) val egress_node = UInt(log2Ceil(nNodes).W) val egress_node_id = UInt(log2Ceil(maxEgressesAtNode).W) }
module NoCMonitor_33( // @[Monitor.scala:11:7] input clock, // @[Monitor.scala:11:7] input reset, // @[Monitor.scala:11:7] input io_in_flit_0_valid, // @[Monitor.scala:12:14] input io_in_flit_0_bits_head, // @[Monitor.scala:12:14] input io_in_flit_0_bits_tail, // @[Monitor.scala:12:14] input [3:0] io_in_flit_0_bits_flow_ingress_node, // @[Monitor.scala:12:14] input [2:0] io_in_flit_0_bits_flow_ingress_node_id, // @[Monitor.scala:12:14] input [3:0] io_in_flit_0_bits_flow_egress_node, // @[Monitor.scala:12:14] input [1:0] io_in_flit_0_bits_flow_egress_node_id, // @[Monitor.scala:12:14] input [1:0] io_in_flit_0_bits_virt_channel_id // @[Monitor.scala:12:14] ); reg in_flight_0; // @[Monitor.scala:16:26] reg in_flight_1; // @[Monitor.scala:16:26] reg in_flight_2; // @[Monitor.scala:16:26] wire _GEN = io_in_flit_0_bits_virt_channel_id == 2'h0; // @[Monitor.scala:21:46]
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module MacUnit_113( // @[PE.scala:14:7] input clock, // @[PE.scala:14:7] input reset, // @[PE.scala:14:7] input [7:0] io_in_a, // @[PE.scala:16:14] input [7:0] io_in_b, // @[PE.scala:16:14] input [19:0] io_in_c, // @[PE.scala:16:14] output [19:0] io_out_d // @[PE.scala:16:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7] wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7] wire [19:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_3; // @[Arithmetic.scala:93:54] wire [19:0] io_out_d_0; // @[PE.scala:14:7] wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7] wire [20:0] _io_out_d_T_1 = {{5{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[19], io_in_c_0}; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_2 = _io_out_d_T_1[19:0]; // @[Arithmetic.scala:93:54] assign _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54] assign io_out_d_0 = _io_out_d_T_3; // @[PE.scala:14:7] assign io_out_d = io_out_d_0; // @[PE.scala:14:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module MacUnit_185( // @[PE.scala:14:7] input clock, // @[PE.scala:14:7] input reset, // @[PE.scala:14:7] input [7:0] io_in_a, // @[PE.scala:16:14] input [7:0] io_in_b, // @[PE.scala:16:14] input [31:0] io_in_c, // @[PE.scala:16:14] output [19:0] io_out_d // @[PE.scala:16:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7] wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7] wire [31:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7] wire [19:0] io_out_d_0; // @[PE.scala:14:7] wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7] wire [32:0] _io_out_d_T_1 = {{17{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[31], io_in_c_0}; // @[PE.scala:14:7] wire [31:0] _io_out_d_T_2 = _io_out_d_T_1[31:0]; // @[Arithmetic.scala:93:54] wire [31:0] _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54] assign io_out_d_0 = _io_out_d_T_3[19:0]; // @[PE.scala:14:7, :23:12] assign io_out_d = io_out_d_0; // @[PE.scala:14:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_200( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_356 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File DescribedSRAM.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3.{Data, SyncReadMem, Vec} import chisel3.util.log2Ceil object DescribedSRAM { def apply[T <: Data]( name: String, desc: String, size: BigInt, // depth data: T ): SyncReadMem[T] = { val mem = SyncReadMem(size, data) mem.suggestName(name) val granWidth = data match { case v: Vec[_] => v.head.getWidth case d => d.getWidth } val uid = 0 Annotated.srams( component = mem, name = name, address_width = log2Ceil(size), data_width = data.getWidth, depth = size, description = desc, write_mask_granularity = granWidth ) mem } }
module cc_banks_3( // @[DescribedSRAM.scala:17:26] input [13:0] RW0_addr, input RW0_en, input RW0_clk, input RW0_wmode, input [63:0] RW0_wdata, output [63:0] RW0_rdata ); cc_banks_0_ext cc_banks_0_ext ( // @[DescribedSRAM.scala:17:26] .RW0_addr (RW0_addr), .RW0_en (RW0_en), .RW0_clk (RW0_clk), .RW0_wmode (RW0_wmode), .RW0_wdata (RW0_wdata), .RW0_rdata (RW0_rdata) ); // @[DescribedSRAM.scala:17:26] endmodule
Generate the Verilog code corresponding to the following Chisel files. File util.scala: //****************************************************************************** // Copyright (c) 2015 - 2019, The Regents of the University of California (Regents). // All Rights Reserved. See LICENSE and LICENSE.SiFive for license details. //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // Utility Functions //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ package boom.v4.util import chisel3._ import chisel3.util._ import freechips.rocketchip.rocket.Instructions._ import freechips.rocketchip.rocket._ import freechips.rocketchip.util.{Str} import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.tile.{TileKey} import boom.v4.common.{MicroOp} import boom.v4.exu.{BrUpdateInfo} /** * Object to XOR fold a input register of fullLength into a compressedLength. */ object Fold { def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = { val clen = compressedLength val hlen = fullLength if (hlen <= clen) { input } else { var res = 0.U(clen.W) var remaining = input.asUInt for (i <- 0 to hlen-1 by clen) { val len = if (i + clen > hlen ) (hlen - i) else clen require(len > 0) res = res(clen-1,0) ^ remaining(len-1,0) remaining = remaining >> len.U } res } } } /** * Object to check if MicroOp was killed due to a branch mispredict. * Uses "Fast" branch masks */ object IsKilledByBranch { def apply(brupdate: BrUpdateInfo, flush: Bool, uop: MicroOp): Bool = { return apply(brupdate, flush, uop.br_mask) } def apply(brupdate: BrUpdateInfo, flush: Bool, uop_mask: UInt): Bool = { return maskMatch(brupdate.b1.mispredict_mask, uop_mask) || flush } def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: T): Bool = { return apply(brupdate, flush, bundle.uop) } def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Bool = { return apply(brupdate, flush, bundle.bits) } } /** * Object to return new MicroOp with a new BR mask given a MicroOp mask * and old BR mask. */ object GetNewUopAndBrMask { def apply(uop: MicroOp, brupdate: BrUpdateInfo) (implicit p: Parameters): MicroOp = { val newuop = WireInit(uop) newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask newuop } } /** * Object to return a BR mask given a MicroOp mask and old BR mask. */ object GetNewBrMask { def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = { return uop.br_mask & ~brupdate.b1.resolve_mask } def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = { return br_mask & ~brupdate.b1.resolve_mask } } object UpdateBrMask { def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = { val out = WireInit(uop) out.br_mask := GetNewBrMask(brupdate, uop) out } def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = { val out = WireInit(bundle) out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask) out } def apply[T <: boom.v4.common.HasBoomUOP](brupdate: BrUpdateInfo, flush: Bool, bundle: Valid[T]): Valid[T] = { val out = WireInit(bundle) out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask) out.valid := bundle.valid && !IsKilledByBranch(brupdate, flush, bundle.bits.uop.br_mask) out } } /** * Object to check if at least 1 bit matches in two masks */ object maskMatch { def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U } /** * Object to clear one bit in a mask given an index */ object clearMaskBit { def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0) } /** * Object to shift a register over by one bit and concat a new one */ object PerformShiftRegister { def apply(reg_val: UInt, new_bit: Bool): UInt = { reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt reg_val } } /** * Object to shift a register over by one bit, wrapping the top bit around to the bottom * (XOR'ed with a new-bit), and evicting a bit at index HLEN. * This is used to simulate a longer HLEN-width shift register that is folded * down to a compressed CLEN. */ object PerformCircularShiftRegister { def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = { val carry = csr(clen-1) val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U) newval } } /** * Object to increment an input value, wrapping it if * necessary. */ object WrapAdd { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, amt: UInt, n: Int): UInt = { if (isPow2(n)) { (value + amt)(log2Ceil(n)-1,0) } else { val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt) Mux(sum >= n.U, sum - n.U, sum) } } } /** * Object to decrement an input value, wrapping it if * necessary. */ object WrapSub { // "n" is the number of increments, so we wrap to n-1. def apply(value: UInt, amt: Int, n: Int): UInt = { if (isPow2(n)) { (value - amt.U)(log2Ceil(n)-1,0) } else { val v = Cat(0.U(1.W), value) val b = Cat(0.U(1.W), amt.U) Mux(value >= amt.U, value - amt.U, n.U - amt.U + value) } } } /** * Object to increment an input value, wrapping it if * necessary. */ object WrapInc { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, n: Int): UInt = { if (isPow2(n)) { (value + 1.U)(log2Ceil(n)-1,0) } else { val wrap = (value === (n-1).U) Mux(wrap, 0.U, value + 1.U) } } } /** * Object to decrement an input value, wrapping it if * necessary. */ object WrapDec { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, n: Int): UInt = { if (isPow2(n)) { (value - 1.U)(log2Ceil(n)-1,0) } else { val wrap = (value === 0.U) Mux(wrap, (n-1).U, value - 1.U) } } } /** * Object to mask off lower bits of a PC to align to a "b" * Byte boundary. */ object AlignPCToBoundary { def apply(pc: UInt, b: Int): UInt = { // Invert for scenario where pc longer than b // (which would clear all bits above size(b)). ~(~pc | (b-1).U) } } /** * Object to rotate a signal left by one */ object RotateL1 { def apply(signal: UInt): UInt = { val w = signal.getWidth val out = Cat(signal(w-2,0), signal(w-1)) return out } } /** * Object to sext a value to a particular length. */ object Sext { def apply(x: UInt, length: Int): UInt = { if (x.getWidth == length) return x else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x) } } /** * Object to translate from BOOM's special "packed immediate" to a 32b signed immediate * Asking for U-type gives it shifted up 12 bits. */ object ImmGen { import boom.v4.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U, IS_N} def apply(i: UInt, isel: UInt): UInt = { val ip = Mux(isel === IS_N, 0.U(LONGEST_IMM_SZ.W), i) val sign = ip(LONGEST_IMM_SZ-1).asSInt val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign) val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign) val i11 = Mux(isel === IS_U, 0.S, Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign)) val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt) val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt) val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S) return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0) } } /** * Object to see if an instruction is a JALR. */ object DebugIsJALR { def apply(inst: UInt): Bool = { // TODO Chisel not sure why this won't compile // val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)), // Array( // JALR -> Bool(true))) inst(6,0) === "b1100111".U } } /** * Object to take an instruction and output its branch or jal target. Only used * for a debug assert (no where else would we jump straight from instruction * bits to a target). */ object DebugGetBJImm { def apply(inst: UInt): UInt = { // TODO Chisel not sure why this won't compile //val csignals = //rocket.DecodeLogic(inst, // List(Bool(false), Bool(false)), // Array( // BEQ -> List(Bool(true ), Bool(false)), // BNE -> List(Bool(true ), Bool(false)), // BGE -> List(Bool(true ), Bool(false)), // BGEU -> List(Bool(true ), Bool(false)), // BLT -> List(Bool(true ), Bool(false)), // BLTU -> List(Bool(true ), Bool(false)) // )) //val is_br :: nothing :: Nil = csignals val is_br = (inst(6,0) === "b1100011".U) val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W)) val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W)) Mux(is_br, br_targ, jal_targ) } } /** * Object to return the lowest bit position after the head. */ object AgePriorityEncoder { def apply(in: Seq[Bool], head: UInt): UInt = { val n = in.size val width = log2Ceil(in.size) val n_padded = 1 << width val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in val idx = PriorityEncoder(temp_vec) idx(width-1, 0) //discard msb } } /** * Object to determine whether queue * index i0 is older than index i1. */ object IsOlder { def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head)) } object IsYoungerMask { def apply(i: UInt, head: UInt, n: Integer): UInt = { val hi_mask = ~MaskLower(UIntToOH(i)(n-1,0)) val lo_mask = ~MaskUpper(UIntToOH(head)(n-1,0)) Mux(i < head, hi_mask & lo_mask, hi_mask | lo_mask)(n-1,0) } } /** * Set all bits at or below the highest order '1'. */ object MaskLower { def apply(in: UInt) = { val n = in.getWidth (0 until n).map(i => in >> i.U).reduce(_|_) } } /** * Set all bits at or above the lowest order '1'. */ object MaskUpper { def apply(in: UInt) = { val n = in.getWidth (0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_) } } /** * Transpose a matrix of Chisel Vecs. */ object Transpose { def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = { val n = in(0).size VecInit((0 until n).map(i => VecInit(in.map(row => row(i))))) } } /** * N-wide one-hot priority encoder. */ object SelectFirstN { def apply(in: UInt, n: Int) = { val sels = Wire(Vec(n, UInt(in.getWidth.W))) var mask = in for (i <- 0 until n) { sels(i) := PriorityEncoderOH(mask) mask = mask & ~sels(i) } sels } } /** * Connect the first k of n valid input interfaces to k output interfaces. */ class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module { require(n >= k) val io = IO(new Bundle { val in = Vec(n, Flipped(DecoupledIO(gen))) val out = Vec(k, DecoupledIO(gen)) }) if (n == k) { io.out <> io.in } else { val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c)) val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col => (col zip io.in.map(_.valid)) map {case (c,v) => c && v}) val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_)) val out_valids = sels map (col => col.reduce(_||_)) val out_data = sels map (s => Mux1H(s, io.in.map(_.bits))) in_readys zip io.in foreach {case (r,i) => i.ready := r} out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d} } } /** * Create a queue that can be killed with a branch kill signal. * Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq). */ class BranchKillableQueue[T <: boom.v4.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v4.common.MicroOp => Bool = u => true.B, fastDeq: Boolean = false) (implicit p: org.chipsalliance.cde.config.Parameters) extends boom.v4.common.BoomModule()(p) with boom.v4.common.HasBoomCoreParameters { val io = IO(new Bundle { val enq = Flipped(Decoupled(gen)) val deq = Decoupled(gen) val brupdate = Input(new BrUpdateInfo()) val flush = Input(Bool()) val empty = Output(Bool()) val count = Output(UInt(log2Ceil(entries).W)) }) if (fastDeq && entries > 1) { // Pipeline dequeue selection so the mux gets an entire cycle val main = Module(new BranchKillableQueue(gen, entries-1, flush_fn, false)) val out_reg = Reg(gen) val out_valid = RegInit(false.B) val out_uop = Reg(new MicroOp) main.io.enq <> io.enq main.io.brupdate := io.brupdate main.io.flush := io.flush io.empty := main.io.empty && !out_valid io.count := main.io.count + out_valid io.deq.valid := out_valid io.deq.bits := out_reg io.deq.bits.uop := out_uop out_uop := UpdateBrMask(io.brupdate, out_uop) out_valid := out_valid && !IsKilledByBranch(io.brupdate, false.B, out_uop) && !(io.flush && flush_fn(out_uop)) main.io.deq.ready := false.B when (io.deq.fire || !out_valid) { out_valid := main.io.deq.valid && !IsKilledByBranch(io.brupdate, false.B, main.io.deq.bits.uop) && !(io.flush && flush_fn(main.io.deq.bits.uop)) out_reg := main.io.deq.bits out_uop := UpdateBrMask(io.brupdate, main.io.deq.bits.uop) main.io.deq.ready := true.B } } else { val ram = Mem(entries, gen) val valids = RegInit(VecInit(Seq.fill(entries) {false.B})) val uops = Reg(Vec(entries, new MicroOp)) val enq_ptr = Counter(entries) val deq_ptr = Counter(entries) val maybe_full = RegInit(false.B) val ptr_match = enq_ptr.value === deq_ptr.value io.empty := ptr_match && !maybe_full val full = ptr_match && maybe_full val do_enq = WireInit(io.enq.fire && !IsKilledByBranch(io.brupdate, false.B, io.enq.bits.uop) && !(io.flush && flush_fn(io.enq.bits.uop))) val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty) for (i <- 0 until entries) { val mask = uops(i).br_mask val uop = uops(i) valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, false.B, mask) && !(io.flush && flush_fn(uop)) when (valids(i)) { uops(i).br_mask := GetNewBrMask(io.brupdate, mask) } } when (do_enq) { ram(enq_ptr.value) := io.enq.bits valids(enq_ptr.value) := true.B uops(enq_ptr.value) := io.enq.bits.uop uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop) enq_ptr.inc() } when (do_deq) { valids(deq_ptr.value) := false.B deq_ptr.inc() } when (do_enq =/= do_deq) { maybe_full := do_enq } io.enq.ready := !full val out = Wire(gen) out := ram(deq_ptr.value) out.uop := uops(deq_ptr.value) io.deq.valid := !io.empty && valids(deq_ptr.value) io.deq.bits := out val ptr_diff = enq_ptr.value - deq_ptr.value if (isPow2(entries)) { io.count := Cat(maybe_full && ptr_match, ptr_diff) } else { io.count := Mux(ptr_match, Mux(maybe_full, entries.asUInt, 0.U), Mux(deq_ptr.value > enq_ptr.value, entries.asUInt + ptr_diff, ptr_diff)) } } } // ------------------------------------------ // Printf helper functions // ------------------------------------------ object BoolToChar { /** * Take in a Chisel Bool and convert it into a Str * based on the Chars given * * @param c_bool Chisel Bool * @param trueChar Scala Char if bool is true * @param falseChar Scala Char if bool is false * @return UInt ASCII Char for "trueChar" or "falseChar" */ def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = { Mux(c_bool, Str(trueChar), Str(falseChar)) } } object CfiTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param cfi_type specific cfi type * @return Vec of Strs (must be indexed to get specific char) */ def apply(cfi_type: UInt) = { val strings = Seq("----", "BR ", "JAL ", "JALR") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(cfi_type) } } object BpdTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param bpd_type specific bpd type * @return Vec of Strs (must be indexed to get specific char) */ def apply(bpd_type: UInt) = { val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(bpd_type) } } object RobTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param rob_type specific rob type * @return Vec of Strs (must be indexed to get specific char) */ def apply(rob_type: UInt) = { val strings = Seq("RST", "NML", "RBK", " WT") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(rob_type) } } object XRegToChars { /** * Get a Vec of Strs that can be used for printing * * @param xreg specific register number * @return Vec of Strs (must be indexed to get specific char) */ def apply(xreg: UInt) = { val strings = Seq(" x0", " ra", " sp", " gp", " tp", " t0", " t1", " t2", " s0", " s1", " a0", " a1", " a2", " a3", " a4", " a5", " a6", " a7", " s2", " s3", " s4", " s5", " s6", " s7", " s8", " s9", "s10", "s11", " t3", " t4", " t5", " t6") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(xreg) } } object FPRegToChars { /** * Get a Vec of Strs that can be used for printing * * @param fpreg specific register number * @return Vec of Strs (must be indexed to get specific char) */ def apply(fpreg: UInt) = { val strings = Seq(" ft0", " ft1", " ft2", " ft3", " ft4", " ft5", " ft6", " ft7", " fs0", " fs1", " fa0", " fa1", " fa2", " fa3", " fa4", " fa5", " fa6", " fa7", " fs2", " fs3", " fs4", " fs5", " fs6", " fs7", " fs8", " fs9", "fs10", "fs11", " ft8", " ft9", "ft10", "ft11") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(fpreg) } } object BoomCoreStringPrefix { /** * Add prefix to BOOM strings (currently only adds the hartId) * * @param strs list of strings * @return String combining the list with the prefix per line */ def apply(strs: String*)(implicit p: Parameters) = { val prefix = "[C" + s"${p(TileKey).tileId}" + "] " strs.map(str => prefix + str + "\n").mkString("") } } class BranchKillablePipeline[T <: boom.v4.common.HasBoomUOP](gen: T, stages: Int) (implicit p: org.chipsalliance.cde.config.Parameters) extends boom.v4.common.BoomModule()(p) with boom.v4.common.HasBoomCoreParameters { val io = IO(new Bundle { val req = Input(Valid(gen)) val flush = Input(Bool()) val brupdate = Input(new BrUpdateInfo) val resp = Output(Vec(stages, Valid(gen))) }) require(stages > 0) val uops = Reg(Vec(stages, Valid(gen))) uops(0).valid := io.req.valid && !IsKilledByBranch(io.brupdate, io.flush, io.req.bits) uops(0).bits := UpdateBrMask(io.brupdate, io.req.bits) for (i <- 1 until stages) { uops(i).valid := uops(i-1).valid && !IsKilledByBranch(io.brupdate, io.flush, uops(i-1).bits) uops(i).bits := UpdateBrMask(io.brupdate, uops(i-1).bits) } for (i <- 0 until stages) { when (reset.asBool) { uops(i).valid := false.B } } io.resp := uops } File issue-slot.scala: //****************************************************************************** // Copyright (c) 2015 - 2018, The Regents of the University of California (Regents). // All Rights Reserved. See LICENSE and LICENSE.SiFive for license details. //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // RISCV Processor Issue Slot Logic //-------------------------------------------------------------------------- //------------------------------------------------------------------------------ // // Note: stores (and AMOs) are "broken down" into 2 uops, but stored within a single issue-slot. // TODO XXX make a separate issueSlot for MemoryIssueSlots, and only they break apart stores. // TODO Disable ldspec for FP queue. package boom.v4.exu import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.Parameters import boom.v4.common._ import boom.v4.util._ class IssueSlotIO(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomBundle { val valid = Output(Bool()) val will_be_valid = Output(Bool()) // TODO code review, do we need this signal so explicitely? val request = Output(Bool()) val grant = Input(Bool()) val iss_uop = Output(new MicroOp()) val in_uop = Input(Valid(new MicroOp())) // if valid, this WILL overwrite an entry! val out_uop = Output(new MicroOp()) val brupdate = Input(new BrUpdateInfo()) val kill = Input(Bool()) // pipeline flush val clear = Input(Bool()) // entry being moved elsewhere (not mutually exclusive with grant) val squash_grant = Input(Bool()) val wakeup_ports = Flipped(Vec(numWakeupPorts, Valid(new Wakeup))) val pred_wakeup_port = Flipped(Valid(UInt(log2Ceil(ftqSz).W))) val child_rebusys = Input(UInt(aluWidth.W)) } class IssueSlot(val numWakeupPorts: Int, val isMem: Boolean, val isFp: Boolean)(implicit p: Parameters) extends BoomModule { val io = IO(new IssueSlotIO(numWakeupPorts)) val slot_valid = RegInit(false.B) val slot_uop = Reg(new MicroOp()) val next_valid = WireInit(slot_valid) val next_uop = WireInit(UpdateBrMask(io.brupdate, slot_uop)) val killed = IsKilledByBranch(io.brupdate, io.kill, slot_uop) io.valid := slot_valid io.out_uop := next_uop io.will_be_valid := next_valid && !killed when (io.kill) { slot_valid := false.B } .elsewhen (io.in_uop.valid) { slot_valid := true.B } .elsewhen (io.clear) { slot_valid := false.B } .otherwise { slot_valid := next_valid && !killed } when (io.in_uop.valid) { slot_uop := io.in_uop.bits assert (!slot_valid || io.clear || io.kill) } .otherwise { slot_uop := next_uop } // Wakeups next_uop.iw_p1_bypass_hint := false.B next_uop.iw_p2_bypass_hint := false.B next_uop.iw_p3_bypass_hint := false.B next_uop.iw_p1_speculative_child := 0.U next_uop.iw_p2_speculative_child := 0.U val rebusied_prs1 = WireInit(false.B) val rebusied_prs2 = WireInit(false.B) val rebusied = rebusied_prs1 || rebusied_prs2 val prs1_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs1 } val prs2_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs2 } val prs3_matches = io.wakeup_ports.map { w => w.bits.uop.pdst === slot_uop.prs3 } val prs1_wakeups = (io.wakeup_ports zip prs1_matches).map { case (w,m) => w.valid && m } val prs2_wakeups = (io.wakeup_ports zip prs2_matches).map { case (w,m) => w.valid && m } val prs3_wakeups = (io.wakeup_ports zip prs3_matches).map { case (w,m) => w.valid && m } val prs1_rebusys = (io.wakeup_ports zip prs1_matches).map { case (w,m) => w.bits.rebusy && m } val prs2_rebusys = (io.wakeup_ports zip prs2_matches).map { case (w,m) => w.bits.rebusy && m } val bypassables = io.wakeup_ports.map { w => w.bits.bypassable } val speculative_masks = io.wakeup_ports.map { w => w.bits.speculative_mask } when (prs1_wakeups.reduce(_||_)) { next_uop.prs1_busy := false.B next_uop.iw_p1_speculative_child := Mux1H(prs1_wakeups, speculative_masks) next_uop.iw_p1_bypass_hint := Mux1H(prs1_wakeups, bypassables) } when ((prs1_rebusys.reduce(_||_) || ((io.child_rebusys & slot_uop.iw_p1_speculative_child) =/= 0.U)) && slot_uop.lrs1_rtype === RT_FIX) { next_uop.prs1_busy := true.B rebusied_prs1 := true.B } when (prs2_wakeups.reduce(_||_)) { next_uop.prs2_busy := false.B next_uop.iw_p2_speculative_child := Mux1H(prs2_wakeups, speculative_masks) next_uop.iw_p2_bypass_hint := Mux1H(prs2_wakeups, bypassables) } when ((prs2_rebusys.reduce(_||_) || ((io.child_rebusys & slot_uop.iw_p2_speculative_child) =/= 0.U)) && slot_uop.lrs2_rtype === RT_FIX) { next_uop.prs2_busy := true.B rebusied_prs2 := true.B } when (prs3_wakeups.reduce(_||_)) { next_uop.prs3_busy := false.B next_uop.iw_p3_bypass_hint := Mux1H(prs3_wakeups, bypassables) } when (io.pred_wakeup_port.valid && io.pred_wakeup_port.bits === slot_uop.ppred) { next_uop.ppred_busy := false.B } val iss_ready = !slot_uop.prs1_busy && !slot_uop.prs2_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && !(slot_uop.prs3_busy && isFp.B) val agen_ready = (slot_uop.fu_code(FC_AGEN) && !slot_uop.prs1_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && isMem.B) val dgen_ready = (slot_uop.fu_code(FC_DGEN) && !slot_uop.prs2_busy && !(slot_uop.ppred_busy && enableSFBOpt.B) && isMem.B) io.request := slot_valid && !slot_uop.iw_issued && ( iss_ready || agen_ready || dgen_ready ) io.iss_uop := slot_uop // Update state for current micro-op based on grant next_uop.iw_issued := false.B next_uop.iw_issued_partial_agen := false.B next_uop.iw_issued_partial_dgen := false.B when (io.grant && !io.squash_grant) { next_uop.iw_issued := true.B } if (isMem) { when (slot_uop.fu_code(FC_AGEN) && slot_uop.fu_code(FC_DGEN)) { when (agen_ready) { // Issue the AGEN, next slot entry is a DGEN when (io.grant && !io.squash_grant) { next_uop.iw_issued_partial_agen := true.B } io.iss_uop.fu_code(FC_AGEN) := true.B io.iss_uop.fu_code(FC_DGEN) := false.B } .otherwise { // Issue the DGEN, next slot entry is the AGEN when (io.grant && !io.squash_grant) { next_uop.iw_issued_partial_dgen := true.B } io.iss_uop.fu_code(FC_AGEN) := false.B io.iss_uop.fu_code(FC_DGEN) := true.B io.iss_uop.imm_sel := IS_N io.iss_uop.prs1 := slot_uop.prs2 io.iss_uop.lrs1_rtype := slot_uop.lrs2_rtype io.iss_uop.iw_p1_bypass_hint := slot_uop.iw_p2_bypass_hint } } .elsewhen (slot_uop.fu_code(FC_DGEN)) { io.iss_uop.imm_sel := IS_N io.iss_uop.prs1 := slot_uop.prs2 io.iss_uop.lrs1_rtype := slot_uop.lrs2_rtype io.iss_uop.iw_p1_bypass_hint := slot_uop.iw_p2_bypass_hint } io.iss_uop.lrs2_rtype := RT_X io.iss_uop.prs2 := io.iss_uop.prs1 // helps with DCE } when (slot_valid && slot_uop.iw_issued) { next_valid := rebusied if (isMem) { when (slot_uop.iw_issued_partial_agen) { next_valid := true.B when (!rebusied_prs1) { next_uop.fu_code(FC_AGEN) := false.B next_uop.fu_code(FC_DGEN) := true.B } } .elsewhen (slot_uop.iw_issued_partial_dgen) { next_valid := true.B when (!rebusied_prs2) { next_uop.fu_code(FC_AGEN) := true.B next_uop.fu_code(FC_DGEN) := false.B } } } } }
module IssueSlot_35( // @[issue-slot.scala:49:7] input clock, // @[issue-slot.scala:49:7] input reset, // @[issue-slot.scala:49:7] output io_valid, // @[issue-slot.scala:52:14] output io_will_be_valid, // @[issue-slot.scala:52:14] output io_request, // @[issue-slot.scala:52:14] input io_grant, // @[issue-slot.scala:52:14] output [31:0] io_iss_uop_inst, // @[issue-slot.scala:52:14] output [31:0] io_iss_uop_debug_inst, // @[issue-slot.scala:52:14] output io_iss_uop_is_rvc, // @[issue-slot.scala:52:14] output [39:0] io_iss_uop_debug_pc, // @[issue-slot.scala:52:14] output io_iss_uop_iq_type_0, // @[issue-slot.scala:52:14] output io_iss_uop_iq_type_1, // @[issue-slot.scala:52:14] output io_iss_uop_iq_type_2, // @[issue-slot.scala:52:14] output io_iss_uop_iq_type_3, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_0, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_1, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_2, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_3, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_4, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_5, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_6, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_7, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_8, // @[issue-slot.scala:52:14] output io_iss_uop_fu_code_9, // @[issue-slot.scala:52:14] output io_iss_uop_iw_issued, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14] output io_iss_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14] output io_iss_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14] output io_iss_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_dis_col_sel, // @[issue-slot.scala:52:14] output [11:0] io_iss_uop_br_mask, // @[issue-slot.scala:52:14] output [3:0] io_iss_uop_br_tag, // @[issue-slot.scala:52:14] output [3:0] io_iss_uop_br_type, // @[issue-slot.scala:52:14] output io_iss_uop_is_sfb, // @[issue-slot.scala:52:14] output io_iss_uop_is_fence, // @[issue-slot.scala:52:14] output io_iss_uop_is_fencei, // @[issue-slot.scala:52:14] output io_iss_uop_is_sfence, // @[issue-slot.scala:52:14] output io_iss_uop_is_amo, // @[issue-slot.scala:52:14] output io_iss_uop_is_eret, // @[issue-slot.scala:52:14] output io_iss_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14] output io_iss_uop_is_rocc, // @[issue-slot.scala:52:14] output io_iss_uop_is_mov, // @[issue-slot.scala:52:14] output [4:0] io_iss_uop_ftq_idx, // @[issue-slot.scala:52:14] output io_iss_uop_edge_inst, // @[issue-slot.scala:52:14] output [5:0] io_iss_uop_pc_lob, // @[issue-slot.scala:52:14] output io_iss_uop_taken, // @[issue-slot.scala:52:14] output io_iss_uop_imm_rename, // @[issue-slot.scala:52:14] output [2:0] io_iss_uop_imm_sel, // @[issue-slot.scala:52:14] output [4:0] io_iss_uop_pimm, // @[issue-slot.scala:52:14] output [19:0] io_iss_uop_imm_packed, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_op1_sel, // @[issue-slot.scala:52:14] output [2:0] io_iss_uop_op2_sel, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_div, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14] output io_iss_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14] output [5:0] io_iss_uop_rob_idx, // @[issue-slot.scala:52:14] output [3:0] io_iss_uop_ldq_idx, // @[issue-slot.scala:52:14] output [3:0] io_iss_uop_stq_idx, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_rxq_idx, // @[issue-slot.scala:52:14] output [6:0] io_iss_uop_pdst, // @[issue-slot.scala:52:14] output [6:0] io_iss_uop_prs1, // @[issue-slot.scala:52:14] output [6:0] io_iss_uop_prs2, // @[issue-slot.scala:52:14] output [6:0] io_iss_uop_prs3, // @[issue-slot.scala:52:14] output [4:0] io_iss_uop_ppred, // @[issue-slot.scala:52:14] output io_iss_uop_prs1_busy, // @[issue-slot.scala:52:14] output io_iss_uop_prs2_busy, // @[issue-slot.scala:52:14] output io_iss_uop_prs3_busy, // @[issue-slot.scala:52:14] output io_iss_uop_ppred_busy, // @[issue-slot.scala:52:14] output [6:0] io_iss_uop_stale_pdst, // @[issue-slot.scala:52:14] output io_iss_uop_exception, // @[issue-slot.scala:52:14] output [63:0] io_iss_uop_exc_cause, // @[issue-slot.scala:52:14] output [4:0] io_iss_uop_mem_cmd, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_mem_size, // @[issue-slot.scala:52:14] output io_iss_uop_mem_signed, // @[issue-slot.scala:52:14] output io_iss_uop_uses_ldq, // @[issue-slot.scala:52:14] output io_iss_uop_uses_stq, // @[issue-slot.scala:52:14] output io_iss_uop_is_unique, // @[issue-slot.scala:52:14] output io_iss_uop_flush_on_commit, // @[issue-slot.scala:52:14] output [2:0] io_iss_uop_csr_cmd, // @[issue-slot.scala:52:14] output io_iss_uop_ldst_is_rs1, // @[issue-slot.scala:52:14] output [5:0] io_iss_uop_ldst, // @[issue-slot.scala:52:14] output [5:0] io_iss_uop_lrs1, // @[issue-slot.scala:52:14] output [5:0] io_iss_uop_lrs2, // @[issue-slot.scala:52:14] output [5:0] io_iss_uop_lrs3, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_dst_rtype, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_lrs1_rtype, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_lrs2_rtype, // @[issue-slot.scala:52:14] output io_iss_uop_frs3_en, // @[issue-slot.scala:52:14] output io_iss_uop_fcn_dw, // @[issue-slot.scala:52:14] output [4:0] io_iss_uop_fcn_op, // @[issue-slot.scala:52:14] output io_iss_uop_fp_val, // @[issue-slot.scala:52:14] output [2:0] io_iss_uop_fp_rm, // @[issue-slot.scala:52:14] output [1:0] io_iss_uop_fp_typ, // @[issue-slot.scala:52:14] output io_iss_uop_xcpt_pf_if, // @[issue-slot.scala:52:14] output io_iss_uop_xcpt_ae_if, // @[issue-slot.scala:52:14] output io_iss_uop_xcpt_ma_if, // @[issue-slot.scala:52:14] output io_iss_uop_bp_debug_if, // @[issue-slot.scala:52:14] output io_iss_uop_bp_xcpt_if, // @[issue-slot.scala:52:14] output [2:0] io_iss_uop_debug_fsrc, // @[issue-slot.scala:52:14] output [2:0] io_iss_uop_debug_tsrc, // @[issue-slot.scala:52:14] input io_in_uop_valid, // @[issue-slot.scala:52:14] input [31:0] io_in_uop_bits_inst, // @[issue-slot.scala:52:14] input [31:0] io_in_uop_bits_debug_inst, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_rvc, // @[issue-slot.scala:52:14] input [39:0] io_in_uop_bits_debug_pc, // @[issue-slot.scala:52:14] input io_in_uop_bits_iq_type_0, // @[issue-slot.scala:52:14] input io_in_uop_bits_iq_type_1, // @[issue-slot.scala:52:14] input io_in_uop_bits_iq_type_2, // @[issue-slot.scala:52:14] input io_in_uop_bits_iq_type_3, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_0, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_1, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_2, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_3, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_4, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_5, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_6, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_7, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_8, // @[issue-slot.scala:52:14] input io_in_uop_bits_fu_code_9, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_iw_p1_speculative_child, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_iw_p2_speculative_child, // @[issue-slot.scala:52:14] input io_in_uop_bits_iw_p1_bypass_hint, // @[issue-slot.scala:52:14] input io_in_uop_bits_iw_p2_bypass_hint, // @[issue-slot.scala:52:14] input io_in_uop_bits_iw_p3_bypass_hint, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_dis_col_sel, // @[issue-slot.scala:52:14] input [11:0] io_in_uop_bits_br_mask, // @[issue-slot.scala:52:14] input [3:0] io_in_uop_bits_br_tag, // @[issue-slot.scala:52:14] input [3:0] io_in_uop_bits_br_type, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_sfb, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_fence, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_fencei, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_sfence, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_amo, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_eret, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_sys_pc2epc, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_rocc, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_mov, // @[issue-slot.scala:52:14] input [4:0] io_in_uop_bits_ftq_idx, // @[issue-slot.scala:52:14] input io_in_uop_bits_edge_inst, // @[issue-slot.scala:52:14] input [5:0] io_in_uop_bits_pc_lob, // @[issue-slot.scala:52:14] input io_in_uop_bits_taken, // @[issue-slot.scala:52:14] input io_in_uop_bits_imm_rename, // @[issue-slot.scala:52:14] input [2:0] io_in_uop_bits_imm_sel, // @[issue-slot.scala:52:14] input [4:0] io_in_uop_bits_pimm, // @[issue-slot.scala:52:14] input [19:0] io_in_uop_bits_imm_packed, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_op1_sel, // @[issue-slot.scala:52:14] input [2:0] io_in_uop_bits_op2_sel, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_ldst, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_wen, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_ren1, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_ren2, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_ren3, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_swap12, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_swap23, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_fromint, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_toint, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_fma, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_div, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_sqrt, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_wflags, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_ctrl_vec, // @[issue-slot.scala:52:14] input [5:0] io_in_uop_bits_rob_idx, // @[issue-slot.scala:52:14] input [3:0] io_in_uop_bits_ldq_idx, // @[issue-slot.scala:52:14] input [3:0] io_in_uop_bits_stq_idx, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_rxq_idx, // @[issue-slot.scala:52:14] input [6:0] io_in_uop_bits_pdst, // @[issue-slot.scala:52:14] input [6:0] io_in_uop_bits_prs1, // @[issue-slot.scala:52:14] input [6:0] io_in_uop_bits_prs2, // @[issue-slot.scala:52:14] input [6:0] io_in_uop_bits_prs3, // @[issue-slot.scala:52:14] input [4:0] io_in_uop_bits_ppred, // @[issue-slot.scala:52:14] input io_in_uop_bits_prs1_busy, // @[issue-slot.scala:52:14] input io_in_uop_bits_prs2_busy, // @[issue-slot.scala:52:14] input io_in_uop_bits_prs3_busy, // @[issue-slot.scala:52:14] input [6:0] io_in_uop_bits_stale_pdst, // @[issue-slot.scala:52:14] input io_in_uop_bits_exception, // @[issue-slot.scala:52:14] input [63:0] io_in_uop_bits_exc_cause, // @[issue-slot.scala:52:14] input [4:0] io_in_uop_bits_mem_cmd, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_mem_size, // @[issue-slot.scala:52:14] input io_in_uop_bits_mem_signed, // @[issue-slot.scala:52:14] input io_in_uop_bits_uses_ldq, // @[issue-slot.scala:52:14] input io_in_uop_bits_uses_stq, // @[issue-slot.scala:52:14] input io_in_uop_bits_is_unique, // @[issue-slot.scala:52:14] input io_in_uop_bits_flush_on_commit, // @[issue-slot.scala:52:14] input [2:0] io_in_uop_bits_csr_cmd, // @[issue-slot.scala:52:14] input io_in_uop_bits_ldst_is_rs1, // @[issue-slot.scala:52:14] input [5:0] io_in_uop_bits_ldst, // @[issue-slot.scala:52:14] input [5:0] io_in_uop_bits_lrs1, // @[issue-slot.scala:52:14] input [5:0] io_in_uop_bits_lrs2, // @[issue-slot.scala:52:14] input [5:0] io_in_uop_bits_lrs3, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_dst_rtype, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_lrs1_rtype, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_lrs2_rtype, // @[issue-slot.scala:52:14] input io_in_uop_bits_frs3_en, // @[issue-slot.scala:52:14] input io_in_uop_bits_fcn_dw, // @[issue-slot.scala:52:14] input [4:0] io_in_uop_bits_fcn_op, // @[issue-slot.scala:52:14] input io_in_uop_bits_fp_val, // @[issue-slot.scala:52:14] input [2:0] io_in_uop_bits_fp_rm, // @[issue-slot.scala:52:14] input [1:0] io_in_uop_bits_fp_typ, // @[issue-slot.scala:52:14] input io_in_uop_bits_xcpt_pf_if, // @[issue-slot.scala:52:14] input io_in_uop_bits_xcpt_ae_if, // @[issue-slot.scala:52:14] input io_in_uop_bits_xcpt_ma_if, // @[issue-slot.scala:52:14] input io_in_uop_bits_bp_debug_if, // @[issue-slot.scala:52:14] input io_in_uop_bits_bp_xcpt_if, // @[issue-slot.scala:52:14] input [2:0] io_in_uop_bits_debug_fsrc, // @[issue-slot.scala:52:14] input [2:0] io_in_uop_bits_debug_tsrc, // @[issue-slot.scala:52:14] output [31:0] io_out_uop_inst, // @[issue-slot.scala:52:14] output [31:0] io_out_uop_debug_inst, // @[issue-slot.scala:52:14] output io_out_uop_is_rvc, // @[issue-slot.scala:52:14] output [39:0] io_out_uop_debug_pc, // @[issue-slot.scala:52:14] output io_out_uop_iq_type_0, // @[issue-slot.scala:52:14] output io_out_uop_iq_type_1, // @[issue-slot.scala:52:14] output io_out_uop_iq_type_2, // @[issue-slot.scala:52:14] output io_out_uop_iq_type_3, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_0, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_1, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_2, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_3, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_4, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_5, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_6, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_7, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_8, // @[issue-slot.scala:52:14] output io_out_uop_fu_code_9, // @[issue-slot.scala:52:14] output io_out_uop_iw_issued, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14] output io_out_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14] output io_out_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14] output io_out_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_dis_col_sel, // @[issue-slot.scala:52:14] output [11:0] io_out_uop_br_mask, // @[issue-slot.scala:52:14] output [3:0] io_out_uop_br_tag, // @[issue-slot.scala:52:14] output [3:0] io_out_uop_br_type, // @[issue-slot.scala:52:14] output io_out_uop_is_sfb, // @[issue-slot.scala:52:14] output io_out_uop_is_fence, // @[issue-slot.scala:52:14] output io_out_uop_is_fencei, // @[issue-slot.scala:52:14] output io_out_uop_is_sfence, // @[issue-slot.scala:52:14] output io_out_uop_is_amo, // @[issue-slot.scala:52:14] output io_out_uop_is_eret, // @[issue-slot.scala:52:14] output io_out_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14] output io_out_uop_is_rocc, // @[issue-slot.scala:52:14] output io_out_uop_is_mov, // @[issue-slot.scala:52:14] output [4:0] io_out_uop_ftq_idx, // @[issue-slot.scala:52:14] output io_out_uop_edge_inst, // @[issue-slot.scala:52:14] output [5:0] io_out_uop_pc_lob, // @[issue-slot.scala:52:14] output io_out_uop_taken, // @[issue-slot.scala:52:14] output io_out_uop_imm_rename, // @[issue-slot.scala:52:14] output [2:0] io_out_uop_imm_sel, // @[issue-slot.scala:52:14] output [4:0] io_out_uop_pimm, // @[issue-slot.scala:52:14] output [19:0] io_out_uop_imm_packed, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_op1_sel, // @[issue-slot.scala:52:14] output [2:0] io_out_uop_op2_sel, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_div, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14] output io_out_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14] output [5:0] io_out_uop_rob_idx, // @[issue-slot.scala:52:14] output [3:0] io_out_uop_ldq_idx, // @[issue-slot.scala:52:14] output [3:0] io_out_uop_stq_idx, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_rxq_idx, // @[issue-slot.scala:52:14] output [6:0] io_out_uop_pdst, // @[issue-slot.scala:52:14] output [6:0] io_out_uop_prs1, // @[issue-slot.scala:52:14] output [6:0] io_out_uop_prs2, // @[issue-slot.scala:52:14] output [6:0] io_out_uop_prs3, // @[issue-slot.scala:52:14] output [4:0] io_out_uop_ppred, // @[issue-slot.scala:52:14] output io_out_uop_prs1_busy, // @[issue-slot.scala:52:14] output io_out_uop_prs2_busy, // @[issue-slot.scala:52:14] output io_out_uop_prs3_busy, // @[issue-slot.scala:52:14] output io_out_uop_ppred_busy, // @[issue-slot.scala:52:14] output [6:0] io_out_uop_stale_pdst, // @[issue-slot.scala:52:14] output io_out_uop_exception, // @[issue-slot.scala:52:14] output [63:0] io_out_uop_exc_cause, // @[issue-slot.scala:52:14] output [4:0] io_out_uop_mem_cmd, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_mem_size, // @[issue-slot.scala:52:14] output io_out_uop_mem_signed, // @[issue-slot.scala:52:14] output io_out_uop_uses_ldq, // @[issue-slot.scala:52:14] output io_out_uop_uses_stq, // @[issue-slot.scala:52:14] output io_out_uop_is_unique, // @[issue-slot.scala:52:14] output io_out_uop_flush_on_commit, // @[issue-slot.scala:52:14] output [2:0] io_out_uop_csr_cmd, // @[issue-slot.scala:52:14] output io_out_uop_ldst_is_rs1, // @[issue-slot.scala:52:14] output [5:0] io_out_uop_ldst, // @[issue-slot.scala:52:14] output [5:0] io_out_uop_lrs1, // @[issue-slot.scala:52:14] output [5:0] io_out_uop_lrs2, // @[issue-slot.scala:52:14] output [5:0] io_out_uop_lrs3, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_dst_rtype, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_lrs1_rtype, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_lrs2_rtype, // @[issue-slot.scala:52:14] output io_out_uop_frs3_en, // @[issue-slot.scala:52:14] output io_out_uop_fcn_dw, // @[issue-slot.scala:52:14] output [4:0] io_out_uop_fcn_op, // @[issue-slot.scala:52:14] output io_out_uop_fp_val, // @[issue-slot.scala:52:14] output [2:0] io_out_uop_fp_rm, // @[issue-slot.scala:52:14] output [1:0] io_out_uop_fp_typ, // @[issue-slot.scala:52:14] output io_out_uop_xcpt_pf_if, // @[issue-slot.scala:52:14] output io_out_uop_xcpt_ae_if, // @[issue-slot.scala:52:14] output io_out_uop_xcpt_ma_if, // @[issue-slot.scala:52:14] output io_out_uop_bp_debug_if, // @[issue-slot.scala:52:14] output io_out_uop_bp_xcpt_if, // @[issue-slot.scala:52:14] output [2:0] io_out_uop_debug_fsrc, // @[issue-slot.scala:52:14] output [2:0] io_out_uop_debug_tsrc, // @[issue-slot.scala:52:14] input [11:0] io_brupdate_b1_resolve_mask, // @[issue-slot.scala:52:14] input [11:0] io_brupdate_b1_mispredict_mask, // @[issue-slot.scala:52:14] input [31:0] io_brupdate_b2_uop_inst, // @[issue-slot.scala:52:14] input [31:0] io_brupdate_b2_uop_debug_inst, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_rvc, // @[issue-slot.scala:52:14] input [39:0] io_brupdate_b2_uop_debug_pc, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iq_type_0, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iq_type_1, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iq_type_2, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iq_type_3, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_0, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_1, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_2, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_3, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_4, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_5, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_6, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_7, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_8, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fu_code_9, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iw_issued, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_dis_col_sel, // @[issue-slot.scala:52:14] input [11:0] io_brupdate_b2_uop_br_mask, // @[issue-slot.scala:52:14] input [3:0] io_brupdate_b2_uop_br_tag, // @[issue-slot.scala:52:14] input [3:0] io_brupdate_b2_uop_br_type, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_sfb, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_fence, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_fencei, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_sfence, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_amo, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_eret, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_rocc, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_mov, // @[issue-slot.scala:52:14] input [4:0] io_brupdate_b2_uop_ftq_idx, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_edge_inst, // @[issue-slot.scala:52:14] input [5:0] io_brupdate_b2_uop_pc_lob, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_taken, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_imm_rename, // @[issue-slot.scala:52:14] input [2:0] io_brupdate_b2_uop_imm_sel, // @[issue-slot.scala:52:14] input [4:0] io_brupdate_b2_uop_pimm, // @[issue-slot.scala:52:14] input [19:0] io_brupdate_b2_uop_imm_packed, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_op1_sel, // @[issue-slot.scala:52:14] input [2:0] io_brupdate_b2_uop_op2_sel, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_div, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14] input [5:0] io_brupdate_b2_uop_rob_idx, // @[issue-slot.scala:52:14] input [3:0] io_brupdate_b2_uop_ldq_idx, // @[issue-slot.scala:52:14] input [3:0] io_brupdate_b2_uop_stq_idx, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_rxq_idx, // @[issue-slot.scala:52:14] input [6:0] io_brupdate_b2_uop_pdst, // @[issue-slot.scala:52:14] input [6:0] io_brupdate_b2_uop_prs1, // @[issue-slot.scala:52:14] input [6:0] io_brupdate_b2_uop_prs2, // @[issue-slot.scala:52:14] input [6:0] io_brupdate_b2_uop_prs3, // @[issue-slot.scala:52:14] input [4:0] io_brupdate_b2_uop_ppred, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_prs1_busy, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_prs2_busy, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_prs3_busy, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_ppred_busy, // @[issue-slot.scala:52:14] input [6:0] io_brupdate_b2_uop_stale_pdst, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_exception, // @[issue-slot.scala:52:14] input [63:0] io_brupdate_b2_uop_exc_cause, // @[issue-slot.scala:52:14] input [4:0] io_brupdate_b2_uop_mem_cmd, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_mem_size, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_mem_signed, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_uses_ldq, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_uses_stq, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_is_unique, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_flush_on_commit, // @[issue-slot.scala:52:14] input [2:0] io_brupdate_b2_uop_csr_cmd, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_ldst_is_rs1, // @[issue-slot.scala:52:14] input [5:0] io_brupdate_b2_uop_ldst, // @[issue-slot.scala:52:14] input [5:0] io_brupdate_b2_uop_lrs1, // @[issue-slot.scala:52:14] input [5:0] io_brupdate_b2_uop_lrs2, // @[issue-slot.scala:52:14] input [5:0] io_brupdate_b2_uop_lrs3, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_dst_rtype, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_frs3_en, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fcn_dw, // @[issue-slot.scala:52:14] input [4:0] io_brupdate_b2_uop_fcn_op, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_fp_val, // @[issue-slot.scala:52:14] input [2:0] io_brupdate_b2_uop_fp_rm, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_uop_fp_typ, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_xcpt_pf_if, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_xcpt_ae_if, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_xcpt_ma_if, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_bp_debug_if, // @[issue-slot.scala:52:14] input io_brupdate_b2_uop_bp_xcpt_if, // @[issue-slot.scala:52:14] input [2:0] io_brupdate_b2_uop_debug_fsrc, // @[issue-slot.scala:52:14] input [2:0] io_brupdate_b2_uop_debug_tsrc, // @[issue-slot.scala:52:14] input io_brupdate_b2_mispredict, // @[issue-slot.scala:52:14] input io_brupdate_b2_taken, // @[issue-slot.scala:52:14] input [2:0] io_brupdate_b2_cfi_type, // @[issue-slot.scala:52:14] input [1:0] io_brupdate_b2_pc_sel, // @[issue-slot.scala:52:14] input [39:0] io_brupdate_b2_jalr_target, // @[issue-slot.scala:52:14] input [20:0] io_brupdate_b2_target_offset, // @[issue-slot.scala:52:14] input io_kill, // @[issue-slot.scala:52:14] input io_clear, // @[issue-slot.scala:52:14] input io_squash_grant, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_valid, // @[issue-slot.scala:52:14] input [31:0] io_wakeup_ports_0_bits_uop_inst, // @[issue-slot.scala:52:14] input [31:0] io_wakeup_ports_0_bits_uop_debug_inst, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_rvc, // @[issue-slot.scala:52:14] input [39:0] io_wakeup_ports_0_bits_uop_debug_pc, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iq_type_0, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iq_type_1, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iq_type_2, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iq_type_3, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_0, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_1, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_2, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_3, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_4, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_5, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_6, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_7, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_8, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fu_code_9, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iw_issued, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14] input [11:0] io_wakeup_ports_0_bits_uop_br_mask, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_0_bits_uop_br_tag, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_0_bits_uop_br_type, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_sfb, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_fence, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_fencei, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_sfence, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_amo, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_eret, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_rocc, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_mov, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_0_bits_uop_ftq_idx, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_edge_inst, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_0_bits_uop_pc_lob, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_taken, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_imm_rename, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_0_bits_uop_imm_sel, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_0_bits_uop_pimm, // @[issue-slot.scala:52:14] input [19:0] io_wakeup_ports_0_bits_uop_imm_packed, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_op1_sel, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_0_bits_uop_op2_sel, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_0_bits_uop_rob_idx, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_0_bits_uop_ldq_idx, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_0_bits_uop_stq_idx, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_rxq_idx, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_0_bits_uop_pdst, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_0_bits_uop_prs1, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_0_bits_uop_prs2, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_0_bits_uop_prs3, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_0_bits_uop_ppred, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_prs1_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_prs2_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_prs3_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_ppred_busy, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_0_bits_uop_stale_pdst, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_exception, // @[issue-slot.scala:52:14] input [63:0] io_wakeup_ports_0_bits_uop_exc_cause, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_0_bits_uop_mem_cmd, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_mem_size, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_mem_signed, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_uses_ldq, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_uses_stq, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_is_unique, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_0_bits_uop_csr_cmd, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_0_bits_uop_ldst, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_0_bits_uop_lrs1, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_0_bits_uop_lrs2, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_0_bits_uop_lrs3, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_dst_rtype, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_frs3_en, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fcn_dw, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_0_bits_uop_fcn_op, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_fp_val, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_0_bits_uop_fp_rm, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_uop_fp_typ, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_0_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_0_bits_uop_debug_tsrc, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_bypassable, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_0_bits_speculative_mask, // @[issue-slot.scala:52:14] input io_wakeup_ports_0_bits_rebusy, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_valid, // @[issue-slot.scala:52:14] input [31:0] io_wakeup_ports_1_bits_uop_inst, // @[issue-slot.scala:52:14] input [31:0] io_wakeup_ports_1_bits_uop_debug_inst, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_rvc, // @[issue-slot.scala:52:14] input [39:0] io_wakeup_ports_1_bits_uop_debug_pc, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iq_type_0, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iq_type_1, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iq_type_2, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iq_type_3, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_0, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_1, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_2, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_3, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_4, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_5, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_6, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_7, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_8, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fu_code_9, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iw_issued, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iw_issued_partial_agen, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14] input [11:0] io_wakeup_ports_1_bits_uop_br_mask, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_1_bits_uop_br_tag, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_1_bits_uop_br_type, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_sfb, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_fence, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_fencei, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_sfence, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_amo, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_eret, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_rocc, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_mov, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_1_bits_uop_ftq_idx, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_edge_inst, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_1_bits_uop_pc_lob, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_taken, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_imm_rename, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_1_bits_uop_imm_sel, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_1_bits_uop_pimm, // @[issue-slot.scala:52:14] input [19:0] io_wakeup_ports_1_bits_uop_imm_packed, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_op1_sel, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_1_bits_uop_op2_sel, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_1_bits_uop_rob_idx, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_1_bits_uop_ldq_idx, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_1_bits_uop_stq_idx, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_rxq_idx, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_1_bits_uop_pdst, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_1_bits_uop_prs1, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_1_bits_uop_prs2, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_1_bits_uop_prs3, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_1_bits_uop_ppred, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_prs1_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_prs2_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_prs3_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_ppred_busy, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_1_bits_uop_stale_pdst, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_exception, // @[issue-slot.scala:52:14] input [63:0] io_wakeup_ports_1_bits_uop_exc_cause, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_1_bits_uop_mem_cmd, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_mem_size, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_mem_signed, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_uses_ldq, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_uses_stq, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_is_unique, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_1_bits_uop_csr_cmd, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_1_bits_uop_ldst, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_1_bits_uop_lrs1, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_1_bits_uop_lrs2, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_1_bits_uop_lrs3, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_dst_rtype, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_frs3_en, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fcn_dw, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_1_bits_uop_fcn_op, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_fp_val, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_1_bits_uop_fp_rm, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_1_bits_uop_fp_typ, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_1_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_1_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_1_bits_uop_debug_tsrc, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_valid, // @[issue-slot.scala:52:14] input [31:0] io_wakeup_ports_2_bits_uop_inst, // @[issue-slot.scala:52:14] input [31:0] io_wakeup_ports_2_bits_uop_debug_inst, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_rvc, // @[issue-slot.scala:52:14] input [39:0] io_wakeup_ports_2_bits_uop_debug_pc, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_iq_type_0, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_iq_type_1, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_iq_type_2, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_iq_type_3, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_0, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_1, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_2, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_3, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_4, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_5, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_6, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_7, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_8, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fu_code_9, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_iw_issued, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14] input [11:0] io_wakeup_ports_2_bits_uop_br_mask, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_2_bits_uop_br_tag, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_2_bits_uop_br_type, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_sfb, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_fence, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_fencei, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_sfence, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_amo, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_eret, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_rocc, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_mov, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_2_bits_uop_ftq_idx, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_edge_inst, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_2_bits_uop_pc_lob, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_taken, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_imm_rename, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_2_bits_uop_imm_sel, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_2_bits_uop_pimm, // @[issue-slot.scala:52:14] input [19:0] io_wakeup_ports_2_bits_uop_imm_packed, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_op1_sel, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_2_bits_uop_op2_sel, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_2_bits_uop_rob_idx, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_2_bits_uop_ldq_idx, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_2_bits_uop_stq_idx, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_rxq_idx, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_2_bits_uop_pdst, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_2_bits_uop_prs1, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_2_bits_uop_prs2, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_2_bits_uop_prs3, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_2_bits_uop_ppred, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_prs1_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_prs2_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_prs3_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_ppred_busy, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_2_bits_uop_stale_pdst, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_exception, // @[issue-slot.scala:52:14] input [63:0] io_wakeup_ports_2_bits_uop_exc_cause, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_2_bits_uop_mem_cmd, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_mem_size, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_mem_signed, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_uses_ldq, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_uses_stq, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_is_unique, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_2_bits_uop_csr_cmd, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_2_bits_uop_ldst, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_2_bits_uop_lrs1, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_2_bits_uop_lrs2, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_2_bits_uop_lrs3, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_dst_rtype, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_frs3_en, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fcn_dw, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_2_bits_uop_fcn_op, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_fp_val, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_2_bits_uop_fp_rm, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_2_bits_uop_fp_typ, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_2_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_2_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_2_bits_uop_debug_tsrc, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_valid, // @[issue-slot.scala:52:14] input [31:0] io_wakeup_ports_3_bits_uop_inst, // @[issue-slot.scala:52:14] input [31:0] io_wakeup_ports_3_bits_uop_debug_inst, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_rvc, // @[issue-slot.scala:52:14] input [39:0] io_wakeup_ports_3_bits_uop_debug_pc, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_iq_type_0, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_iq_type_1, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_iq_type_2, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_iq_type_3, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_0, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_1, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_2, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_3, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_4, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_5, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_6, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_7, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_8, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fu_code_9, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_iw_issued, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_iw_p1_speculative_child, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_iw_p2_speculative_child, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_iw_p1_bypass_hint, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_iw_p2_bypass_hint, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_iw_p3_bypass_hint, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_dis_col_sel, // @[issue-slot.scala:52:14] input [11:0] io_wakeup_ports_3_bits_uop_br_mask, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_3_bits_uop_br_tag, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_3_bits_uop_br_type, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_sfb, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_fence, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_fencei, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_sfence, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_amo, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_eret, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_sys_pc2epc, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_rocc, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_mov, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_3_bits_uop_ftq_idx, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_edge_inst, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_3_bits_uop_pc_lob, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_taken, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_imm_rename, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_3_bits_uop_imm_sel, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_3_bits_uop_pimm, // @[issue-slot.scala:52:14] input [19:0] io_wakeup_ports_3_bits_uop_imm_packed, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_op1_sel, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_3_bits_uop_op2_sel, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_ldst, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_wen, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_ren1, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_ren2, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_ren3, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_swap12, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_swap23, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_fp_ctrl_typeTagIn, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_fp_ctrl_typeTagOut, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_fromint, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_toint, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_fastpipe, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_fma, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_div, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_sqrt, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_wflags, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_ctrl_vec, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_3_bits_uop_rob_idx, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_3_bits_uop_ldq_idx, // @[issue-slot.scala:52:14] input [3:0] io_wakeup_ports_3_bits_uop_stq_idx, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_rxq_idx, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_3_bits_uop_pdst, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_3_bits_uop_prs1, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_3_bits_uop_prs2, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_3_bits_uop_prs3, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_3_bits_uop_ppred, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_prs1_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_prs2_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_prs3_busy, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_ppred_busy, // @[issue-slot.scala:52:14] input [6:0] io_wakeup_ports_3_bits_uop_stale_pdst, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_exception, // @[issue-slot.scala:52:14] input [63:0] io_wakeup_ports_3_bits_uop_exc_cause, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_3_bits_uop_mem_cmd, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_mem_size, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_mem_signed, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_uses_ldq, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_uses_stq, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_is_unique, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_flush_on_commit, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_3_bits_uop_csr_cmd, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_ldst_is_rs1, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_3_bits_uop_ldst, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_3_bits_uop_lrs1, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_3_bits_uop_lrs2, // @[issue-slot.scala:52:14] input [5:0] io_wakeup_ports_3_bits_uop_lrs3, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_dst_rtype, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_lrs1_rtype, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_lrs2_rtype, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_frs3_en, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fcn_dw, // @[issue-slot.scala:52:14] input [4:0] io_wakeup_ports_3_bits_uop_fcn_op, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_fp_val, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_3_bits_uop_fp_rm, // @[issue-slot.scala:52:14] input [1:0] io_wakeup_ports_3_bits_uop_fp_typ, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_xcpt_pf_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_xcpt_ae_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_xcpt_ma_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_bp_debug_if, // @[issue-slot.scala:52:14] input io_wakeup_ports_3_bits_uop_bp_xcpt_if, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_3_bits_uop_debug_fsrc, // @[issue-slot.scala:52:14] input [2:0] io_wakeup_ports_3_bits_uop_debug_tsrc, // @[issue-slot.scala:52:14] input [1:0] io_child_rebusys // @[issue-slot.scala:52:14] ); wire [11:0] next_uop_out_br_mask; // @[util.scala:104:23] wire io_grant_0 = io_grant; // @[issue-slot.scala:49:7] wire io_in_uop_valid_0 = io_in_uop_valid; // @[issue-slot.scala:49:7] wire [31:0] io_in_uop_bits_inst_0 = io_in_uop_bits_inst; // @[issue-slot.scala:49:7] wire [31:0] io_in_uop_bits_debug_inst_0 = io_in_uop_bits_debug_inst; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_rvc_0 = io_in_uop_bits_is_rvc; // @[issue-slot.scala:49:7] wire [39:0] io_in_uop_bits_debug_pc_0 = io_in_uop_bits_debug_pc; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iq_type_0_0 = io_in_uop_bits_iq_type_0; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iq_type_1_0 = io_in_uop_bits_iq_type_1; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iq_type_2_0 = io_in_uop_bits_iq_type_2; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iq_type_3_0 = io_in_uop_bits_iq_type_3; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_0_0 = io_in_uop_bits_fu_code_0; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_1_0 = io_in_uop_bits_fu_code_1; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_2_0 = io_in_uop_bits_fu_code_2; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_3_0 = io_in_uop_bits_fu_code_3; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_4_0 = io_in_uop_bits_fu_code_4; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_5_0 = io_in_uop_bits_fu_code_5; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_6_0 = io_in_uop_bits_fu_code_6; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_7_0 = io_in_uop_bits_fu_code_7; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_8_0 = io_in_uop_bits_fu_code_8; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fu_code_9_0 = io_in_uop_bits_fu_code_9; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_iw_p1_speculative_child_0 = io_in_uop_bits_iw_p1_speculative_child; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_iw_p2_speculative_child_0 = io_in_uop_bits_iw_p2_speculative_child; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iw_p1_bypass_hint_0 = io_in_uop_bits_iw_p1_bypass_hint; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iw_p2_bypass_hint_0 = io_in_uop_bits_iw_p2_bypass_hint; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iw_p3_bypass_hint_0 = io_in_uop_bits_iw_p3_bypass_hint; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_dis_col_sel_0 = io_in_uop_bits_dis_col_sel; // @[issue-slot.scala:49:7] wire [11:0] io_in_uop_bits_br_mask_0 = io_in_uop_bits_br_mask; // @[issue-slot.scala:49:7] wire [3:0] io_in_uop_bits_br_tag_0 = io_in_uop_bits_br_tag; // @[issue-slot.scala:49:7] wire [3:0] io_in_uop_bits_br_type_0 = io_in_uop_bits_br_type; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_sfb_0 = io_in_uop_bits_is_sfb; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_fence_0 = io_in_uop_bits_is_fence; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_fencei_0 = io_in_uop_bits_is_fencei; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_sfence_0 = io_in_uop_bits_is_sfence; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_amo_0 = io_in_uop_bits_is_amo; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_eret_0 = io_in_uop_bits_is_eret; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_sys_pc2epc_0 = io_in_uop_bits_is_sys_pc2epc; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_rocc_0 = io_in_uop_bits_is_rocc; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_mov_0 = io_in_uop_bits_is_mov; // @[issue-slot.scala:49:7] wire [4:0] io_in_uop_bits_ftq_idx_0 = io_in_uop_bits_ftq_idx; // @[issue-slot.scala:49:7] wire io_in_uop_bits_edge_inst_0 = io_in_uop_bits_edge_inst; // @[issue-slot.scala:49:7] wire [5:0] io_in_uop_bits_pc_lob_0 = io_in_uop_bits_pc_lob; // @[issue-slot.scala:49:7] wire io_in_uop_bits_taken_0 = io_in_uop_bits_taken; // @[issue-slot.scala:49:7] wire io_in_uop_bits_imm_rename_0 = io_in_uop_bits_imm_rename; // @[issue-slot.scala:49:7] wire [2:0] io_in_uop_bits_imm_sel_0 = io_in_uop_bits_imm_sel; // @[issue-slot.scala:49:7] wire [4:0] io_in_uop_bits_pimm_0 = io_in_uop_bits_pimm; // @[issue-slot.scala:49:7] wire [19:0] io_in_uop_bits_imm_packed_0 = io_in_uop_bits_imm_packed; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_op1_sel_0 = io_in_uop_bits_op1_sel; // @[issue-slot.scala:49:7] wire [2:0] io_in_uop_bits_op2_sel_0 = io_in_uop_bits_op2_sel; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_ldst_0 = io_in_uop_bits_fp_ctrl_ldst; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_wen_0 = io_in_uop_bits_fp_ctrl_wen; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_ren1_0 = io_in_uop_bits_fp_ctrl_ren1; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_ren2_0 = io_in_uop_bits_fp_ctrl_ren2; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_ren3_0 = io_in_uop_bits_fp_ctrl_ren3; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_swap12_0 = io_in_uop_bits_fp_ctrl_swap12; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_swap23_0 = io_in_uop_bits_fp_ctrl_swap23; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_fp_ctrl_typeTagIn_0 = io_in_uop_bits_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_fp_ctrl_typeTagOut_0 = io_in_uop_bits_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_fromint_0 = io_in_uop_bits_fp_ctrl_fromint; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_toint_0 = io_in_uop_bits_fp_ctrl_toint; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_fastpipe_0 = io_in_uop_bits_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_fma_0 = io_in_uop_bits_fp_ctrl_fma; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_div_0 = io_in_uop_bits_fp_ctrl_div; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_sqrt_0 = io_in_uop_bits_fp_ctrl_sqrt; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_wflags_0 = io_in_uop_bits_fp_ctrl_wflags; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_ctrl_vec_0 = io_in_uop_bits_fp_ctrl_vec; // @[issue-slot.scala:49:7] wire [5:0] io_in_uop_bits_rob_idx_0 = io_in_uop_bits_rob_idx; // @[issue-slot.scala:49:7] wire [3:0] io_in_uop_bits_ldq_idx_0 = io_in_uop_bits_ldq_idx; // @[issue-slot.scala:49:7] wire [3:0] io_in_uop_bits_stq_idx_0 = io_in_uop_bits_stq_idx; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_rxq_idx_0 = io_in_uop_bits_rxq_idx; // @[issue-slot.scala:49:7] wire [6:0] io_in_uop_bits_pdst_0 = io_in_uop_bits_pdst; // @[issue-slot.scala:49:7] wire [6:0] io_in_uop_bits_prs1_0 = io_in_uop_bits_prs1; // @[issue-slot.scala:49:7] wire [6:0] io_in_uop_bits_prs2_0 = io_in_uop_bits_prs2; // @[issue-slot.scala:49:7] wire [6:0] io_in_uop_bits_prs3_0 = io_in_uop_bits_prs3; // @[issue-slot.scala:49:7] wire [4:0] io_in_uop_bits_ppred_0 = io_in_uop_bits_ppred; // @[issue-slot.scala:49:7] wire io_in_uop_bits_prs1_busy_0 = io_in_uop_bits_prs1_busy; // @[issue-slot.scala:49:7] wire io_in_uop_bits_prs2_busy_0 = io_in_uop_bits_prs2_busy; // @[issue-slot.scala:49:7] wire io_in_uop_bits_prs3_busy_0 = io_in_uop_bits_prs3_busy; // @[issue-slot.scala:49:7] wire [6:0] io_in_uop_bits_stale_pdst_0 = io_in_uop_bits_stale_pdst; // @[issue-slot.scala:49:7] wire io_in_uop_bits_exception_0 = io_in_uop_bits_exception; // @[issue-slot.scala:49:7] wire [63:0] io_in_uop_bits_exc_cause_0 = io_in_uop_bits_exc_cause; // @[issue-slot.scala:49:7] wire [4:0] io_in_uop_bits_mem_cmd_0 = io_in_uop_bits_mem_cmd; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_mem_size_0 = io_in_uop_bits_mem_size; // @[issue-slot.scala:49:7] wire io_in_uop_bits_mem_signed_0 = io_in_uop_bits_mem_signed; // @[issue-slot.scala:49:7] wire io_in_uop_bits_uses_ldq_0 = io_in_uop_bits_uses_ldq; // @[issue-slot.scala:49:7] wire io_in_uop_bits_uses_stq_0 = io_in_uop_bits_uses_stq; // @[issue-slot.scala:49:7] wire io_in_uop_bits_is_unique_0 = io_in_uop_bits_is_unique; // @[issue-slot.scala:49:7] wire io_in_uop_bits_flush_on_commit_0 = io_in_uop_bits_flush_on_commit; // @[issue-slot.scala:49:7] wire [2:0] io_in_uop_bits_csr_cmd_0 = io_in_uop_bits_csr_cmd; // @[issue-slot.scala:49:7] wire io_in_uop_bits_ldst_is_rs1_0 = io_in_uop_bits_ldst_is_rs1; // @[issue-slot.scala:49:7] wire [5:0] io_in_uop_bits_ldst_0 = io_in_uop_bits_ldst; // @[issue-slot.scala:49:7] wire [5:0] io_in_uop_bits_lrs1_0 = io_in_uop_bits_lrs1; // @[issue-slot.scala:49:7] wire [5:0] io_in_uop_bits_lrs2_0 = io_in_uop_bits_lrs2; // @[issue-slot.scala:49:7] wire [5:0] io_in_uop_bits_lrs3_0 = io_in_uop_bits_lrs3; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_dst_rtype_0 = io_in_uop_bits_dst_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_lrs1_rtype_0 = io_in_uop_bits_lrs1_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_lrs2_rtype_0 = io_in_uop_bits_lrs2_rtype; // @[issue-slot.scala:49:7] wire io_in_uop_bits_frs3_en_0 = io_in_uop_bits_frs3_en; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fcn_dw_0 = io_in_uop_bits_fcn_dw; // @[issue-slot.scala:49:7] wire [4:0] io_in_uop_bits_fcn_op_0 = io_in_uop_bits_fcn_op; // @[issue-slot.scala:49:7] wire io_in_uop_bits_fp_val_0 = io_in_uop_bits_fp_val; // @[issue-slot.scala:49:7] wire [2:0] io_in_uop_bits_fp_rm_0 = io_in_uop_bits_fp_rm; // @[issue-slot.scala:49:7] wire [1:0] io_in_uop_bits_fp_typ_0 = io_in_uop_bits_fp_typ; // @[issue-slot.scala:49:7] wire io_in_uop_bits_xcpt_pf_if_0 = io_in_uop_bits_xcpt_pf_if; // @[issue-slot.scala:49:7] wire io_in_uop_bits_xcpt_ae_if_0 = io_in_uop_bits_xcpt_ae_if; // @[issue-slot.scala:49:7] wire io_in_uop_bits_xcpt_ma_if_0 = io_in_uop_bits_xcpt_ma_if; // @[issue-slot.scala:49:7] wire io_in_uop_bits_bp_debug_if_0 = io_in_uop_bits_bp_debug_if; // @[issue-slot.scala:49:7] wire io_in_uop_bits_bp_xcpt_if_0 = io_in_uop_bits_bp_xcpt_if; // @[issue-slot.scala:49:7] wire [2:0] io_in_uop_bits_debug_fsrc_0 = io_in_uop_bits_debug_fsrc; // @[issue-slot.scala:49:7] wire [2:0] io_in_uop_bits_debug_tsrc_0 = io_in_uop_bits_debug_tsrc; // @[issue-slot.scala:49:7] wire [11:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[issue-slot.scala:49:7] wire [11:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[issue-slot.scala:49:7] wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[issue-slot.scala:49:7] wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[issue-slot.scala:49:7] wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iq_type_0_0 = io_brupdate_b2_uop_iq_type_0; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iq_type_1_0 = io_brupdate_b2_uop_iq_type_1; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iq_type_2_0 = io_brupdate_b2_uop_iq_type_2; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iq_type_3_0 = io_brupdate_b2_uop_iq_type_3; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_0_0 = io_brupdate_b2_uop_fu_code_0; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_1_0 = io_brupdate_b2_uop_fu_code_1; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_2_0 = io_brupdate_b2_uop_fu_code_2; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_3_0 = io_brupdate_b2_uop_fu_code_3; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_4_0 = io_brupdate_b2_uop_fu_code_4; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_5_0 = io_brupdate_b2_uop_fu_code_5; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_6_0 = io_brupdate_b2_uop_fu_code_6; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_7_0 = io_brupdate_b2_uop_fu_code_7; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_8_0 = io_brupdate_b2_uop_fu_code_8; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fu_code_9_0 = io_brupdate_b2_uop_fu_code_9; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iw_issued_0 = io_brupdate_b2_uop_iw_issued; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iw_issued_partial_agen_0 = io_brupdate_b2_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iw_issued_partial_dgen_0 = io_brupdate_b2_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_iw_p1_speculative_child_0 = io_brupdate_b2_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_iw_p2_speculative_child_0 = io_brupdate_b2_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iw_p1_bypass_hint_0 = io_brupdate_b2_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iw_p2_bypass_hint_0 = io_brupdate_b2_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_iw_p3_bypass_hint_0 = io_brupdate_b2_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_dis_col_sel_0 = io_brupdate_b2_uop_dis_col_sel; // @[issue-slot.scala:49:7] wire [11:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[issue-slot.scala:49:7] wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[issue-slot.scala:49:7] wire [3:0] io_brupdate_b2_uop_br_type_0 = io_brupdate_b2_uop_br_type; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_sfence_0 = io_brupdate_b2_uop_is_sfence; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_eret_0 = io_brupdate_b2_uop_is_eret; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_rocc_0 = io_brupdate_b2_uop_is_rocc; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_mov_0 = io_brupdate_b2_uop_is_mov; // @[issue-slot.scala:49:7] wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[issue-slot.scala:49:7] wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_imm_rename_0 = io_brupdate_b2_uop_imm_rename; // @[issue-slot.scala:49:7] wire [2:0] io_brupdate_b2_uop_imm_sel_0 = io_brupdate_b2_uop_imm_sel; // @[issue-slot.scala:49:7] wire [4:0] io_brupdate_b2_uop_pimm_0 = io_brupdate_b2_uop_pimm; // @[issue-slot.scala:49:7] wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_op1_sel_0 = io_brupdate_b2_uop_op1_sel; // @[issue-slot.scala:49:7] wire [2:0] io_brupdate_b2_uop_op2_sel_0 = io_brupdate_b2_uop_op2_sel; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_ldst_0 = io_brupdate_b2_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_wen_0 = io_brupdate_b2_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_ren1_0 = io_brupdate_b2_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_ren2_0 = io_brupdate_b2_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_ren3_0 = io_brupdate_b2_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_swap12_0 = io_brupdate_b2_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_swap23_0 = io_brupdate_b2_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagIn_0 = io_brupdate_b2_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_fp_ctrl_typeTagOut_0 = io_brupdate_b2_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_fromint_0 = io_brupdate_b2_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_toint_0 = io_brupdate_b2_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_fastpipe_0 = io_brupdate_b2_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_fma_0 = io_brupdate_b2_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_div_0 = io_brupdate_b2_uop_fp_ctrl_div; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_sqrt_0 = io_brupdate_b2_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_wflags_0 = io_brupdate_b2_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_ctrl_vec_0 = io_brupdate_b2_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7] wire [5:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[issue-slot.scala:49:7] wire [3:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[issue-slot.scala:49:7] wire [3:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[issue-slot.scala:49:7] wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[issue-slot.scala:49:7] wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[issue-slot.scala:49:7] wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[issue-slot.scala:49:7] wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[issue-slot.scala:49:7] wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[issue-slot.scala:49:7] wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[issue-slot.scala:49:7] wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[issue-slot.scala:49:7] wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[issue-slot.scala:49:7] wire [2:0] io_brupdate_b2_uop_csr_cmd_0 = io_brupdate_b2_uop_csr_cmd; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[issue-slot.scala:49:7] wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[issue-slot.scala:49:7] wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[issue-slot.scala:49:7] wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[issue-slot.scala:49:7] wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fcn_dw_0 = io_brupdate_b2_uop_fcn_dw; // @[issue-slot.scala:49:7] wire [4:0] io_brupdate_b2_uop_fcn_op_0 = io_brupdate_b2_uop_fcn_op; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[issue-slot.scala:49:7] wire [2:0] io_brupdate_b2_uop_fp_rm_0 = io_brupdate_b2_uop_fp_rm; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_uop_fp_typ_0 = io_brupdate_b2_uop_fp_typ; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[issue-slot.scala:49:7] wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[issue-slot.scala:49:7] wire [2:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[issue-slot.scala:49:7] wire [2:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[issue-slot.scala:49:7] wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[issue-slot.scala:49:7] wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[issue-slot.scala:49:7] wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[issue-slot.scala:49:7] wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[issue-slot.scala:49:7] wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[issue-slot.scala:49:7] wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[issue-slot.scala:49:7] wire io_kill_0 = io_kill; // @[issue-slot.scala:49:7] wire io_clear_0 = io_clear; // @[issue-slot.scala:49:7] wire io_squash_grant_0 = io_squash_grant; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_valid_0 = io_wakeup_ports_0_valid; // @[issue-slot.scala:49:7] wire [31:0] io_wakeup_ports_0_bits_uop_inst_0 = io_wakeup_ports_0_bits_uop_inst; // @[issue-slot.scala:49:7] wire [31:0] io_wakeup_ports_0_bits_uop_debug_inst_0 = io_wakeup_ports_0_bits_uop_debug_inst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_rvc_0 = io_wakeup_ports_0_bits_uop_is_rvc; // @[issue-slot.scala:49:7] wire [39:0] io_wakeup_ports_0_bits_uop_debug_pc_0 = io_wakeup_ports_0_bits_uop_debug_pc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iq_type_0_0 = io_wakeup_ports_0_bits_uop_iq_type_0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iq_type_1_0 = io_wakeup_ports_0_bits_uop_iq_type_1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iq_type_2_0 = io_wakeup_ports_0_bits_uop_iq_type_2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iq_type_3_0 = io_wakeup_ports_0_bits_uop_iq_type_3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_0_0 = io_wakeup_ports_0_bits_uop_fu_code_0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_1_0 = io_wakeup_ports_0_bits_uop_fu_code_1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_2_0 = io_wakeup_ports_0_bits_uop_fu_code_2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_3_0 = io_wakeup_ports_0_bits_uop_fu_code_3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_4_0 = io_wakeup_ports_0_bits_uop_fu_code_4; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_5_0 = io_wakeup_ports_0_bits_uop_fu_code_5; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_6_0 = io_wakeup_ports_0_bits_uop_fu_code_6; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_7_0 = io_wakeup_ports_0_bits_uop_fu_code_7; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_8_0 = io_wakeup_ports_0_bits_uop_fu_code_8; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fu_code_9_0 = io_wakeup_ports_0_bits_uop_fu_code_9; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iw_issued_0 = io_wakeup_ports_0_bits_uop_iw_issued; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iw_issued_partial_agen_0 = io_wakeup_ports_0_bits_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen_0 = io_wakeup_ports_0_bits_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_0_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_0_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_0_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_dis_col_sel_0 = io_wakeup_ports_0_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7] wire [11:0] io_wakeup_ports_0_bits_uop_br_mask_0 = io_wakeup_ports_0_bits_uop_br_mask; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_0_bits_uop_br_tag_0 = io_wakeup_ports_0_bits_uop_br_tag; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_0_bits_uop_br_type_0 = io_wakeup_ports_0_bits_uop_br_type; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_sfb_0 = io_wakeup_ports_0_bits_uop_is_sfb; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_fence_0 = io_wakeup_ports_0_bits_uop_is_fence; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_fencei_0 = io_wakeup_ports_0_bits_uop_is_fencei; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_sfence_0 = io_wakeup_ports_0_bits_uop_is_sfence; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_amo_0 = io_wakeup_ports_0_bits_uop_is_amo; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_eret_0 = io_wakeup_ports_0_bits_uop_is_eret; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_0_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_rocc_0 = io_wakeup_ports_0_bits_uop_is_rocc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_mov_0 = io_wakeup_ports_0_bits_uop_is_mov; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_0_bits_uop_ftq_idx_0 = io_wakeup_ports_0_bits_uop_ftq_idx; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_edge_inst_0 = io_wakeup_ports_0_bits_uop_edge_inst; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_0_bits_uop_pc_lob_0 = io_wakeup_ports_0_bits_uop_pc_lob; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_taken_0 = io_wakeup_ports_0_bits_uop_taken; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_imm_rename_0 = io_wakeup_ports_0_bits_uop_imm_rename; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_0_bits_uop_imm_sel_0 = io_wakeup_ports_0_bits_uop_imm_sel; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_0_bits_uop_pimm_0 = io_wakeup_ports_0_bits_uop_pimm; // @[issue-slot.scala:49:7] wire [19:0] io_wakeup_ports_0_bits_uop_imm_packed_0 = io_wakeup_ports_0_bits_uop_imm_packed; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_op1_sel_0 = io_wakeup_ports_0_bits_uop_op1_sel; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_0_bits_uop_op2_sel_0 = io_wakeup_ports_0_bits_uop_op2_sel; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_0_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_0_bits_uop_rob_idx_0 = io_wakeup_ports_0_bits_uop_rob_idx; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_0_bits_uop_ldq_idx_0 = io_wakeup_ports_0_bits_uop_ldq_idx; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_0_bits_uop_stq_idx_0 = io_wakeup_ports_0_bits_uop_stq_idx; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_rxq_idx_0 = io_wakeup_ports_0_bits_uop_rxq_idx; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_0_bits_uop_pdst_0 = io_wakeup_ports_0_bits_uop_pdst; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_0_bits_uop_prs1_0 = io_wakeup_ports_0_bits_uop_prs1; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_0_bits_uop_prs2_0 = io_wakeup_ports_0_bits_uop_prs2; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_0_bits_uop_prs3_0 = io_wakeup_ports_0_bits_uop_prs3; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_0_bits_uop_ppred_0 = io_wakeup_ports_0_bits_uop_ppred; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_prs1_busy_0 = io_wakeup_ports_0_bits_uop_prs1_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_prs2_busy_0 = io_wakeup_ports_0_bits_uop_prs2_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_prs3_busy_0 = io_wakeup_ports_0_bits_uop_prs3_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_ppred_busy_0 = io_wakeup_ports_0_bits_uop_ppred_busy; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_0_bits_uop_stale_pdst_0 = io_wakeup_ports_0_bits_uop_stale_pdst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_exception_0 = io_wakeup_ports_0_bits_uop_exception; // @[issue-slot.scala:49:7] wire [63:0] io_wakeup_ports_0_bits_uop_exc_cause_0 = io_wakeup_ports_0_bits_uop_exc_cause; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_0_bits_uop_mem_cmd_0 = io_wakeup_ports_0_bits_uop_mem_cmd; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_mem_size_0 = io_wakeup_ports_0_bits_uop_mem_size; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_mem_signed_0 = io_wakeup_ports_0_bits_uop_mem_signed; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_uses_ldq_0 = io_wakeup_ports_0_bits_uop_uses_ldq; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_uses_stq_0 = io_wakeup_ports_0_bits_uop_uses_stq; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_is_unique_0 = io_wakeup_ports_0_bits_uop_is_unique; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_flush_on_commit_0 = io_wakeup_ports_0_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_0_bits_uop_csr_cmd_0 = io_wakeup_ports_0_bits_uop_csr_cmd; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_0_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_0_bits_uop_ldst_0 = io_wakeup_ports_0_bits_uop_ldst; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_0_bits_uop_lrs1_0 = io_wakeup_ports_0_bits_uop_lrs1; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_0_bits_uop_lrs2_0 = io_wakeup_ports_0_bits_uop_lrs2; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_0_bits_uop_lrs3_0 = io_wakeup_ports_0_bits_uop_lrs3; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_dst_rtype_0 = io_wakeup_ports_0_bits_uop_dst_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_lrs1_rtype_0 = io_wakeup_ports_0_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_lrs2_rtype_0 = io_wakeup_ports_0_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_frs3_en_0 = io_wakeup_ports_0_bits_uop_frs3_en; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fcn_dw_0 = io_wakeup_ports_0_bits_uop_fcn_dw; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_0_bits_uop_fcn_op_0 = io_wakeup_ports_0_bits_uop_fcn_op; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_fp_val_0 = io_wakeup_ports_0_bits_uop_fp_val; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_0_bits_uop_fp_rm_0 = io_wakeup_ports_0_bits_uop_fp_rm; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_uop_fp_typ_0 = io_wakeup_ports_0_bits_uop_fp_typ; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_0_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_0_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_0_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_bp_debug_if_0 = io_wakeup_ports_0_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_0_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_0_bits_uop_debug_fsrc_0 = io_wakeup_ports_0_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_0_bits_uop_debug_tsrc_0 = io_wakeup_ports_0_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_bypassable_0 = io_wakeup_ports_0_bits_bypassable; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_0_bits_speculative_mask_0 = io_wakeup_ports_0_bits_speculative_mask; // @[issue-slot.scala:49:7] wire io_wakeup_ports_0_bits_rebusy_0 = io_wakeup_ports_0_bits_rebusy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_valid_0 = io_wakeup_ports_1_valid; // @[issue-slot.scala:49:7] wire [31:0] io_wakeup_ports_1_bits_uop_inst_0 = io_wakeup_ports_1_bits_uop_inst; // @[issue-slot.scala:49:7] wire [31:0] io_wakeup_ports_1_bits_uop_debug_inst_0 = io_wakeup_ports_1_bits_uop_debug_inst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_rvc_0 = io_wakeup_ports_1_bits_uop_is_rvc; // @[issue-slot.scala:49:7] wire [39:0] io_wakeup_ports_1_bits_uop_debug_pc_0 = io_wakeup_ports_1_bits_uop_debug_pc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iq_type_0_0 = io_wakeup_ports_1_bits_uop_iq_type_0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iq_type_1_0 = io_wakeup_ports_1_bits_uop_iq_type_1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iq_type_2_0 = io_wakeup_ports_1_bits_uop_iq_type_2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iq_type_3_0 = io_wakeup_ports_1_bits_uop_iq_type_3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_0_0 = io_wakeup_ports_1_bits_uop_fu_code_0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_1_0 = io_wakeup_ports_1_bits_uop_fu_code_1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_2_0 = io_wakeup_ports_1_bits_uop_fu_code_2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_3_0 = io_wakeup_ports_1_bits_uop_fu_code_3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_4_0 = io_wakeup_ports_1_bits_uop_fu_code_4; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_5_0 = io_wakeup_ports_1_bits_uop_fu_code_5; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_6_0 = io_wakeup_ports_1_bits_uop_fu_code_6; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_7_0 = io_wakeup_ports_1_bits_uop_fu_code_7; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_8_0 = io_wakeup_ports_1_bits_uop_fu_code_8; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fu_code_9_0 = io_wakeup_ports_1_bits_uop_fu_code_9; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iw_issued_0 = io_wakeup_ports_1_bits_uop_iw_issued; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iw_issued_partial_agen_0 = io_wakeup_ports_1_bits_uop_iw_issued_partial_agen; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen_0 = io_wakeup_ports_1_bits_uop_iw_issued_partial_dgen; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_1_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_1_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_1_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_dis_col_sel_0 = io_wakeup_ports_1_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7] wire [11:0] io_wakeup_ports_1_bits_uop_br_mask_0 = io_wakeup_ports_1_bits_uop_br_mask; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_1_bits_uop_br_tag_0 = io_wakeup_ports_1_bits_uop_br_tag; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_1_bits_uop_br_type_0 = io_wakeup_ports_1_bits_uop_br_type; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_sfb_0 = io_wakeup_ports_1_bits_uop_is_sfb; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_fence_0 = io_wakeup_ports_1_bits_uop_is_fence; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_fencei_0 = io_wakeup_ports_1_bits_uop_is_fencei; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_sfence_0 = io_wakeup_ports_1_bits_uop_is_sfence; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_amo_0 = io_wakeup_ports_1_bits_uop_is_amo; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_eret_0 = io_wakeup_ports_1_bits_uop_is_eret; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_1_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_rocc_0 = io_wakeup_ports_1_bits_uop_is_rocc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_mov_0 = io_wakeup_ports_1_bits_uop_is_mov; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_1_bits_uop_ftq_idx_0 = io_wakeup_ports_1_bits_uop_ftq_idx; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_edge_inst_0 = io_wakeup_ports_1_bits_uop_edge_inst; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_1_bits_uop_pc_lob_0 = io_wakeup_ports_1_bits_uop_pc_lob; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_taken_0 = io_wakeup_ports_1_bits_uop_taken; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_imm_rename_0 = io_wakeup_ports_1_bits_uop_imm_rename; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_1_bits_uop_imm_sel_0 = io_wakeup_ports_1_bits_uop_imm_sel; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_1_bits_uop_pimm_0 = io_wakeup_ports_1_bits_uop_pimm; // @[issue-slot.scala:49:7] wire [19:0] io_wakeup_ports_1_bits_uop_imm_packed_0 = io_wakeup_ports_1_bits_uop_imm_packed; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_op1_sel_0 = io_wakeup_ports_1_bits_uop_op1_sel; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_1_bits_uop_op2_sel_0 = io_wakeup_ports_1_bits_uop_op2_sel; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_1_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_1_bits_uop_rob_idx_0 = io_wakeup_ports_1_bits_uop_rob_idx; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_1_bits_uop_ldq_idx_0 = io_wakeup_ports_1_bits_uop_ldq_idx; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_1_bits_uop_stq_idx_0 = io_wakeup_ports_1_bits_uop_stq_idx; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_rxq_idx_0 = io_wakeup_ports_1_bits_uop_rxq_idx; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_1_bits_uop_pdst_0 = io_wakeup_ports_1_bits_uop_pdst; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_1_bits_uop_prs1_0 = io_wakeup_ports_1_bits_uop_prs1; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_1_bits_uop_prs2_0 = io_wakeup_ports_1_bits_uop_prs2; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_1_bits_uop_prs3_0 = io_wakeup_ports_1_bits_uop_prs3; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_1_bits_uop_ppred_0 = io_wakeup_ports_1_bits_uop_ppred; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_prs1_busy_0 = io_wakeup_ports_1_bits_uop_prs1_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_prs2_busy_0 = io_wakeup_ports_1_bits_uop_prs2_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_prs3_busy_0 = io_wakeup_ports_1_bits_uop_prs3_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_ppred_busy_0 = io_wakeup_ports_1_bits_uop_ppred_busy; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_1_bits_uop_stale_pdst_0 = io_wakeup_ports_1_bits_uop_stale_pdst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_exception_0 = io_wakeup_ports_1_bits_uop_exception; // @[issue-slot.scala:49:7] wire [63:0] io_wakeup_ports_1_bits_uop_exc_cause_0 = io_wakeup_ports_1_bits_uop_exc_cause; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_1_bits_uop_mem_cmd_0 = io_wakeup_ports_1_bits_uop_mem_cmd; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_mem_size_0 = io_wakeup_ports_1_bits_uop_mem_size; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_mem_signed_0 = io_wakeup_ports_1_bits_uop_mem_signed; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_uses_ldq_0 = io_wakeup_ports_1_bits_uop_uses_ldq; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_uses_stq_0 = io_wakeup_ports_1_bits_uop_uses_stq; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_is_unique_0 = io_wakeup_ports_1_bits_uop_is_unique; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_flush_on_commit_0 = io_wakeup_ports_1_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_1_bits_uop_csr_cmd_0 = io_wakeup_ports_1_bits_uop_csr_cmd; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_1_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_1_bits_uop_ldst_0 = io_wakeup_ports_1_bits_uop_ldst; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_1_bits_uop_lrs1_0 = io_wakeup_ports_1_bits_uop_lrs1; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_1_bits_uop_lrs2_0 = io_wakeup_ports_1_bits_uop_lrs2; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_1_bits_uop_lrs3_0 = io_wakeup_ports_1_bits_uop_lrs3; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_dst_rtype_0 = io_wakeup_ports_1_bits_uop_dst_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_lrs1_rtype_0 = io_wakeup_ports_1_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_lrs2_rtype_0 = io_wakeup_ports_1_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_frs3_en_0 = io_wakeup_ports_1_bits_uop_frs3_en; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fcn_dw_0 = io_wakeup_ports_1_bits_uop_fcn_dw; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_1_bits_uop_fcn_op_0 = io_wakeup_ports_1_bits_uop_fcn_op; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_fp_val_0 = io_wakeup_ports_1_bits_uop_fp_val; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_1_bits_uop_fp_rm_0 = io_wakeup_ports_1_bits_uop_fp_rm; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_1_bits_uop_fp_typ_0 = io_wakeup_ports_1_bits_uop_fp_typ; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_1_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_1_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_1_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_bp_debug_if_0 = io_wakeup_ports_1_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_1_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_1_bits_uop_debug_fsrc_0 = io_wakeup_ports_1_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_1_bits_uop_debug_tsrc_0 = io_wakeup_ports_1_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_valid_0 = io_wakeup_ports_2_valid; // @[issue-slot.scala:49:7] wire [31:0] io_wakeup_ports_2_bits_uop_inst_0 = io_wakeup_ports_2_bits_uop_inst; // @[issue-slot.scala:49:7] wire [31:0] io_wakeup_ports_2_bits_uop_debug_inst_0 = io_wakeup_ports_2_bits_uop_debug_inst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_rvc_0 = io_wakeup_ports_2_bits_uop_is_rvc; // @[issue-slot.scala:49:7] wire [39:0] io_wakeup_ports_2_bits_uop_debug_pc_0 = io_wakeup_ports_2_bits_uop_debug_pc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iq_type_0_0 = io_wakeup_ports_2_bits_uop_iq_type_0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iq_type_1_0 = io_wakeup_ports_2_bits_uop_iq_type_1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iq_type_2_0 = io_wakeup_ports_2_bits_uop_iq_type_2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iq_type_3_0 = io_wakeup_ports_2_bits_uop_iq_type_3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_0_0 = io_wakeup_ports_2_bits_uop_fu_code_0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_1_0 = io_wakeup_ports_2_bits_uop_fu_code_1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_2_0 = io_wakeup_ports_2_bits_uop_fu_code_2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_3_0 = io_wakeup_ports_2_bits_uop_fu_code_3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_4_0 = io_wakeup_ports_2_bits_uop_fu_code_4; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_5_0 = io_wakeup_ports_2_bits_uop_fu_code_5; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_6_0 = io_wakeup_ports_2_bits_uop_fu_code_6; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_7_0 = io_wakeup_ports_2_bits_uop_fu_code_7; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_8_0 = io_wakeup_ports_2_bits_uop_fu_code_8; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fu_code_9_0 = io_wakeup_ports_2_bits_uop_fu_code_9; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iw_issued_0 = io_wakeup_ports_2_bits_uop_iw_issued; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_2_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_2_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_2_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_2_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_2_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_dis_col_sel_0 = io_wakeup_ports_2_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7] wire [11:0] io_wakeup_ports_2_bits_uop_br_mask_0 = io_wakeup_ports_2_bits_uop_br_mask; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_2_bits_uop_br_tag_0 = io_wakeup_ports_2_bits_uop_br_tag; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_2_bits_uop_br_type_0 = io_wakeup_ports_2_bits_uop_br_type; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_sfb_0 = io_wakeup_ports_2_bits_uop_is_sfb; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_fence_0 = io_wakeup_ports_2_bits_uop_is_fence; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_fencei_0 = io_wakeup_ports_2_bits_uop_is_fencei; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_sfence_0 = io_wakeup_ports_2_bits_uop_is_sfence; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_amo_0 = io_wakeup_ports_2_bits_uop_is_amo; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_eret_0 = io_wakeup_ports_2_bits_uop_is_eret; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_2_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_rocc_0 = io_wakeup_ports_2_bits_uop_is_rocc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_mov_0 = io_wakeup_ports_2_bits_uop_is_mov; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_2_bits_uop_ftq_idx_0 = io_wakeup_ports_2_bits_uop_ftq_idx; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_edge_inst_0 = io_wakeup_ports_2_bits_uop_edge_inst; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_2_bits_uop_pc_lob_0 = io_wakeup_ports_2_bits_uop_pc_lob; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_taken_0 = io_wakeup_ports_2_bits_uop_taken; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_imm_rename_0 = io_wakeup_ports_2_bits_uop_imm_rename; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_2_bits_uop_imm_sel_0 = io_wakeup_ports_2_bits_uop_imm_sel; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_2_bits_uop_pimm_0 = io_wakeup_ports_2_bits_uop_pimm; // @[issue-slot.scala:49:7] wire [19:0] io_wakeup_ports_2_bits_uop_imm_packed_0 = io_wakeup_ports_2_bits_uop_imm_packed; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_op1_sel_0 = io_wakeup_ports_2_bits_uop_op1_sel; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_2_bits_uop_op2_sel_0 = io_wakeup_ports_2_bits_uop_op2_sel; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_2_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_2_bits_uop_rob_idx_0 = io_wakeup_ports_2_bits_uop_rob_idx; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_2_bits_uop_ldq_idx_0 = io_wakeup_ports_2_bits_uop_ldq_idx; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_2_bits_uop_stq_idx_0 = io_wakeup_ports_2_bits_uop_stq_idx; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_rxq_idx_0 = io_wakeup_ports_2_bits_uop_rxq_idx; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_2_bits_uop_pdst_0 = io_wakeup_ports_2_bits_uop_pdst; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_2_bits_uop_prs1_0 = io_wakeup_ports_2_bits_uop_prs1; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_2_bits_uop_prs2_0 = io_wakeup_ports_2_bits_uop_prs2; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_2_bits_uop_prs3_0 = io_wakeup_ports_2_bits_uop_prs3; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_2_bits_uop_ppred_0 = io_wakeup_ports_2_bits_uop_ppred; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_prs1_busy_0 = io_wakeup_ports_2_bits_uop_prs1_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_prs2_busy_0 = io_wakeup_ports_2_bits_uop_prs2_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_prs3_busy_0 = io_wakeup_ports_2_bits_uop_prs3_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_ppred_busy_0 = io_wakeup_ports_2_bits_uop_ppred_busy; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_2_bits_uop_stale_pdst_0 = io_wakeup_ports_2_bits_uop_stale_pdst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_exception_0 = io_wakeup_ports_2_bits_uop_exception; // @[issue-slot.scala:49:7] wire [63:0] io_wakeup_ports_2_bits_uop_exc_cause_0 = io_wakeup_ports_2_bits_uop_exc_cause; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_2_bits_uop_mem_cmd_0 = io_wakeup_ports_2_bits_uop_mem_cmd; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_mem_size_0 = io_wakeup_ports_2_bits_uop_mem_size; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_mem_signed_0 = io_wakeup_ports_2_bits_uop_mem_signed; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_uses_ldq_0 = io_wakeup_ports_2_bits_uop_uses_ldq; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_uses_stq_0 = io_wakeup_ports_2_bits_uop_uses_stq; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_is_unique_0 = io_wakeup_ports_2_bits_uop_is_unique; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_flush_on_commit_0 = io_wakeup_ports_2_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_2_bits_uop_csr_cmd_0 = io_wakeup_ports_2_bits_uop_csr_cmd; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_2_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_2_bits_uop_ldst_0 = io_wakeup_ports_2_bits_uop_ldst; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_2_bits_uop_lrs1_0 = io_wakeup_ports_2_bits_uop_lrs1; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_2_bits_uop_lrs2_0 = io_wakeup_ports_2_bits_uop_lrs2; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_2_bits_uop_lrs3_0 = io_wakeup_ports_2_bits_uop_lrs3; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_dst_rtype_0 = io_wakeup_ports_2_bits_uop_dst_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_lrs1_rtype_0 = io_wakeup_ports_2_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_lrs2_rtype_0 = io_wakeup_ports_2_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_frs3_en_0 = io_wakeup_ports_2_bits_uop_frs3_en; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fcn_dw_0 = io_wakeup_ports_2_bits_uop_fcn_dw; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_2_bits_uop_fcn_op_0 = io_wakeup_ports_2_bits_uop_fcn_op; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_fp_val_0 = io_wakeup_ports_2_bits_uop_fp_val; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_2_bits_uop_fp_rm_0 = io_wakeup_ports_2_bits_uop_fp_rm; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_2_bits_uop_fp_typ_0 = io_wakeup_ports_2_bits_uop_fp_typ; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_2_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_2_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_2_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_bp_debug_if_0 = io_wakeup_ports_2_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_2_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_2_bits_uop_debug_fsrc_0 = io_wakeup_ports_2_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_2_bits_uop_debug_tsrc_0 = io_wakeup_ports_2_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_valid_0 = io_wakeup_ports_3_valid; // @[issue-slot.scala:49:7] wire [31:0] io_wakeup_ports_3_bits_uop_inst_0 = io_wakeup_ports_3_bits_uop_inst; // @[issue-slot.scala:49:7] wire [31:0] io_wakeup_ports_3_bits_uop_debug_inst_0 = io_wakeup_ports_3_bits_uop_debug_inst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_rvc_0 = io_wakeup_ports_3_bits_uop_is_rvc; // @[issue-slot.scala:49:7] wire [39:0] io_wakeup_ports_3_bits_uop_debug_pc_0 = io_wakeup_ports_3_bits_uop_debug_pc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iq_type_0_0 = io_wakeup_ports_3_bits_uop_iq_type_0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iq_type_1_0 = io_wakeup_ports_3_bits_uop_iq_type_1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iq_type_2_0 = io_wakeup_ports_3_bits_uop_iq_type_2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iq_type_3_0 = io_wakeup_ports_3_bits_uop_iq_type_3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_0_0 = io_wakeup_ports_3_bits_uop_fu_code_0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_1_0 = io_wakeup_ports_3_bits_uop_fu_code_1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_2_0 = io_wakeup_ports_3_bits_uop_fu_code_2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_3_0 = io_wakeup_ports_3_bits_uop_fu_code_3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_4_0 = io_wakeup_ports_3_bits_uop_fu_code_4; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_5_0 = io_wakeup_ports_3_bits_uop_fu_code_5; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_6_0 = io_wakeup_ports_3_bits_uop_fu_code_6; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_7_0 = io_wakeup_ports_3_bits_uop_fu_code_7; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_8_0 = io_wakeup_ports_3_bits_uop_fu_code_8; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fu_code_9_0 = io_wakeup_ports_3_bits_uop_fu_code_9; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iw_issued_0 = io_wakeup_ports_3_bits_uop_iw_issued; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_iw_p1_speculative_child_0 = io_wakeup_ports_3_bits_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_iw_p2_speculative_child_0 = io_wakeup_ports_3_bits_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iw_p1_bypass_hint_0 = io_wakeup_ports_3_bits_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iw_p2_bypass_hint_0 = io_wakeup_ports_3_bits_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iw_p3_bypass_hint_0 = io_wakeup_ports_3_bits_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_dis_col_sel_0 = io_wakeup_ports_3_bits_uop_dis_col_sel; // @[issue-slot.scala:49:7] wire [11:0] io_wakeup_ports_3_bits_uop_br_mask_0 = io_wakeup_ports_3_bits_uop_br_mask; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_3_bits_uop_br_tag_0 = io_wakeup_ports_3_bits_uop_br_tag; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_3_bits_uop_br_type_0 = io_wakeup_ports_3_bits_uop_br_type; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_sfb_0 = io_wakeup_ports_3_bits_uop_is_sfb; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_fence_0 = io_wakeup_ports_3_bits_uop_is_fence; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_fencei_0 = io_wakeup_ports_3_bits_uop_is_fencei; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_sfence_0 = io_wakeup_ports_3_bits_uop_is_sfence; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_amo_0 = io_wakeup_ports_3_bits_uop_is_amo; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_eret_0 = io_wakeup_ports_3_bits_uop_is_eret; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_sys_pc2epc_0 = io_wakeup_ports_3_bits_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_rocc_0 = io_wakeup_ports_3_bits_uop_is_rocc; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_mov_0 = io_wakeup_ports_3_bits_uop_is_mov; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_3_bits_uop_ftq_idx_0 = io_wakeup_ports_3_bits_uop_ftq_idx; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_edge_inst_0 = io_wakeup_ports_3_bits_uop_edge_inst; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_3_bits_uop_pc_lob_0 = io_wakeup_ports_3_bits_uop_pc_lob; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_taken_0 = io_wakeup_ports_3_bits_uop_taken; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_imm_rename_0 = io_wakeup_ports_3_bits_uop_imm_rename; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_3_bits_uop_imm_sel_0 = io_wakeup_ports_3_bits_uop_imm_sel; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_3_bits_uop_pimm_0 = io_wakeup_ports_3_bits_uop_pimm; // @[issue-slot.scala:49:7] wire [19:0] io_wakeup_ports_3_bits_uop_imm_packed_0 = io_wakeup_ports_3_bits_uop_imm_packed; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_op1_sel_0 = io_wakeup_ports_3_bits_uop_op1_sel; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_3_bits_uop_op2_sel_0 = io_wakeup_ports_3_bits_uop_op2_sel; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_ldst_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_wen_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_ren1_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_ren2_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_ren3_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_swap12_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_swap23_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_fp_ctrl_typeTagIn_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_fp_ctrl_typeTagOut_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_fromint_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_toint_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_fastpipe_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_fma_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_div_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_div; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_sqrt_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_wflags_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_ctrl_vec_0 = io_wakeup_ports_3_bits_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_3_bits_uop_rob_idx_0 = io_wakeup_ports_3_bits_uop_rob_idx; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_3_bits_uop_ldq_idx_0 = io_wakeup_ports_3_bits_uop_ldq_idx; // @[issue-slot.scala:49:7] wire [3:0] io_wakeup_ports_3_bits_uop_stq_idx_0 = io_wakeup_ports_3_bits_uop_stq_idx; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_rxq_idx_0 = io_wakeup_ports_3_bits_uop_rxq_idx; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_3_bits_uop_pdst_0 = io_wakeup_ports_3_bits_uop_pdst; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_3_bits_uop_prs1_0 = io_wakeup_ports_3_bits_uop_prs1; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_3_bits_uop_prs2_0 = io_wakeup_ports_3_bits_uop_prs2; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_3_bits_uop_prs3_0 = io_wakeup_ports_3_bits_uop_prs3; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_3_bits_uop_ppred_0 = io_wakeup_ports_3_bits_uop_ppred; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_prs1_busy_0 = io_wakeup_ports_3_bits_uop_prs1_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_prs2_busy_0 = io_wakeup_ports_3_bits_uop_prs2_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_prs3_busy_0 = io_wakeup_ports_3_bits_uop_prs3_busy; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_ppred_busy_0 = io_wakeup_ports_3_bits_uop_ppred_busy; // @[issue-slot.scala:49:7] wire [6:0] io_wakeup_ports_3_bits_uop_stale_pdst_0 = io_wakeup_ports_3_bits_uop_stale_pdst; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_exception_0 = io_wakeup_ports_3_bits_uop_exception; // @[issue-slot.scala:49:7] wire [63:0] io_wakeup_ports_3_bits_uop_exc_cause_0 = io_wakeup_ports_3_bits_uop_exc_cause; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_3_bits_uop_mem_cmd_0 = io_wakeup_ports_3_bits_uop_mem_cmd; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_mem_size_0 = io_wakeup_ports_3_bits_uop_mem_size; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_mem_signed_0 = io_wakeup_ports_3_bits_uop_mem_signed; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_uses_ldq_0 = io_wakeup_ports_3_bits_uop_uses_ldq; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_uses_stq_0 = io_wakeup_ports_3_bits_uop_uses_stq; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_is_unique_0 = io_wakeup_ports_3_bits_uop_is_unique; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_flush_on_commit_0 = io_wakeup_ports_3_bits_uop_flush_on_commit; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_3_bits_uop_csr_cmd_0 = io_wakeup_ports_3_bits_uop_csr_cmd; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_ldst_is_rs1_0 = io_wakeup_ports_3_bits_uop_ldst_is_rs1; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_3_bits_uop_ldst_0 = io_wakeup_ports_3_bits_uop_ldst; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_3_bits_uop_lrs1_0 = io_wakeup_ports_3_bits_uop_lrs1; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_3_bits_uop_lrs2_0 = io_wakeup_ports_3_bits_uop_lrs2; // @[issue-slot.scala:49:7] wire [5:0] io_wakeup_ports_3_bits_uop_lrs3_0 = io_wakeup_ports_3_bits_uop_lrs3; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_dst_rtype_0 = io_wakeup_ports_3_bits_uop_dst_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_lrs1_rtype_0 = io_wakeup_ports_3_bits_uop_lrs1_rtype; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_lrs2_rtype_0 = io_wakeup_ports_3_bits_uop_lrs2_rtype; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_frs3_en_0 = io_wakeup_ports_3_bits_uop_frs3_en; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fcn_dw_0 = io_wakeup_ports_3_bits_uop_fcn_dw; // @[issue-slot.scala:49:7] wire [4:0] io_wakeup_ports_3_bits_uop_fcn_op_0 = io_wakeup_ports_3_bits_uop_fcn_op; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_fp_val_0 = io_wakeup_ports_3_bits_uop_fp_val; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_3_bits_uop_fp_rm_0 = io_wakeup_ports_3_bits_uop_fp_rm; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_uop_fp_typ_0 = io_wakeup_ports_3_bits_uop_fp_typ; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_xcpt_pf_if_0 = io_wakeup_ports_3_bits_uop_xcpt_pf_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_xcpt_ae_if_0 = io_wakeup_ports_3_bits_uop_xcpt_ae_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_xcpt_ma_if_0 = io_wakeup_ports_3_bits_uop_xcpt_ma_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_bp_debug_if_0 = io_wakeup_ports_3_bits_uop_bp_debug_if; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_bp_xcpt_if_0 = io_wakeup_ports_3_bits_uop_bp_xcpt_if; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_3_bits_uop_debug_fsrc_0 = io_wakeup_ports_3_bits_uop_debug_fsrc; // @[issue-slot.scala:49:7] wire [2:0] io_wakeup_ports_3_bits_uop_debug_tsrc_0 = io_wakeup_ports_3_bits_uop_debug_tsrc; // @[issue-slot.scala:49:7] wire [1:0] io_child_rebusys_0 = io_child_rebusys; // @[issue-slot.scala:49:7] wire io_iss_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7] wire io_iss_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iw_issued = 1'h0; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7] wire io_in_uop_bits_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7] wire io_in_uop_bits_ppred_busy = 1'h0; // @[issue-slot.scala:49:7] wire io_out_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7] wire io_out_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_bypassable = 1'h0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_1_bits_rebusy = 1'h0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_2_bits_rebusy = 1'h0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_rebusy = 1'h0; // @[issue-slot.scala:49:7] wire io_pred_wakeup_port_valid = 1'h0; // @[issue-slot.scala:49:7] wire next_uop_out_iw_issued_partial_agen = 1'h0; // @[util.scala:104:23] wire next_uop_out_iw_issued_partial_dgen = 1'h0; // @[util.scala:104:23] wire next_uop_iw_issued_partial_agen = 1'h0; // @[issue-slot.scala:59:28] wire next_uop_iw_issued_partial_dgen = 1'h0; // @[issue-slot.scala:59:28] wire prs1_rebusys_1 = 1'h0; // @[issue-slot.scala:102:91] wire prs1_rebusys_2 = 1'h0; // @[issue-slot.scala:102:91] wire prs1_rebusys_3 = 1'h0; // @[issue-slot.scala:102:91] wire prs2_rebusys_1 = 1'h0; // @[issue-slot.scala:103:91] wire prs2_rebusys_2 = 1'h0; // @[issue-slot.scala:103:91] wire prs2_rebusys_3 = 1'h0; // @[issue-slot.scala:103:91] wire _next_uop_iw_p1_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73] wire _next_uop_iw_p2_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73] wire _next_uop_iw_p3_bypass_hint_T_1 = 1'h0; // @[Mux.scala:30:73] wire _iss_ready_T_6 = 1'h0; // @[issue-slot.scala:136:131] wire agen_ready = 1'h0; // @[issue-slot.scala:137:114] wire dgen_ready = 1'h0; // @[issue-slot.scala:138:114] wire [1:0] io_wakeup_ports_1_bits_speculative_mask = 2'h0; // @[issue-slot.scala:49:7] wire [1:0] _next_uop_iw_p1_speculative_child_T_1 = 2'h0; // @[Mux.scala:30:73] wire [1:0] _next_uop_iw_p2_speculative_child_T_1 = 2'h0; // @[Mux.scala:30:73] wire io_wakeup_ports_2_bits_bypassable = 1'h1; // @[issue-slot.scala:49:7] wire io_wakeup_ports_3_bits_bypassable = 1'h1; // @[issue-slot.scala:49:7] wire _iss_ready_T_7 = 1'h1; // @[issue-slot.scala:136:110] wire [1:0] io_wakeup_ports_2_bits_speculative_mask = 2'h1; // @[issue-slot.scala:49:7] wire [1:0] io_wakeup_ports_3_bits_speculative_mask = 2'h2; // @[issue-slot.scala:49:7] wire [4:0] io_pred_wakeup_port_bits = 5'h0; // @[issue-slot.scala:49:7] wire _io_will_be_valid_T_1; // @[issue-slot.scala:65:34] wire _io_request_T_4; // @[issue-slot.scala:140:51] wire [31:0] next_uop_inst; // @[issue-slot.scala:59:28] wire [31:0] next_uop_debug_inst; // @[issue-slot.scala:59:28] wire next_uop_is_rvc; // @[issue-slot.scala:59:28] wire [39:0] next_uop_debug_pc; // @[issue-slot.scala:59:28] wire next_uop_iq_type_0; // @[issue-slot.scala:59:28] wire next_uop_iq_type_1; // @[issue-slot.scala:59:28] wire next_uop_iq_type_2; // @[issue-slot.scala:59:28] wire next_uop_iq_type_3; // @[issue-slot.scala:59:28] wire next_uop_fu_code_0; // @[issue-slot.scala:59:28] wire next_uop_fu_code_1; // @[issue-slot.scala:59:28] wire next_uop_fu_code_2; // @[issue-slot.scala:59:28] wire next_uop_fu_code_3; // @[issue-slot.scala:59:28] wire next_uop_fu_code_4; // @[issue-slot.scala:59:28] wire next_uop_fu_code_5; // @[issue-slot.scala:59:28] wire next_uop_fu_code_6; // @[issue-slot.scala:59:28] wire next_uop_fu_code_7; // @[issue-slot.scala:59:28] wire next_uop_fu_code_8; // @[issue-slot.scala:59:28] wire next_uop_fu_code_9; // @[issue-slot.scala:59:28] wire next_uop_iw_issued; // @[issue-slot.scala:59:28] wire [1:0] next_uop_iw_p1_speculative_child; // @[issue-slot.scala:59:28] wire [1:0] next_uop_iw_p2_speculative_child; // @[issue-slot.scala:59:28] wire next_uop_iw_p1_bypass_hint; // @[issue-slot.scala:59:28] wire next_uop_iw_p2_bypass_hint; // @[issue-slot.scala:59:28] wire next_uop_iw_p3_bypass_hint; // @[issue-slot.scala:59:28] wire [1:0] next_uop_dis_col_sel; // @[issue-slot.scala:59:28] wire [11:0] next_uop_br_mask; // @[issue-slot.scala:59:28] wire [3:0] next_uop_br_tag; // @[issue-slot.scala:59:28] wire [3:0] next_uop_br_type; // @[issue-slot.scala:59:28] wire next_uop_is_sfb; // @[issue-slot.scala:59:28] wire next_uop_is_fence; // @[issue-slot.scala:59:28] wire next_uop_is_fencei; // @[issue-slot.scala:59:28] wire next_uop_is_sfence; // @[issue-slot.scala:59:28] wire next_uop_is_amo; // @[issue-slot.scala:59:28] wire next_uop_is_eret; // @[issue-slot.scala:59:28] wire next_uop_is_sys_pc2epc; // @[issue-slot.scala:59:28] wire next_uop_is_rocc; // @[issue-slot.scala:59:28] wire next_uop_is_mov; // @[issue-slot.scala:59:28] wire [4:0] next_uop_ftq_idx; // @[issue-slot.scala:59:28] wire next_uop_edge_inst; // @[issue-slot.scala:59:28] wire [5:0] next_uop_pc_lob; // @[issue-slot.scala:59:28] wire next_uop_taken; // @[issue-slot.scala:59:28] wire next_uop_imm_rename; // @[issue-slot.scala:59:28] wire [2:0] next_uop_imm_sel; // @[issue-slot.scala:59:28] wire [4:0] next_uop_pimm; // @[issue-slot.scala:59:28] wire [19:0] next_uop_imm_packed; // @[issue-slot.scala:59:28] wire [1:0] next_uop_op1_sel; // @[issue-slot.scala:59:28] wire [2:0] next_uop_op2_sel; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_ldst; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_wen; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_ren1; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_ren2; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_ren3; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_swap12; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_swap23; // @[issue-slot.scala:59:28] wire [1:0] next_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:59:28] wire [1:0] next_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_fromint; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_toint; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_fma; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_div; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_sqrt; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_wflags; // @[issue-slot.scala:59:28] wire next_uop_fp_ctrl_vec; // @[issue-slot.scala:59:28] wire [5:0] next_uop_rob_idx; // @[issue-slot.scala:59:28] wire [3:0] next_uop_ldq_idx; // @[issue-slot.scala:59:28] wire [3:0] next_uop_stq_idx; // @[issue-slot.scala:59:28] wire [1:0] next_uop_rxq_idx; // @[issue-slot.scala:59:28] wire [6:0] next_uop_pdst; // @[issue-slot.scala:59:28] wire [6:0] next_uop_prs1; // @[issue-slot.scala:59:28] wire [6:0] next_uop_prs2; // @[issue-slot.scala:59:28] wire [6:0] next_uop_prs3; // @[issue-slot.scala:59:28] wire [4:0] next_uop_ppred; // @[issue-slot.scala:59:28] wire next_uop_prs1_busy; // @[issue-slot.scala:59:28] wire next_uop_prs2_busy; // @[issue-slot.scala:59:28] wire next_uop_prs3_busy; // @[issue-slot.scala:59:28] wire next_uop_ppred_busy; // @[issue-slot.scala:59:28] wire [6:0] next_uop_stale_pdst; // @[issue-slot.scala:59:28] wire next_uop_exception; // @[issue-slot.scala:59:28] wire [63:0] next_uop_exc_cause; // @[issue-slot.scala:59:28] wire [4:0] next_uop_mem_cmd; // @[issue-slot.scala:59:28] wire [1:0] next_uop_mem_size; // @[issue-slot.scala:59:28] wire next_uop_mem_signed; // @[issue-slot.scala:59:28] wire next_uop_uses_ldq; // @[issue-slot.scala:59:28] wire next_uop_uses_stq; // @[issue-slot.scala:59:28] wire next_uop_is_unique; // @[issue-slot.scala:59:28] wire next_uop_flush_on_commit; // @[issue-slot.scala:59:28] wire [2:0] next_uop_csr_cmd; // @[issue-slot.scala:59:28] wire next_uop_ldst_is_rs1; // @[issue-slot.scala:59:28] wire [5:0] next_uop_ldst; // @[issue-slot.scala:59:28] wire [5:0] next_uop_lrs1; // @[issue-slot.scala:59:28] wire [5:0] next_uop_lrs2; // @[issue-slot.scala:59:28] wire [5:0] next_uop_lrs3; // @[issue-slot.scala:59:28] wire [1:0] next_uop_dst_rtype; // @[issue-slot.scala:59:28] wire [1:0] next_uop_lrs1_rtype; // @[issue-slot.scala:59:28] wire [1:0] next_uop_lrs2_rtype; // @[issue-slot.scala:59:28] wire next_uop_frs3_en; // @[issue-slot.scala:59:28] wire next_uop_fcn_dw; // @[issue-slot.scala:59:28] wire [4:0] next_uop_fcn_op; // @[issue-slot.scala:59:28] wire next_uop_fp_val; // @[issue-slot.scala:59:28] wire [2:0] next_uop_fp_rm; // @[issue-slot.scala:59:28] wire [1:0] next_uop_fp_typ; // @[issue-slot.scala:59:28] wire next_uop_xcpt_pf_if; // @[issue-slot.scala:59:28] wire next_uop_xcpt_ae_if; // @[issue-slot.scala:59:28] wire next_uop_xcpt_ma_if; // @[issue-slot.scala:59:28] wire next_uop_bp_debug_if; // @[issue-slot.scala:59:28] wire next_uop_bp_xcpt_if; // @[issue-slot.scala:59:28] wire [2:0] next_uop_debug_fsrc; // @[issue-slot.scala:59:28] wire [2:0] next_uop_debug_tsrc; // @[issue-slot.scala:59:28] wire io_iss_uop_iq_type_0_0; // @[issue-slot.scala:49:7] wire io_iss_uop_iq_type_1_0; // @[issue-slot.scala:49:7] wire io_iss_uop_iq_type_2_0; // @[issue-slot.scala:49:7] wire io_iss_uop_iq_type_3_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_0_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_1_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_2_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_3_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_4_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_5_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_6_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_7_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_8_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fu_code_9_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_ldst_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_wen_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_ren1_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_ren2_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_ren3_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_swap12_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_swap23_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_fp_ctrl_typeTagIn_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_fp_ctrl_typeTagOut_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_fromint_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_toint_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_fastpipe_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_fma_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_div_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_sqrt_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_wflags_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_ctrl_vec_0; // @[issue-slot.scala:49:7] wire [31:0] io_iss_uop_inst_0; // @[issue-slot.scala:49:7] wire [31:0] io_iss_uop_debug_inst_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_rvc_0; // @[issue-slot.scala:49:7] wire [39:0] io_iss_uop_debug_pc_0; // @[issue-slot.scala:49:7] wire io_iss_uop_iw_issued_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_iw_p1_speculative_child_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_iw_p2_speculative_child_0; // @[issue-slot.scala:49:7] wire io_iss_uop_iw_p1_bypass_hint_0; // @[issue-slot.scala:49:7] wire io_iss_uop_iw_p2_bypass_hint_0; // @[issue-slot.scala:49:7] wire io_iss_uop_iw_p3_bypass_hint_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_dis_col_sel_0; // @[issue-slot.scala:49:7] wire [11:0] io_iss_uop_br_mask_0; // @[issue-slot.scala:49:7] wire [3:0] io_iss_uop_br_tag_0; // @[issue-slot.scala:49:7] wire [3:0] io_iss_uop_br_type_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_sfb_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_fence_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_fencei_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_sfence_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_amo_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_eret_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_sys_pc2epc_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_rocc_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_mov_0; // @[issue-slot.scala:49:7] wire [4:0] io_iss_uop_ftq_idx_0; // @[issue-slot.scala:49:7] wire io_iss_uop_edge_inst_0; // @[issue-slot.scala:49:7] wire [5:0] io_iss_uop_pc_lob_0; // @[issue-slot.scala:49:7] wire io_iss_uop_taken_0; // @[issue-slot.scala:49:7] wire io_iss_uop_imm_rename_0; // @[issue-slot.scala:49:7] wire [2:0] io_iss_uop_imm_sel_0; // @[issue-slot.scala:49:7] wire [4:0] io_iss_uop_pimm_0; // @[issue-slot.scala:49:7] wire [19:0] io_iss_uop_imm_packed_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_op1_sel_0; // @[issue-slot.scala:49:7] wire [2:0] io_iss_uop_op2_sel_0; // @[issue-slot.scala:49:7] wire [5:0] io_iss_uop_rob_idx_0; // @[issue-slot.scala:49:7] wire [3:0] io_iss_uop_ldq_idx_0; // @[issue-slot.scala:49:7] wire [3:0] io_iss_uop_stq_idx_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_rxq_idx_0; // @[issue-slot.scala:49:7] wire [6:0] io_iss_uop_pdst_0; // @[issue-slot.scala:49:7] wire [6:0] io_iss_uop_prs1_0; // @[issue-slot.scala:49:7] wire [6:0] io_iss_uop_prs2_0; // @[issue-slot.scala:49:7] wire [6:0] io_iss_uop_prs3_0; // @[issue-slot.scala:49:7] wire [4:0] io_iss_uop_ppred_0; // @[issue-slot.scala:49:7] wire io_iss_uop_prs1_busy_0; // @[issue-slot.scala:49:7] wire io_iss_uop_prs2_busy_0; // @[issue-slot.scala:49:7] wire io_iss_uop_prs3_busy_0; // @[issue-slot.scala:49:7] wire io_iss_uop_ppred_busy_0; // @[issue-slot.scala:49:7] wire [6:0] io_iss_uop_stale_pdst_0; // @[issue-slot.scala:49:7] wire io_iss_uop_exception_0; // @[issue-slot.scala:49:7] wire [63:0] io_iss_uop_exc_cause_0; // @[issue-slot.scala:49:7] wire [4:0] io_iss_uop_mem_cmd_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_mem_size_0; // @[issue-slot.scala:49:7] wire io_iss_uop_mem_signed_0; // @[issue-slot.scala:49:7] wire io_iss_uop_uses_ldq_0; // @[issue-slot.scala:49:7] wire io_iss_uop_uses_stq_0; // @[issue-slot.scala:49:7] wire io_iss_uop_is_unique_0; // @[issue-slot.scala:49:7] wire io_iss_uop_flush_on_commit_0; // @[issue-slot.scala:49:7] wire [2:0] io_iss_uop_csr_cmd_0; // @[issue-slot.scala:49:7] wire io_iss_uop_ldst_is_rs1_0; // @[issue-slot.scala:49:7] wire [5:0] io_iss_uop_ldst_0; // @[issue-slot.scala:49:7] wire [5:0] io_iss_uop_lrs1_0; // @[issue-slot.scala:49:7] wire [5:0] io_iss_uop_lrs2_0; // @[issue-slot.scala:49:7] wire [5:0] io_iss_uop_lrs3_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_dst_rtype_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_lrs1_rtype_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_lrs2_rtype_0; // @[issue-slot.scala:49:7] wire io_iss_uop_frs3_en_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fcn_dw_0; // @[issue-slot.scala:49:7] wire [4:0] io_iss_uop_fcn_op_0; // @[issue-slot.scala:49:7] wire io_iss_uop_fp_val_0; // @[issue-slot.scala:49:7] wire [2:0] io_iss_uop_fp_rm_0; // @[issue-slot.scala:49:7] wire [1:0] io_iss_uop_fp_typ_0; // @[issue-slot.scala:49:7] wire io_iss_uop_xcpt_pf_if_0; // @[issue-slot.scala:49:7] wire io_iss_uop_xcpt_ae_if_0; // @[issue-slot.scala:49:7] wire io_iss_uop_xcpt_ma_if_0; // @[issue-slot.scala:49:7] wire io_iss_uop_bp_debug_if_0; // @[issue-slot.scala:49:7] wire io_iss_uop_bp_xcpt_if_0; // @[issue-slot.scala:49:7] wire [2:0] io_iss_uop_debug_fsrc_0; // @[issue-slot.scala:49:7] wire [2:0] io_iss_uop_debug_tsrc_0; // @[issue-slot.scala:49:7] wire io_out_uop_iq_type_0_0; // @[issue-slot.scala:49:7] wire io_out_uop_iq_type_1_0; // @[issue-slot.scala:49:7] wire io_out_uop_iq_type_2_0; // @[issue-slot.scala:49:7] wire io_out_uop_iq_type_3_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_0_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_1_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_2_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_3_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_4_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_5_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_6_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_7_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_8_0; // @[issue-slot.scala:49:7] wire io_out_uop_fu_code_9_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_ldst_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_wen_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_ren1_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_ren2_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_ren3_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_swap12_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_swap23_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_fp_ctrl_typeTagIn_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_fp_ctrl_typeTagOut_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_fromint_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_toint_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_fastpipe_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_fma_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_div_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_sqrt_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_wflags_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_ctrl_vec_0; // @[issue-slot.scala:49:7] wire [31:0] io_out_uop_inst_0; // @[issue-slot.scala:49:7] wire [31:0] io_out_uop_debug_inst_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_rvc_0; // @[issue-slot.scala:49:7] wire [39:0] io_out_uop_debug_pc_0; // @[issue-slot.scala:49:7] wire io_out_uop_iw_issued_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_iw_p1_speculative_child_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_iw_p2_speculative_child_0; // @[issue-slot.scala:49:7] wire io_out_uop_iw_p1_bypass_hint_0; // @[issue-slot.scala:49:7] wire io_out_uop_iw_p2_bypass_hint_0; // @[issue-slot.scala:49:7] wire io_out_uop_iw_p3_bypass_hint_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_dis_col_sel_0; // @[issue-slot.scala:49:7] wire [11:0] io_out_uop_br_mask_0; // @[issue-slot.scala:49:7] wire [3:0] io_out_uop_br_tag_0; // @[issue-slot.scala:49:7] wire [3:0] io_out_uop_br_type_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_sfb_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_fence_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_fencei_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_sfence_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_amo_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_eret_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_sys_pc2epc_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_rocc_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_mov_0; // @[issue-slot.scala:49:7] wire [4:0] io_out_uop_ftq_idx_0; // @[issue-slot.scala:49:7] wire io_out_uop_edge_inst_0; // @[issue-slot.scala:49:7] wire [5:0] io_out_uop_pc_lob_0; // @[issue-slot.scala:49:7] wire io_out_uop_taken_0; // @[issue-slot.scala:49:7] wire io_out_uop_imm_rename_0; // @[issue-slot.scala:49:7] wire [2:0] io_out_uop_imm_sel_0; // @[issue-slot.scala:49:7] wire [4:0] io_out_uop_pimm_0; // @[issue-slot.scala:49:7] wire [19:0] io_out_uop_imm_packed_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_op1_sel_0; // @[issue-slot.scala:49:7] wire [2:0] io_out_uop_op2_sel_0; // @[issue-slot.scala:49:7] wire [5:0] io_out_uop_rob_idx_0; // @[issue-slot.scala:49:7] wire [3:0] io_out_uop_ldq_idx_0; // @[issue-slot.scala:49:7] wire [3:0] io_out_uop_stq_idx_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_rxq_idx_0; // @[issue-slot.scala:49:7] wire [6:0] io_out_uop_pdst_0; // @[issue-slot.scala:49:7] wire [6:0] io_out_uop_prs1_0; // @[issue-slot.scala:49:7] wire [6:0] io_out_uop_prs2_0; // @[issue-slot.scala:49:7] wire [6:0] io_out_uop_prs3_0; // @[issue-slot.scala:49:7] wire [4:0] io_out_uop_ppred_0; // @[issue-slot.scala:49:7] wire io_out_uop_prs1_busy_0; // @[issue-slot.scala:49:7] wire io_out_uop_prs2_busy_0; // @[issue-slot.scala:49:7] wire io_out_uop_prs3_busy_0; // @[issue-slot.scala:49:7] wire io_out_uop_ppred_busy_0; // @[issue-slot.scala:49:7] wire [6:0] io_out_uop_stale_pdst_0; // @[issue-slot.scala:49:7] wire io_out_uop_exception_0; // @[issue-slot.scala:49:7] wire [63:0] io_out_uop_exc_cause_0; // @[issue-slot.scala:49:7] wire [4:0] io_out_uop_mem_cmd_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_mem_size_0; // @[issue-slot.scala:49:7] wire io_out_uop_mem_signed_0; // @[issue-slot.scala:49:7] wire io_out_uop_uses_ldq_0; // @[issue-slot.scala:49:7] wire io_out_uop_uses_stq_0; // @[issue-slot.scala:49:7] wire io_out_uop_is_unique_0; // @[issue-slot.scala:49:7] wire io_out_uop_flush_on_commit_0; // @[issue-slot.scala:49:7] wire [2:0] io_out_uop_csr_cmd_0; // @[issue-slot.scala:49:7] wire io_out_uop_ldst_is_rs1_0; // @[issue-slot.scala:49:7] wire [5:0] io_out_uop_ldst_0; // @[issue-slot.scala:49:7] wire [5:0] io_out_uop_lrs1_0; // @[issue-slot.scala:49:7] wire [5:0] io_out_uop_lrs2_0; // @[issue-slot.scala:49:7] wire [5:0] io_out_uop_lrs3_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_dst_rtype_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_lrs1_rtype_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_lrs2_rtype_0; // @[issue-slot.scala:49:7] wire io_out_uop_frs3_en_0; // @[issue-slot.scala:49:7] wire io_out_uop_fcn_dw_0; // @[issue-slot.scala:49:7] wire [4:0] io_out_uop_fcn_op_0; // @[issue-slot.scala:49:7] wire io_out_uop_fp_val_0; // @[issue-slot.scala:49:7] wire [2:0] io_out_uop_fp_rm_0; // @[issue-slot.scala:49:7] wire [1:0] io_out_uop_fp_typ_0; // @[issue-slot.scala:49:7] wire io_out_uop_xcpt_pf_if_0; // @[issue-slot.scala:49:7] wire io_out_uop_xcpt_ae_if_0; // @[issue-slot.scala:49:7] wire io_out_uop_xcpt_ma_if_0; // @[issue-slot.scala:49:7] wire io_out_uop_bp_debug_if_0; // @[issue-slot.scala:49:7] wire io_out_uop_bp_xcpt_if_0; // @[issue-slot.scala:49:7] wire [2:0] io_out_uop_debug_fsrc_0; // @[issue-slot.scala:49:7] wire [2:0] io_out_uop_debug_tsrc_0; // @[issue-slot.scala:49:7] wire io_valid_0; // @[issue-slot.scala:49:7] wire io_will_be_valid_0; // @[issue-slot.scala:49:7] wire io_request_0; // @[issue-slot.scala:49:7] reg slot_valid; // @[issue-slot.scala:55:27] assign io_valid_0 = slot_valid; // @[issue-slot.scala:49:7, :55:27] reg [31:0] slot_uop_inst; // @[issue-slot.scala:56:21] assign io_iss_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:49:7, :56:21] wire [31:0] next_uop_out_inst = slot_uop_inst; // @[util.scala:104:23] reg [31:0] slot_uop_debug_inst; // @[issue-slot.scala:56:21] assign io_iss_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:49:7, :56:21] wire [31:0] next_uop_out_debug_inst = slot_uop_debug_inst; // @[util.scala:104:23] reg slot_uop_is_rvc; // @[issue-slot.scala:56:21] assign io_iss_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_rvc = slot_uop_is_rvc; // @[util.scala:104:23] reg [39:0] slot_uop_debug_pc; // @[issue-slot.scala:56:21] assign io_iss_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:49:7, :56:21] wire [39:0] next_uop_out_debug_pc = slot_uop_debug_pc; // @[util.scala:104:23] reg slot_uop_iq_type_0; // @[issue-slot.scala:56:21] assign io_iss_uop_iq_type_0_0 = slot_uop_iq_type_0; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_iq_type_0 = slot_uop_iq_type_0; // @[util.scala:104:23] reg slot_uop_iq_type_1; // @[issue-slot.scala:56:21] assign io_iss_uop_iq_type_1_0 = slot_uop_iq_type_1; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_iq_type_1 = slot_uop_iq_type_1; // @[util.scala:104:23] reg slot_uop_iq_type_2; // @[issue-slot.scala:56:21] assign io_iss_uop_iq_type_2_0 = slot_uop_iq_type_2; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_iq_type_2 = slot_uop_iq_type_2; // @[util.scala:104:23] reg slot_uop_iq_type_3; // @[issue-slot.scala:56:21] assign io_iss_uop_iq_type_3_0 = slot_uop_iq_type_3; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_iq_type_3 = slot_uop_iq_type_3; // @[util.scala:104:23] reg slot_uop_fu_code_0; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_0_0 = slot_uop_fu_code_0; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_0 = slot_uop_fu_code_0; // @[util.scala:104:23] reg slot_uop_fu_code_1; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_1_0 = slot_uop_fu_code_1; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_1 = slot_uop_fu_code_1; // @[util.scala:104:23] reg slot_uop_fu_code_2; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_2_0 = slot_uop_fu_code_2; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_2 = slot_uop_fu_code_2; // @[util.scala:104:23] reg slot_uop_fu_code_3; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_3_0 = slot_uop_fu_code_3; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_3 = slot_uop_fu_code_3; // @[util.scala:104:23] reg slot_uop_fu_code_4; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_4_0 = slot_uop_fu_code_4; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_4 = slot_uop_fu_code_4; // @[util.scala:104:23] reg slot_uop_fu_code_5; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_5_0 = slot_uop_fu_code_5; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_5 = slot_uop_fu_code_5; // @[util.scala:104:23] reg slot_uop_fu_code_6; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_6_0 = slot_uop_fu_code_6; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_6 = slot_uop_fu_code_6; // @[util.scala:104:23] reg slot_uop_fu_code_7; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_7_0 = slot_uop_fu_code_7; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_7 = slot_uop_fu_code_7; // @[util.scala:104:23] reg slot_uop_fu_code_8; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_8_0 = slot_uop_fu_code_8; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_8 = slot_uop_fu_code_8; // @[util.scala:104:23] reg slot_uop_fu_code_9; // @[issue-slot.scala:56:21] assign io_iss_uop_fu_code_9_0 = slot_uop_fu_code_9; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fu_code_9 = slot_uop_fu_code_9; // @[util.scala:104:23] reg slot_uop_iw_issued; // @[issue-slot.scala:56:21] assign io_iss_uop_iw_issued_0 = slot_uop_iw_issued; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_iw_issued = slot_uop_iw_issued; // @[util.scala:104:23] reg [1:0] slot_uop_iw_p1_speculative_child; // @[issue-slot.scala:56:21] assign io_iss_uop_iw_p1_speculative_child_0 = slot_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_iw_p1_speculative_child = slot_uop_iw_p1_speculative_child; // @[util.scala:104:23] reg [1:0] slot_uop_iw_p2_speculative_child; // @[issue-slot.scala:56:21] assign io_iss_uop_iw_p2_speculative_child_0 = slot_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_iw_p2_speculative_child = slot_uop_iw_p2_speculative_child; // @[util.scala:104:23] reg slot_uop_iw_p1_bypass_hint; // @[issue-slot.scala:56:21] assign io_iss_uop_iw_p1_bypass_hint_0 = slot_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_iw_p1_bypass_hint = slot_uop_iw_p1_bypass_hint; // @[util.scala:104:23] reg slot_uop_iw_p2_bypass_hint; // @[issue-slot.scala:56:21] assign io_iss_uop_iw_p2_bypass_hint_0 = slot_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_iw_p2_bypass_hint = slot_uop_iw_p2_bypass_hint; // @[util.scala:104:23] reg slot_uop_iw_p3_bypass_hint; // @[issue-slot.scala:56:21] assign io_iss_uop_iw_p3_bypass_hint_0 = slot_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_iw_p3_bypass_hint = slot_uop_iw_p3_bypass_hint; // @[util.scala:104:23] reg [1:0] slot_uop_dis_col_sel; // @[issue-slot.scala:56:21] assign io_iss_uop_dis_col_sel_0 = slot_uop_dis_col_sel; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_dis_col_sel = slot_uop_dis_col_sel; // @[util.scala:104:23] reg [11:0] slot_uop_br_mask; // @[issue-slot.scala:56:21] assign io_iss_uop_br_mask_0 = slot_uop_br_mask; // @[issue-slot.scala:49:7, :56:21] reg [3:0] slot_uop_br_tag; // @[issue-slot.scala:56:21] assign io_iss_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:49:7, :56:21] wire [3:0] next_uop_out_br_tag = slot_uop_br_tag; // @[util.scala:104:23] reg [3:0] slot_uop_br_type; // @[issue-slot.scala:56:21] assign io_iss_uop_br_type_0 = slot_uop_br_type; // @[issue-slot.scala:49:7, :56:21] wire [3:0] next_uop_out_br_type = slot_uop_br_type; // @[util.scala:104:23] reg slot_uop_is_sfb; // @[issue-slot.scala:56:21] assign io_iss_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_sfb = slot_uop_is_sfb; // @[util.scala:104:23] reg slot_uop_is_fence; // @[issue-slot.scala:56:21] assign io_iss_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_fence = slot_uop_is_fence; // @[util.scala:104:23] reg slot_uop_is_fencei; // @[issue-slot.scala:56:21] assign io_iss_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_fencei = slot_uop_is_fencei; // @[util.scala:104:23] reg slot_uop_is_sfence; // @[issue-slot.scala:56:21] assign io_iss_uop_is_sfence_0 = slot_uop_is_sfence; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_sfence = slot_uop_is_sfence; // @[util.scala:104:23] reg slot_uop_is_amo; // @[issue-slot.scala:56:21] assign io_iss_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_amo = slot_uop_is_amo; // @[util.scala:104:23] reg slot_uop_is_eret; // @[issue-slot.scala:56:21] assign io_iss_uop_is_eret_0 = slot_uop_is_eret; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_eret = slot_uop_is_eret; // @[util.scala:104:23] reg slot_uop_is_sys_pc2epc; // @[issue-slot.scala:56:21] assign io_iss_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_sys_pc2epc = slot_uop_is_sys_pc2epc; // @[util.scala:104:23] reg slot_uop_is_rocc; // @[issue-slot.scala:56:21] assign io_iss_uop_is_rocc_0 = slot_uop_is_rocc; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_rocc = slot_uop_is_rocc; // @[util.scala:104:23] reg slot_uop_is_mov; // @[issue-slot.scala:56:21] assign io_iss_uop_is_mov_0 = slot_uop_is_mov; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_mov = slot_uop_is_mov; // @[util.scala:104:23] reg [4:0] slot_uop_ftq_idx; // @[issue-slot.scala:56:21] assign io_iss_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:49:7, :56:21] wire [4:0] next_uop_out_ftq_idx = slot_uop_ftq_idx; // @[util.scala:104:23] reg slot_uop_edge_inst; // @[issue-slot.scala:56:21] assign io_iss_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_edge_inst = slot_uop_edge_inst; // @[util.scala:104:23] reg [5:0] slot_uop_pc_lob; // @[issue-slot.scala:56:21] assign io_iss_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:49:7, :56:21] wire [5:0] next_uop_out_pc_lob = slot_uop_pc_lob; // @[util.scala:104:23] reg slot_uop_taken; // @[issue-slot.scala:56:21] assign io_iss_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_taken = slot_uop_taken; // @[util.scala:104:23] reg slot_uop_imm_rename; // @[issue-slot.scala:56:21] assign io_iss_uop_imm_rename_0 = slot_uop_imm_rename; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_imm_rename = slot_uop_imm_rename; // @[util.scala:104:23] reg [2:0] slot_uop_imm_sel; // @[issue-slot.scala:56:21] assign io_iss_uop_imm_sel_0 = slot_uop_imm_sel; // @[issue-slot.scala:49:7, :56:21] wire [2:0] next_uop_out_imm_sel = slot_uop_imm_sel; // @[util.scala:104:23] reg [4:0] slot_uop_pimm; // @[issue-slot.scala:56:21] assign io_iss_uop_pimm_0 = slot_uop_pimm; // @[issue-slot.scala:49:7, :56:21] wire [4:0] next_uop_out_pimm = slot_uop_pimm; // @[util.scala:104:23] reg [19:0] slot_uop_imm_packed; // @[issue-slot.scala:56:21] assign io_iss_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:49:7, :56:21] wire [19:0] next_uop_out_imm_packed = slot_uop_imm_packed; // @[util.scala:104:23] reg [1:0] slot_uop_op1_sel; // @[issue-slot.scala:56:21] assign io_iss_uop_op1_sel_0 = slot_uop_op1_sel; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_op1_sel = slot_uop_op1_sel; // @[util.scala:104:23] reg [2:0] slot_uop_op2_sel; // @[issue-slot.scala:56:21] assign io_iss_uop_op2_sel_0 = slot_uop_op2_sel; // @[issue-slot.scala:49:7, :56:21] wire [2:0] next_uop_out_op2_sel = slot_uop_op2_sel; // @[util.scala:104:23] reg slot_uop_fp_ctrl_ldst; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_ldst_0 = slot_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_ldst = slot_uop_fp_ctrl_ldst; // @[util.scala:104:23] reg slot_uop_fp_ctrl_wen; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_wen_0 = slot_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_wen = slot_uop_fp_ctrl_wen; // @[util.scala:104:23] reg slot_uop_fp_ctrl_ren1; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_ren1_0 = slot_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_ren1 = slot_uop_fp_ctrl_ren1; // @[util.scala:104:23] reg slot_uop_fp_ctrl_ren2; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_ren2_0 = slot_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_ren2 = slot_uop_fp_ctrl_ren2; // @[util.scala:104:23] reg slot_uop_fp_ctrl_ren3; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_ren3_0 = slot_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_ren3 = slot_uop_fp_ctrl_ren3; // @[util.scala:104:23] reg slot_uop_fp_ctrl_swap12; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_swap12_0 = slot_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_swap12 = slot_uop_fp_ctrl_swap12; // @[util.scala:104:23] reg slot_uop_fp_ctrl_swap23; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_swap23_0 = slot_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_swap23 = slot_uop_fp_ctrl_swap23; // @[util.scala:104:23] reg [1:0] slot_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_typeTagIn_0 = slot_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_fp_ctrl_typeTagIn = slot_uop_fp_ctrl_typeTagIn; // @[util.scala:104:23] reg [1:0] slot_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_typeTagOut_0 = slot_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_fp_ctrl_typeTagOut = slot_uop_fp_ctrl_typeTagOut; // @[util.scala:104:23] reg slot_uop_fp_ctrl_fromint; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_fromint_0 = slot_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_fromint = slot_uop_fp_ctrl_fromint; // @[util.scala:104:23] reg slot_uop_fp_ctrl_toint; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_toint_0 = slot_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_toint = slot_uop_fp_ctrl_toint; // @[util.scala:104:23] reg slot_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_fastpipe_0 = slot_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_fastpipe = slot_uop_fp_ctrl_fastpipe; // @[util.scala:104:23] reg slot_uop_fp_ctrl_fma; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_fma_0 = slot_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_fma = slot_uop_fp_ctrl_fma; // @[util.scala:104:23] reg slot_uop_fp_ctrl_div; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_div_0 = slot_uop_fp_ctrl_div; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_div = slot_uop_fp_ctrl_div; // @[util.scala:104:23] reg slot_uop_fp_ctrl_sqrt; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_sqrt_0 = slot_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_sqrt = slot_uop_fp_ctrl_sqrt; // @[util.scala:104:23] reg slot_uop_fp_ctrl_wflags; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_wflags_0 = slot_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_wflags = slot_uop_fp_ctrl_wflags; // @[util.scala:104:23] reg slot_uop_fp_ctrl_vec; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_ctrl_vec_0 = slot_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_ctrl_vec = slot_uop_fp_ctrl_vec; // @[util.scala:104:23] reg [5:0] slot_uop_rob_idx; // @[issue-slot.scala:56:21] assign io_iss_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:49:7, :56:21] wire [5:0] next_uop_out_rob_idx = slot_uop_rob_idx; // @[util.scala:104:23] reg [3:0] slot_uop_ldq_idx; // @[issue-slot.scala:56:21] assign io_iss_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:49:7, :56:21] wire [3:0] next_uop_out_ldq_idx = slot_uop_ldq_idx; // @[util.scala:104:23] reg [3:0] slot_uop_stq_idx; // @[issue-slot.scala:56:21] assign io_iss_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:49:7, :56:21] wire [3:0] next_uop_out_stq_idx = slot_uop_stq_idx; // @[util.scala:104:23] reg [1:0] slot_uop_rxq_idx; // @[issue-slot.scala:56:21] assign io_iss_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_rxq_idx = slot_uop_rxq_idx; // @[util.scala:104:23] reg [6:0] slot_uop_pdst; // @[issue-slot.scala:56:21] assign io_iss_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:49:7, :56:21] wire [6:0] next_uop_out_pdst = slot_uop_pdst; // @[util.scala:104:23] reg [6:0] slot_uop_prs1; // @[issue-slot.scala:56:21] assign io_iss_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:49:7, :56:21] wire [6:0] next_uop_out_prs1 = slot_uop_prs1; // @[util.scala:104:23] reg [6:0] slot_uop_prs2; // @[issue-slot.scala:56:21] assign io_iss_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:49:7, :56:21] wire [6:0] next_uop_out_prs2 = slot_uop_prs2; // @[util.scala:104:23] reg [6:0] slot_uop_prs3; // @[issue-slot.scala:56:21] assign io_iss_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:49:7, :56:21] wire [6:0] next_uop_out_prs3 = slot_uop_prs3; // @[util.scala:104:23] reg [4:0] slot_uop_ppred; // @[issue-slot.scala:56:21] assign io_iss_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:49:7, :56:21] wire [4:0] next_uop_out_ppred = slot_uop_ppred; // @[util.scala:104:23] reg slot_uop_prs1_busy; // @[issue-slot.scala:56:21] assign io_iss_uop_prs1_busy_0 = slot_uop_prs1_busy; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_prs1_busy = slot_uop_prs1_busy; // @[util.scala:104:23] reg slot_uop_prs2_busy; // @[issue-slot.scala:56:21] assign io_iss_uop_prs2_busy_0 = slot_uop_prs2_busy; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_prs2_busy = slot_uop_prs2_busy; // @[util.scala:104:23] reg slot_uop_prs3_busy; // @[issue-slot.scala:56:21] assign io_iss_uop_prs3_busy_0 = slot_uop_prs3_busy; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_prs3_busy = slot_uop_prs3_busy; // @[util.scala:104:23] reg slot_uop_ppred_busy; // @[issue-slot.scala:56:21] assign io_iss_uop_ppred_busy_0 = slot_uop_ppred_busy; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_ppred_busy = slot_uop_ppred_busy; // @[util.scala:104:23] wire _iss_ready_T_3 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :136:88] wire _agen_ready_T_2 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :137:95] wire _dgen_ready_T_2 = slot_uop_ppred_busy; // @[issue-slot.scala:56:21, :138:95] reg [6:0] slot_uop_stale_pdst; // @[issue-slot.scala:56:21] assign io_iss_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:49:7, :56:21] wire [6:0] next_uop_out_stale_pdst = slot_uop_stale_pdst; // @[util.scala:104:23] reg slot_uop_exception; // @[issue-slot.scala:56:21] assign io_iss_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_exception = slot_uop_exception; // @[util.scala:104:23] reg [63:0] slot_uop_exc_cause; // @[issue-slot.scala:56:21] assign io_iss_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:49:7, :56:21] wire [63:0] next_uop_out_exc_cause = slot_uop_exc_cause; // @[util.scala:104:23] reg [4:0] slot_uop_mem_cmd; // @[issue-slot.scala:56:21] assign io_iss_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:49:7, :56:21] wire [4:0] next_uop_out_mem_cmd = slot_uop_mem_cmd; // @[util.scala:104:23] reg [1:0] slot_uop_mem_size; // @[issue-slot.scala:56:21] assign io_iss_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_mem_size = slot_uop_mem_size; // @[util.scala:104:23] reg slot_uop_mem_signed; // @[issue-slot.scala:56:21] assign io_iss_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_mem_signed = slot_uop_mem_signed; // @[util.scala:104:23] reg slot_uop_uses_ldq; // @[issue-slot.scala:56:21] assign io_iss_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_uses_ldq = slot_uop_uses_ldq; // @[util.scala:104:23] reg slot_uop_uses_stq; // @[issue-slot.scala:56:21] assign io_iss_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_uses_stq = slot_uop_uses_stq; // @[util.scala:104:23] reg slot_uop_is_unique; // @[issue-slot.scala:56:21] assign io_iss_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_is_unique = slot_uop_is_unique; // @[util.scala:104:23] reg slot_uop_flush_on_commit; // @[issue-slot.scala:56:21] assign io_iss_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_flush_on_commit = slot_uop_flush_on_commit; // @[util.scala:104:23] reg [2:0] slot_uop_csr_cmd; // @[issue-slot.scala:56:21] assign io_iss_uop_csr_cmd_0 = slot_uop_csr_cmd; // @[issue-slot.scala:49:7, :56:21] wire [2:0] next_uop_out_csr_cmd = slot_uop_csr_cmd; // @[util.scala:104:23] reg slot_uop_ldst_is_rs1; // @[issue-slot.scala:56:21] assign io_iss_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_ldst_is_rs1 = slot_uop_ldst_is_rs1; // @[util.scala:104:23] reg [5:0] slot_uop_ldst; // @[issue-slot.scala:56:21] assign io_iss_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:49:7, :56:21] wire [5:0] next_uop_out_ldst = slot_uop_ldst; // @[util.scala:104:23] reg [5:0] slot_uop_lrs1; // @[issue-slot.scala:56:21] assign io_iss_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:49:7, :56:21] wire [5:0] next_uop_out_lrs1 = slot_uop_lrs1; // @[util.scala:104:23] reg [5:0] slot_uop_lrs2; // @[issue-slot.scala:56:21] assign io_iss_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:49:7, :56:21] wire [5:0] next_uop_out_lrs2 = slot_uop_lrs2; // @[util.scala:104:23] reg [5:0] slot_uop_lrs3; // @[issue-slot.scala:56:21] assign io_iss_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:49:7, :56:21] wire [5:0] next_uop_out_lrs3 = slot_uop_lrs3; // @[util.scala:104:23] reg [1:0] slot_uop_dst_rtype; // @[issue-slot.scala:56:21] assign io_iss_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_dst_rtype = slot_uop_dst_rtype; // @[util.scala:104:23] reg [1:0] slot_uop_lrs1_rtype; // @[issue-slot.scala:56:21] assign io_iss_uop_lrs1_rtype_0 = slot_uop_lrs1_rtype; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_lrs1_rtype = slot_uop_lrs1_rtype; // @[util.scala:104:23] reg [1:0] slot_uop_lrs2_rtype; // @[issue-slot.scala:56:21] assign io_iss_uop_lrs2_rtype_0 = slot_uop_lrs2_rtype; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_lrs2_rtype = slot_uop_lrs2_rtype; // @[util.scala:104:23] reg slot_uop_frs3_en; // @[issue-slot.scala:56:21] assign io_iss_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_frs3_en = slot_uop_frs3_en; // @[util.scala:104:23] reg slot_uop_fcn_dw; // @[issue-slot.scala:56:21] assign io_iss_uop_fcn_dw_0 = slot_uop_fcn_dw; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fcn_dw = slot_uop_fcn_dw; // @[util.scala:104:23] reg [4:0] slot_uop_fcn_op; // @[issue-slot.scala:56:21] assign io_iss_uop_fcn_op_0 = slot_uop_fcn_op; // @[issue-slot.scala:49:7, :56:21] wire [4:0] next_uop_out_fcn_op = slot_uop_fcn_op; // @[util.scala:104:23] reg slot_uop_fp_val; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_fp_val = slot_uop_fp_val; // @[util.scala:104:23] reg [2:0] slot_uop_fp_rm; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_rm_0 = slot_uop_fp_rm; // @[issue-slot.scala:49:7, :56:21] wire [2:0] next_uop_out_fp_rm = slot_uop_fp_rm; // @[util.scala:104:23] reg [1:0] slot_uop_fp_typ; // @[issue-slot.scala:56:21] assign io_iss_uop_fp_typ_0 = slot_uop_fp_typ; // @[issue-slot.scala:49:7, :56:21] wire [1:0] next_uop_out_fp_typ = slot_uop_fp_typ; // @[util.scala:104:23] reg slot_uop_xcpt_pf_if; // @[issue-slot.scala:56:21] assign io_iss_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_xcpt_pf_if = slot_uop_xcpt_pf_if; // @[util.scala:104:23] reg slot_uop_xcpt_ae_if; // @[issue-slot.scala:56:21] assign io_iss_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_xcpt_ae_if = slot_uop_xcpt_ae_if; // @[util.scala:104:23] reg slot_uop_xcpt_ma_if; // @[issue-slot.scala:56:21] assign io_iss_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_xcpt_ma_if = slot_uop_xcpt_ma_if; // @[util.scala:104:23] reg slot_uop_bp_debug_if; // @[issue-slot.scala:56:21] assign io_iss_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_bp_debug_if = slot_uop_bp_debug_if; // @[util.scala:104:23] reg slot_uop_bp_xcpt_if; // @[issue-slot.scala:56:21] assign io_iss_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:49:7, :56:21] wire next_uop_out_bp_xcpt_if = slot_uop_bp_xcpt_if; // @[util.scala:104:23] reg [2:0] slot_uop_debug_fsrc; // @[issue-slot.scala:56:21] assign io_iss_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:49:7, :56:21] wire [2:0] next_uop_out_debug_fsrc = slot_uop_debug_fsrc; // @[util.scala:104:23] reg [2:0] slot_uop_debug_tsrc; // @[issue-slot.scala:56:21] assign io_iss_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:49:7, :56:21] wire [2:0] next_uop_out_debug_tsrc = slot_uop_debug_tsrc; // @[util.scala:104:23] wire next_valid; // @[issue-slot.scala:58:28] assign next_uop_inst = next_uop_out_inst; // @[util.scala:104:23] assign next_uop_debug_inst = next_uop_out_debug_inst; // @[util.scala:104:23] assign next_uop_is_rvc = next_uop_out_is_rvc; // @[util.scala:104:23] assign next_uop_debug_pc = next_uop_out_debug_pc; // @[util.scala:104:23] assign next_uop_iq_type_0 = next_uop_out_iq_type_0; // @[util.scala:104:23] assign next_uop_iq_type_1 = next_uop_out_iq_type_1; // @[util.scala:104:23] assign next_uop_iq_type_2 = next_uop_out_iq_type_2; // @[util.scala:104:23] assign next_uop_iq_type_3 = next_uop_out_iq_type_3; // @[util.scala:104:23] assign next_uop_fu_code_0 = next_uop_out_fu_code_0; // @[util.scala:104:23] assign next_uop_fu_code_1 = next_uop_out_fu_code_1; // @[util.scala:104:23] assign next_uop_fu_code_2 = next_uop_out_fu_code_2; // @[util.scala:104:23] assign next_uop_fu_code_3 = next_uop_out_fu_code_3; // @[util.scala:104:23] assign next_uop_fu_code_4 = next_uop_out_fu_code_4; // @[util.scala:104:23] assign next_uop_fu_code_5 = next_uop_out_fu_code_5; // @[util.scala:104:23] assign next_uop_fu_code_6 = next_uop_out_fu_code_6; // @[util.scala:104:23] assign next_uop_fu_code_7 = next_uop_out_fu_code_7; // @[util.scala:104:23] assign next_uop_fu_code_8 = next_uop_out_fu_code_8; // @[util.scala:104:23] assign next_uop_fu_code_9 = next_uop_out_fu_code_9; // @[util.scala:104:23] wire [11:0] _next_uop_out_br_mask_T_1; // @[util.scala:93:25] assign next_uop_dis_col_sel = next_uop_out_dis_col_sel; // @[util.scala:104:23] assign next_uop_br_mask = next_uop_out_br_mask; // @[util.scala:104:23] assign next_uop_br_tag = next_uop_out_br_tag; // @[util.scala:104:23] assign next_uop_br_type = next_uop_out_br_type; // @[util.scala:104:23] assign next_uop_is_sfb = next_uop_out_is_sfb; // @[util.scala:104:23] assign next_uop_is_fence = next_uop_out_is_fence; // @[util.scala:104:23] assign next_uop_is_fencei = next_uop_out_is_fencei; // @[util.scala:104:23] assign next_uop_is_sfence = next_uop_out_is_sfence; // @[util.scala:104:23] assign next_uop_is_amo = next_uop_out_is_amo; // @[util.scala:104:23] assign next_uop_is_eret = next_uop_out_is_eret; // @[util.scala:104:23] assign next_uop_is_sys_pc2epc = next_uop_out_is_sys_pc2epc; // @[util.scala:104:23] assign next_uop_is_rocc = next_uop_out_is_rocc; // @[util.scala:104:23] assign next_uop_is_mov = next_uop_out_is_mov; // @[util.scala:104:23] assign next_uop_ftq_idx = next_uop_out_ftq_idx; // @[util.scala:104:23] assign next_uop_edge_inst = next_uop_out_edge_inst; // @[util.scala:104:23] assign next_uop_pc_lob = next_uop_out_pc_lob; // @[util.scala:104:23] assign next_uop_taken = next_uop_out_taken; // @[util.scala:104:23] assign next_uop_imm_rename = next_uop_out_imm_rename; // @[util.scala:104:23] assign next_uop_imm_sel = next_uop_out_imm_sel; // @[util.scala:104:23] assign next_uop_pimm = next_uop_out_pimm; // @[util.scala:104:23] assign next_uop_imm_packed = next_uop_out_imm_packed; // @[util.scala:104:23] assign next_uop_op1_sel = next_uop_out_op1_sel; // @[util.scala:104:23] assign next_uop_op2_sel = next_uop_out_op2_sel; // @[util.scala:104:23] assign next_uop_fp_ctrl_ldst = next_uop_out_fp_ctrl_ldst; // @[util.scala:104:23] assign next_uop_fp_ctrl_wen = next_uop_out_fp_ctrl_wen; // @[util.scala:104:23] assign next_uop_fp_ctrl_ren1 = next_uop_out_fp_ctrl_ren1; // @[util.scala:104:23] assign next_uop_fp_ctrl_ren2 = next_uop_out_fp_ctrl_ren2; // @[util.scala:104:23] assign next_uop_fp_ctrl_ren3 = next_uop_out_fp_ctrl_ren3; // @[util.scala:104:23] assign next_uop_fp_ctrl_swap12 = next_uop_out_fp_ctrl_swap12; // @[util.scala:104:23] assign next_uop_fp_ctrl_swap23 = next_uop_out_fp_ctrl_swap23; // @[util.scala:104:23] assign next_uop_fp_ctrl_typeTagIn = next_uop_out_fp_ctrl_typeTagIn; // @[util.scala:104:23] assign next_uop_fp_ctrl_typeTagOut = next_uop_out_fp_ctrl_typeTagOut; // @[util.scala:104:23] assign next_uop_fp_ctrl_fromint = next_uop_out_fp_ctrl_fromint; // @[util.scala:104:23] assign next_uop_fp_ctrl_toint = next_uop_out_fp_ctrl_toint; // @[util.scala:104:23] assign next_uop_fp_ctrl_fastpipe = next_uop_out_fp_ctrl_fastpipe; // @[util.scala:104:23] assign next_uop_fp_ctrl_fma = next_uop_out_fp_ctrl_fma; // @[util.scala:104:23] assign next_uop_fp_ctrl_div = next_uop_out_fp_ctrl_div; // @[util.scala:104:23] assign next_uop_fp_ctrl_sqrt = next_uop_out_fp_ctrl_sqrt; // @[util.scala:104:23] assign next_uop_fp_ctrl_wflags = next_uop_out_fp_ctrl_wflags; // @[util.scala:104:23] assign next_uop_fp_ctrl_vec = next_uop_out_fp_ctrl_vec; // @[util.scala:104:23] assign next_uop_rob_idx = next_uop_out_rob_idx; // @[util.scala:104:23] assign next_uop_ldq_idx = next_uop_out_ldq_idx; // @[util.scala:104:23] assign next_uop_stq_idx = next_uop_out_stq_idx; // @[util.scala:104:23] assign next_uop_rxq_idx = next_uop_out_rxq_idx; // @[util.scala:104:23] assign next_uop_pdst = next_uop_out_pdst; // @[util.scala:104:23] assign next_uop_prs1 = next_uop_out_prs1; // @[util.scala:104:23] assign next_uop_prs2 = next_uop_out_prs2; // @[util.scala:104:23] assign next_uop_prs3 = next_uop_out_prs3; // @[util.scala:104:23] assign next_uop_ppred = next_uop_out_ppred; // @[util.scala:104:23] assign next_uop_ppred_busy = next_uop_out_ppred_busy; // @[util.scala:104:23] assign next_uop_stale_pdst = next_uop_out_stale_pdst; // @[util.scala:104:23] assign next_uop_exception = next_uop_out_exception; // @[util.scala:104:23] assign next_uop_exc_cause = next_uop_out_exc_cause; // @[util.scala:104:23] assign next_uop_mem_cmd = next_uop_out_mem_cmd; // @[util.scala:104:23] assign next_uop_mem_size = next_uop_out_mem_size; // @[util.scala:104:23] assign next_uop_mem_signed = next_uop_out_mem_signed; // @[util.scala:104:23] assign next_uop_uses_ldq = next_uop_out_uses_ldq; // @[util.scala:104:23] assign next_uop_uses_stq = next_uop_out_uses_stq; // @[util.scala:104:23] assign next_uop_is_unique = next_uop_out_is_unique; // @[util.scala:104:23] assign next_uop_flush_on_commit = next_uop_out_flush_on_commit; // @[util.scala:104:23] assign next_uop_csr_cmd = next_uop_out_csr_cmd; // @[util.scala:104:23] assign next_uop_ldst_is_rs1 = next_uop_out_ldst_is_rs1; // @[util.scala:104:23] assign next_uop_ldst = next_uop_out_ldst; // @[util.scala:104:23] assign next_uop_lrs1 = next_uop_out_lrs1; // @[util.scala:104:23] assign next_uop_lrs2 = next_uop_out_lrs2; // @[util.scala:104:23] assign next_uop_lrs3 = next_uop_out_lrs3; // @[util.scala:104:23] assign next_uop_dst_rtype = next_uop_out_dst_rtype; // @[util.scala:104:23] assign next_uop_lrs1_rtype = next_uop_out_lrs1_rtype; // @[util.scala:104:23] assign next_uop_lrs2_rtype = next_uop_out_lrs2_rtype; // @[util.scala:104:23] assign next_uop_frs3_en = next_uop_out_frs3_en; // @[util.scala:104:23] assign next_uop_fcn_dw = next_uop_out_fcn_dw; // @[util.scala:104:23] assign next_uop_fcn_op = next_uop_out_fcn_op; // @[util.scala:104:23] assign next_uop_fp_val = next_uop_out_fp_val; // @[util.scala:104:23] assign next_uop_fp_rm = next_uop_out_fp_rm; // @[util.scala:104:23] assign next_uop_fp_typ = next_uop_out_fp_typ; // @[util.scala:104:23] assign next_uop_xcpt_pf_if = next_uop_out_xcpt_pf_if; // @[util.scala:104:23] assign next_uop_xcpt_ae_if = next_uop_out_xcpt_ae_if; // @[util.scala:104:23] assign next_uop_xcpt_ma_if = next_uop_out_xcpt_ma_if; // @[util.scala:104:23] assign next_uop_bp_debug_if = next_uop_out_bp_debug_if; // @[util.scala:104:23] assign next_uop_bp_xcpt_if = next_uop_out_bp_xcpt_if; // @[util.scala:104:23] assign next_uop_debug_fsrc = next_uop_out_debug_fsrc; // @[util.scala:104:23] assign next_uop_debug_tsrc = next_uop_out_debug_tsrc; // @[util.scala:104:23] wire [11:0] _next_uop_out_br_mask_T = ~io_brupdate_b1_resolve_mask_0; // @[util.scala:93:27] assign _next_uop_out_br_mask_T_1 = slot_uop_br_mask & _next_uop_out_br_mask_T; // @[util.scala:93:{25,27}] assign next_uop_out_br_mask = _next_uop_out_br_mask_T_1; // @[util.scala:93:25, :104:23] assign io_out_uop_inst_0 = next_uop_inst; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_debug_inst_0 = next_uop_debug_inst; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_rvc_0 = next_uop_is_rvc; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_debug_pc_0 = next_uop_debug_pc; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iq_type_0_0 = next_uop_iq_type_0; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iq_type_1_0 = next_uop_iq_type_1; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iq_type_2_0 = next_uop_iq_type_2; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iq_type_3_0 = next_uop_iq_type_3; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_0_0 = next_uop_fu_code_0; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_1_0 = next_uop_fu_code_1; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_2_0 = next_uop_fu_code_2; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_3_0 = next_uop_fu_code_3; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_4_0 = next_uop_fu_code_4; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_5_0 = next_uop_fu_code_5; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_6_0 = next_uop_fu_code_6; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_7_0 = next_uop_fu_code_7; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_8_0 = next_uop_fu_code_8; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fu_code_9_0 = next_uop_fu_code_9; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iw_issued_0 = next_uop_iw_issued; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iw_p1_speculative_child_0 = next_uop_iw_p1_speculative_child; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iw_p2_speculative_child_0 = next_uop_iw_p2_speculative_child; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iw_p1_bypass_hint_0 = next_uop_iw_p1_bypass_hint; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iw_p2_bypass_hint_0 = next_uop_iw_p2_bypass_hint; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_iw_p3_bypass_hint_0 = next_uop_iw_p3_bypass_hint; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_dis_col_sel_0 = next_uop_dis_col_sel; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_br_mask_0 = next_uop_br_mask; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_br_tag_0 = next_uop_br_tag; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_br_type_0 = next_uop_br_type; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_sfb_0 = next_uop_is_sfb; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_fence_0 = next_uop_is_fence; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_fencei_0 = next_uop_is_fencei; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_sfence_0 = next_uop_is_sfence; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_amo_0 = next_uop_is_amo; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_eret_0 = next_uop_is_eret; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_sys_pc2epc_0 = next_uop_is_sys_pc2epc; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_rocc_0 = next_uop_is_rocc; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_mov_0 = next_uop_is_mov; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_ftq_idx_0 = next_uop_ftq_idx; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_edge_inst_0 = next_uop_edge_inst; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_pc_lob_0 = next_uop_pc_lob; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_taken_0 = next_uop_taken; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_imm_rename_0 = next_uop_imm_rename; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_imm_sel_0 = next_uop_imm_sel; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_pimm_0 = next_uop_pimm; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_imm_packed_0 = next_uop_imm_packed; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_op1_sel_0 = next_uop_op1_sel; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_op2_sel_0 = next_uop_op2_sel; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_ldst_0 = next_uop_fp_ctrl_ldst; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_wen_0 = next_uop_fp_ctrl_wen; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_ren1_0 = next_uop_fp_ctrl_ren1; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_ren2_0 = next_uop_fp_ctrl_ren2; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_ren3_0 = next_uop_fp_ctrl_ren3; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_swap12_0 = next_uop_fp_ctrl_swap12; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_swap23_0 = next_uop_fp_ctrl_swap23; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_typeTagIn_0 = next_uop_fp_ctrl_typeTagIn; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_typeTagOut_0 = next_uop_fp_ctrl_typeTagOut; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_fromint_0 = next_uop_fp_ctrl_fromint; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_toint_0 = next_uop_fp_ctrl_toint; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_fastpipe_0 = next_uop_fp_ctrl_fastpipe; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_fma_0 = next_uop_fp_ctrl_fma; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_div_0 = next_uop_fp_ctrl_div; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_sqrt_0 = next_uop_fp_ctrl_sqrt; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_wflags_0 = next_uop_fp_ctrl_wflags; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_ctrl_vec_0 = next_uop_fp_ctrl_vec; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_rob_idx_0 = next_uop_rob_idx; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_ldq_idx_0 = next_uop_ldq_idx; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_stq_idx_0 = next_uop_stq_idx; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_rxq_idx_0 = next_uop_rxq_idx; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_pdst_0 = next_uop_pdst; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_prs1_0 = next_uop_prs1; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_prs2_0 = next_uop_prs2; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_prs3_0 = next_uop_prs3; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_ppred_0 = next_uop_ppred; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_prs1_busy_0 = next_uop_prs1_busy; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_prs2_busy_0 = next_uop_prs2_busy; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_prs3_busy_0 = next_uop_prs3_busy; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_ppred_busy_0 = next_uop_ppred_busy; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_stale_pdst_0 = next_uop_stale_pdst; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_exception_0 = next_uop_exception; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_exc_cause_0 = next_uop_exc_cause; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_mem_cmd_0 = next_uop_mem_cmd; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_mem_size_0 = next_uop_mem_size; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_mem_signed_0 = next_uop_mem_signed; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_uses_ldq_0 = next_uop_uses_ldq; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_uses_stq_0 = next_uop_uses_stq; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_is_unique_0 = next_uop_is_unique; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_flush_on_commit_0 = next_uop_flush_on_commit; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_csr_cmd_0 = next_uop_csr_cmd; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_ldst_is_rs1_0 = next_uop_ldst_is_rs1; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_ldst_0 = next_uop_ldst; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_lrs1_0 = next_uop_lrs1; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_lrs2_0 = next_uop_lrs2; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_lrs3_0 = next_uop_lrs3; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_dst_rtype_0 = next_uop_dst_rtype; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_lrs1_rtype_0 = next_uop_lrs1_rtype; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_lrs2_rtype_0 = next_uop_lrs2_rtype; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_frs3_en_0 = next_uop_frs3_en; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fcn_dw_0 = next_uop_fcn_dw; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fcn_op_0 = next_uop_fcn_op; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_val_0 = next_uop_fp_val; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_rm_0 = next_uop_fp_rm; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_fp_typ_0 = next_uop_fp_typ; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_xcpt_pf_if_0 = next_uop_xcpt_pf_if; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_xcpt_ae_if_0 = next_uop_xcpt_ae_if; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_xcpt_ma_if_0 = next_uop_xcpt_ma_if; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_bp_debug_if_0 = next_uop_bp_debug_if; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_bp_xcpt_if_0 = next_uop_bp_xcpt_if; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_debug_fsrc_0 = next_uop_debug_fsrc; // @[issue-slot.scala:49:7, :59:28] assign io_out_uop_debug_tsrc_0 = next_uop_debug_tsrc; // @[issue-slot.scala:49:7, :59:28] wire [11:0] _killed_T = io_brupdate_b1_mispredict_mask_0 & slot_uop_br_mask; // @[util.scala:126:51] wire _killed_T_1 = |_killed_T; // @[util.scala:126:{51,59}] wire killed = _killed_T_1 | io_kill_0; // @[util.scala:61:61, :126:59] wire _io_will_be_valid_T = ~killed; // @[util.scala:61:61] assign _io_will_be_valid_T_1 = next_valid & _io_will_be_valid_T; // @[issue-slot.scala:58:28, :65:{34,37}] assign io_will_be_valid_0 = _io_will_be_valid_T_1; // @[issue-slot.scala:49:7, :65:34] wire _slot_valid_T = ~killed; // @[util.scala:61:61] wire _slot_valid_T_1 = next_valid & _slot_valid_T; // @[issue-slot.scala:58:28, :74:{30,33}]
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_TLBEntryData_103( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae_ptw, // @[package.scala:268:18] input io_x_ae_final, // @[package.scala:268:18] input io_x_ae_stage2, // @[package.scala:268:18] input io_x_pf, // @[package.scala:268:18] input io_x_gf, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_hw, // @[package.scala:268:18] input io_x_hx, // @[package.scala:268:18] input io_x_hr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_ppp, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_ae_ptw, // @[package.scala:268:18] output io_y_ae_final, // @[package.scala:268:18] output io_y_ae_stage2, // @[package.scala:268:18] output io_y_pf, // @[package.scala:268:18] output io_y_gf, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_hw, // @[package.scala:268:18] output io_y_hx, // @[package.scala:268:18] output io_y_hr, // @[package.scala:268:18] output io_y_pw, // @[package.scala:268:18] output io_y_px, // @[package.scala:268:18] output io_y_pr, // @[package.scala:268:18] output io_y_ppp, // @[package.scala:268:18] output io_y_pal, // @[package.scala:268:18] output io_y_paa, // @[package.scala:268:18] output io_y_eff, // @[package.scala:268:18] output io_y_c // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30] wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30] wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30] wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30] wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30] wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30] wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30] wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30] wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30] wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30] wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30] wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30] wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30] wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30] wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30] wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30] wire io_y_ppp_0 = io_x_ppp_0; // @[package.scala:267:30] wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30] wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30] assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30] assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30] assign io_y_pf = io_y_pf_0; // @[package.scala:267:30] assign io_y_gf = io_y_gf_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_hw = io_y_hw_0; // @[package.scala:267:30] assign io_y_hx = io_y_hx_0; // @[package.scala:267:30] assign io_y_hr = io_y_hr_0; // @[package.scala:267:30] assign io_y_pw = io_y_pw_0; // @[package.scala:267:30] assign io_y_px = io_y_px_0; // @[package.scala:267:30] assign io_y_pr = io_y_pr_0; // @[package.scala:267:30] assign io_y_ppp = io_y_ppp_0; // @[package.scala:267:30] assign io_y_pal = io_y_pal_0; // @[package.scala:267:30] assign io_y_paa = io_y_paa_0; // @[package.scala:267:30] assign io_y_eff = io_y_eff_0; // @[package.scala:267:30] assign io_y_c = io_y_c_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_112( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [1:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [10:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [27:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [10:0] io_in_d_bits_source // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire a_first_done = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35] reg a_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [1:0] size; // @[Monitor.scala:389:22] reg [10:0] source; // @[Monitor.scala:390:22] reg [27:0] address; // @[Monitor.scala:391:22] reg d_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] size_1; // @[Monitor.scala:540:22] reg [10:0] source_1; // @[Monitor.scala:541:22] reg [1855:0] inflight; // @[Monitor.scala:614:27] reg [7423:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [7423:0] inflight_sizes; // @[Monitor.scala:618:33] reg a_first_counter_1; // @[Edges.scala:229:27] reg d_first_counter_1; // @[Edges.scala:229:27] wire [2047:0] _GEN = {2037'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35] wire _GEN_0 = a_first_done & ~a_first_counter_1; // @[Decoupled.scala:51:35] wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46] wire _GEN_1 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74] wire [2047:0] _GEN_2 = {2037'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35] reg [31:0] watchdog; // @[Monitor.scala:709:27] reg [1855:0] inflight_1; // @[Monitor.scala:726:35] reg [7423:0] inflight_sizes_1; // @[Monitor.scala:728:35] reg d_first_counter_2; // @[Edges.scala:229:27] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File primitives.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object lowMask { def apply(in: UInt, topBound: BigInt, bottomBound: BigInt): UInt = { require(topBound != bottomBound) val numInVals = BigInt(1)<<in.getWidth if (topBound < bottomBound) { lowMask(~in, numInVals - 1 - topBound, numInVals - 1 - bottomBound) } else if (numInVals > 64 /* Empirical */) { // For simulation performance, we should avoid generating // exteremely wide shifters, so we divide and conquer. // Empirically, this does not impact synthesis QoR. val mid = numInVals / 2 val msb = in(in.getWidth - 1) val lsbs = in(in.getWidth - 2, 0) if (mid < topBound) { if (mid <= bottomBound) { Mux(msb, lowMask(lsbs, topBound - mid, bottomBound - mid), 0.U ) } else { Mux(msb, lowMask(lsbs, topBound - mid, 0) ## ((BigInt(1)<<(mid - bottomBound).toInt) - 1).U, lowMask(lsbs, mid, bottomBound) ) } } else { ~Mux(msb, 0.U, ~lowMask(lsbs, topBound, bottomBound)) } } else { val shift = (BigInt(-1)<<numInVals.toInt).S>>in Reverse( shift( (numInVals - 1 - bottomBound).toInt, (numInVals - topBound).toInt ) ) } } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object countLeadingZeros { def apply(in: UInt): UInt = PriorityEncoder(in.asBools.reverse) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy2 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 1)>>1 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 2 + 1, ix * 2).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 2).orR reducedVec.asUInt } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- object orReduceBy4 { def apply(in: UInt): UInt = { val reducedWidth = (in.getWidth + 3)>>2 val reducedVec = Wire(Vec(reducedWidth, Bool())) for (ix <- 0 until reducedWidth - 1) { reducedVec(ix) := in(ix * 4 + 3, ix * 4).orR } reducedVec(reducedWidth - 1) := in(in.getWidth - 1, (reducedWidth - 1) * 4).orR reducedVec.asUInt } } File MulAddRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN_interIo(expWidth: Int, sigWidth: Int) extends Bundle { //*** ENCODE SOME OF THESE CASES IN FEWER BITS?: val isSigNaNAny = Bool() val isNaNAOrB = Bool() val isInfA = Bool() val isZeroA = Bool() val isInfB = Bool() val isZeroB = Bool() val signProd = Bool() val isNaNC = Bool() val isInfC = Bool() val isZeroC = Bool() val sExpSum = SInt((expWidth + 2).W) val doSubMags = Bool() val CIsDominant = Bool() val CDom_CAlignDist = UInt(log2Ceil(sigWidth + 1).W) val highAlignedSigC = UInt((sigWidth + 2).W) val bit0AlignedSigC = UInt(1.W) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_preMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_preMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val mulAddA = Output(UInt(sigWidth.W)) val mulAddB = Output(UInt(sigWidth.W)) val mulAddC = Output(UInt((sigWidth * 2).W)) val toPostMul = Output(new MulAddRecFN_interIo(expWidth, sigWidth)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ //*** POSSIBLE TO REDUCE THIS BY 1 OR 2 BITS? (CURRENTLY 2 BITS BETWEEN //*** UNSHIFTED C AND PRODUCT): val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawA = rawFloatFromRecFN(expWidth, sigWidth, io.a) val rawB = rawFloatFromRecFN(expWidth, sigWidth, io.b) val rawC = rawFloatFromRecFN(expWidth, sigWidth, io.c) val signProd = rawA.sign ^ rawB.sign ^ io.op(1) //*** REVIEW THE BIAS FOR 'sExpAlignedProd': val sExpAlignedProd = rawA.sExp +& rawB.sExp + (-(BigInt(1)<<expWidth) + sigWidth + 3).S val doSubMags = signProd ^ rawC.sign ^ io.op(0) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sNatCAlignDist = sExpAlignedProd - rawC.sExp val posNatCAlignDist = sNatCAlignDist(expWidth + 1, 0) val isMinCAlign = rawA.isZero || rawB.isZero || (sNatCAlignDist < 0.S) val CIsDominant = ! rawC.isZero && (isMinCAlign || (posNatCAlignDist <= sigWidth.U)) val CAlignDist = Mux(isMinCAlign, 0.U, Mux(posNatCAlignDist < (sigSumWidth - 1).U, posNatCAlignDist(log2Ceil(sigSumWidth) - 1, 0), (sigSumWidth - 1).U ) ) val mainAlignedSigC = (Mux(doSubMags, ~rawC.sig, rawC.sig) ## Fill(sigSumWidth - sigWidth + 2, doSubMags)).asSInt>>CAlignDist val reduced4CExtra = (orReduceBy4(rawC.sig<<((sigSumWidth - sigWidth - 1) & 3)) & lowMask( CAlignDist>>2, //*** NOT NEEDED?: // (sigSumWidth + 2)>>2, (sigSumWidth - 1)>>2, (sigSumWidth - sigWidth - 1)>>2 ) ).orR val alignedSigC = Cat(mainAlignedSigC>>3, Mux(doSubMags, mainAlignedSigC(2, 0).andR && ! reduced4CExtra, mainAlignedSigC(2, 0).orR || reduced4CExtra ) ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.mulAddA := rawA.sig io.mulAddB := rawB.sig io.mulAddC := alignedSigC(sigWidth * 2, 1) io.toPostMul.isSigNaNAny := isSigNaNRawFloat(rawA) || isSigNaNRawFloat(rawB) || isSigNaNRawFloat(rawC) io.toPostMul.isNaNAOrB := rawA.isNaN || rawB.isNaN io.toPostMul.isInfA := rawA.isInf io.toPostMul.isZeroA := rawA.isZero io.toPostMul.isInfB := rawB.isInf io.toPostMul.isZeroB := rawB.isZero io.toPostMul.signProd := signProd io.toPostMul.isNaNC := rawC.isNaN io.toPostMul.isInfC := rawC.isInf io.toPostMul.isZeroC := rawC.isZero io.toPostMul.sExpSum := Mux(CIsDominant, rawC.sExp, sExpAlignedProd - sigWidth.S) io.toPostMul.doSubMags := doSubMags io.toPostMul.CIsDominant := CIsDominant io.toPostMul.CDom_CAlignDist := CAlignDist(log2Ceil(sigWidth + 1) - 1, 0) io.toPostMul.highAlignedSigC := alignedSigC(sigSumWidth - 1, sigWidth * 2 + 1) io.toPostMul.bit0AlignedSigC := alignedSigC(0) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFNToRaw_postMul(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFNToRaw_postMul_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val fromPreMul = Input(new MulAddRecFN_interIo(expWidth, sigWidth)) val mulAddResult = Input(UInt((sigWidth * 2 + 1).W)) val roundingMode = Input(UInt(3.W)) val invalidExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigSumWidth = sigWidth * 3 + 3 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_min = (io.roundingMode === round_min) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val opSignC = io.fromPreMul.signProd ^ io.fromPreMul.doSubMags val sigSum = Cat(Mux(io.mulAddResult(sigWidth * 2), io.fromPreMul.highAlignedSigC + 1.U, io.fromPreMul.highAlignedSigC ), io.mulAddResult(sigWidth * 2 - 1, 0), io.fromPreMul.bit0AlignedSigC ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val CDom_sign = opSignC val CDom_sExp = io.fromPreMul.sExpSum - io.fromPreMul.doSubMags.zext val CDom_absSigSum = Mux(io.fromPreMul.doSubMags, ~sigSum(sigSumWidth - 1, sigWidth + 1), 0.U(1.W) ## //*** IF GAP IS REDUCED TO 1 BIT, MUST REDUCE THIS COMPONENT TO 1 BIT TOO: io.fromPreMul.highAlignedSigC(sigWidth + 1, sigWidth) ## sigSum(sigSumWidth - 3, sigWidth + 2) ) val CDom_absSigSumExtra = Mux(io.fromPreMul.doSubMags, (~sigSum(sigWidth, 1)).orR, sigSum(sigWidth + 1, 1).orR ) val CDom_mainSig = (CDom_absSigSum<<io.fromPreMul.CDom_CAlignDist)( sigWidth * 2 + 1, sigWidth - 3) val CDom_reduced4SigExtra = (orReduceBy4(CDom_absSigSum(sigWidth - 1, 0)<<(~sigWidth & 3)) & lowMask(io.fromPreMul.CDom_CAlignDist>>2, 0, sigWidth>>2)).orR val CDom_sig = Cat(CDom_mainSig>>3, CDom_mainSig(2, 0).orR || CDom_reduced4SigExtra || CDom_absSigSumExtra ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notCDom_signSigSum = sigSum(sigWidth * 2 + 3) val notCDom_absSigSum = Mux(notCDom_signSigSum, ~sigSum(sigWidth * 2 + 2, 0), sigSum(sigWidth * 2 + 2, 0) + io.fromPreMul.doSubMags ) val notCDom_reduced2AbsSigSum = orReduceBy2(notCDom_absSigSum) val notCDom_normDistReduced2 = countLeadingZeros(notCDom_reduced2AbsSigSum) val notCDom_nearNormDist = notCDom_normDistReduced2<<1 val notCDom_sExp = io.fromPreMul.sExpSum - notCDom_nearNormDist.asUInt.zext val notCDom_mainSig = (notCDom_absSigSum<<notCDom_nearNormDist)( sigWidth * 2 + 3, sigWidth - 1) val notCDom_reduced4SigExtra = (orReduceBy2( notCDom_reduced2AbsSigSum(sigWidth>>1, 0)<<((sigWidth>>1) & 1)) & lowMask(notCDom_normDistReduced2>>1, 0, (sigWidth + 2)>>2) ).orR val notCDom_sig = Cat(notCDom_mainSig>>3, notCDom_mainSig(2, 0).orR || notCDom_reduced4SigExtra ) val notCDom_completeCancellation = (notCDom_sig(sigWidth + 2, sigWidth + 1) === 0.U) val notCDom_sign = Mux(notCDom_completeCancellation, roundingMode_min, io.fromPreMul.signProd ^ notCDom_signSigSum ) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val notNaN_isInfProd = io.fromPreMul.isInfA || io.fromPreMul.isInfB val notNaN_isInfOut = notNaN_isInfProd || io.fromPreMul.isInfC val notNaN_addZeros = (io.fromPreMul.isZeroA || io.fromPreMul.isZeroB) && io.fromPreMul.isZeroC io.invalidExc := io.fromPreMul.isSigNaNAny || (io.fromPreMul.isInfA && io.fromPreMul.isZeroB) || (io.fromPreMul.isZeroA && io.fromPreMul.isInfB) || (! io.fromPreMul.isNaNAOrB && (io.fromPreMul.isInfA || io.fromPreMul.isInfB) && io.fromPreMul.isInfC && io.fromPreMul.doSubMags) io.rawOut.isNaN := io.fromPreMul.isNaNAOrB || io.fromPreMul.isNaNC io.rawOut.isInf := notNaN_isInfOut //*** IMPROVE?: io.rawOut.isZero := notNaN_addZeros || (! io.fromPreMul.CIsDominant && notCDom_completeCancellation) io.rawOut.sign := (notNaN_isInfProd && io.fromPreMul.signProd) || (io.fromPreMul.isInfC && opSignC) || (notNaN_addZeros && ! roundingMode_min && io.fromPreMul.signProd && opSignC) || (notNaN_addZeros && roundingMode_min && (io.fromPreMul.signProd || opSignC)) || (! notNaN_isInfOut && ! notNaN_addZeros && Mux(io.fromPreMul.CIsDominant, CDom_sign, notCDom_sign)) io.rawOut.sExp := Mux(io.fromPreMul.CIsDominant, CDom_sExp, notCDom_sExp) io.rawOut.sig := Mux(io.fromPreMul.CIsDominant, CDom_sig, notCDom_sig) } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class MulAddRecFN(expWidth: Int, sigWidth: Int) extends RawModule { override def desiredName = s"MulAddRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC mulAddRecFNToRaw_postMul.io.fromPreMul := mulAddRecFNToRaw_preMul.io.toPostMul mulAddRecFNToRaw_postMul.io.mulAddResult := mulAddResult mulAddRecFNToRaw_postMul.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := mulAddRecFNToRaw_postMul.io.invalidExc roundRawFNToRecFN.io.infiniteExc := false.B roundRawFNToRecFN.io.in := mulAddRecFNToRaw_postMul.io.rawOut roundRawFNToRecFN.io.roundingMode := io.roundingMode roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags }
module MulAddRecFNToRaw_postMul_e8_s24_13( // @[MulAddRecFN.scala:169:7] input io_fromPreMul_isSigNaNAny, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isNaNAOrB, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isInfA, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isZeroA, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isInfB, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_isZeroB, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_signProd, // @[MulAddRecFN.scala:172:16] input [9:0] io_fromPreMul_sExpSum, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_doSubMags, // @[MulAddRecFN.scala:172:16] input [4:0] io_fromPreMul_CDom_CAlignDist, // @[MulAddRecFN.scala:172:16] input [25:0] io_fromPreMul_highAlignedSigC, // @[MulAddRecFN.scala:172:16] input io_fromPreMul_bit0AlignedSigC, // @[MulAddRecFN.scala:172:16] input [48:0] io_mulAddResult, // @[MulAddRecFN.scala:172:16] output io_invalidExc, // @[MulAddRecFN.scala:172:16] output io_rawOut_isNaN, // @[MulAddRecFN.scala:172:16] output io_rawOut_isInf, // @[MulAddRecFN.scala:172:16] output io_rawOut_isZero, // @[MulAddRecFN.scala:172:16] output io_rawOut_sign, // @[MulAddRecFN.scala:172:16] output [9:0] io_rawOut_sExp, // @[MulAddRecFN.scala:172:16] output [26:0] io_rawOut_sig // @[MulAddRecFN.scala:172:16] ); wire io_fromPreMul_isSigNaNAny_0 = io_fromPreMul_isSigNaNAny; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isNaNAOrB_0 = io_fromPreMul_isNaNAOrB; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isInfA_0 = io_fromPreMul_isInfA; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isZeroA_0 = io_fromPreMul_isZeroA; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isInfB_0 = io_fromPreMul_isInfB; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isZeroB_0 = io_fromPreMul_isZeroB; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_signProd_0 = io_fromPreMul_signProd; // @[MulAddRecFN.scala:169:7] wire [9:0] io_fromPreMul_sExpSum_0 = io_fromPreMul_sExpSum; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_doSubMags_0 = io_fromPreMul_doSubMags; // @[MulAddRecFN.scala:169:7] wire [4:0] io_fromPreMul_CDom_CAlignDist_0 = io_fromPreMul_CDom_CAlignDist; // @[MulAddRecFN.scala:169:7] wire [25:0] io_fromPreMul_highAlignedSigC_0 = io_fromPreMul_highAlignedSigC; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_bit0AlignedSigC_0 = io_fromPreMul_bit0AlignedSigC; // @[MulAddRecFN.scala:169:7] wire [48:0] io_mulAddResult_0 = io_mulAddResult; // @[MulAddRecFN.scala:169:7] wire [2:0] io_roundingMode = 3'h0; // @[MulAddRecFN.scala:169:7, :172:16] wire io_fromPreMul_isZeroC = 1'h1; // @[MulAddRecFN.scala:169:7] wire _io_rawOut_isZero_T = 1'h1; // @[MulAddRecFN.scala:283:14] wire _io_rawOut_sign_T_3 = 1'h1; // @[MulAddRecFN.scala:287:29] wire io_fromPreMul_isNaNC = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_isInfC = 1'h0; // @[MulAddRecFN.scala:169:7] wire io_fromPreMul_CIsDominant = 1'h0; // @[MulAddRecFN.scala:169:7] wire roundingMode_min = 1'h0; // @[MulAddRecFN.scala:186:45] wire _io_invalidExc_T_7 = 1'h0; // @[MulAddRecFN.scala:275:61] wire _io_invalidExc_T_8 = 1'h0; // @[MulAddRecFN.scala:276:35] wire _io_rawOut_sign_T_1 = 1'h0; // @[MulAddRecFN.scala:286:31] wire _io_rawOut_sign_T_8 = 1'h0; // @[MulAddRecFN.scala:289:26] wire _io_rawOut_sign_T_10 = 1'h0; // @[MulAddRecFN.scala:289:46] wire _io_rawOut_isNaN_T = io_fromPreMul_isNaNAOrB_0; // @[MulAddRecFN.scala:169:7, :278:48] wire _io_invalidExc_T_9; // @[MulAddRecFN.scala:273:57] wire notNaN_isInfOut; // @[MulAddRecFN.scala:265:44] wire _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:282:25] wire _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:290:50] wire [9:0] _io_rawOut_sExp_T; // @[MulAddRecFN.scala:293:26] wire [26:0] _io_rawOut_sig_T; // @[MulAddRecFN.scala:294:25] wire io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7] wire io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7] wire [9:0] io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7] wire [26:0] io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7] wire io_invalidExc_0; // @[MulAddRecFN.scala:169:7] wire opSignC = io_fromPreMul_signProd_0 ^ io_fromPreMul_doSubMags_0; // @[MulAddRecFN.scala:169:7, :190:42] wire _sigSum_T = io_mulAddResult_0[48]; // @[MulAddRecFN.scala:169:7, :192:32] wire [26:0] _sigSum_T_1 = {1'h0, io_fromPreMul_highAlignedSigC_0} + 27'h1; // @[MulAddRecFN.scala:169:7, :193:47] wire [25:0] _sigSum_T_2 = _sigSum_T_1[25:0]; // @[MulAddRecFN.scala:193:47] wire [25:0] _sigSum_T_3 = _sigSum_T ? _sigSum_T_2 : io_fromPreMul_highAlignedSigC_0; // @[MulAddRecFN.scala:169:7, :192:{16,32}, :193:47] wire [47:0] _sigSum_T_4 = io_mulAddResult_0[47:0]; // @[MulAddRecFN.scala:169:7, :196:28] wire [73:0] sigSum_hi = {_sigSum_T_3, _sigSum_T_4}; // @[MulAddRecFN.scala:192:{12,16}, :196:28] wire [74:0] sigSum = {sigSum_hi, io_fromPreMul_bit0AlignedSigC_0}; // @[MulAddRecFN.scala:169:7, :192:12] wire [1:0] _CDom_sExp_T = {1'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :203:69] wire [10:0] _GEN = {io_fromPreMul_sExpSum_0[9], io_fromPreMul_sExpSum_0}; // @[MulAddRecFN.scala:169:7, :203:43] wire [10:0] _CDom_sExp_T_1 = _GEN - {{9{_CDom_sExp_T[1]}}, _CDom_sExp_T}; // @[MulAddRecFN.scala:203:{43,69}] wire [9:0] _CDom_sExp_T_2 = _CDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:203:43] wire [9:0] CDom_sExp = _CDom_sExp_T_2; // @[MulAddRecFN.scala:203:43] wire [49:0] _CDom_absSigSum_T = sigSum[74:25]; // @[MulAddRecFN.scala:192:12, :206:20] wire [49:0] _CDom_absSigSum_T_1 = ~_CDom_absSigSum_T; // @[MulAddRecFN.scala:206:{13,20}] wire [1:0] _CDom_absSigSum_T_2 = io_fromPreMul_highAlignedSigC_0[25:24]; // @[MulAddRecFN.scala:169:7, :209:46] wire [2:0] _CDom_absSigSum_T_3 = {1'h0, _CDom_absSigSum_T_2}; // @[MulAddRecFN.scala:207:22, :209:46] wire [46:0] _CDom_absSigSum_T_4 = sigSum[72:26]; // @[MulAddRecFN.scala:192:12, :210:23] wire [49:0] _CDom_absSigSum_T_5 = {_CDom_absSigSum_T_3, _CDom_absSigSum_T_4}; // @[MulAddRecFN.scala:207:22, :209:71, :210:23] wire [49:0] CDom_absSigSum = io_fromPreMul_doSubMags_0 ? _CDom_absSigSum_T_1 : _CDom_absSigSum_T_5; // @[MulAddRecFN.scala:169:7, :205:12, :206:13, :209:71] wire [23:0] _CDom_absSigSumExtra_T = sigSum[24:1]; // @[MulAddRecFN.scala:192:12, :215:21] wire [23:0] _CDom_absSigSumExtra_T_1 = ~_CDom_absSigSumExtra_T; // @[MulAddRecFN.scala:215:{14,21}] wire _CDom_absSigSumExtra_T_2 = |_CDom_absSigSumExtra_T_1; // @[MulAddRecFN.scala:215:{14,36}] wire [24:0] _CDom_absSigSumExtra_T_3 = sigSum[25:1]; // @[MulAddRecFN.scala:192:12, :216:19] wire _CDom_absSigSumExtra_T_4 = |_CDom_absSigSumExtra_T_3; // @[MulAddRecFN.scala:216:{19,37}] wire CDom_absSigSumExtra = io_fromPreMul_doSubMags_0 ? _CDom_absSigSumExtra_T_2 : _CDom_absSigSumExtra_T_4; // @[MulAddRecFN.scala:169:7, :214:12, :215:36, :216:37] wire [80:0] _CDom_mainSig_T = {31'h0, CDom_absSigSum} << io_fromPreMul_CDom_CAlignDist_0; // @[MulAddRecFN.scala:169:7, :205:12, :219:24] wire [28:0] CDom_mainSig = _CDom_mainSig_T[49:21]; // @[MulAddRecFN.scala:219:{24,56}] wire [23:0] _CDom_reduced4SigExtra_T = CDom_absSigSum[23:0]; // @[MulAddRecFN.scala:205:12, :222:36] wire [26:0] _CDom_reduced4SigExtra_T_1 = {_CDom_reduced4SigExtra_T, 3'h0}; // @[MulAddRecFN.scala:169:7, :172:16, :222:{36,53}] wire _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:120:54] wire _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:123:57] wire CDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:118:30] wire CDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:118:30] wire [3:0] _CDom_reduced4SigExtra_reducedVec_0_T = _CDom_reduced4SigExtra_T_1[3:0]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_0_T_1 = |_CDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_0 = _CDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_1_T = _CDom_reduced4SigExtra_T_1[7:4]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_1_T_1 = |_CDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_1 = _CDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_2_T = _CDom_reduced4SigExtra_T_1[11:8]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_2_T_1 = |_CDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_2 = _CDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_3_T = _CDom_reduced4SigExtra_T_1[15:12]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_3_T_1 = |_CDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_3 = _CDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_4_T = _CDom_reduced4SigExtra_T_1[19:16]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_4_T_1 = |_CDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_4 = _CDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:118:30, :120:54] wire [3:0] _CDom_reduced4SigExtra_reducedVec_5_T = _CDom_reduced4SigExtra_T_1[23:20]; // @[primitives.scala:120:33] assign _CDom_reduced4SigExtra_reducedVec_5_T_1 = |_CDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:120:{33,54}] assign CDom_reduced4SigExtra_reducedVec_5 = _CDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:118:30, :120:54] wire [2:0] _CDom_reduced4SigExtra_reducedVec_6_T = _CDom_reduced4SigExtra_T_1[26:24]; // @[primitives.scala:123:15] assign _CDom_reduced4SigExtra_reducedVec_6_T_1 = |_CDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:123:{15,57}] assign CDom_reduced4SigExtra_reducedVec_6 = _CDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:118:30, :123:57] wire [1:0] CDom_reduced4SigExtra_lo_hi = {CDom_reduced4SigExtra_reducedVec_2, CDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:118:30, :124:20] wire [2:0] CDom_reduced4SigExtra_lo = {CDom_reduced4SigExtra_lo_hi, CDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:118:30, :124:20] wire [1:0] CDom_reduced4SigExtra_hi_lo = {CDom_reduced4SigExtra_reducedVec_4, CDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:118:30, :124:20] wire [1:0] CDom_reduced4SigExtra_hi_hi = {CDom_reduced4SigExtra_reducedVec_6, CDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:118:30, :124:20] wire [3:0] CDom_reduced4SigExtra_hi = {CDom_reduced4SigExtra_hi_hi, CDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:124:20] wire [6:0] _CDom_reduced4SigExtra_T_2 = {CDom_reduced4SigExtra_hi, CDom_reduced4SigExtra_lo}; // @[primitives.scala:124:20] wire [2:0] _CDom_reduced4SigExtra_T_3 = io_fromPreMul_CDom_CAlignDist_0[4:2]; // @[MulAddRecFN.scala:169:7, :223:51] wire [2:0] _CDom_reduced4SigExtra_T_4 = ~_CDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21] wire [8:0] CDom_reduced4SigExtra_shift = $signed(9'sh100 >>> _CDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56] wire [5:0] _CDom_reduced4SigExtra_T_5 = CDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22] wire [3:0] _CDom_reduced4SigExtra_T_6 = _CDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _CDom_reduced4SigExtra_T_7 = _CDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_8 = _CDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_9 = _CDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_10 = {_CDom_reduced4SigExtra_T_8, _CDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_11 = _CDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_12 = _CDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_13 = _CDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_14 = {_CDom_reduced4SigExtra_T_12, _CDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20] wire [3:0] _CDom_reduced4SigExtra_T_15 = {_CDom_reduced4SigExtra_T_10, _CDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_16 = _CDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22] wire _CDom_reduced4SigExtra_T_17 = _CDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20] wire _CDom_reduced4SigExtra_T_18 = _CDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20] wire [1:0] _CDom_reduced4SigExtra_T_19 = {_CDom_reduced4SigExtra_T_17, _CDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20] wire [5:0] _CDom_reduced4SigExtra_T_20 = {_CDom_reduced4SigExtra_T_15, _CDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20] wire [6:0] _CDom_reduced4SigExtra_T_21 = {1'h0, _CDom_reduced4SigExtra_T_2[5:0] & _CDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :124:20] wire CDom_reduced4SigExtra = |_CDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:222:72, :223:73] wire [25:0] _CDom_sig_T = CDom_mainSig[28:3]; // @[MulAddRecFN.scala:219:56, :225:25] wire [2:0] _CDom_sig_T_1 = CDom_mainSig[2:0]; // @[MulAddRecFN.scala:219:56, :226:25] wire _CDom_sig_T_2 = |_CDom_sig_T_1; // @[MulAddRecFN.scala:226:{25,32}] wire _CDom_sig_T_3 = _CDom_sig_T_2 | CDom_reduced4SigExtra; // @[MulAddRecFN.scala:223:73, :226:{32,36}] wire _CDom_sig_T_4 = _CDom_sig_T_3 | CDom_absSigSumExtra; // @[MulAddRecFN.scala:214:12, :226:{36,61}] wire [26:0] CDom_sig = {_CDom_sig_T, _CDom_sig_T_4}; // @[MulAddRecFN.scala:225:{12,25}, :226:61] wire notCDom_signSigSum = sigSum[51]; // @[MulAddRecFN.scala:192:12, :232:36] wire [50:0] _notCDom_absSigSum_T = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20] wire [50:0] _notCDom_absSigSum_T_2 = sigSum[50:0]; // @[MulAddRecFN.scala:192:12, :235:20, :236:19] wire [50:0] _notCDom_absSigSum_T_1 = ~_notCDom_absSigSum_T; // @[MulAddRecFN.scala:235:{13,20}] wire [51:0] _notCDom_absSigSum_T_3 = {1'h0, _notCDom_absSigSum_T_2} + {51'h0, io_fromPreMul_doSubMags_0}; // @[MulAddRecFN.scala:169:7, :236:{19,41}] wire [50:0] _notCDom_absSigSum_T_4 = _notCDom_absSigSum_T_3[50:0]; // @[MulAddRecFN.scala:236:41] wire [50:0] notCDom_absSigSum = notCDom_signSigSum ? _notCDom_absSigSum_T_1 : _notCDom_absSigSum_T_4; // @[MulAddRecFN.scala:232:36, :234:12, :235:13, :236:41] wire _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:106:57] wire notCDom_reduced2AbsSigSum_reducedVec_0; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_1; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_2; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_3; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_4; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_5; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_6; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_7; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_8; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_9; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_10; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_11; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_12; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_13; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_14; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_15; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_16; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_17; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_18; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_19; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_20; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_21; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_22; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_23; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_24; // @[primitives.scala:101:30] wire notCDom_reduced2AbsSigSum_reducedVec_25; // @[primitives.scala:101:30] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_0_T = notCDom_absSigSum[1:0]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_0_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_0_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_0 = _notCDom_reduced2AbsSigSum_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_1_T = notCDom_absSigSum[3:2]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_1_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_1_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_1 = _notCDom_reduced2AbsSigSum_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_2_T = notCDom_absSigSum[5:4]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_2_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_2_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_2 = _notCDom_reduced2AbsSigSum_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_3_T = notCDom_absSigSum[7:6]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_3_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_3_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_3 = _notCDom_reduced2AbsSigSum_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_4_T = notCDom_absSigSum[9:8]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_4_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_4_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_4 = _notCDom_reduced2AbsSigSum_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_5_T = notCDom_absSigSum[11:10]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_5_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_5_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_5 = _notCDom_reduced2AbsSigSum_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_6_T = notCDom_absSigSum[13:12]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_6_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_6_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_6 = _notCDom_reduced2AbsSigSum_reducedVec_6_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_7_T = notCDom_absSigSum[15:14]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_7_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_7_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_7 = _notCDom_reduced2AbsSigSum_reducedVec_7_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_8_T = notCDom_absSigSum[17:16]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_8_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_8_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_8 = _notCDom_reduced2AbsSigSum_reducedVec_8_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_9_T = notCDom_absSigSum[19:18]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_9_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_9_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_9 = _notCDom_reduced2AbsSigSum_reducedVec_9_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_10_T = notCDom_absSigSum[21:20]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_10_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_10_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_10 = _notCDom_reduced2AbsSigSum_reducedVec_10_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_11_T = notCDom_absSigSum[23:22]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_11_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_11_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_11 = _notCDom_reduced2AbsSigSum_reducedVec_11_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_12_T = notCDom_absSigSum[25:24]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_12_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_12_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_12 = _notCDom_reduced2AbsSigSum_reducedVec_12_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_13_T = notCDom_absSigSum[27:26]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_13_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_13_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_13 = _notCDom_reduced2AbsSigSum_reducedVec_13_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_14_T = notCDom_absSigSum[29:28]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_14_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_14_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_14 = _notCDom_reduced2AbsSigSum_reducedVec_14_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_15_T = notCDom_absSigSum[31:30]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_15_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_15_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_15 = _notCDom_reduced2AbsSigSum_reducedVec_15_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_16_T = notCDom_absSigSum[33:32]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_16_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_16_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_16 = _notCDom_reduced2AbsSigSum_reducedVec_16_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_17_T = notCDom_absSigSum[35:34]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_17_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_17_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_17 = _notCDom_reduced2AbsSigSum_reducedVec_17_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_18_T = notCDom_absSigSum[37:36]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_18_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_18_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_18 = _notCDom_reduced2AbsSigSum_reducedVec_18_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_19_T = notCDom_absSigSum[39:38]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_19_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_19_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_19 = _notCDom_reduced2AbsSigSum_reducedVec_19_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_20_T = notCDom_absSigSum[41:40]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_20_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_20_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_20 = _notCDom_reduced2AbsSigSum_reducedVec_20_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_21_T = notCDom_absSigSum[43:42]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_21_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_21_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_21 = _notCDom_reduced2AbsSigSum_reducedVec_21_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_22_T = notCDom_absSigSum[45:44]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_22_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_22_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_22 = _notCDom_reduced2AbsSigSum_reducedVec_22_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_23_T = notCDom_absSigSum[47:46]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_23_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_23_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_23 = _notCDom_reduced2AbsSigSum_reducedVec_23_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced2AbsSigSum_reducedVec_24_T = notCDom_absSigSum[49:48]; // @[primitives.scala:103:33] assign _notCDom_reduced2AbsSigSum_reducedVec_24_T_1 = |_notCDom_reduced2AbsSigSum_reducedVec_24_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced2AbsSigSum_reducedVec_24 = _notCDom_reduced2AbsSigSum_reducedVec_24_T_1; // @[primitives.scala:101:30, :103:54] wire _notCDom_reduced2AbsSigSum_reducedVec_25_T = notCDom_absSigSum[50]; // @[primitives.scala:106:15] assign _notCDom_reduced2AbsSigSum_reducedVec_25_T_1 = _notCDom_reduced2AbsSigSum_reducedVec_25_T; // @[primitives.scala:106:{15,57}] assign notCDom_reduced2AbsSigSum_reducedVec_25 = _notCDom_reduced2AbsSigSum_reducedVec_25_T_1; // @[primitives.scala:101:30, :106:57] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_2, notCDom_reduced2AbsSigSum_reducedVec_1}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_0}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_5, notCDom_reduced2AbsSigSum_reducedVec_4}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_lo_hi = {notCDom_reduced2AbsSigSum_lo_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_3}; // @[primitives.scala:101:30, :107:20] wire [5:0] notCDom_reduced2AbsSigSum_lo_lo = {notCDom_reduced2AbsSigSum_lo_lo_hi, notCDom_reduced2AbsSigSum_lo_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_8, notCDom_reduced2AbsSigSum_reducedVec_7}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_lo_hi_lo = {notCDom_reduced2AbsSigSum_lo_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_6}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_10, notCDom_reduced2AbsSigSum_reducedVec_9}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_lo_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_12, notCDom_reduced2AbsSigSum_reducedVec_11}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced2AbsSigSum_lo_hi_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_hi_lo}; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_lo_hi = {notCDom_reduced2AbsSigSum_lo_hi_hi, notCDom_reduced2AbsSigSum_lo_hi_lo}; // @[primitives.scala:107:20] wire [12:0] notCDom_reduced2AbsSigSum_lo = {notCDom_reduced2AbsSigSum_lo_hi, notCDom_reduced2AbsSigSum_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_15, notCDom_reduced2AbsSigSum_reducedVec_14}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_lo = {notCDom_reduced2AbsSigSum_hi_lo_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_13}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_lo_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_18, notCDom_reduced2AbsSigSum_reducedVec_17}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_lo_hi = {notCDom_reduced2AbsSigSum_hi_lo_hi_hi, notCDom_reduced2AbsSigSum_reducedVec_16}; // @[primitives.scala:101:30, :107:20] wire [5:0] notCDom_reduced2AbsSigSum_hi_lo = {notCDom_reduced2AbsSigSum_hi_lo_hi, notCDom_reduced2AbsSigSum_hi_lo_lo}; // @[primitives.scala:107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_lo_hi = {notCDom_reduced2AbsSigSum_reducedVec_21, notCDom_reduced2AbsSigSum_reducedVec_20}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced2AbsSigSum_hi_hi_lo = {notCDom_reduced2AbsSigSum_hi_hi_lo_hi, notCDom_reduced2AbsSigSum_reducedVec_19}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_lo = {notCDom_reduced2AbsSigSum_reducedVec_23, notCDom_reduced2AbsSigSum_reducedVec_22}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced2AbsSigSum_hi_hi_hi_hi = {notCDom_reduced2AbsSigSum_reducedVec_25, notCDom_reduced2AbsSigSum_reducedVec_24}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced2AbsSigSum_hi_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_hi_lo}; // @[primitives.scala:107:20] wire [6:0] notCDom_reduced2AbsSigSum_hi_hi = {notCDom_reduced2AbsSigSum_hi_hi_hi, notCDom_reduced2AbsSigSum_hi_hi_lo}; // @[primitives.scala:107:20] wire [12:0] notCDom_reduced2AbsSigSum_hi = {notCDom_reduced2AbsSigSum_hi_hi, notCDom_reduced2AbsSigSum_hi_lo}; // @[primitives.scala:107:20] wire [25:0] notCDom_reduced2AbsSigSum = {notCDom_reduced2AbsSigSum_hi, notCDom_reduced2AbsSigSum_lo}; // @[primitives.scala:107:20] wire _notCDom_normDistReduced2_T = notCDom_reduced2AbsSigSum[0]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_1 = notCDom_reduced2AbsSigSum[1]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_2 = notCDom_reduced2AbsSigSum[2]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_3 = notCDom_reduced2AbsSigSum[3]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_4 = notCDom_reduced2AbsSigSum[4]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_5 = notCDom_reduced2AbsSigSum[5]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_6 = notCDom_reduced2AbsSigSum[6]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_7 = notCDom_reduced2AbsSigSum[7]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_8 = notCDom_reduced2AbsSigSum[8]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_9 = notCDom_reduced2AbsSigSum[9]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_10 = notCDom_reduced2AbsSigSum[10]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_11 = notCDom_reduced2AbsSigSum[11]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_12 = notCDom_reduced2AbsSigSum[12]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_13 = notCDom_reduced2AbsSigSum[13]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_14 = notCDom_reduced2AbsSigSum[14]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_15 = notCDom_reduced2AbsSigSum[15]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_16 = notCDom_reduced2AbsSigSum[16]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_17 = notCDom_reduced2AbsSigSum[17]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_18 = notCDom_reduced2AbsSigSum[18]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_19 = notCDom_reduced2AbsSigSum[19]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_20 = notCDom_reduced2AbsSigSum[20]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_21 = notCDom_reduced2AbsSigSum[21]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_22 = notCDom_reduced2AbsSigSum[22]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_23 = notCDom_reduced2AbsSigSum[23]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_24 = notCDom_reduced2AbsSigSum[24]; // @[primitives.scala:91:52, :107:20] wire _notCDom_normDistReduced2_T_25 = notCDom_reduced2AbsSigSum[25]; // @[primitives.scala:91:52, :107:20] wire [4:0] _notCDom_normDistReduced2_T_26 = {4'hC, ~_notCDom_normDistReduced2_T_1}; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_27 = _notCDom_normDistReduced2_T_2 ? 5'h17 : _notCDom_normDistReduced2_T_26; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_28 = _notCDom_normDistReduced2_T_3 ? 5'h16 : _notCDom_normDistReduced2_T_27; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_29 = _notCDom_normDistReduced2_T_4 ? 5'h15 : _notCDom_normDistReduced2_T_28; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_30 = _notCDom_normDistReduced2_T_5 ? 5'h14 : _notCDom_normDistReduced2_T_29; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_31 = _notCDom_normDistReduced2_T_6 ? 5'h13 : _notCDom_normDistReduced2_T_30; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_32 = _notCDom_normDistReduced2_T_7 ? 5'h12 : _notCDom_normDistReduced2_T_31; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_33 = _notCDom_normDistReduced2_T_8 ? 5'h11 : _notCDom_normDistReduced2_T_32; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_34 = _notCDom_normDistReduced2_T_9 ? 5'h10 : _notCDom_normDistReduced2_T_33; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_35 = _notCDom_normDistReduced2_T_10 ? 5'hF : _notCDom_normDistReduced2_T_34; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_36 = _notCDom_normDistReduced2_T_11 ? 5'hE : _notCDom_normDistReduced2_T_35; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_37 = _notCDom_normDistReduced2_T_12 ? 5'hD : _notCDom_normDistReduced2_T_36; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_38 = _notCDom_normDistReduced2_T_13 ? 5'hC : _notCDom_normDistReduced2_T_37; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_39 = _notCDom_normDistReduced2_T_14 ? 5'hB : _notCDom_normDistReduced2_T_38; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_40 = _notCDom_normDistReduced2_T_15 ? 5'hA : _notCDom_normDistReduced2_T_39; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_41 = _notCDom_normDistReduced2_T_16 ? 5'h9 : _notCDom_normDistReduced2_T_40; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_42 = _notCDom_normDistReduced2_T_17 ? 5'h8 : _notCDom_normDistReduced2_T_41; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_43 = _notCDom_normDistReduced2_T_18 ? 5'h7 : _notCDom_normDistReduced2_T_42; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_44 = _notCDom_normDistReduced2_T_19 ? 5'h6 : _notCDom_normDistReduced2_T_43; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_45 = _notCDom_normDistReduced2_T_20 ? 5'h5 : _notCDom_normDistReduced2_T_44; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_46 = _notCDom_normDistReduced2_T_21 ? 5'h4 : _notCDom_normDistReduced2_T_45; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_47 = _notCDom_normDistReduced2_T_22 ? 5'h3 : _notCDom_normDistReduced2_T_46; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_48 = _notCDom_normDistReduced2_T_23 ? 5'h2 : _notCDom_normDistReduced2_T_47; // @[Mux.scala:50:70] wire [4:0] _notCDom_normDistReduced2_T_49 = _notCDom_normDistReduced2_T_24 ? 5'h1 : _notCDom_normDistReduced2_T_48; // @[Mux.scala:50:70] wire [4:0] notCDom_normDistReduced2 = _notCDom_normDistReduced2_T_25 ? 5'h0 : _notCDom_normDistReduced2_T_49; // @[Mux.scala:50:70] wire [5:0] notCDom_nearNormDist = {notCDom_normDistReduced2, 1'h0}; // @[Mux.scala:50:70] wire [6:0] _notCDom_sExp_T = {1'h0, notCDom_nearNormDist}; // @[MulAddRecFN.scala:240:56, :241:76] wire [10:0] _notCDom_sExp_T_1 = _GEN - {{4{_notCDom_sExp_T[6]}}, _notCDom_sExp_T}; // @[MulAddRecFN.scala:203:43, :241:{46,76}] wire [9:0] _notCDom_sExp_T_2 = _notCDom_sExp_T_1[9:0]; // @[MulAddRecFN.scala:241:46] wire [9:0] notCDom_sExp = _notCDom_sExp_T_2; // @[MulAddRecFN.scala:241:46] assign _io_rawOut_sExp_T = notCDom_sExp; // @[MulAddRecFN.scala:241:46, :293:26] wire [113:0] _notCDom_mainSig_T = {63'h0, notCDom_absSigSum} << notCDom_nearNormDist; // @[MulAddRecFN.scala:234:12, :240:56, :243:27] wire [28:0] notCDom_mainSig = _notCDom_mainSig_T[51:23]; // @[MulAddRecFN.scala:243:{27,50}] wire [12:0] _notCDom_reduced4SigExtra_T = notCDom_reduced2AbsSigSum[12:0]; // @[primitives.scala:107:20] wire [12:0] _notCDom_reduced4SigExtra_T_1 = _notCDom_reduced4SigExtra_T; // @[MulAddRecFN.scala:247:{39,55}] wire _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:103:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:106:57] wire notCDom_reduced4SigExtra_reducedVec_0; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_1; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_2; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_3; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_4; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_5; // @[primitives.scala:101:30] wire notCDom_reduced4SigExtra_reducedVec_6; // @[primitives.scala:101:30] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_0_T = _notCDom_reduced4SigExtra_T_1[1:0]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_0_T_1 = |_notCDom_reduced4SigExtra_reducedVec_0_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_0 = _notCDom_reduced4SigExtra_reducedVec_0_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_1_T = _notCDom_reduced4SigExtra_T_1[3:2]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_1_T_1 = |_notCDom_reduced4SigExtra_reducedVec_1_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_1 = _notCDom_reduced4SigExtra_reducedVec_1_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_2_T = _notCDom_reduced4SigExtra_T_1[5:4]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_2_T_1 = |_notCDom_reduced4SigExtra_reducedVec_2_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_2 = _notCDom_reduced4SigExtra_reducedVec_2_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_3_T = _notCDom_reduced4SigExtra_T_1[7:6]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_3_T_1 = |_notCDom_reduced4SigExtra_reducedVec_3_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_3 = _notCDom_reduced4SigExtra_reducedVec_3_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_4_T = _notCDom_reduced4SigExtra_T_1[9:8]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_4_T_1 = |_notCDom_reduced4SigExtra_reducedVec_4_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_4 = _notCDom_reduced4SigExtra_reducedVec_4_T_1; // @[primitives.scala:101:30, :103:54] wire [1:0] _notCDom_reduced4SigExtra_reducedVec_5_T = _notCDom_reduced4SigExtra_T_1[11:10]; // @[primitives.scala:103:33] assign _notCDom_reduced4SigExtra_reducedVec_5_T_1 = |_notCDom_reduced4SigExtra_reducedVec_5_T; // @[primitives.scala:103:{33,54}] assign notCDom_reduced4SigExtra_reducedVec_5 = _notCDom_reduced4SigExtra_reducedVec_5_T_1; // @[primitives.scala:101:30, :103:54] wire _notCDom_reduced4SigExtra_reducedVec_6_T = _notCDom_reduced4SigExtra_T_1[12]; // @[primitives.scala:106:15] assign _notCDom_reduced4SigExtra_reducedVec_6_T_1 = _notCDom_reduced4SigExtra_reducedVec_6_T; // @[primitives.scala:106:{15,57}] assign notCDom_reduced4SigExtra_reducedVec_6 = _notCDom_reduced4SigExtra_reducedVec_6_T_1; // @[primitives.scala:101:30, :106:57] wire [1:0] notCDom_reduced4SigExtra_lo_hi = {notCDom_reduced4SigExtra_reducedVec_2, notCDom_reduced4SigExtra_reducedVec_1}; // @[primitives.scala:101:30, :107:20] wire [2:0] notCDom_reduced4SigExtra_lo = {notCDom_reduced4SigExtra_lo_hi, notCDom_reduced4SigExtra_reducedVec_0}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced4SigExtra_hi_lo = {notCDom_reduced4SigExtra_reducedVec_4, notCDom_reduced4SigExtra_reducedVec_3}; // @[primitives.scala:101:30, :107:20] wire [1:0] notCDom_reduced4SigExtra_hi_hi = {notCDom_reduced4SigExtra_reducedVec_6, notCDom_reduced4SigExtra_reducedVec_5}; // @[primitives.scala:101:30, :107:20] wire [3:0] notCDom_reduced4SigExtra_hi = {notCDom_reduced4SigExtra_hi_hi, notCDom_reduced4SigExtra_hi_lo}; // @[primitives.scala:107:20] wire [6:0] _notCDom_reduced4SigExtra_T_2 = {notCDom_reduced4SigExtra_hi, notCDom_reduced4SigExtra_lo}; // @[primitives.scala:107:20] wire [3:0] _notCDom_reduced4SigExtra_T_3 = notCDom_normDistReduced2[4:1]; // @[Mux.scala:50:70] wire [3:0] _notCDom_reduced4SigExtra_T_4 = ~_notCDom_reduced4SigExtra_T_3; // @[primitives.scala:52:21] wire [16:0] notCDom_reduced4SigExtra_shift = $signed(17'sh10000 >>> _notCDom_reduced4SigExtra_T_4); // @[primitives.scala:52:21, :76:56] wire [5:0] _notCDom_reduced4SigExtra_T_5 = notCDom_reduced4SigExtra_shift[6:1]; // @[primitives.scala:76:56, :78:22] wire [3:0] _notCDom_reduced4SigExtra_T_6 = _notCDom_reduced4SigExtra_T_5[3:0]; // @[primitives.scala:77:20, :78:22] wire [1:0] _notCDom_reduced4SigExtra_T_7 = _notCDom_reduced4SigExtra_T_6[1:0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_8 = _notCDom_reduced4SigExtra_T_7[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_9 = _notCDom_reduced4SigExtra_T_7[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_10 = {_notCDom_reduced4SigExtra_T_8, _notCDom_reduced4SigExtra_T_9}; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_11 = _notCDom_reduced4SigExtra_T_6[3:2]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_12 = _notCDom_reduced4SigExtra_T_11[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_13 = _notCDom_reduced4SigExtra_T_11[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_14 = {_notCDom_reduced4SigExtra_T_12, _notCDom_reduced4SigExtra_T_13}; // @[primitives.scala:77:20] wire [3:0] _notCDom_reduced4SigExtra_T_15 = {_notCDom_reduced4SigExtra_T_10, _notCDom_reduced4SigExtra_T_14}; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_16 = _notCDom_reduced4SigExtra_T_5[5:4]; // @[primitives.scala:77:20, :78:22] wire _notCDom_reduced4SigExtra_T_17 = _notCDom_reduced4SigExtra_T_16[0]; // @[primitives.scala:77:20] wire _notCDom_reduced4SigExtra_T_18 = _notCDom_reduced4SigExtra_T_16[1]; // @[primitives.scala:77:20] wire [1:0] _notCDom_reduced4SigExtra_T_19 = {_notCDom_reduced4SigExtra_T_17, _notCDom_reduced4SigExtra_T_18}; // @[primitives.scala:77:20] wire [5:0] _notCDom_reduced4SigExtra_T_20 = {_notCDom_reduced4SigExtra_T_15, _notCDom_reduced4SigExtra_T_19}; // @[primitives.scala:77:20] wire [6:0] _notCDom_reduced4SigExtra_T_21 = {1'h0, _notCDom_reduced4SigExtra_T_2[5:0] & _notCDom_reduced4SigExtra_T_20}; // @[primitives.scala:77:20, :107:20] wire notCDom_reduced4SigExtra = |_notCDom_reduced4SigExtra_T_21; // @[MulAddRecFN.scala:247:78, :249:11] wire [25:0] _notCDom_sig_T = notCDom_mainSig[28:3]; // @[MulAddRecFN.scala:243:50, :251:28] wire [2:0] _notCDom_sig_T_1 = notCDom_mainSig[2:0]; // @[MulAddRecFN.scala:243:50, :252:28] wire _notCDom_sig_T_2 = |_notCDom_sig_T_1; // @[MulAddRecFN.scala:252:{28,35}] wire _notCDom_sig_T_3 = _notCDom_sig_T_2 | notCDom_reduced4SigExtra; // @[MulAddRecFN.scala:249:11, :252:{35,39}] wire [26:0] notCDom_sig = {_notCDom_sig_T, _notCDom_sig_T_3}; // @[MulAddRecFN.scala:251:{12,28}, :252:39] assign _io_rawOut_sig_T = notCDom_sig; // @[MulAddRecFN.scala:251:12, :294:25] wire [1:0] _notCDom_completeCancellation_T = notCDom_sig[26:25]; // @[MulAddRecFN.scala:251:12, :255:21] wire notCDom_completeCancellation = _notCDom_completeCancellation_T == 2'h0; // @[primitives.scala:103:54] wire _io_rawOut_isZero_T_1 = notCDom_completeCancellation; // @[MulAddRecFN.scala:255:50, :283:42] wire _notCDom_sign_T = io_fromPreMul_signProd_0 ^ notCDom_signSigSum; // @[MulAddRecFN.scala:169:7, :232:36, :259:36] wire notCDom_sign = ~notCDom_completeCancellation & _notCDom_sign_T; // @[MulAddRecFN.scala:255:50, :257:12, :259:36] wire _io_rawOut_sign_T_15 = notCDom_sign; // @[MulAddRecFN.scala:257:12, :292:17] wire _GEN_0 = io_fromPreMul_isInfA_0 | io_fromPreMul_isInfB_0; // @[MulAddRecFN.scala:169:7, :264:49] wire notNaN_isInfProd; // @[MulAddRecFN.scala:264:49] assign notNaN_isInfProd = _GEN_0; // @[MulAddRecFN.scala:264:49] wire _io_invalidExc_T_5; // @[MulAddRecFN.scala:275:36] assign _io_invalidExc_T_5 = _GEN_0; // @[MulAddRecFN.scala:264:49, :275:36] assign notNaN_isInfOut = notNaN_isInfProd; // @[MulAddRecFN.scala:264:49, :265:44] assign io_rawOut_isInf_0 = notNaN_isInfOut; // @[MulAddRecFN.scala:169:7, :265:44] wire _notNaN_addZeros_T = io_fromPreMul_isZeroA_0 | io_fromPreMul_isZeroB_0; // @[MulAddRecFN.scala:169:7, :267:32] wire notNaN_addZeros = _notNaN_addZeros_T; // @[MulAddRecFN.scala:267:{32,58}] wire _io_rawOut_sign_T_4 = notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :287:26] wire _io_invalidExc_T = io_fromPreMul_isInfA_0 & io_fromPreMul_isZeroB_0; // @[MulAddRecFN.scala:169:7, :272:31] wire _io_invalidExc_T_1 = io_fromPreMul_isSigNaNAny_0 | _io_invalidExc_T; // @[MulAddRecFN.scala:169:7, :271:35, :272:31] wire _io_invalidExc_T_2 = io_fromPreMul_isZeroA_0 & io_fromPreMul_isInfB_0; // @[MulAddRecFN.scala:169:7, :273:32] wire _io_invalidExc_T_3 = _io_invalidExc_T_1 | _io_invalidExc_T_2; // @[MulAddRecFN.scala:271:35, :272:57, :273:32] assign _io_invalidExc_T_9 = _io_invalidExc_T_3; // @[MulAddRecFN.scala:272:57, :273:57] wire _io_invalidExc_T_4 = ~io_fromPreMul_isNaNAOrB_0; // @[MulAddRecFN.scala:169:7, :274:10] wire _io_invalidExc_T_6 = _io_invalidExc_T_4 & _io_invalidExc_T_5; // @[MulAddRecFN.scala:274:{10,36}, :275:36] assign io_invalidExc_0 = _io_invalidExc_T_9; // @[MulAddRecFN.scala:169:7, :273:57] assign io_rawOut_isNaN_0 = _io_rawOut_isNaN_T; // @[MulAddRecFN.scala:169:7, :278:48] assign _io_rawOut_isZero_T_2 = notNaN_addZeros | _io_rawOut_isZero_T_1; // @[MulAddRecFN.scala:267:58, :282:25, :283:42] assign io_rawOut_isZero_0 = _io_rawOut_isZero_T_2; // @[MulAddRecFN.scala:169:7, :282:25] wire _io_rawOut_sign_T = notNaN_isInfProd & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :264:49, :285:27] wire _io_rawOut_sign_T_2 = _io_rawOut_sign_T; // @[MulAddRecFN.scala:285:{27,54}] wire _io_rawOut_sign_T_5 = _io_rawOut_sign_T_4 & io_fromPreMul_signProd_0; // @[MulAddRecFN.scala:169:7, :287:{26,48}] wire _io_rawOut_sign_T_6 = _io_rawOut_sign_T_5 & opSignC; // @[MulAddRecFN.scala:190:42, :287:48, :288:36] wire _io_rawOut_sign_T_7 = _io_rawOut_sign_T_2 | _io_rawOut_sign_T_6; // @[MulAddRecFN.scala:285:54, :286:43, :288:36] wire _io_rawOut_sign_T_11 = _io_rawOut_sign_T_7; // @[MulAddRecFN.scala:286:43, :288:48] wire _io_rawOut_sign_T_9 = io_fromPreMul_signProd_0 | opSignC; // @[MulAddRecFN.scala:169:7, :190:42, :290:37] wire _io_rawOut_sign_T_12 = ~notNaN_isInfOut; // @[MulAddRecFN.scala:265:44, :291:10] wire _io_rawOut_sign_T_13 = ~notNaN_addZeros; // @[MulAddRecFN.scala:267:58, :291:31] wire _io_rawOut_sign_T_14 = _io_rawOut_sign_T_12 & _io_rawOut_sign_T_13; // @[MulAddRecFN.scala:291:{10,28,31}] wire _io_rawOut_sign_T_16 = _io_rawOut_sign_T_14 & _io_rawOut_sign_T_15; // @[MulAddRecFN.scala:291:{28,49}, :292:17] assign _io_rawOut_sign_T_17 = _io_rawOut_sign_T_11 | _io_rawOut_sign_T_16; // @[MulAddRecFN.scala:288:48, :290:50, :291:49] assign io_rawOut_sign_0 = _io_rawOut_sign_T_17; // @[MulAddRecFN.scala:169:7, :290:50] assign io_rawOut_sExp_0 = _io_rawOut_sExp_T; // @[MulAddRecFN.scala:169:7, :293:26] assign io_rawOut_sig_0 = _io_rawOut_sig_T; // @[MulAddRecFN.scala:169:7, :294:25] assign io_invalidExc = io_invalidExc_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isNaN = io_rawOut_isNaN_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isInf = io_rawOut_isInf_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_isZero = io_rawOut_isZero_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sign = io_rawOut_sign_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sExp = io_rawOut_sExp_0; // @[MulAddRecFN.scala:169:7] assign io_rawOut_sig = io_rawOut_sig_0; // @[MulAddRecFN.scala:169:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{ AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry, IdRange, RegionType, TransferSizes } import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions} import freechips.rocketchip.util.{ AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase, CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct } import scala.math.max //These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel case class TLMasterToSlaveTransferSizes( // Supports both Acquire+Release of the following two sizes: acquireT: TransferSizes = TransferSizes.none, acquireB: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none) extends TLCommonTransferSizes { def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .intersect(rhs.acquireT), acquireB = acquireB .intersect(rhs.acquireB), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint)) def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .mincover(rhs.acquireT), acquireB = acquireB .mincover(rhs.acquireB), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint)) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(acquireT, "T"), str(acquireB, "B"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""acquireT = ${acquireT} |acquireB = ${acquireB} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLMasterToSlaveTransferSizes { def unknownEmits = TLMasterToSlaveTransferSizes( acquireT = TransferSizes(1, 4096), acquireB = TransferSizes(1, 4096), arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096)) def unknownSupports = TLMasterToSlaveTransferSizes() } //These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel case class TLSlaveToMasterTransferSizes( probe: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none ) extends TLCommonTransferSizes { def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .intersect(rhs.probe), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint) ) def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .mincover(rhs.probe), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint) ) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(probe, "P"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""probe = ${probe} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLSlaveToMasterTransferSizes { def unknownEmits = TLSlaveToMasterTransferSizes( arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096), probe = TransferSizes(1, 4096)) def unknownSupports = TLSlaveToMasterTransferSizes() } trait TLCommonTransferSizes { def arithmetic: TransferSizes def logical: TransferSizes def get: TransferSizes def putFull: TransferSizes def putPartial: TransferSizes def hint: TransferSizes } class TLSlaveParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], setName: Option[String], val address: Seq[AddressSet], val regionType: RegionType.T, val executable: Boolean, val fifoId: Option[Int], val supports: TLMasterToSlaveTransferSizes, val emits: TLSlaveToMasterTransferSizes, // By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation) val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData // If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order // Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck // ReleaseAck may NEVER be denied extends SimpleProduct { def sortedAddress = address.sorted override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters] override def productPrefix = "TLSlaveParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 11 def productElement(n: Int): Any = n match { case 0 => name case 1 => address case 2 => resources case 3 => regionType case 4 => executable case 5 => fifoId case 6 => supports case 7 => emits case 8 => alwaysGrantsT case 9 => mayDenyGet case 10 => mayDenyPut case _ => throw new IndexOutOfBoundsException(n.toString) } def supportsAcquireT: TransferSizes = supports.acquireT def supportsAcquireB: TransferSizes = supports.acquireB def supportsArithmetic: TransferSizes = supports.arithmetic def supportsLogical: TransferSizes = supports.logical def supportsGet: TransferSizes = supports.get def supportsPutFull: TransferSizes = supports.putFull def supportsPutPartial: TransferSizes = supports.putPartial def supportsHint: TransferSizes = supports.hint require (!address.isEmpty, "Address cannot be empty") address.foreach { a => require (a.finite, "Address must be finite") } address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)") require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)") require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)") require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)") require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)") require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)") require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT") // Make sure that the regionType agrees with the capabilities require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected") val maxTransfer = List( // Largest supported transfer of all types supportsAcquireT.max, supportsAcquireB.max, supportsArithmetic.max, supportsLogical.max, supportsGet.max, supportsPutFull.max, supportsPutPartial.max).max val maxAddress = address.map(_.max).max val minAlignment = address.map(_.alignment).min // The device had better not support a transfer larger than its alignment require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)") def toResource: ResourceAddress = { ResourceAddress(address, ResourcePermissions( r = supportsAcquireB || supportsGet, w = supportsAcquireT || supportsPutFull, x = executable, c = supportsAcquireB, a = supportsArithmetic && supportsLogical)) } def findTreeViolation() = nodePath.find { case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false case _: SinkNode[_, _, _, _, _] => false case node => node.inputs.size != 1 } def isTree = findTreeViolation() == None def infoString = { s"""Slave Name = ${name} |Slave Address = ${address} |supports = ${supports.infoString} | |""".stripMargin } def v1copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { new TLSlaveParameters( setName = setName, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = emits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: Option[String] = setName, address: Seq[AddressSet] = address, regionType: RegionType.T = regionType, executable: Boolean = executable, fifoId: Option[Int] = fifoId, supports: TLMasterToSlaveTransferSizes = supports, emits: TLSlaveToMasterTransferSizes = emits, alwaysGrantsT: Boolean = alwaysGrantsT, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } @deprecated("Use v1copy instead of copy","") def copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { v1copy( address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supportsAcquireT = supportsAcquireT, supportsAcquireB = supportsAcquireB, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } } object TLSlaveParameters { def v1( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = { new TLSlaveParameters( setName = None, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLSlaveToMasterTransferSizes.unknownEmits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2( address: Seq[AddressSet], nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Seq(), name: Option[String] = None, regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, fifoId: Option[Int] = None, supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports, emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits, alwaysGrantsT: Boolean = false, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } } object TLManagerParameters { @deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","") def apply( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = TLSlaveParameters.v1( address, resources, regionType, executable, nodePath, supportsAcquireT, supportsAcquireB, supportsArithmetic, supportsLogical, supportsGet, supportsPutFull, supportsPutPartial, supportsHint, mayDenyGet, mayDenyPut, alwaysGrantsT, fifoId, ) } case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int]) { def members = Seq(a, b, c, d) members.collect { case Some(beatBytes) => require (isPow2(beatBytes), "Data channel width must be a power of 2") } } object TLChannelBeatBytes{ def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes( Some(beatBytes), Some(beatBytes), Some(beatBytes), Some(beatBytes)) def apply(): TLChannelBeatBytes = TLChannelBeatBytes( None, None, None, None) } class TLSlavePortParameters private( val slaves: Seq[TLSlaveParameters], val channelBytes: TLChannelBeatBytes, val endSinkId: Int, val minLatency: Int, val responseFields: Seq[BundleFieldBase], val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct { def sortedSlaves = slaves.sortBy(_.sortedAddress.head) override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters] override def productPrefix = "TLSlavePortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => slaves case 1 => channelBytes case 2 => endSinkId case 3 => minLatency case 4 => responseFields case 5 => requestKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!slaves.isEmpty, "Slave ports must have slaves") require (endSinkId >= 0, "Sink ids cannot be negative") require (minLatency >= 0, "Minimum required latency cannot be negative") // Using this API implies you cannot handle mixed-width busses def beatBytes = { channelBytes.members.foreach { width => require (width.isDefined && width == channelBytes.a) } channelBytes.a.get } // TODO this should be deprecated def managers = slaves def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = { val relevant = slaves.filter(m => policy(m)) relevant.foreach { m => require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ") } } // Bounds on required sizes def maxAddress = slaves.map(_.maxAddress).max def maxTransfer = slaves.map(_.maxTransfer).max def mayDenyGet = slaves.exists(_.mayDenyGet) def mayDenyPut = slaves.exists(_.mayDenyPut) // Diplomatically determined operation sizes emitted by all outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _) // Operation Emitted by at least one outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _) val allSupportAcquireT = allSupportClaims.acquireT val allSupportAcquireB = allSupportClaims.acquireB val allSupportArithmetic = allSupportClaims.arithmetic val allSupportLogical = allSupportClaims.logical val allSupportGet = allSupportClaims.get val allSupportPutFull = allSupportClaims.putFull val allSupportPutPartial = allSupportClaims.putPartial val allSupportHint = allSupportClaims.hint // Operation supported by at least one outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _) val anySupportAcquireT = !anySupportClaims.acquireT.none val anySupportAcquireB = !anySupportClaims.acquireB.none val anySupportArithmetic = !anySupportClaims.arithmetic.none val anySupportLogical = !anySupportClaims.logical.none val anySupportGet = !anySupportClaims.get.none val anySupportPutFull = !anySupportClaims.putFull.none val anySupportPutPartial = !anySupportClaims.putPartial.none val anySupportHint = !anySupportClaims.hint.none // Supporting Acquire means being routable for GrantAck require ((endSinkId == 0) == !anySupportAcquireB) // These return Option[TLSlaveParameters] for your convenience def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address))) // The safe version will check the entire address def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _))) // The fast version assumes the address is valid (you probably want fastProperty instead of this function) def findFast(address: UInt) = { val routingMask = AddressDecoder(slaves.map(_.address)) VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _))) } // Compute the simplest AddressSets that decide a key def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = { val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) => k -> vs.flatMap(_._2) } val reductionMask = AddressDecoder(groups.map(_._2)) groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) } } // Select a property def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D = Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) }) // Note: returns the actual fifoId + 1 or 0 if None def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U) def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B) // Does this Port manage this ID/address? def containsSafe(address: UInt) = findSafe(address).reduce(_ || _) private def addressHelper( // setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity safe: Boolean, // member filters out the sizes being checked based on the opcode being emitted or supported member: TLSlaveParameters => TransferSizes, address: UInt, lgSize: UInt, // range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity range: Option[TransferSizes]): Bool = { // trim reduces circuit complexity by intersecting checked sizes with the range argument def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x) // groupBy returns an unordered map, convert back to Seq and sort the result for determinism // groupByIntoSeq is turning slaves into trimmed membership sizes // We are grouping all the slaves by their transfer size where // if they support the trimmed size then // member is the type of transfer that you are looking for (What you are trying to filter on) // When you consider membership, you are trimming the sizes to only the ones that you care about // you are filtering the slaves based on both whether they support a particular opcode and the size // Grouping the slaves based on the actual transfer size range they support // intersecting the range and checking their membership // FOR SUPPORTCASES instead of returning the list of slaves, // you are returning a map from transfer size to the set of // address sets that are supported for that transfer size // find all the slaves that support a certain type of operation and then group their addresses by the supported size // for every size there could be multiple address ranges // safety is a trade off between checking between all possible addresses vs only the addresses // that are known to have supported sizes // the trade off is 'checking all addresses is a more expensive circuit but will always give you // the right answer even if you give it an illegal address' // the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer // fast presumes address legality // This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies. // In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size. val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) => k -> vs.flatMap(_.address) } // safe produces a circuit that compares against all possible addresses, // whereas fast presumes that the address is legal but uses an efficient address decoder val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2)) // Simplified creates the most concise possible representation of each cases' address sets based on the mask. val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) } simplified.map { case (s, a) => // s is a size, you are checking for this size either the size of the operation is in s // We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire. ((Some(s) == range).B || s.containsLg(lgSize)) && a.map(_.contains(address)).reduce(_||_) }.foldLeft(false.B)(_||_) } def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range) def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range) def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range) def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range) def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range) def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range) def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range) def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range) def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range) def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range) def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range) def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range) def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range) def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range) def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range) def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range) def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range) def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range) def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range) def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range) def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range) def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range) def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range) def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption def isTree = !slaves.exists(!_.isTree) def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString def v1copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = managers, channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } def v2copy( slaves: Seq[TLSlaveParameters] = slaves, channelBytes: TLChannelBeatBytes = channelBytes, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = slaves, channelBytes = channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } @deprecated("Use v1copy instead of copy","") def copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { v1copy( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } object TLSlavePortParameters { def v1( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { new TLSlavePortParameters( slaves = managers, channelBytes = TLChannelBeatBytes(beatBytes), endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } } object TLManagerPortParameters { @deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","") def apply( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { TLSlavePortParameters.v1( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } class TLMasterParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], val name: String, val visibility: Seq[AddressSet], val unusedRegionTypes: Set[RegionType.T], val executesOnly: Boolean, val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C. val supports: TLSlaveToMasterTransferSizes, val emits: TLMasterToSlaveTransferSizes, val neverReleasesData: Boolean, val sourceId: IdRange) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters] override def productPrefix = "TLMasterParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 10 def productElement(n: Int): Any = n match { case 0 => name case 1 => sourceId case 2 => resources case 3 => visibility case 4 => unusedRegionTypes case 5 => executesOnly case 6 => requestFifo case 7 => supports case 8 => emits case 9 => neverReleasesData case _ => throw new IndexOutOfBoundsException(n.toString) } require (!sourceId.isEmpty) require (!visibility.isEmpty) require (supports.putFull.contains(supports.putPartial)) // We only support these operations if we support Probe (ie: we're a cache) require (supports.probe.contains(supports.arithmetic)) require (supports.probe.contains(supports.logical)) require (supports.probe.contains(supports.get)) require (supports.probe.contains(supports.putFull)) require (supports.probe.contains(supports.putPartial)) require (supports.probe.contains(supports.hint)) visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } val maxTransfer = List( supports.probe.max, supports.arithmetic.max, supports.logical.max, supports.get.max, supports.putFull.max, supports.putPartial.max).max def infoString = { s"""Master Name = ${name} |visibility = ${visibility} |emits = ${emits.infoString} |sourceId = ${sourceId} | |""".stripMargin } def v1copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { new TLMasterParameters( nodePath = nodePath, resources = this.resources, name = name, visibility = visibility, unusedRegionTypes = this.unusedRegionTypes, executesOnly = this.executesOnly, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = this.emits, neverReleasesData = this.neverReleasesData, sourceId = sourceId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: String = name, visibility: Seq[AddressSet] = visibility, unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes, executesOnly: Boolean = executesOnly, requestFifo: Boolean = requestFifo, supports: TLSlaveToMasterTransferSizes = supports, emits: TLMasterToSlaveTransferSizes = emits, neverReleasesData: Boolean = neverReleasesData, sourceId: IdRange = sourceId) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } @deprecated("Use v1copy instead of copy","") def copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { v1copy( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } object TLMasterParameters { def v1( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { new TLMasterParameters( nodePath = nodePath, resources = Nil, name = name, visibility = visibility, unusedRegionTypes = Set(), executesOnly = false, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData = false, sourceId = sourceId) } def v2( nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Nil, name: String, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), unusedRegionTypes: Set[RegionType.T] = Set(), executesOnly: Boolean = false, requestFifo: Boolean = false, supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports, emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData: Boolean = false, sourceId: IdRange = IdRange(0,1)) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } } object TLClientParameters { @deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","") def apply( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet.everything), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { TLMasterParameters.v1( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } class TLMasterPortParameters private( val masters: Seq[TLMasterParameters], val channelBytes: TLChannelBeatBytes, val minLatency: Int, val echoFields: Seq[BundleFieldBase], val requestFields: Seq[BundleFieldBase], val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters] override def productPrefix = "TLMasterPortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => masters case 1 => channelBytes case 2 => minLatency case 3 => echoFields case 4 => requestFields case 5 => responseKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!masters.isEmpty) require (minLatency >= 0) def clients = masters // Require disjoint ranges for Ids IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) => require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}") } // Bounds on required sizes def endSourceId = masters.map(_.sourceId.end).max def maxTransfer = masters.map(_.maxTransfer).max // The unused sources < endSourceId def unusedSources: Seq[Int] = { val usedSources = masters.map(_.sourceId).sortBy(_.start) ((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) => end until start } } // Diplomatically determined operation sizes emitted by all inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = masters.map(_.emits).reduce( _ intersect _) // Diplomatically determined operation sizes Emitted by at least one inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all inward Masters // as opposed to supports* which generate circuitry to check which specific addresses val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _) val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _) val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _) val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _) val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _) val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _) val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _) // Diplomatically determined operation sizes supported by at least one master // as opposed to supports* which generate circuitry to check which specific addresses val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _) val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _) val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _) val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _) val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _) val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _) val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _) // These return Option[TLMasterParameters] for your convenience def find(id: Int) = masters.find(_.sourceId.contains(id)) // Synthesizable lookup methods def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id))) def contains(id: UInt) = find(id).reduce(_ || _) def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B)) // Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = { val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _) // this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version; // the case where there is only one group. if (allSame) member(masters(0)).containsLg(lgSize) else { // Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize Mux1H(find(id), masters.map(member(_).containsLg(lgSize))) } } // Check for support of a given operation at a specific id val supportsProbe = sourceIdHelper(_.supports.probe) _ val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _ val supportsLogical = sourceIdHelper(_.supports.logical) _ val supportsGet = sourceIdHelper(_.supports.get) _ val supportsPutFull = sourceIdHelper(_.supports.putFull) _ val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _ val supportsHint = sourceIdHelper(_.supports.hint) _ // TODO: Merge sourceIdHelper2 with sourceIdHelper private def sourceIdHelper2( member: TLMasterParameters => TransferSizes, sourceId: UInt, lgSize: UInt): Bool = { // Because sourceIds are uniquely owned by each master, we use them to group the // cases that have to be checked. val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) => k -> vs.map(_.sourceId) } emitCases.map { case (s, a) => (s.containsLg(lgSize)) && a.map(_.contains(sourceId)).reduce(_||_) }.foldLeft(false.B)(_||_) } // Check for emit of a given operation at a specific id def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize) def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize) def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize) def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize) def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize) def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize) def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize) def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize) def infoString = masters.map(_.infoString).mkString def v1copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = clients, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2copy( masters: Seq[TLMasterParameters] = masters, channelBytes: TLChannelBeatBytes = channelBytes, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } @deprecated("Use v1copy instead of copy","") def copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { v1copy( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLClientPortParameters { @deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","") def apply( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { TLMasterPortParameters.v1( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLMasterPortParameters { def v1( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = clients, channelBytes = TLChannelBeatBytes(), minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2( masters: Seq[TLMasterParameters], channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(), minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } } case class TLBundleParameters( addressBits: Int, dataBits: Int, sourceBits: Int, sinkBits: Int, sizeBits: Int, echoFields: Seq[BundleFieldBase], requestFields: Seq[BundleFieldBase], responseFields: Seq[BundleFieldBase], hasBCE: Boolean) { // Chisel has issues with 0-width wires require (addressBits >= 1) require (dataBits >= 8) require (sourceBits >= 1) require (sinkBits >= 1) require (sizeBits >= 1) require (isPow2(dataBits)) echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") } val addrLoBits = log2Up(dataBits/8) // Used to uniquify bus IP names def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u") def union(x: TLBundleParameters) = TLBundleParameters( max(addressBits, x.addressBits), max(dataBits, x.dataBits), max(sourceBits, x.sourceBits), max(sinkBits, x.sinkBits), max(sizeBits, x.sizeBits), echoFields = BundleField.union(echoFields ++ x.echoFields), requestFields = BundleField.union(requestFields ++ x.requestFields), responseFields = BundleField.union(responseFields ++ x.responseFields), hasBCE || x.hasBCE) } object TLBundleParameters { val emptyBundleParams = TLBundleParameters( addressBits = 1, dataBits = 8, sourceBits = 1, sinkBits = 1, sizeBits = 1, echoFields = Nil, requestFields = Nil, responseFields = Nil, hasBCE = false) def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y)) def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) = new TLBundleParameters( addressBits = log2Up(slave.maxAddress + 1), dataBits = slave.beatBytes * 8, sourceBits = log2Up(master.endSourceId), sinkBits = log2Up(slave.endSinkId), sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1), echoFields = master.echoFields, requestFields = BundleField.accept(master.requestFields, slave.requestKeys), responseFields = BundleField.accept(slave.responseFields, master.responseKeys), hasBCE = master.anySupportProbe && slave.anySupportAcquireB) } case class TLEdgeParameters( master: TLMasterPortParameters, slave: TLSlavePortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { // legacy names: def manager = slave def client = master val maxTransfer = max(master.maxTransfer, slave.maxTransfer) val maxLgSize = log2Ceil(maxTransfer) // Sanity check the link... require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})") def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims) val bundle = TLBundleParameters(master, slave) def formatEdge = master.infoString + "\n" + slave.infoString } case class TLCreditedDelay( a: CreditedDelay, b: CreditedDelay, c: CreditedDelay, d: CreditedDelay, e: CreditedDelay) { def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay( a = a + that.a, b = b + that.b, c = c + that.c, d = d + that.d, e = e + that.e) override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})" } object TLCreditedDelay { def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay) } case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString} case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val delay = client.delay + manager.delay val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters) case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base)) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } // To be unified, devices must agree on all of these terms case class ManagerUnificationKey( resources: Seq[Resource], regionType: RegionType.T, executable: Boolean, supportsAcquireT: TransferSizes, supportsAcquireB: TransferSizes, supportsArithmetic: TransferSizes, supportsLogical: TransferSizes, supportsGet: TransferSizes, supportsPutFull: TransferSizes, supportsPutPartial: TransferSizes, supportsHint: TransferSizes) object ManagerUnificationKey { def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey( resources = x.resources, regionType = x.regionType, executable = x.executable, supportsAcquireT = x.supportsAcquireT, supportsAcquireB = x.supportsAcquireB, supportsArithmetic = x.supportsArithmetic, supportsLogical = x.supportsLogical, supportsGet = x.supportsGet, supportsPutFull = x.supportsPutFull, supportsPutPartial = x.supportsPutPartial, supportsHint = x.supportsHint) } object ManagerUnification { def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = { slaves.groupBy(ManagerUnificationKey.apply).values.map { seq => val agree = seq.forall(_.fifoId == seq.head.fifoId) seq(0).v1copy( address = AddressSet.unify(seq.flatMap(_.address)), fifoId = if (agree) seq(0).fifoId else None) }.toList } } case class TLBufferParams( a: BufferParams = BufferParams.none, b: BufferParams = BufferParams.none, c: BufferParams = BufferParams.none, d: BufferParams = BufferParams.none, e: BufferParams = BufferParams.none ) extends DirectedBuffers[TLBufferParams] { def copyIn(x: BufferParams) = this.copy(b = x, d = x) def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x) def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x) } /** Pretty printing of TL source id maps */ class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] { private val tlDigits = String.valueOf(tl.endSourceId-1).length() protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s" private val sorted = tl.masters.sortBy(_.sourceId) val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c => TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo) } } case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean) extends IdMapEntry { val from = tlId val to = tlId val maxTransactionsInFlight = Some(tlId.size) } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_63( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [4:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [31:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [255:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [4:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input [255:0] io_in_d_bits_data, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [4:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [31:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [255:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [4:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7] wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7] wire [255:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7] wire _source_ok_T = 1'h0; // @[Parameters.scala:54:10] wire _source_ok_T_6 = 1'h0; // @[Parameters.scala:54:10] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [6:0] c_first_beats1_decode = 7'h0; // @[Edges.scala:220:59] wire [6:0] c_first_beats1 = 7'h0; // @[Edges.scala:221:14] wire [6:0] _c_first_count_T = 7'h0; // @[Edges.scala:234:27] wire [6:0] c_first_count = 7'h0; // @[Edges.scala:234:25] wire [6:0] _c_first_counter_T = 7'h0; // @[Edges.scala:236:21] wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_2 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:54:67] wire _source_ok_T_4 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:56:48] wire _source_ok_WIRE_0 = 1'h1; // @[Parameters.scala:1138:31] wire _source_ok_T_7 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_8 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:54:67] wire _source_ok_T_10 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:56:48] wire _source_ok_WIRE_1_0 = 1'h1; // @[Parameters.scala:1138:31] wire sink_ok = 1'h1; // @[Monitor.scala:309:31] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [6:0] c_first_counter1 = 7'h7F; // @[Edges.scala:230:28] wire [7:0] _c_first_counter1_T = 8'hFF; // @[Edges.scala:230:28] wire [255:0] _c_first_WIRE_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_first_WIRE_1_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _c_first_WIRE_2_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_first_WIRE_3_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] c_sizes_set = 256'h0; // @[Monitor.scala:741:34] wire [255:0] _c_set_wo_ready_WIRE_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_set_wo_ready_WIRE_1_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _c_set_WIRE_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_set_WIRE_1_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _c_opcodes_set_interm_WIRE_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_opcodes_set_interm_WIRE_1_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _c_sizes_set_interm_WIRE_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_sizes_set_interm_WIRE_1_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _c_opcodes_set_WIRE_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_opcodes_set_WIRE_1_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _c_sizes_set_WIRE_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_sizes_set_WIRE_1_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _c_probe_ack_WIRE_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_probe_ack_WIRE_1_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _c_probe_ack_WIRE_2_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _c_probe_ack_WIRE_3_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _same_cycle_resp_WIRE_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _same_cycle_resp_WIRE_1_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _same_cycle_resp_WIRE_2_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _same_cycle_resp_WIRE_3_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [255:0] _same_cycle_resp_WIRE_4_bits_data = 256'h0; // @[Bundles.scala:265:74] wire [255:0] _same_cycle_resp_WIRE_5_bits_data = 256'h0; // @[Bundles.scala:265:61] wire [31:0] _c_first_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_first_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] c_set = 32'h0; // @[Monitor.scala:738:34] wire [31:0] c_set_wo_ready = 32'h0; // @[Monitor.scala:739:34] wire [31:0] _c_set_wo_ready_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_wo_ready_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_4_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_5_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [4:0] _c_first_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_first_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_first_WIRE_2_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_first_WIRE_3_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] c_sizes_set_interm = 5'h0; // @[Monitor.scala:755:40] wire [4:0] _c_set_wo_ready_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_set_wo_ready_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_set_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_set_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_opcodes_set_interm_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_opcodes_set_interm_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_sizes_set_interm_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_sizes_set_interm_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_sizes_set_interm_T = 5'h0; // @[Monitor.scala:766:51] wire [4:0] _c_opcodes_set_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_opcodes_set_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_sizes_set_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_sizes_set_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_probe_ack_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_probe_ack_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_probe_ack_WIRE_2_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_probe_ack_WIRE_3_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _same_cycle_resp_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _same_cycle_resp_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _same_cycle_resp_WIRE_2_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _same_cycle_resp_WIRE_3_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _same_cycle_resp_WIRE_4_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _same_cycle_resp_WIRE_5_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] _c_set_wo_ready_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_wo_ready_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_sizes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_4_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_5_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57] wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57] wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [259:0] _c_sizes_set_T_1 = 260'h0; // @[Monitor.scala:768:52] wire [7:0] _c_opcodes_set_T = 8'h0; // @[Monitor.scala:767:79] wire [7:0] _c_sizes_set_T = 8'h0; // @[Monitor.scala:768:77] wire [258:0] _c_opcodes_set_T_1 = 259'h0; // @[Monitor.scala:767:54] wire [4:0] _c_sizes_set_interm_T_1 = 5'h1; // @[Monitor.scala:766:59] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [31:0] _c_set_wo_ready_T = 32'h1; // @[OneHot.scala:58:35] wire [31:0] _c_set_T = 32'h1; // @[OneHot.scala:58:35] wire [127:0] c_opcodes_set = 128'h0; // @[Monitor.scala:740:34] wire [11:0] _c_first_beats1_decode_T_2 = 12'h0; // @[package.scala:243:46] wire [11:0] _c_first_beats1_decode_T_1 = 12'hFFF; // @[package.scala:243:76] wire [26:0] _c_first_beats1_decode_T = 27'hFFF; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117] wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48] wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119] wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [4:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _source_ok_uncommonBits_T_1 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] source_ok_uncommonBits = _source_ok_uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71] wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [31:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}] wire [4:0] _mask_sizeOH_T = {1'h0, io_in_a_bits_size_0}; // @[Misc.scala:202:34] wire [2:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[2:0]; // @[OneHot.scala:64:49] wire [7:0] _mask_sizeOH_T_1 = 8'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [4:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[4:0]; // @[OneHot.scala:65:{12,27}] wire [4:0] mask_sizeOH = {_mask_sizeOH_T_2[4:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 4'h4; // @[Misc.scala:206:21] wire mask_sub_sub_sub_sub_size = mask_sizeOH[4]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_sub_sub_bit = io_in_a_bits_address_0[4]; // @[Misc.scala:210:26] wire mask_sub_sub_sub_sub_1_2 = mask_sub_sub_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_sub_sub_nbit = ~mask_sub_sub_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_sub_sub_0_2 = mask_sub_sub_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_sub_sub_acc_T = mask_sub_sub_sub_sub_size & mask_sub_sub_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_sub_sub_0_1 = mask_sub_sub_sub_sub_sub_0_1 | _mask_sub_sub_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_sub_sub_acc_T_1 = mask_sub_sub_sub_sub_size & mask_sub_sub_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_sub_sub_1_1 = mask_sub_sub_sub_sub_sub_0_1 | _mask_sub_sub_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_sub_sub_size = mask_sizeOH[3]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_sub_bit = io_in_a_bits_address_0[3]; // @[Misc.scala:210:26] wire mask_sub_sub_sub_nbit = ~mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_sub_0_2 = mask_sub_sub_sub_sub_0_2 & mask_sub_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_sub_acc_T = mask_sub_sub_sub_size & mask_sub_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_sub_0_1 = mask_sub_sub_sub_sub_0_1 | _mask_sub_sub_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_sub_1_2 = mask_sub_sub_sub_sub_0_2 & mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_sub_sub_acc_T_1 = mask_sub_sub_sub_size & mask_sub_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_sub_1_1 = mask_sub_sub_sub_sub_0_1 | _mask_sub_sub_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_sub_2_2 = mask_sub_sub_sub_sub_1_2 & mask_sub_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_sub_acc_T_2 = mask_sub_sub_sub_size & mask_sub_sub_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_sub_2_1 = mask_sub_sub_sub_sub_1_1 | _mask_sub_sub_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_sub_3_2 = mask_sub_sub_sub_sub_1_2 & mask_sub_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_sub_sub_acc_T_3 = mask_sub_sub_sub_size & mask_sub_sub_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_sub_3_1 = mask_sub_sub_sub_sub_1_1 | _mask_sub_sub_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_sub_0_2 & mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_1_2 = mask_sub_sub_sub_0_2 & mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_2_2 = mask_sub_sub_sub_1_2 & mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T_2 = mask_sub_sub_size & mask_sub_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_2_1 = mask_sub_sub_sub_1_1 | _mask_sub_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_3_2 = mask_sub_sub_sub_1_2 & mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_sub_acc_T_3 = mask_sub_sub_size & mask_sub_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_3_1 = mask_sub_sub_sub_1_1 | _mask_sub_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_4_2 = mask_sub_sub_sub_2_2 & mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T_4 = mask_sub_sub_size & mask_sub_sub_4_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_4_1 = mask_sub_sub_sub_2_1 | _mask_sub_sub_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_5_2 = mask_sub_sub_sub_2_2 & mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_sub_acc_T_5 = mask_sub_sub_size & mask_sub_sub_5_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_5_1 = mask_sub_sub_sub_2_1 | _mask_sub_sub_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_6_2 = mask_sub_sub_sub_3_2 & mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T_6 = mask_sub_sub_size & mask_sub_sub_6_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_6_1 = mask_sub_sub_sub_3_1 | _mask_sub_sub_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_sub_sub_7_2 = mask_sub_sub_sub_3_2 & mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_sub_acc_T_7 = mask_sub_sub_size & mask_sub_sub_7_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_7_1 = mask_sub_sub_sub_3_1 | _mask_sub_sub_acc_T_7; // @[Misc.scala:215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_sub_4_2 = mask_sub_sub_2_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_4 = mask_sub_size & mask_sub_4_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_4_1 = mask_sub_sub_2_1 | _mask_sub_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_sub_5_2 = mask_sub_sub_2_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_5 = mask_sub_size & mask_sub_5_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_5_1 = mask_sub_sub_2_1 | _mask_sub_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_sub_6_2 = mask_sub_sub_3_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_6 = mask_sub_size & mask_sub_6_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_6_1 = mask_sub_sub_3_1 | _mask_sub_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_sub_7_2 = mask_sub_sub_3_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_7 = mask_sub_size & mask_sub_7_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_7_1 = mask_sub_sub_3_1 | _mask_sub_acc_T_7; // @[Misc.scala:215:{29,38}] wire mask_sub_8_2 = mask_sub_sub_4_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_8 = mask_sub_size & mask_sub_8_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_8_1 = mask_sub_sub_4_1 | _mask_sub_acc_T_8; // @[Misc.scala:215:{29,38}] wire mask_sub_9_2 = mask_sub_sub_4_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_9 = mask_sub_size & mask_sub_9_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_9_1 = mask_sub_sub_4_1 | _mask_sub_acc_T_9; // @[Misc.scala:215:{29,38}] wire mask_sub_10_2 = mask_sub_sub_5_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_10 = mask_sub_size & mask_sub_10_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_10_1 = mask_sub_sub_5_1 | _mask_sub_acc_T_10; // @[Misc.scala:215:{29,38}] wire mask_sub_11_2 = mask_sub_sub_5_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_11 = mask_sub_size & mask_sub_11_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_11_1 = mask_sub_sub_5_1 | _mask_sub_acc_T_11; // @[Misc.scala:215:{29,38}] wire mask_sub_12_2 = mask_sub_sub_6_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_12 = mask_sub_size & mask_sub_12_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_12_1 = mask_sub_sub_6_1 | _mask_sub_acc_T_12; // @[Misc.scala:215:{29,38}] wire mask_sub_13_2 = mask_sub_sub_6_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_13 = mask_sub_size & mask_sub_13_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_13_1 = mask_sub_sub_6_1 | _mask_sub_acc_T_13; // @[Misc.scala:215:{29,38}] wire mask_sub_14_2 = mask_sub_sub_7_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_14 = mask_sub_size & mask_sub_14_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_14_1 = mask_sub_sub_7_1 | _mask_sub_acc_T_14; // @[Misc.scala:215:{29,38}] wire mask_sub_15_2 = mask_sub_sub_7_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_15 = mask_sub_size & mask_sub_15_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_15_1 = mask_sub_sub_7_1 | _mask_sub_acc_T_15; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire mask_eq_8 = mask_sub_4_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_8 = mask_size & mask_eq_8; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_8 = mask_sub_4_1 | _mask_acc_T_8; // @[Misc.scala:215:{29,38}] wire mask_eq_9 = mask_sub_4_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_9 = mask_size & mask_eq_9; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_9 = mask_sub_4_1 | _mask_acc_T_9; // @[Misc.scala:215:{29,38}] wire mask_eq_10 = mask_sub_5_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_10 = mask_size & mask_eq_10; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_10 = mask_sub_5_1 | _mask_acc_T_10; // @[Misc.scala:215:{29,38}] wire mask_eq_11 = mask_sub_5_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_11 = mask_size & mask_eq_11; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_11 = mask_sub_5_1 | _mask_acc_T_11; // @[Misc.scala:215:{29,38}] wire mask_eq_12 = mask_sub_6_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_12 = mask_size & mask_eq_12; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_12 = mask_sub_6_1 | _mask_acc_T_12; // @[Misc.scala:215:{29,38}] wire mask_eq_13 = mask_sub_6_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_13 = mask_size & mask_eq_13; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_13 = mask_sub_6_1 | _mask_acc_T_13; // @[Misc.scala:215:{29,38}] wire mask_eq_14 = mask_sub_7_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_14 = mask_size & mask_eq_14; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_14 = mask_sub_7_1 | _mask_acc_T_14; // @[Misc.scala:215:{29,38}] wire mask_eq_15 = mask_sub_7_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_15 = mask_size & mask_eq_15; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_15 = mask_sub_7_1 | _mask_acc_T_15; // @[Misc.scala:215:{29,38}] wire mask_eq_16 = mask_sub_8_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_16 = mask_size & mask_eq_16; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_16 = mask_sub_8_1 | _mask_acc_T_16; // @[Misc.scala:215:{29,38}] wire mask_eq_17 = mask_sub_8_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_17 = mask_size & mask_eq_17; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_17 = mask_sub_8_1 | _mask_acc_T_17; // @[Misc.scala:215:{29,38}] wire mask_eq_18 = mask_sub_9_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_18 = mask_size & mask_eq_18; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_18 = mask_sub_9_1 | _mask_acc_T_18; // @[Misc.scala:215:{29,38}] wire mask_eq_19 = mask_sub_9_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_19 = mask_size & mask_eq_19; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_19 = mask_sub_9_1 | _mask_acc_T_19; // @[Misc.scala:215:{29,38}] wire mask_eq_20 = mask_sub_10_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_20 = mask_size & mask_eq_20; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_20 = mask_sub_10_1 | _mask_acc_T_20; // @[Misc.scala:215:{29,38}] wire mask_eq_21 = mask_sub_10_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_21 = mask_size & mask_eq_21; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_21 = mask_sub_10_1 | _mask_acc_T_21; // @[Misc.scala:215:{29,38}] wire mask_eq_22 = mask_sub_11_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_22 = mask_size & mask_eq_22; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_22 = mask_sub_11_1 | _mask_acc_T_22; // @[Misc.scala:215:{29,38}] wire mask_eq_23 = mask_sub_11_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_23 = mask_size & mask_eq_23; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_23 = mask_sub_11_1 | _mask_acc_T_23; // @[Misc.scala:215:{29,38}] wire mask_eq_24 = mask_sub_12_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_24 = mask_size & mask_eq_24; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_24 = mask_sub_12_1 | _mask_acc_T_24; // @[Misc.scala:215:{29,38}] wire mask_eq_25 = mask_sub_12_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_25 = mask_size & mask_eq_25; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_25 = mask_sub_12_1 | _mask_acc_T_25; // @[Misc.scala:215:{29,38}] wire mask_eq_26 = mask_sub_13_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_26 = mask_size & mask_eq_26; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_26 = mask_sub_13_1 | _mask_acc_T_26; // @[Misc.scala:215:{29,38}] wire mask_eq_27 = mask_sub_13_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_27 = mask_size & mask_eq_27; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_27 = mask_sub_13_1 | _mask_acc_T_27; // @[Misc.scala:215:{29,38}] wire mask_eq_28 = mask_sub_14_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_28 = mask_size & mask_eq_28; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_28 = mask_sub_14_1 | _mask_acc_T_28; // @[Misc.scala:215:{29,38}] wire mask_eq_29 = mask_sub_14_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_29 = mask_size & mask_eq_29; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_29 = mask_sub_14_1 | _mask_acc_T_29; // @[Misc.scala:215:{29,38}] wire mask_eq_30 = mask_sub_15_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_30 = mask_size & mask_eq_30; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_30 = mask_sub_15_1 | _mask_acc_T_30; // @[Misc.scala:215:{29,38}] wire mask_eq_31 = mask_sub_15_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_31 = mask_size & mask_eq_31; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_31 = mask_sub_15_1 | _mask_acc_T_31; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_lo_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo_lo_lo = {mask_lo_lo_lo_hi, mask_lo_lo_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_lo_lo_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_lo_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo_lo_hi = {mask_lo_lo_hi_hi, mask_lo_lo_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask_lo_lo = {mask_lo_lo_hi, mask_lo_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_lo_hi_lo_lo = {mask_acc_9, mask_acc_8}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi_lo_hi = {mask_acc_11, mask_acc_10}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo_hi_lo = {mask_lo_hi_lo_hi, mask_lo_hi_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_lo_hi_hi_lo = {mask_acc_13, mask_acc_12}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi_hi_hi = {mask_acc_15, mask_acc_14}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo_hi_hi = {mask_lo_hi_hi_hi, mask_lo_hi_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask_lo_hi = {mask_lo_hi_hi, mask_lo_hi_lo}; // @[Misc.scala:222:10] wire [15:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo_lo_lo = {mask_acc_17, mask_acc_16}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_lo_lo_hi = {mask_acc_19, mask_acc_18}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi_lo_lo = {mask_hi_lo_lo_hi, mask_hi_lo_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo_hi_lo = {mask_acc_21, mask_acc_20}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_lo_hi_hi = {mask_acc_23, mask_acc_22}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi_lo_hi = {mask_hi_lo_hi_hi, mask_hi_lo_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask_hi_lo = {mask_hi_lo_hi, mask_hi_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_hi_lo_lo = {mask_acc_25, mask_acc_24}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi_lo_hi = {mask_acc_27, mask_acc_26}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi_hi_lo = {mask_hi_hi_lo_hi, mask_hi_hi_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_hi_hi_lo = {mask_acc_29, mask_acc_28}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi_hi_hi = {mask_acc_31, mask_acc_30}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi_hi_hi = {mask_hi_hi_hi_hi, mask_hi_hi_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask_hi_hi = {mask_hi_hi_hi, mask_hi_hi_lo}; // @[Misc.scala:222:10] wire [15:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [31:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [4:0] uncommonBits = _uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_1 = _uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_2 = _uncommonBits_T_2; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_3 = _uncommonBits_T_3; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_4 = _uncommonBits_T_4; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_5 = _uncommonBits_T_5; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_6 = _uncommonBits_T_6; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_7 = _uncommonBits_T_7; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_8 = _uncommonBits_T_8; // @[Parameters.scala:52:{29,56}] wire [4:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire _T_1257 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1257; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1257; // @[Decoupled.scala:51:35] wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [6:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:5]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [6:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 7'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [6:0] a_first_counter; // @[Edges.scala:229:27] wire [7:0] _a_first_counter1_T = {1'h0, a_first_counter} - 8'h1; // @[Edges.scala:229:27, :230:28] wire [6:0] a_first_counter1 = _a_first_counter1_T[6:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 7'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 7'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 7'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [6:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [6:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [6:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [3:0] size; // @[Monitor.scala:389:22] reg [4:0] source; // @[Monitor.scala:390:22] reg [31:0] address; // @[Monitor.scala:391:22] wire _T_1330 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1330; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1330; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1330; // @[Decoupled.scala:51:35] wire [26:0] _GEN_0 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [6:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:5]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [6:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 7'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [6:0] d_first_counter; // @[Edges.scala:229:27] wire [7:0] _d_first_counter1_T = {1'h0, d_first_counter} - 8'h1; // @[Edges.scala:229:27, :230:28] wire [6:0] d_first_counter1 = _d_first_counter1_T[6:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 7'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 7'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 7'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [6:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [6:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [6:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [3:0] size_1; // @[Monitor.scala:540:22] reg [4:0] source_1; // @[Monitor.scala:541:22] reg [2:0] sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [31:0] inflight; // @[Monitor.scala:614:27] reg [127:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [255:0] inflight_sizes; // @[Monitor.scala:618:33] wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [6:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:5]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [6:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 7'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [6:0] a_first_counter_1; // @[Edges.scala:229:27] wire [7:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 8'h1; // @[Edges.scala:229:27, :230:28] wire [6:0] a_first_counter1_1 = _a_first_counter1_T_1[6:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 7'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 7'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 7'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [6:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [6:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [6:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [6:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:5]; // @[package.scala:243:46] wire [6:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 7'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [6:0] d_first_counter_1; // @[Edges.scala:229:27] wire [7:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 8'h1; // @[Edges.scala:229:27, :230:28] wire [6:0] d_first_counter1_1 = _d_first_counter1_T_1[6:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 7'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 7'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 7'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [6:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [6:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [6:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [31:0] a_set; // @[Monitor.scala:626:34] wire [31:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [127:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [255:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [7:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [7:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [7:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [7:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [7:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [127:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [127:0] _a_opcode_lookup_T_6 = {124'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [127:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[127:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [7:0] a_size_lookup; // @[Monitor.scala:639:33] wire [7:0] _GEN_2 = {io_in_d_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :641:65] wire [7:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65] wire [7:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_2; // @[Monitor.scala:641:65, :681:99] wire [7:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65, :750:67] wire [7:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_2; // @[Monitor.scala:641:65, :791:99] wire [255:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [255:0] _a_size_lookup_T_6 = {248'h0, _a_size_lookup_T_1[7:0]}; // @[Monitor.scala:641:{40,91}] wire [255:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[255:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [31:0] _GEN_3 = {27'h0, io_in_a_bits_source_0}; // @[OneHot.scala:58:35] wire [31:0] _GEN_4 = 32'h1 << _GEN_3; // @[OneHot.scala:58:35] wire [31:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_4; // @[OneHot.scala:58:35] wire [31:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_4; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T : 32'h0; // @[OneHot.scala:58:35] wire _T_1183 = _T_1257 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1183 ? _a_set_T : 32'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1183 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1183 ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [7:0] _a_opcodes_set_T = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [258:0] _a_opcodes_set_T_1 = {255'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1183 ? _a_opcodes_set_T_1[127:0] : 128'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [7:0] _a_sizes_set_T = {io_in_a_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :660:77] wire [259:0] _a_sizes_set_T_1 = {255'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1183 ? _a_sizes_set_T_1[255:0] : 256'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [31:0] d_clr; // @[Monitor.scala:664:34] wire [31:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [127:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [255:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_5 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_5; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_5; // @[Monitor.scala:673:46, :783:46] wire _T_1229 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [31:0] _GEN_6 = {27'h0, io_in_d_bits_source_0}; // @[OneHot.scala:58:35] wire [31:0] _GEN_7 = 32'h1 << _GEN_6; // @[OneHot.scala:58:35] wire [31:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_7; // @[OneHot.scala:58:35] wire [31:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_7; // @[OneHot.scala:58:35] wire [31:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_7; // @[OneHot.scala:58:35] wire [31:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_7; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1229 & ~d_release_ack ? _d_clr_wo_ready_T : 32'h0; // @[OneHot.scala:58:35] wire _T_1198 = _T_1330 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1198 ? _d_clr_T : 32'h0; // @[OneHot.scala:58:35] wire [270:0] _d_opcodes_clr_T_5 = 271'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1198 ? _d_opcodes_clr_T_5[127:0] : 128'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [270:0] _d_sizes_clr_T_5 = 271'hFF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1198 ? _d_sizes_clr_T_5[255:0] : 256'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [31:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [31:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [31:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [127:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [127:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [127:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [255:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [255:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [255:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [31:0] inflight_1; // @[Monitor.scala:726:35] wire [31:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [127:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [127:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [255:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [255:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [6:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:5]; // @[package.scala:243:46] wire [6:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 7'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [6:0] d_first_counter_2; // @[Edges.scala:229:27] wire [7:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 8'h1; // @[Edges.scala:229:27, :230:28] wire [6:0] d_first_counter1_2 = _d_first_counter1_T_2[6:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 7'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 7'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 7'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [6:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [6:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [6:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [7:0] c_size_lookup; // @[Monitor.scala:748:35] wire [127:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [127:0] _c_opcode_lookup_T_6 = {124'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [127:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[127:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [255:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [255:0] _c_size_lookup_T_6 = {248'h0, _c_size_lookup_T_1[7:0]}; // @[Monitor.scala:750:{42,93}] wire [255:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[255:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [31:0] d_clr_1; // @[Monitor.scala:774:34] wire [31:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [127:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [255:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1301 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1301 & d_release_ack_1 ? _d_clr_wo_ready_T_1 : 32'h0; // @[OneHot.scala:58:35] wire _T_1283 = _T_1330 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1283 ? _d_clr_T_1 : 32'h0; // @[OneHot.scala:58:35] wire [270:0] _d_opcodes_clr_T_11 = 271'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1283 ? _d_opcodes_clr_T_11[127:0] : 128'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [270:0] _d_sizes_clr_T_11 = 271'hFF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1283 ? _d_sizes_clr_T_11[255:0] : 256'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 5'h0; // @[Monitor.scala:36:7, :795:113] wire [31:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [31:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [127:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [127:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [255:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [255:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File IngressUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import constellation.channel._ class IngressUnit( ingressNodeId: Int, cParam: IngressChannelParams, outParams: Seq[ChannelParams], egressParams: Seq[EgressChannelParams], combineRCVA: Boolean, combineSAST: Boolean, ) (implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) { class IngressUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) { val in = Flipped(Decoupled(new IngressFlit(cParam.payloadBits))) } val io = IO(new IngressUnitIO) val route_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val route_q = Module(new Queue(new RouteComputerResp(outParams, egressParams), 2, flow=combineRCVA)) assert(!(io.in.valid && !cParam.possibleFlows.toSeq.map(_.egressId.U === io.in.bits.egress_id).orR)) route_buffer.io.enq.bits.head := io.in.bits.head route_buffer.io.enq.bits.tail := io.in.bits.tail val flows = cParam.possibleFlows.toSeq if (flows.size == 0) { route_buffer.io.enq.bits.flow := DontCare } else { route_buffer.io.enq.bits.flow.ingress_node := cParam.destId.U route_buffer.io.enq.bits.flow.ingress_node_id := ingressNodeId.U route_buffer.io.enq.bits.flow.vnet_id := cParam.vNetId.U route_buffer.io.enq.bits.flow.egress_node := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNode.U) ) route_buffer.io.enq.bits.flow.egress_node_id := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNodeId.U) ) } route_buffer.io.enq.bits.payload := io.in.bits.payload route_buffer.io.enq.bits.virt_channel_id := DontCare io.router_req.bits.src_virt_id := 0.U io.router_req.bits.flow := route_buffer.io.enq.bits.flow val at_dest = route_buffer.io.enq.bits.flow.egress_node === nodeId.U route_buffer.io.enq.valid := io.in.valid && ( io.router_req.ready || !io.in.bits.head || at_dest) io.router_req.valid := io.in.valid && route_buffer.io.enq.ready && io.in.bits.head && !at_dest io.in.ready := route_buffer.io.enq.ready && ( io.router_req.ready || !io.in.bits.head || at_dest) route_q.io.enq.valid := io.router_req.fire route_q.io.enq.bits := io.router_resp when (io.in.fire && io.in.bits.head && at_dest) { route_q.io.enq.valid := true.B route_q.io.enq.bits.vc_sel.foreach(_.foreach(_ := false.B)) for (o <- 0 until nEgress) { when (egressParams(o).egressId.U === io.in.bits.egress_id) { route_q.io.enq.bits.vc_sel(o+nOutputs)(0) := true.B } } } assert(!(route_q.io.enq.valid && !route_q.io.enq.ready)) val vcalloc_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val vcalloc_q = Module(new Queue(new VCAllocResp(outParams, egressParams), 1, pipe=true)) vcalloc_buffer.io.enq.bits := route_buffer.io.deq.bits io.vcalloc_req.bits.vc_sel := route_q.io.deq.bits.vc_sel io.vcalloc_req.bits.flow := route_buffer.io.deq.bits.flow io.vcalloc_req.bits.in_vc := 0.U val head = route_buffer.io.deq.bits.head val tail = route_buffer.io.deq.bits.tail vcalloc_buffer.io.enq.valid := (route_buffer.io.deq.valid && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) ) io.vcalloc_req.valid := (route_buffer.io.deq.valid && route_q.io.deq.valid && head && vcalloc_buffer.io.enq.ready && vcalloc_q.io.enq.ready) route_buffer.io.deq.ready := (vcalloc_buffer.io.enq.ready && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) && (vcalloc_q.io.enq.ready || !head)) route_q.io.deq.ready := (route_buffer.io.deq.fire && tail) vcalloc_q.io.enq.valid := io.vcalloc_req.fire vcalloc_q.io.enq.bits := io.vcalloc_resp assert(!(vcalloc_q.io.enq.valid && !vcalloc_q.io.enq.ready)) io.salloc_req(0).bits.vc_sel := vcalloc_q.io.deq.bits.vc_sel io.salloc_req(0).bits.tail := vcalloc_buffer.io.deq.bits.tail val c = (vcalloc_q.io.deq.bits.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U val vcalloc_tail = vcalloc_buffer.io.deq.bits.tail io.salloc_req(0).valid := vcalloc_buffer.io.deq.valid && vcalloc_q.io.deq.valid && c && !io.block vcalloc_buffer.io.deq.ready := io.salloc_req(0).ready && vcalloc_q.io.deq.valid && c && !io.block vcalloc_q.io.deq.ready := vcalloc_tail && vcalloc_buffer.io.deq.fire val out_bundle = if (combineSAST) { Wire(Valid(new SwitchBundle(outParams, egressParams))) } else { Reg(Valid(new SwitchBundle(outParams, egressParams))) } io.out(0) := out_bundle out_bundle.valid := vcalloc_buffer.io.deq.fire out_bundle.bits.flit := vcalloc_buffer.io.deq.bits out_bundle.bits.flit.virt_channel_id := 0.U val out_channel_oh = vcalloc_q.io.deq.bits.vc_sel.map(_.reduce(_||_)).toSeq out_bundle.bits.out_virt_channel := Mux1H(out_channel_oh, vcalloc_q.io.deq.bits.vc_sel.map(v => OHToUInt(v)).toSeq) io.debug.va_stall := io.vcalloc_req.valid && !io.vcalloc_req.ready io.debug.sa_stall := io.salloc_req(0).valid && !io.salloc_req(0).ready // TODO: We should not generate input/ingress/output/egress units for untraversable channels if (!cParam.traversable) { io.in.ready := false.B io.router_req.valid := false.B io.router_req.bits := DontCare io.vcalloc_req.valid := false.B io.vcalloc_req.bits := DontCare io.salloc_req.foreach(_.valid := false.B) io.salloc_req.foreach(_.bits := DontCare) io.out.foreach(_.valid := false.B) io.out.foreach(_.bits := DontCare) } }
module IngressUnit_9( // @[IngressUnit.scala:11:7] input clock, // @[IngressUnit.scala:11:7] input reset, // @[IngressUnit.scala:11:7] input io_in_valid // @[IngressUnit.scala:24:14] );
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w4_d3_i0_18( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input [3:0] io_d, // @[ShiftReg.scala:36:14] output [3:0] io_q // @[ShiftReg.scala:36:14] ); wire [3:0] io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_2 = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_4 = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_6 = reset; // @[SynchronizerReg.scala:86:21] wire [3:0] _io_q_T; // @[SynchronizerReg.scala:90:14] wire [3:0] io_q_0; // @[SynchronizerReg.scala:80:7] wire _output_T_1 = io_d_0[0]; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire _output_T_3 = io_d_0[1]; // @[SynchronizerReg.scala:80:7, :87:41] wire output_1; // @[ShiftReg.scala:48:24] wire _output_T_5 = io_d_0[2]; // @[SynchronizerReg.scala:80:7, :87:41] wire output_2; // @[ShiftReg.scala:48:24] wire _output_T_7 = io_d_0[3]; // @[SynchronizerReg.scala:80:7, :87:41] wire output_3; // @[ShiftReg.scala:48:24] wire [1:0] io_q_lo = {output_1, output_0}; // @[SynchronizerReg.scala:90:14] wire [1:0] io_q_hi = {output_3, output_2}; // @[SynchronizerReg.scala:90:14] assign _io_q_T = {io_q_hi, io_q_lo}; // @[SynchronizerReg.scala:90:14] assign io_q_0 = _io_q_T; // @[SynchronizerReg.scala:80:7, :90:14] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_178 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_179 output_chain_1 ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T_2), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_3), // @[SynchronizerReg.scala:87:41] .io_q (output_1) ); // @[ShiftReg.scala:45:23] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_180 output_chain_2 ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T_4), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_5), // @[SynchronizerReg.scala:87:41] .io_q (output_2) ); // @[ShiftReg.scala:45:23] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_181 output_chain_3 ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T_6), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_7), // @[SynchronizerReg.scala:87:41] .io_q (output_3) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module PE_340( // @[PE.scala:31:7] input clock, // @[PE.scala:31:7] input reset, // @[PE.scala:31:7] input [7:0] io_in_a, // @[PE.scala:35:14] input [19:0] io_in_b, // @[PE.scala:35:14] input [19:0] io_in_d, // @[PE.scala:35:14] output [7:0] io_out_a, // @[PE.scala:35:14] output [19:0] io_out_b, // @[PE.scala:35:14] output [19:0] io_out_c, // @[PE.scala:35:14] input io_in_control_dataflow, // @[PE.scala:35:14] input io_in_control_propagate, // @[PE.scala:35:14] input [4:0] io_in_control_shift, // @[PE.scala:35:14] output io_out_control_dataflow, // @[PE.scala:35:14] output io_out_control_propagate, // @[PE.scala:35:14] output [4:0] io_out_control_shift, // @[PE.scala:35:14] input [2:0] io_in_id, // @[PE.scala:35:14] output [2:0] io_out_id, // @[PE.scala:35:14] input io_in_last, // @[PE.scala:35:14] output io_out_last, // @[PE.scala:35:14] input io_in_valid, // @[PE.scala:35:14] output io_out_valid, // @[PE.scala:35:14] output io_bad_dataflow // @[PE.scala:35:14] ); wire [19:0] _mac_unit_io_out_d; // @[PE.scala:64:24] wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7] wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7] wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7] wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7] wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7] wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7] wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7] wire io_in_last_0 = io_in_last; // @[PE.scala:31:7] wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7] wire io_bad_dataflow_0 = 1'h0; // @[PE.scala:31:7] wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7] wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37] wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37] wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35] wire [19:0] c1_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire [19:0] c2_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7] wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7] wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7] wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7] wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7] wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7] wire [19:0] io_out_b_0; // @[PE.scala:31:7] wire [19:0] io_out_c_0; // @[PE.scala:31:7] reg [31:0] c1; // @[PE.scala:70:15] wire [31:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15] wire [31:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38] reg [31:0] c2; // @[PE.scala:71:15] wire [31:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15] wire [31:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38] reg last_s; // @[PE.scala:89:25] wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21] wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25] wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25] wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32] wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32] wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25] wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15] wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}] wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25] wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27] wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27] wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_7 = _io_out_c_zeros_T_1 & _io_out_c_zeros_T_6; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_2 = {27'h0, shift_offset}; // @[PE.scala:91:25] wire [31:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15] wire [31:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T; // @[Arithmetic.scala:107:15] assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_2 = {_io_out_c_T[31], _io_out_c_T} + {{31{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_3 = _io_out_c_T_2[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28] wire _io_out_c_T_5 = $signed(_io_out_c_T_4) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_6 = $signed(_io_out_c_T_4) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_7 = _io_out_c_T_6 ? 32'hFFF80000 : _io_out_c_T_4; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_8 = _io_out_c_T_5 ? 32'h7FFFF : _io_out_c_T_7; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_9 = _io_out_c_T_8[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37] wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37] wire c1_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire c2_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire [1:0] _GEN_4 = {2{c1_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c1_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c1_lo_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c1_lo_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c1_hi_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c1_hi_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [2:0] c1_lo_lo = {c1_lo_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_lo_hi = {c1_lo_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_lo = {c1_lo_hi, c1_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c1_hi_lo = {c1_hi_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_hi_hi = {c1_hi_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_hi = {c1_hi_hi, c1_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c1_T = {c1_hi, c1_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c1_T_1 = {_c1_T, c1_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c1_T_2 = _c1_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c1_WIRE = _c1_T_2; // @[Arithmetic.scala:118:61] wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15] wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}] wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_16 = _io_out_c_zeros_T_10 & _io_out_c_zeros_T_15; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_5 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15] wire [31:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T_1 = _GEN_5; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15] assign _io_out_c_T_11 = _GEN_5; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_13 = {_io_out_c_T_11[31], _io_out_c_T_11} + {{31{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_14 = _io_out_c_T_13[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28] wire _io_out_c_T_16 = $signed(_io_out_c_T_15) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_17 = $signed(_io_out_c_T_15) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_18 = _io_out_c_T_17 ? 32'hFFF80000 : _io_out_c_T_15; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_19 = _io_out_c_T_16 ? 32'h7FFFF : _io_out_c_T_18; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_20 = _io_out_c_T_19[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37] wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37] wire [1:0] _GEN_6 = {2{c2_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c2_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c2_lo_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c2_lo_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c2_hi_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c2_hi_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [2:0] c2_lo_lo = {c2_lo_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_lo_hi = {c2_lo_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_lo = {c2_lo_hi, c2_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c2_hi_lo = {c2_hi_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_hi_hi = {c2_hi_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_hi = {c2_hi_hi, c2_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c2_T = {c2_hi, c2_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c2_T_1 = {_c2_T, c2_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c2_T_2 = _c2_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c2_WIRE = _c2_T_2; // @[Arithmetic.scala:118:61] wire [31:0] _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38] wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5[7:0]; // @[PE.scala:121:38] wire [31:0] _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38] wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7[7:0]; // @[PE.scala:127:38] assign io_out_c_0 = io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? c1[19:0] : c2[19:0]) : io_in_control_propagate_0 ? _io_out_c_T_10 : _io_out_c_T_21; // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :104:16, :111:16, :118:101, :119:30, :120:16, :126:16] assign io_out_b_0 = io_in_control_dataflow_0 ? _mac_unit_io_out_d : io_in_b_0; // @[PE.scala:31:7, :64:24, :102:95, :103:30, :118:101] wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35] wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35] wire [31:0] _GEN_7 = {{12{io_in_d_0[19]}}, io_in_d_0}; // @[PE.scala:31:7, :124:10] wire [31:0] _GEN_8 = {{12{_mac_unit_io_out_d[19]}}, _mac_unit_io_out_d}; // @[PE.scala:64:24, :108:10] always @(posedge clock) begin // @[PE.scala:31:7] if (io_in_valid_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :70:15, :118:101, :119:30, :124:10] c1 <= _GEN_7; // @[PE.scala:70:15, :124:10] if (~io_in_control_dataflow_0 | io_in_control_propagate_0) begin // @[PE.scala:31:7, :71:15, :118:101, :119:30] end else // @[PE.scala:71:15, :118:101, :119:30] c2 <= _GEN_7; // @[PE.scala:71:15, :124:10] end else begin // @[PE.scala:31:7] c1 <= io_in_control_propagate_0 ? _c1_WIRE : _GEN_8; // @[PE.scala:31:7, :70:15, :103:30, :108:10, :109:10, :115:10] c2 <= io_in_control_propagate_0 ? _GEN_8 : _c2_WIRE; // @[PE.scala:31:7, :71:15, :103:30, :108:10, :116:10] end last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25] end always @(posedge) MacUnit_84 mac_unit ( // @[PE.scala:64:24] .clock (clock), .reset (reset), .io_in_a (io_in_a_0), // @[PE.scala:31:7] .io_in_b (io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3) : io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE : _mac_unit_io_in_b_WIRE_1), // @[PE.scala:31:7, :102:95, :103:30, :106:{24,37}, :113:{24,37}, :118:101, :119:30, :121:{24,38}, :127:{24,38}] .io_in_c (io_in_control_dataflow_0 ? {{12{io_in_b_0[19]}}, io_in_b_0} : io_in_control_propagate_0 ? c2 : c1), // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :107:24, :114:24, :118:101, :122:24] .io_out_d (_mac_unit_io_out_d) ); // @[PE.scala:64:24] assign io_out_a = io_out_a_0; // @[PE.scala:31:7] assign io_out_b = io_out_b_0; // @[PE.scala:31:7] assign io_out_c = io_out_c_0; // @[PE.scala:31:7] assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7] assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7] assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7] assign io_out_id = io_out_id_0; // @[PE.scala:31:7] assign io_out_last = io_out_last_0; // @[PE.scala:31:7] assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7] assign io_bad_dataflow = io_bad_dataflow_0; // @[PE.scala:31:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Parameters.scala: /* * Copyright 2019 SiFive, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You should have received a copy of LICENSE.Apache2 along with * this software. If not, you may obtain a copy at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package sifive.blocks.inclusivecache import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ import freechips.rocketchip.util.property.cover import scala.math.{min,max} case class CacheParameters( level: Int, ways: Int, sets: Int, blockBytes: Int, beatBytes: Int, // inner hintsSkipProbe: Boolean) { require (ways > 0) require (sets > 0) require (blockBytes > 0 && isPow2(blockBytes)) require (beatBytes > 0 && isPow2(beatBytes)) require (blockBytes >= beatBytes) val blocks = ways * sets val sizeBytes = blocks * blockBytes val blockBeats = blockBytes/beatBytes } case class InclusiveCachePortParameters( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams) { def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new TLBuffer(a, b, c, d, e)) } object InclusiveCachePortParameters { val none = InclusiveCachePortParameters( a = BufferParams.none, b = BufferParams.none, c = BufferParams.none, d = BufferParams.none, e = BufferParams.none) val full = InclusiveCachePortParameters( a = BufferParams.default, b = BufferParams.default, c = BufferParams.default, d = BufferParams.default, e = BufferParams.default) // This removes feed-through paths from C=>A and A=>C val fullC = InclusiveCachePortParameters( a = BufferParams.none, b = BufferParams.none, c = BufferParams.default, d = BufferParams.none, e = BufferParams.none) val flowAD = InclusiveCachePortParameters( a = BufferParams.flow, b = BufferParams.none, c = BufferParams.none, d = BufferParams.flow, e = BufferParams.none) val flowAE = InclusiveCachePortParameters( a = BufferParams.flow, b = BufferParams.none, c = BufferParams.none, d = BufferParams.none, e = BufferParams.flow) // For innerBuf: // SinkA: no restrictions, flows into scheduler+putbuffer // SourceB: no restrictions, flows out of scheduler // sinkC: no restrictions, flows into scheduler+putbuffer & buffered to bankedStore // SourceD: no restrictions, flows out of bankedStore/regout // SinkE: no restrictions, flows into scheduler // // ... so while none is possible, you probably want at least flowAC to cut ready // from the scheduler delay and flowD to ease SourceD back-pressure // For outerBufer: // SourceA: must not be pipe, flows out of scheduler // SinkB: no restrictions, flows into scheduler // SourceC: pipe is useless, flows out of bankedStore/regout, parameter depth ignored // SinkD: no restrictions, flows into scheduler & bankedStore // SourceE: must not be pipe, flows out of scheduler // // ... AE take the channel ready into the scheduler, so you need at least flowAE } case class InclusiveCacheMicroParameters( writeBytes: Int, // backing store update granularity memCycles: Int = 40, // # of L2 clock cycles for a memory round-trip (50ns @ 800MHz) portFactor: Int = 4, // numSubBanks = (widest TL port * portFactor) / writeBytes dirReg: Boolean = false, innerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.fullC, // or none outerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.full) // or flowAE { require (writeBytes > 0 && isPow2(writeBytes)) require (memCycles > 0) require (portFactor >= 2) // for inner RMW and concurrent outer Relase + Grant } case class InclusiveCacheControlParameters( address: BigInt, beatBytes: Int, bankedControl: Boolean) case class InclusiveCacheParameters( cache: CacheParameters, micro: InclusiveCacheMicroParameters, control: Boolean, inner: TLEdgeIn, outer: TLEdgeOut)(implicit val p: Parameters) { require (cache.ways > 1) require (cache.sets > 1 && isPow2(cache.sets)) require (micro.writeBytes <= inner.manager.beatBytes) require (micro.writeBytes <= outer.manager.beatBytes) require (inner.manager.beatBytes <= cache.blockBytes) require (outer.manager.beatBytes <= cache.blockBytes) // Require that all cached address ranges have contiguous blocks outer.manager.managers.flatMap(_.address).foreach { a => require (a.alignment >= cache.blockBytes) } // If we are the first level cache, we do not need to support inner-BCE val firstLevel = !inner.client.clients.exists(_.supports.probe) // If we are the last level cache, we do not need to support outer-B val lastLevel = !outer.manager.managers.exists(_.regionType > RegionType.UNCACHED) require (lastLevel) // Provision enough resources to achieve full throughput with missing single-beat accesses val mshrs = InclusiveCacheParameters.all_mshrs(cache, micro) val secondary = max(mshrs, micro.memCycles - mshrs) val putLists = micro.memCycles // allow every request to be single beat val putBeats = max(2*cache.blockBeats, micro.memCycles) val relLists = 2 val relBeats = relLists*cache.blockBeats val flatAddresses = AddressSet.unify(outer.manager.managers.flatMap(_.address)) val pickMask = AddressDecoder(flatAddresses.map(Seq(_)), flatAddresses.map(_.mask).reduce(_|_)) def bitOffsets(x: BigInt, offset: Int = 0, tail: List[Int] = List.empty[Int]): List[Int] = if (x == 0) tail.reverse else bitOffsets(x >> 1, offset + 1, if ((x & 1) == 1) offset :: tail else tail) val addressMapping = bitOffsets(pickMask) val addressBits = addressMapping.size // println(s"addresses: ${flatAddresses} => ${pickMask} => ${addressBits}") val allClients = inner.client.clients.size val clientBitsRaw = inner.client.clients.filter(_.supports.probe).size val clientBits = max(1, clientBitsRaw) val stateBits = 2 val wayBits = log2Ceil(cache.ways) val setBits = log2Ceil(cache.sets) val offsetBits = log2Ceil(cache.blockBytes) val tagBits = addressBits - setBits - offsetBits val putBits = log2Ceil(max(putLists, relLists)) require (tagBits > 0) require (offsetBits > 0) val innerBeatBits = (offsetBits - log2Ceil(inner.manager.beatBytes)) max 1 val outerBeatBits = (offsetBits - log2Ceil(outer.manager.beatBytes)) max 1 val innerMaskBits = inner.manager.beatBytes / micro.writeBytes val outerMaskBits = outer.manager.beatBytes / micro.writeBytes def clientBit(source: UInt): UInt = { if (clientBitsRaw == 0) { 0.U } else { Cat(inner.client.clients.filter(_.supports.probe).map(_.sourceId.contains(source)).reverse) } } def clientSource(bit: UInt): UInt = { if (clientBitsRaw == 0) { 0.U } else { Mux1H(bit, inner.client.clients.filter(_.supports.probe).map(c => c.sourceId.start.U)) } } def parseAddress(x: UInt): (UInt, UInt, UInt) = { val offset = Cat(addressMapping.map(o => x(o,o)).reverse) val set = offset >> offsetBits val tag = set >> setBits (tag(tagBits-1, 0), set(setBits-1, 0), offset(offsetBits-1, 0)) } def widen(x: UInt, width: Int): UInt = { val y = x | 0.U(width.W) assert (y >> width === 0.U) y(width-1, 0) } def expandAddress(tag: UInt, set: UInt, offset: UInt): UInt = { val base = Cat(widen(tag, tagBits), widen(set, setBits), widen(offset, offsetBits)) val bits = Array.fill(outer.bundle.addressBits) { 0.U(1.W) } addressMapping.zipWithIndex.foreach { case (a, i) => bits(a) = base(i,i) } Cat(bits.reverse) } def restoreAddress(expanded: UInt): UInt = { val missingBits = flatAddresses .map { a => (a.widen(pickMask).base, a.widen(~pickMask)) } // key is the bits to restore on match .groupBy(_._1) .view .mapValues(_.map(_._2)) val muxMask = AddressDecoder(missingBits.values.toList) val mux = missingBits.toList.map { case (bits, addrs) => val widen = addrs.map(_.widen(~muxMask)) val matches = AddressSet .unify(widen.distinct) .map(_.contains(expanded)) .reduce(_ || _) (matches, bits.U) } expanded | Mux1H(mux) } def dirReg[T <: Data](x: T, en: Bool = true.B): T = { if (micro.dirReg) RegEnable(x, en) else x } def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = cover(cond, "CCACHE_L" + cache.level + "_" + label, "MemorySystem;;" + desc) } object MetaData { val stateBits = 2 def INVALID: UInt = 0.U(stateBits.W) // way is empty def BRANCH: UInt = 1.U(stateBits.W) // outer slave cache is trunk def TRUNK: UInt = 2.U(stateBits.W) // unique inner master cache is trunk def TIP: UInt = 3.U(stateBits.W) // we are trunk, inner masters are branch // Does a request need trunk? def needT(opcode: UInt, param: UInt): Bool = { !opcode(2) || (opcode === TLMessages.Hint && param === TLHints.PREFETCH_WRITE) || ((opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm) && param =/= TLPermissions.NtoB) } // Does a request prove the client need not be probed? def skipProbeN(opcode: UInt, hintsSkipProbe: Boolean): Bool = { // Acquire(toB) and Get => is N, so no probe // Acquire(*toT) => is N or B, but need T, so no probe // Hint => could be anything, so probe IS needed, if hintsSkipProbe is enabled, skip probe the same client // Put* => is N or B, so probe IS needed opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm || opcode === TLMessages.Get || (opcode === TLMessages.Hint && hintsSkipProbe.B) } def isToN(param: UInt): Bool = { param === TLPermissions.TtoN || param === TLPermissions.BtoN || param === TLPermissions.NtoN } def isToB(param: UInt): Bool = { param === TLPermissions.TtoB || param === TLPermissions.BtoB } } object InclusiveCacheParameters { val lfsrBits = 10 val L2ControlAddress = 0x2010000 val L2ControlSize = 0x1000 def out_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = { // We need 2-3 normal MSHRs to cover the Directory latency // To fully exploit memory bandwidth-delay-product, we need memCyles/blockBeats MSHRs max(if (micro.dirReg) 3 else 2, (micro.memCycles + cache.blockBeats - 1) / cache.blockBeats) } def all_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = // We need a dedicated MSHR for B+C each 2 + out_mshrs(cache, micro) } class InclusiveCacheBundle(params: InclusiveCacheParameters) extends Bundle File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File InclusiveCache.scala: /* * Copyright 2019 SiFive, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You should have received a copy of LICENSE.Apache2 along with * this software. If not, you may obtain a copy at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package sifive.blocks.inclusivecache import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import freechips.rocketchip.diplomacy._ import freechips.rocketchip.subsystem.{SubsystemBankedCoherenceKey} import freechips.rocketchip.regmapper._ import freechips.rocketchip.tilelink._ class InclusiveCache( val cache: CacheParameters, val micro: InclusiveCacheMicroParameters, control: Option[InclusiveCacheControlParameters] = None )(implicit p: Parameters) extends LazyModule { val access = TransferSizes(1, cache.blockBytes) val xfer = TransferSizes(cache.blockBytes, cache.blockBytes) val atom = TransferSizes(1, cache.beatBytes) var resourcesOpt: Option[ResourceBindings] = None val device: SimpleDevice = new SimpleDevice("cache-controller", Seq("sifive,inclusivecache0", "cache")) { def ofInt(x: Int) = Seq(ResourceInt(BigInt(x))) override def describe(resources: ResourceBindings): Description = { resourcesOpt = Some(resources) val Description(name, mapping) = super.describe(resources) // Find the outer caches val outer = node.edges.out .flatMap(_.manager.managers) .filter(_.supportsAcquireB) .flatMap(_.resources.headOption) .map(_.owner.label) .distinct val nextlevel: Option[(String, Seq[ResourceValue])] = if (outer.isEmpty) { None } else { Some("next-level-cache" -> outer.map(l => ResourceReference(l)).toList) } val extra = Map( "cache-level" -> ofInt(2), "cache-unified" -> Nil, "cache-size" -> ofInt(cache.sizeBytes * node.edges.in.size), "cache-sets" -> ofInt(cache.sets * node.edges.in.size), "cache-block-size" -> ofInt(cache.blockBytes), "sifive,mshr-count" -> ofInt(InclusiveCacheParameters.all_mshrs(cache, micro))) Description(name, mapping ++ extra ++ nextlevel) } } val node: TLAdapterNode = TLAdapterNode( clientFn = { _ => TLClientPortParameters(Seq(TLClientParameters( name = s"L${cache.level} InclusiveCache", sourceId = IdRange(0, InclusiveCacheParameters.out_mshrs(cache, micro)), supportsProbe = xfer))) }, managerFn = { m => TLManagerPortParameters( managers = m.managers.map { m => m.copy( regionType = if (m.regionType >= RegionType.UNCACHED) RegionType.CACHED else m.regionType, resources = Resource(device, "caches") +: m.resources, supportsAcquireB = xfer, supportsAcquireT = if (m.supportsAcquireT) xfer else TransferSizes.none, supportsArithmetic = if (m.supportsAcquireT) atom else TransferSizes.none, supportsLogical = if (m.supportsAcquireT) atom else TransferSizes.none, supportsGet = access, supportsPutFull = if (m.supportsAcquireT) access else TransferSizes.none, supportsPutPartial = if (m.supportsAcquireT) access else TransferSizes.none, supportsHint = access, alwaysGrantsT = false, fifoId = None) }, beatBytes = cache.beatBytes, endSinkId = InclusiveCacheParameters.all_mshrs(cache, micro), minLatency = 2) }) val ctrls = control.map { c => val nCtrls = if (c.bankedControl) p(SubsystemBankedCoherenceKey).nBanks else 1 Seq.tabulate(nCtrls) { i => LazyModule(new InclusiveCacheControl(this, c.copy(address = c.address + i * InclusiveCacheParameters.L2ControlSize))) } }.getOrElse(Nil) lazy val module = new Impl class Impl extends LazyModuleImp(this) { // If you have a control port, you must have at least one cache port require (ctrls.isEmpty || !node.edges.in.isEmpty) // Extract the client IdRanges; must be the same on all ports! val clientIds = node.edges.in.headOption.map(_.client.clients.map(_.sourceId).sortBy(_.start)) node.edges.in.foreach { e => require(e.client.clients.map(_.sourceId).sortBy(_.start) == clientIds.get) } // Use the natural ordering of clients (just like in Directory) node.edges.in.headOption.foreach { n => println(s"L${cache.level} InclusiveCache Client Map:") n.client.clients.zipWithIndex.foreach { case (c,i) => println(s"\t${i} <= ${c.name}") } println("") } // Create the L2 Banks val mods = (node.in zip node.out) map { case ((in, edgeIn), (out, edgeOut)) => edgeOut.manager.managers.foreach { m => require (m.supportsAcquireB.contains(xfer), s"All managers behind the L2 must support acquireB($xfer) " + s"but ${m.name} only supports (${m.supportsAcquireB})!") if (m.supportsAcquireT) require (m.supportsAcquireT.contains(xfer), s"Any probing managers behind the L2 must support acquireT($xfer) " + s"but ${m.name} only supports (${m.supportsAcquireT})!") } val params = InclusiveCacheParameters(cache, micro, !ctrls.isEmpty, edgeIn, edgeOut) val scheduler = Module(new InclusiveCacheBankScheduler(params)).suggestName("inclusive_cache_bank_sched") scheduler.io.in <> in out <> scheduler.io.out scheduler.io.ways := DontCare scheduler.io.divs := DontCare // Tie down default values in case there is no controller scheduler.io.req.valid := false.B scheduler.io.req.bits.address := 0.U scheduler.io.resp.ready := true.B // Fix-up the missing addresses. We do this here so that the Scheduler can be // deduplicated by Firrtl to make hierarchical place-and-route easier. out.a.bits.address := params.restoreAddress(scheduler.io.out.a.bits.address) in .b.bits.address := params.restoreAddress(scheduler.io.in .b.bits.address) out.c.bits.address := params.restoreAddress(scheduler.io.out.c.bits.address) scheduler } ctrls.foreach { ctrl => ctrl.module.io.flush_req.ready := false.B ctrl.module.io.flush_resp := false.B ctrl.module.io.flush_match := false.B } mods.zip(node.edges.in).zipWithIndex.foreach { case ((sched, edgeIn), i) => val ctrl = if (ctrls.size > 1) Some(ctrls(i)) else ctrls.headOption ctrl.foreach { ctrl => { val contained = edgeIn.manager.managers.flatMap(_.address) .map(_.contains(ctrl.module.io.flush_req.bits)).reduce(_||_) when (contained) { ctrl.module.io.flush_match := true.B } sched.io.req.valid := contained && ctrl.module.io.flush_req.valid sched.io.req.bits.address := ctrl.module.io.flush_req.bits when (contained && sched.io.req.ready) { ctrl.module.io.flush_req.ready := true.B } when (sched.io.resp.valid) { ctrl.module.io.flush_resp := true.B } sched.io.resp.ready := true.B }} } def json = s"""{"banks":[${mods.map(_.json).mkString(",")}]}""" } }
module InclusiveCache( // @[InclusiveCache.scala:108:9] input clock, // @[InclusiveCache.scala:108:9] input reset, // @[InclusiveCache.scala:108:9] output auto_ctrls_ctrl_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_ctrls_ctrl_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_ctrls_ctrl_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_ctrls_ctrl_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [1:0] auto_ctrls_ctrl_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [11:0] auto_ctrls_ctrl_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [25:0] auto_ctrls_ctrl_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_ctrls_ctrl_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_ctrls_ctrl_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_ctrls_ctrl_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_ctrls_ctrl_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_ctrls_ctrl_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_ctrls_ctrl_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_ctrls_ctrl_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [11:0] auto_ctrls_ctrl_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [63:0] auto_ctrls_ctrl_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [6:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [15:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [127:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_b_ready, // @[LazyModuleImp.scala:107:25] output auto_in_b_valid, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_b_bits_param, // @[LazyModuleImp.scala:107:25] output [31:0] auto_in_b_bits_address, // @[LazyModuleImp.scala:107:25] output auto_in_c_ready, // @[LazyModuleImp.scala:107:25] input auto_in_c_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_c_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_c_bits_param, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_c_bits_size, // @[LazyModuleImp.scala:107:25] input [6:0] auto_in_c_bits_source, // @[LazyModuleImp.scala:107:25] input [31:0] auto_in_c_bits_address, // @[LazyModuleImp.scala:107:25] input [127:0] auto_in_c_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_c_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [6:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [3:0] auto_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [127:0] auto_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_e_valid, // @[LazyModuleImp.scala:107:25] input [3:0] auto_in_e_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_out_c_ready, // @[LazyModuleImp.scala:107:25] output auto_out_c_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_c_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_c_bits_param, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_c_bits_size, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_c_bits_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_c_bits_address, // @[LazyModuleImp.scala:107:25] output [63:0] auto_out_c_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_c_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [63:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_out_e_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_e_bits_sink // @[LazyModuleImp.scala:107:25] ); wire [31:0] _inclusive_cache_bank_sched_io_in_b_bits_address; // @[InclusiveCache.scala:137:29] wire [31:0] _inclusive_cache_bank_sched_io_out_a_bits_address; // @[InclusiveCache.scala:137:29] wire [31:0] _inclusive_cache_bank_sched_io_out_c_bits_address; // @[InclusiveCache.scala:137:29] wire _inclusive_cache_bank_sched_io_req_ready; // @[InclusiveCache.scala:137:29] wire _inclusive_cache_bank_sched_io_resp_valid; // @[InclusiveCache.scala:137:29] wire _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43] wire [63:0] _ctrls_io_flush_req_bits; // @[InclusiveCache.scala:103:43] wire auto_ctrls_ctrl_in_a_valid_0 = auto_ctrls_ctrl_in_a_valid; // @[InclusiveCache.scala:108:9] wire [2:0] auto_ctrls_ctrl_in_a_bits_opcode_0 = auto_ctrls_ctrl_in_a_bits_opcode; // @[InclusiveCache.scala:108:9] wire [2:0] auto_ctrls_ctrl_in_a_bits_param_0 = auto_ctrls_ctrl_in_a_bits_param; // @[InclusiveCache.scala:108:9] wire [1:0] auto_ctrls_ctrl_in_a_bits_size_0 = auto_ctrls_ctrl_in_a_bits_size; // @[InclusiveCache.scala:108:9] wire [11:0] auto_ctrls_ctrl_in_a_bits_source_0 = auto_ctrls_ctrl_in_a_bits_source; // @[InclusiveCache.scala:108:9] wire [25:0] auto_ctrls_ctrl_in_a_bits_address_0 = auto_ctrls_ctrl_in_a_bits_address; // @[InclusiveCache.scala:108:9] wire [7:0] auto_ctrls_ctrl_in_a_bits_mask_0 = auto_ctrls_ctrl_in_a_bits_mask; // @[InclusiveCache.scala:108:9] wire [63:0] auto_ctrls_ctrl_in_a_bits_data_0 = auto_ctrls_ctrl_in_a_bits_data; // @[InclusiveCache.scala:108:9] wire auto_ctrls_ctrl_in_a_bits_corrupt_0 = auto_ctrls_ctrl_in_a_bits_corrupt; // @[InclusiveCache.scala:108:9] wire auto_ctrls_ctrl_in_d_ready_0 = auto_ctrls_ctrl_in_d_ready; // @[InclusiveCache.scala:108:9] wire auto_in_a_valid_0 = auto_in_a_valid; // @[InclusiveCache.scala:108:9] wire [2:0] auto_in_a_bits_opcode_0 = auto_in_a_bits_opcode; // @[InclusiveCache.scala:108:9] wire [2:0] auto_in_a_bits_param_0 = auto_in_a_bits_param; // @[InclusiveCache.scala:108:9] wire [2:0] auto_in_a_bits_size_0 = auto_in_a_bits_size; // @[InclusiveCache.scala:108:9] wire [6:0] auto_in_a_bits_source_0 = auto_in_a_bits_source; // @[InclusiveCache.scala:108:9] wire [31:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[InclusiveCache.scala:108:9] wire [15:0] auto_in_a_bits_mask_0 = auto_in_a_bits_mask; // @[InclusiveCache.scala:108:9] wire [127:0] auto_in_a_bits_data_0 = auto_in_a_bits_data; // @[InclusiveCache.scala:108:9] wire auto_in_a_bits_corrupt_0 = auto_in_a_bits_corrupt; // @[InclusiveCache.scala:108:9] wire auto_in_b_ready_0 = auto_in_b_ready; // @[InclusiveCache.scala:108:9] wire auto_in_c_valid_0 = auto_in_c_valid; // @[InclusiveCache.scala:108:9] wire [2:0] auto_in_c_bits_opcode_0 = auto_in_c_bits_opcode; // @[InclusiveCache.scala:108:9] wire [2:0] auto_in_c_bits_param_0 = auto_in_c_bits_param; // @[InclusiveCache.scala:108:9] wire [2:0] auto_in_c_bits_size_0 = auto_in_c_bits_size; // @[InclusiveCache.scala:108:9] wire [6:0] auto_in_c_bits_source_0 = auto_in_c_bits_source; // @[InclusiveCache.scala:108:9] wire [31:0] auto_in_c_bits_address_0 = auto_in_c_bits_address; // @[InclusiveCache.scala:108:9] wire [127:0] auto_in_c_bits_data_0 = auto_in_c_bits_data; // @[InclusiveCache.scala:108:9] wire auto_in_c_bits_corrupt_0 = auto_in_c_bits_corrupt; // @[InclusiveCache.scala:108:9] wire auto_in_d_ready_0 = auto_in_d_ready; // @[InclusiveCache.scala:108:9] wire auto_in_e_valid_0 = auto_in_e_valid; // @[InclusiveCache.scala:108:9] wire [3:0] auto_in_e_bits_sink_0 = auto_in_e_bits_sink; // @[InclusiveCache.scala:108:9] wire auto_out_a_ready_0 = auto_out_a_ready; // @[InclusiveCache.scala:108:9] wire auto_out_c_ready_0 = auto_out_c_ready; // @[InclusiveCache.scala:108:9] wire auto_out_d_valid_0 = auto_out_d_valid; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[InclusiveCache.scala:108:9] wire [1:0] auto_out_d_bits_param_0 = auto_out_d_bits_param; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[InclusiveCache.scala:108:9] wire [3:0] auto_out_d_bits_source_0 = auto_out_d_bits_source; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_d_bits_sink_0 = auto_out_d_bits_sink; // @[InclusiveCache.scala:108:9] wire auto_out_d_bits_denied_0 = auto_out_d_bits_denied; // @[InclusiveCache.scala:108:9] wire [63:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[InclusiveCache.scala:108:9] wire auto_out_d_bits_corrupt_0 = auto_out_d_bits_corrupt; // @[InclusiveCache.scala:108:9] wire [32:0] _nodeOut_a_bits_address_mux_matches_T_2 = 33'h0; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_a_bits_address_mux_matches_T_3 = 33'h0; // @[Parameters.scala:137:46] wire [32:0] _nodeIn_b_bits_address_mux_matches_T_2 = 33'h0; // @[Parameters.scala:137:46] wire [32:0] _nodeIn_b_bits_address_mux_matches_T_3 = 33'h0; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_address_mux_matches_T_2 = 33'h0; // @[Parameters.scala:137:46] wire [32:0] _nodeOut_c_bits_address_mux_matches_T_3 = 33'h0; // @[Parameters.scala:137:46] wire [63:0] auto_out_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [63:0] nodeOut_b_bits_data = 64'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [7:0] auto_out_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [7:0] nodeOut_b_bits_mask = 8'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [31:0] auto_out_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [31:0] nodeOut_b_bits_address = 32'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [3:0] auto_out_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [3:0] nodeOut_b_bits_source = 4'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [2:0] auto_out_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [2:0] auto_out_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [2:0] nodeOut_b_bits_opcode = 3'h0; // @[InclusiveCache.scala:108:9, :137:29] wire [2:0] nodeOut_b_bits_size = 3'h0; // @[InclusiveCache.scala:108:9, :137:29] wire auto_in_e_ready = 1'h1; // @[Nodes.scala:27:25] wire auto_out_b_ready = 1'h1; // @[Nodes.scala:27:25] wire auto_out_e_ready = 1'h1; // @[Nodes.scala:27:25] wire nodeIn_e_ready = 1'h1; // @[Nodes.scala:27:25] wire nodeOut_b_ready = 1'h1; // @[Nodes.scala:27:25] wire nodeOut_e_ready = 1'h1; // @[Nodes.scala:27:25] wire nodeOut_a_bits_address_mux_0_1 = 1'h1; // @[Nodes.scala:27:25] wire nodeIn_b_bits_address_mux_0_1 = 1'h1; // @[Nodes.scala:27:25] wire nodeOut_c_bits_address_mux_0_1 = 1'h1; // @[Nodes.scala:27:25] wire [127:0] auto_in_b_bits_data = 128'h0; // @[Nodes.scala:27:25] wire [127:0] nodeIn_b_bits_data = 128'h0; // @[Nodes.scala:27:25] wire [15:0] auto_in_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25] wire [15:0] nodeIn_b_bits_mask = 16'hFFFF; // @[Nodes.scala:27:25] wire [6:0] auto_in_b_bits_source = 7'h40; // @[Nodes.scala:27:25] wire [6:0] nodeIn_b_bits_source = 7'h40; // @[Nodes.scala:27:25] wire [2:0] auto_in_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25] wire [2:0] auto_in_b_bits_size = 3'h6; // @[Nodes.scala:27:25] wire [2:0] nodeIn_b_bits_opcode = 3'h6; // @[Nodes.scala:27:25] wire [2:0] nodeIn_b_bits_size = 3'h6; // @[Nodes.scala:27:25] wire auto_ctrls_ctrl_in_d_bits_sink = 1'h0; // @[Nodes.scala:27:25] wire auto_ctrls_ctrl_in_d_bits_denied = 1'h0; // @[Nodes.scala:27:25] wire auto_ctrls_ctrl_in_d_bits_corrupt = 1'h0; // @[Nodes.scala:27:25] wire auto_in_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25] wire auto_out_b_valid = 1'h0; // @[Nodes.scala:27:25] wire auto_out_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25] wire nodeIn_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25] wire nodeOut_b_valid = 1'h0; // @[Nodes.scala:27:25] wire nodeOut_b_bits_corrupt = 1'h0; // @[Nodes.scala:27:25] wire [1:0] auto_ctrls_ctrl_in_d_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29] wire [1:0] auto_out_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29] wire [1:0] nodeOut_b_bits_param = 2'h0; // @[InclusiveCache.scala:103:43, :108:9, :137:29] wire nodeIn_a_ready; // @[MixedNode.scala:551:17] wire nodeIn_a_valid = auto_in_a_valid_0; // @[InclusiveCache.scala:108:9] wire [2:0] nodeIn_a_bits_opcode = auto_in_a_bits_opcode_0; // @[InclusiveCache.scala:108:9] wire [2:0] nodeIn_a_bits_param = auto_in_a_bits_param_0; // @[InclusiveCache.scala:108:9] wire [2:0] nodeIn_a_bits_size = auto_in_a_bits_size_0; // @[InclusiveCache.scala:108:9] wire [6:0] nodeIn_a_bits_source = auto_in_a_bits_source_0; // @[InclusiveCache.scala:108:9] wire [31:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[InclusiveCache.scala:108:9] wire [15:0] nodeIn_a_bits_mask = auto_in_a_bits_mask_0; // @[InclusiveCache.scala:108:9] wire [127:0] nodeIn_a_bits_data = auto_in_a_bits_data_0; // @[InclusiveCache.scala:108:9] wire nodeIn_a_bits_corrupt = auto_in_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9] wire nodeIn_b_ready = auto_in_b_ready_0; // @[InclusiveCache.scala:108:9] wire nodeIn_b_valid; // @[MixedNode.scala:551:17] wire [1:0] nodeIn_b_bits_param; // @[MixedNode.scala:551:17] wire [31:0] nodeIn_b_bits_address; // @[MixedNode.scala:551:17] wire nodeIn_c_ready; // @[MixedNode.scala:551:17] wire nodeIn_c_valid = auto_in_c_valid_0; // @[InclusiveCache.scala:108:9] wire [2:0] nodeIn_c_bits_opcode = auto_in_c_bits_opcode_0; // @[InclusiveCache.scala:108:9] wire [2:0] nodeIn_c_bits_param = auto_in_c_bits_param_0; // @[InclusiveCache.scala:108:9] wire [2:0] nodeIn_c_bits_size = auto_in_c_bits_size_0; // @[InclusiveCache.scala:108:9] wire [6:0] nodeIn_c_bits_source = auto_in_c_bits_source_0; // @[InclusiveCache.scala:108:9] wire [31:0] nodeIn_c_bits_address = auto_in_c_bits_address_0; // @[InclusiveCache.scala:108:9] wire [127:0] nodeIn_c_bits_data = auto_in_c_bits_data_0; // @[InclusiveCache.scala:108:9] wire nodeIn_c_bits_corrupt = auto_in_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9] wire nodeIn_d_ready = auto_in_d_ready_0; // @[InclusiveCache.scala:108:9] wire nodeIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] nodeIn_d_bits_param; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17] wire [6:0] nodeIn_d_bits_source; // @[MixedNode.scala:551:17] wire [3:0] nodeIn_d_bits_sink; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_denied; // @[MixedNode.scala:551:17] wire [127:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_corrupt; // @[MixedNode.scala:551:17] wire nodeIn_e_valid = auto_in_e_valid_0; // @[InclusiveCache.scala:108:9] wire [3:0] nodeIn_e_bits_sink = auto_in_e_bits_sink_0; // @[InclusiveCache.scala:108:9] wire nodeOut_a_ready = auto_out_a_ready_0; // @[InclusiveCache.scala:108:9] wire nodeOut_a_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_param; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17] wire [3:0] nodeOut_a_bits_source; // @[MixedNode.scala:542:17] wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17] wire [7:0] nodeOut_a_bits_mask; // @[MixedNode.scala:542:17] wire [63:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17] wire nodeOut_a_bits_corrupt; // @[MixedNode.scala:542:17] wire nodeOut_c_ready = auto_out_c_ready_0; // @[InclusiveCache.scala:108:9] wire nodeOut_c_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_c_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_c_bits_param; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_c_bits_size; // @[MixedNode.scala:542:17] wire [3:0] nodeOut_c_bits_source; // @[MixedNode.scala:542:17] wire [31:0] nodeOut_c_bits_address; // @[MixedNode.scala:542:17] wire [63:0] nodeOut_c_bits_data; // @[MixedNode.scala:542:17] wire nodeOut_c_bits_corrupt; // @[MixedNode.scala:542:17] wire nodeOut_d_ready; // @[MixedNode.scala:542:17] wire nodeOut_d_valid = auto_out_d_valid_0; // @[InclusiveCache.scala:108:9] wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[InclusiveCache.scala:108:9] wire [1:0] nodeOut_d_bits_param = auto_out_d_bits_param_0; // @[InclusiveCache.scala:108:9] wire [2:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[InclusiveCache.scala:108:9] wire [3:0] nodeOut_d_bits_source = auto_out_d_bits_source_0; // @[InclusiveCache.scala:108:9] wire [2:0] nodeOut_d_bits_sink = auto_out_d_bits_sink_0; // @[InclusiveCache.scala:108:9] wire nodeOut_d_bits_denied = auto_out_d_bits_denied_0; // @[InclusiveCache.scala:108:9] wire [63:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[InclusiveCache.scala:108:9] wire nodeOut_d_bits_corrupt = auto_out_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9] wire nodeOut_e_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_e_bits_sink; // @[MixedNode.scala:542:17] wire auto_ctrls_ctrl_in_a_ready_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_ctrls_ctrl_in_d_bits_opcode_0; // @[InclusiveCache.scala:108:9] wire [1:0] auto_ctrls_ctrl_in_d_bits_size_0; // @[InclusiveCache.scala:108:9] wire [11:0] auto_ctrls_ctrl_in_d_bits_source_0; // @[InclusiveCache.scala:108:9] wire [63:0] auto_ctrls_ctrl_in_d_bits_data_0; // @[InclusiveCache.scala:108:9] wire auto_ctrls_ctrl_in_d_valid_0; // @[InclusiveCache.scala:108:9] wire auto_in_a_ready_0; // @[InclusiveCache.scala:108:9] wire [1:0] auto_in_b_bits_param_0; // @[InclusiveCache.scala:108:9] wire [31:0] auto_in_b_bits_address_0; // @[InclusiveCache.scala:108:9] wire auto_in_b_valid_0; // @[InclusiveCache.scala:108:9] wire auto_in_c_ready_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_in_d_bits_opcode_0; // @[InclusiveCache.scala:108:9] wire [1:0] auto_in_d_bits_param_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_in_d_bits_size_0; // @[InclusiveCache.scala:108:9] wire [6:0] auto_in_d_bits_source_0; // @[InclusiveCache.scala:108:9] wire [3:0] auto_in_d_bits_sink_0; // @[InclusiveCache.scala:108:9] wire auto_in_d_bits_denied_0; // @[InclusiveCache.scala:108:9] wire [127:0] auto_in_d_bits_data_0; // @[InclusiveCache.scala:108:9] wire auto_in_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9] wire auto_in_d_valid_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_a_bits_opcode_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_a_bits_param_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_a_bits_size_0; // @[InclusiveCache.scala:108:9] wire [3:0] auto_out_a_bits_source_0; // @[InclusiveCache.scala:108:9] wire [31:0] auto_out_a_bits_address_0; // @[InclusiveCache.scala:108:9] wire [7:0] auto_out_a_bits_mask_0; // @[InclusiveCache.scala:108:9] wire [63:0] auto_out_a_bits_data_0; // @[InclusiveCache.scala:108:9] wire auto_out_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9] wire auto_out_a_valid_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_c_bits_opcode_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_c_bits_param_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_c_bits_size_0; // @[InclusiveCache.scala:108:9] wire [3:0] auto_out_c_bits_source_0; // @[InclusiveCache.scala:108:9] wire [31:0] auto_out_c_bits_address_0; // @[InclusiveCache.scala:108:9] wire [63:0] auto_out_c_bits_data_0; // @[InclusiveCache.scala:108:9] wire auto_out_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9] wire auto_out_c_valid_0; // @[InclusiveCache.scala:108:9] wire auto_out_d_ready_0; // @[InclusiveCache.scala:108:9] wire [2:0] auto_out_e_bits_sink_0; // @[InclusiveCache.scala:108:9] wire auto_out_e_valid_0; // @[InclusiveCache.scala:108:9] assign auto_in_a_ready_0 = nodeIn_a_ready; // @[InclusiveCache.scala:108:9] assign auto_in_b_valid_0 = nodeIn_b_valid; // @[InclusiveCache.scala:108:9] assign auto_in_b_bits_param_0 = nodeIn_b_bits_param; // @[InclusiveCache.scala:108:9] wire [31:0] _nodeIn_b_bits_address_T; // @[Parameters.scala:248:14] assign auto_in_b_bits_address_0 = nodeIn_b_bits_address; // @[InclusiveCache.scala:108:9] assign auto_in_c_ready_0 = nodeIn_c_ready; // @[InclusiveCache.scala:108:9] assign auto_in_d_valid_0 = nodeIn_d_valid; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_param_0 = nodeIn_d_bits_param; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_sink_0 = nodeIn_d_bits_sink; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_denied_0 = nodeIn_d_bits_denied; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_corrupt_0 = nodeIn_d_bits_corrupt; // @[InclusiveCache.scala:108:9] assign auto_out_a_valid_0 = nodeOut_a_valid; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_param_0 = nodeOut_a_bits_param; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_source_0 = nodeOut_a_bits_source; // @[InclusiveCache.scala:108:9] wire [31:0] _nodeOut_a_bits_address_T; // @[Parameters.scala:248:14] assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_mask_0 = nodeOut_a_bits_mask; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_corrupt_0 = nodeOut_a_bits_corrupt; // @[InclusiveCache.scala:108:9] assign auto_out_c_valid_0 = nodeOut_c_valid; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_opcode_0 = nodeOut_c_bits_opcode; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_param_0 = nodeOut_c_bits_param; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_size_0 = nodeOut_c_bits_size; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_source_0 = nodeOut_c_bits_source; // @[InclusiveCache.scala:108:9] wire [31:0] _nodeOut_c_bits_address_T; // @[Parameters.scala:248:14] assign auto_out_c_bits_address_0 = nodeOut_c_bits_address; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_data_0 = nodeOut_c_bits_data; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_corrupt_0 = nodeOut_c_bits_corrupt; // @[InclusiveCache.scala:108:9] assign auto_out_d_ready_0 = nodeOut_d_ready; // @[InclusiveCache.scala:108:9] assign auto_out_e_valid_0 = nodeOut_e_valid; // @[InclusiveCache.scala:108:9] assign auto_out_e_bits_sink_0 = nodeOut_e_bits_sink; // @[InclusiveCache.scala:108:9] wire [31:0] _nodeOut_a_bits_address_mux_matches_T; // @[Parameters.scala:137:31] wire [32:0] _nodeOut_a_bits_address_mux_matches_T_1 = {1'h0, _nodeOut_a_bits_address_mux_matches_T}; // @[Nodes.scala:27:25] assign nodeOut_a_bits_address = _nodeOut_a_bits_address_T; // @[Parameters.scala:248:14] wire [31:0] _nodeIn_b_bits_address_mux_matches_T; // @[Parameters.scala:137:31] wire [32:0] _nodeIn_b_bits_address_mux_matches_T_1 = {1'h0, _nodeIn_b_bits_address_mux_matches_T}; // @[Nodes.scala:27:25] assign nodeIn_b_bits_address = _nodeIn_b_bits_address_T; // @[Parameters.scala:248:14] wire [31:0] _nodeOut_c_bits_address_mux_matches_T; // @[Parameters.scala:137:31] wire [32:0] _nodeOut_c_bits_address_mux_matches_T_1 = {1'h0, _nodeOut_c_bits_address_mux_matches_T}; // @[Nodes.scala:27:25] assign nodeOut_c_bits_address = _nodeOut_c_bits_address_T; // @[Parameters.scala:248:14] wire [63:0] _contained_T = {_ctrls_io_flush_req_bits[63:32], _ctrls_io_flush_req_bits[31:0] ^ 32'h80000000}; // @[Parameters.scala:137:31] wire [64:0] _contained_T_1 = {1'h0, _contained_T}; // @[Nodes.scala:27:25] wire [64:0] _contained_T_2 = _contained_T_1 & 65'h1FFFFFFFFF0000000; // @[Parameters.scala:137:{41,46}] wire [64:0] _contained_T_3 = _contained_T_2; // @[Parameters.scala:137:46] wire _contained_T_4 = _contained_T_3 == 65'h0; // @[Parameters.scala:137:{46,59}] wire [63:0] _contained_T_5 = {_ctrls_io_flush_req_bits[63:28], _ctrls_io_flush_req_bits[27:0] ^ 28'h8000000}; // @[Parameters.scala:137:31] wire [64:0] _contained_T_6 = {1'h0, _contained_T_5}; // @[Nodes.scala:27:25] wire [64:0] _contained_T_7 = _contained_T_6 & 65'h1FFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [64:0] _contained_T_8 = _contained_T_7; // @[Parameters.scala:137:46] wire _contained_T_9 = _contained_T_8 == 65'h0; // @[Parameters.scala:137:{46,59}] wire contained = _contained_T_4 | _contained_T_9; // @[Parameters.scala:137:59] wire _inclusive_cache_bank_sched_io_req_valid_T = contained & _ctrls_io_flush_req_valid; // @[InclusiveCache.scala:103:43, :169:67, :172:41] InclusiveCacheControl ctrls ( // @[InclusiveCache.scala:103:43] .clock (clock), .reset (reset), .auto_ctrl_in_a_ready (auto_ctrls_ctrl_in_a_ready_0), .auto_ctrl_in_a_valid (auto_ctrls_ctrl_in_a_valid_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_a_bits_opcode (auto_ctrls_ctrl_in_a_bits_opcode_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_a_bits_param (auto_ctrls_ctrl_in_a_bits_param_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_a_bits_size (auto_ctrls_ctrl_in_a_bits_size_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_a_bits_source (auto_ctrls_ctrl_in_a_bits_source_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_a_bits_address (auto_ctrls_ctrl_in_a_bits_address_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_a_bits_mask (auto_ctrls_ctrl_in_a_bits_mask_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_a_bits_data (auto_ctrls_ctrl_in_a_bits_data_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_a_bits_corrupt (auto_ctrls_ctrl_in_a_bits_corrupt_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_d_ready (auto_ctrls_ctrl_in_d_ready_0), // @[InclusiveCache.scala:108:9] .auto_ctrl_in_d_valid (auto_ctrls_ctrl_in_d_valid_0), .auto_ctrl_in_d_bits_opcode (auto_ctrls_ctrl_in_d_bits_opcode_0), .auto_ctrl_in_d_bits_size (auto_ctrls_ctrl_in_d_bits_size_0), .auto_ctrl_in_d_bits_source (auto_ctrls_ctrl_in_d_bits_source_0), .auto_ctrl_in_d_bits_data (auto_ctrls_ctrl_in_d_bits_data_0), .io_flush_match (contained), // @[InclusiveCache.scala:169:67] .io_flush_req_ready (contained & _inclusive_cache_bank_sched_io_req_ready), // @[InclusiveCache.scala:137:29, :169:67, :174:25] .io_flush_req_valid (_ctrls_io_flush_req_valid), .io_flush_req_bits (_ctrls_io_flush_req_bits), .io_flush_resp (_inclusive_cache_bank_sched_io_resp_valid) // @[InclusiveCache.scala:137:29] ); // @[InclusiveCache.scala:103:43] TLMonitor_37 monitor ( // @[Nodes.scala:27:25] .clock (clock), .reset (reset), .io_in_a_ready (nodeIn_a_ready), // @[MixedNode.scala:551:17] .io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17] .io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17] .io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17] .io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17] .io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17] .io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17] .io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_b_ready (nodeIn_b_ready), // @[MixedNode.scala:551:17] .io_in_b_valid (nodeIn_b_valid), // @[MixedNode.scala:551:17] .io_in_b_bits_param (nodeIn_b_bits_param), // @[MixedNode.scala:551:17] .io_in_b_bits_address (nodeIn_b_bits_address), // @[MixedNode.scala:551:17] .io_in_c_ready (nodeIn_c_ready), // @[MixedNode.scala:551:17] .io_in_c_valid (nodeIn_c_valid), // @[MixedNode.scala:551:17] .io_in_c_bits_opcode (nodeIn_c_bits_opcode), // @[MixedNode.scala:551:17] .io_in_c_bits_param (nodeIn_c_bits_param), // @[MixedNode.scala:551:17] .io_in_c_bits_size (nodeIn_c_bits_size), // @[MixedNode.scala:551:17] .io_in_c_bits_source (nodeIn_c_bits_source), // @[MixedNode.scala:551:17] .io_in_c_bits_address (nodeIn_c_bits_address), // @[MixedNode.scala:551:17] .io_in_c_bits_data (nodeIn_c_bits_data), // @[MixedNode.scala:551:17] .io_in_c_bits_corrupt (nodeIn_c_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17] .io_in_d_valid (nodeIn_d_valid), // @[MixedNode.scala:551:17] .io_in_d_bits_opcode (nodeIn_d_bits_opcode), // @[MixedNode.scala:551:17] .io_in_d_bits_param (nodeIn_d_bits_param), // @[MixedNode.scala:551:17] .io_in_d_bits_size (nodeIn_d_bits_size), // @[MixedNode.scala:551:17] .io_in_d_bits_source (nodeIn_d_bits_source), // @[MixedNode.scala:551:17] .io_in_d_bits_sink (nodeIn_d_bits_sink), // @[MixedNode.scala:551:17] .io_in_d_bits_denied (nodeIn_d_bits_denied), // @[MixedNode.scala:551:17] .io_in_d_bits_data (nodeIn_d_bits_data), // @[MixedNode.scala:551:17] .io_in_d_bits_corrupt (nodeIn_d_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_e_valid (nodeIn_e_valid), // @[MixedNode.scala:551:17] .io_in_e_bits_sink (nodeIn_e_bits_sink) // @[MixedNode.scala:551:17] ); // @[Nodes.scala:27:25] InclusiveCacheBankScheduler inclusive_cache_bank_sched ( // @[InclusiveCache.scala:137:29] .clock (clock), .reset (reset), .io_in_a_ready (nodeIn_a_ready), .io_in_a_valid (nodeIn_a_valid), // @[MixedNode.scala:551:17] .io_in_a_bits_opcode (nodeIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_in_a_bits_param (nodeIn_a_bits_param), // @[MixedNode.scala:551:17] .io_in_a_bits_size (nodeIn_a_bits_size), // @[MixedNode.scala:551:17] .io_in_a_bits_source (nodeIn_a_bits_source), // @[MixedNode.scala:551:17] .io_in_a_bits_address (nodeIn_a_bits_address), // @[MixedNode.scala:551:17] .io_in_a_bits_mask (nodeIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_in_a_bits_data (nodeIn_a_bits_data), // @[MixedNode.scala:551:17] .io_in_a_bits_corrupt (nodeIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_b_ready (nodeIn_b_ready), // @[MixedNode.scala:551:17] .io_in_b_valid (nodeIn_b_valid), .io_in_b_bits_param (nodeIn_b_bits_param), .io_in_b_bits_address (_inclusive_cache_bank_sched_io_in_b_bits_address), .io_in_c_ready (nodeIn_c_ready), .io_in_c_valid (nodeIn_c_valid), // @[MixedNode.scala:551:17] .io_in_c_bits_opcode (nodeIn_c_bits_opcode), // @[MixedNode.scala:551:17] .io_in_c_bits_param (nodeIn_c_bits_param), // @[MixedNode.scala:551:17] .io_in_c_bits_size (nodeIn_c_bits_size), // @[MixedNode.scala:551:17] .io_in_c_bits_source (nodeIn_c_bits_source), // @[MixedNode.scala:551:17] .io_in_c_bits_address (nodeIn_c_bits_address), // @[MixedNode.scala:551:17] .io_in_c_bits_data (nodeIn_c_bits_data), // @[MixedNode.scala:551:17] .io_in_c_bits_corrupt (nodeIn_c_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_d_ready (nodeIn_d_ready), // @[MixedNode.scala:551:17] .io_in_d_valid (nodeIn_d_valid), .io_in_d_bits_opcode (nodeIn_d_bits_opcode), .io_in_d_bits_param (nodeIn_d_bits_param), .io_in_d_bits_size (nodeIn_d_bits_size), .io_in_d_bits_source (nodeIn_d_bits_source), .io_in_d_bits_sink (nodeIn_d_bits_sink), .io_in_d_bits_denied (nodeIn_d_bits_denied), .io_in_d_bits_data (nodeIn_d_bits_data), .io_in_d_bits_corrupt (nodeIn_d_bits_corrupt), .io_in_e_valid (nodeIn_e_valid), // @[MixedNode.scala:551:17] .io_in_e_bits_sink (nodeIn_e_bits_sink), // @[MixedNode.scala:551:17] .io_out_a_ready (nodeOut_a_ready), // @[MixedNode.scala:542:17] .io_out_a_valid (nodeOut_a_valid), .io_out_a_bits_opcode (nodeOut_a_bits_opcode), .io_out_a_bits_param (nodeOut_a_bits_param), .io_out_a_bits_size (nodeOut_a_bits_size), .io_out_a_bits_source (nodeOut_a_bits_source), .io_out_a_bits_address (_inclusive_cache_bank_sched_io_out_a_bits_address), .io_out_a_bits_mask (nodeOut_a_bits_mask), .io_out_a_bits_data (nodeOut_a_bits_data), .io_out_a_bits_corrupt (nodeOut_a_bits_corrupt), .io_out_c_ready (nodeOut_c_ready), // @[MixedNode.scala:542:17] .io_out_c_valid (nodeOut_c_valid), .io_out_c_bits_opcode (nodeOut_c_bits_opcode), .io_out_c_bits_param (nodeOut_c_bits_param), .io_out_c_bits_size (nodeOut_c_bits_size), .io_out_c_bits_source (nodeOut_c_bits_source), .io_out_c_bits_address (_inclusive_cache_bank_sched_io_out_c_bits_address), .io_out_c_bits_data (nodeOut_c_bits_data), .io_out_c_bits_corrupt (nodeOut_c_bits_corrupt), .io_out_d_ready (nodeOut_d_ready), .io_out_d_valid (nodeOut_d_valid), // @[MixedNode.scala:542:17] .io_out_d_bits_opcode (nodeOut_d_bits_opcode), // @[MixedNode.scala:542:17] .io_out_d_bits_param (nodeOut_d_bits_param), // @[MixedNode.scala:542:17] .io_out_d_bits_size (nodeOut_d_bits_size), // @[MixedNode.scala:542:17] .io_out_d_bits_source (nodeOut_d_bits_source), // @[MixedNode.scala:542:17] .io_out_d_bits_sink (nodeOut_d_bits_sink), // @[MixedNode.scala:542:17] .io_out_d_bits_denied (nodeOut_d_bits_denied), // @[MixedNode.scala:542:17] .io_out_d_bits_data (nodeOut_d_bits_data), // @[MixedNode.scala:542:17] .io_out_d_bits_corrupt (nodeOut_d_bits_corrupt), // @[MixedNode.scala:542:17] .io_out_e_valid (nodeOut_e_valid), .io_out_e_bits_sink (nodeOut_e_bits_sink), .io_req_ready (_inclusive_cache_bank_sched_io_req_ready), .io_req_valid (_inclusive_cache_bank_sched_io_req_valid_T), // @[InclusiveCache.scala:172:41] .io_req_bits_address (_ctrls_io_flush_req_bits[31:0]), // @[Parameters.scala:137:31] .io_resp_valid (_inclusive_cache_bank_sched_io_resp_valid) ); // @[InclusiveCache.scala:137:29] assign _nodeOut_a_bits_address_mux_matches_T = _inclusive_cache_bank_sched_io_out_a_bits_address; // @[Parameters.scala:137:31] assign _nodeOut_a_bits_address_T = _inclusive_cache_bank_sched_io_out_a_bits_address; // @[Parameters.scala:248:14] assign _nodeIn_b_bits_address_mux_matches_T = _inclusive_cache_bank_sched_io_in_b_bits_address; // @[Parameters.scala:137:31] assign _nodeIn_b_bits_address_T = _inclusive_cache_bank_sched_io_in_b_bits_address; // @[Parameters.scala:248:14] assign _nodeOut_c_bits_address_mux_matches_T = _inclusive_cache_bank_sched_io_out_c_bits_address; // @[Parameters.scala:137:31] assign _nodeOut_c_bits_address_T = _inclusive_cache_bank_sched_io_out_c_bits_address; // @[Parameters.scala:248:14] assign auto_ctrls_ctrl_in_a_ready = auto_ctrls_ctrl_in_a_ready_0; // @[InclusiveCache.scala:108:9] assign auto_ctrls_ctrl_in_d_valid = auto_ctrls_ctrl_in_d_valid_0; // @[InclusiveCache.scala:108:9] assign auto_ctrls_ctrl_in_d_bits_opcode = auto_ctrls_ctrl_in_d_bits_opcode_0; // @[InclusiveCache.scala:108:9] assign auto_ctrls_ctrl_in_d_bits_size = auto_ctrls_ctrl_in_d_bits_size_0; // @[InclusiveCache.scala:108:9] assign auto_ctrls_ctrl_in_d_bits_source = auto_ctrls_ctrl_in_d_bits_source_0; // @[InclusiveCache.scala:108:9] assign auto_ctrls_ctrl_in_d_bits_data = auto_ctrls_ctrl_in_d_bits_data_0; // @[InclusiveCache.scala:108:9] assign auto_in_a_ready = auto_in_a_ready_0; // @[InclusiveCache.scala:108:9] assign auto_in_b_valid = auto_in_b_valid_0; // @[InclusiveCache.scala:108:9] assign auto_in_b_bits_param = auto_in_b_bits_param_0; // @[InclusiveCache.scala:108:9] assign auto_in_b_bits_address = auto_in_b_bits_address_0; // @[InclusiveCache.scala:108:9] assign auto_in_c_ready = auto_in_c_ready_0; // @[InclusiveCache.scala:108:9] assign auto_in_d_valid = auto_in_d_valid_0; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_opcode = auto_in_d_bits_opcode_0; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_param = auto_in_d_bits_param_0; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_size = auto_in_d_bits_size_0; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_source = auto_in_d_bits_source_0; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_sink = auto_in_d_bits_sink_0; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_denied = auto_in_d_bits_denied_0; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_data = auto_in_d_bits_data_0; // @[InclusiveCache.scala:108:9] assign auto_in_d_bits_corrupt = auto_in_d_bits_corrupt_0; // @[InclusiveCache.scala:108:9] assign auto_out_a_valid = auto_out_a_valid_0; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_opcode = auto_out_a_bits_opcode_0; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_param = auto_out_a_bits_param_0; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_size = auto_out_a_bits_size_0; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_source = auto_out_a_bits_source_0; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_address = auto_out_a_bits_address_0; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_mask = auto_out_a_bits_mask_0; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_data = auto_out_a_bits_data_0; // @[InclusiveCache.scala:108:9] assign auto_out_a_bits_corrupt = auto_out_a_bits_corrupt_0; // @[InclusiveCache.scala:108:9] assign auto_out_c_valid = auto_out_c_valid_0; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_opcode = auto_out_c_bits_opcode_0; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_param = auto_out_c_bits_param_0; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_size = auto_out_c_bits_size_0; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_source = auto_out_c_bits_source_0; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_address = auto_out_c_bits_address_0; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_data = auto_out_c_bits_data_0; // @[InclusiveCache.scala:108:9] assign auto_out_c_bits_corrupt = auto_out_c_bits_corrupt_0; // @[InclusiveCache.scala:108:9] assign auto_out_d_ready = auto_out_d_ready_0; // @[InclusiveCache.scala:108:9] assign auto_out_e_valid = auto_out_e_valid_0; // @[InclusiveCache.scala:108:9] assign auto_out_e_bits_sink = auto_out_e_bits_sink_0; // @[InclusiveCache.scala:108:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module PE_463( // @[PE.scala:31:7] input clock, // @[PE.scala:31:7] input reset, // @[PE.scala:31:7] input [7:0] io_in_a, // @[PE.scala:35:14] input [19:0] io_in_b, // @[PE.scala:35:14] input [19:0] io_in_d, // @[PE.scala:35:14] output [7:0] io_out_a, // @[PE.scala:35:14] output [19:0] io_out_b, // @[PE.scala:35:14] output [19:0] io_out_c, // @[PE.scala:35:14] input io_in_control_dataflow, // @[PE.scala:35:14] input io_in_control_propagate, // @[PE.scala:35:14] input [4:0] io_in_control_shift, // @[PE.scala:35:14] output io_out_control_dataflow, // @[PE.scala:35:14] output io_out_control_propagate, // @[PE.scala:35:14] output [4:0] io_out_control_shift, // @[PE.scala:35:14] input [2:0] io_in_id, // @[PE.scala:35:14] output [2:0] io_out_id, // @[PE.scala:35:14] input io_in_last, // @[PE.scala:35:14] output io_out_last, // @[PE.scala:35:14] input io_in_valid, // @[PE.scala:35:14] output io_out_valid, // @[PE.scala:35:14] output io_bad_dataflow // @[PE.scala:35:14] ); wire [19:0] _mac_unit_io_out_d; // @[PE.scala:64:24] wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:31:7] wire [19:0] io_in_b_0 = io_in_b; // @[PE.scala:31:7] wire [19:0] io_in_d_0 = io_in_d; // @[PE.scala:31:7] wire io_in_control_dataflow_0 = io_in_control_dataflow; // @[PE.scala:31:7] wire io_in_control_propagate_0 = io_in_control_propagate; // @[PE.scala:31:7] wire [4:0] io_in_control_shift_0 = io_in_control_shift; // @[PE.scala:31:7] wire [2:0] io_in_id_0 = io_in_id; // @[PE.scala:31:7] wire io_in_last_0 = io_in_last; // @[PE.scala:31:7] wire io_in_valid_0 = io_in_valid; // @[PE.scala:31:7] wire io_bad_dataflow_0 = 1'h0; // @[PE.scala:31:7] wire [7:0] io_out_a_0 = io_in_a_0; // @[PE.scala:31:7] wire [19:0] _mac_unit_io_in_b_T = io_in_b_0; // @[PE.scala:31:7, :106:37] wire [19:0] _mac_unit_io_in_b_T_2 = io_in_b_0; // @[PE.scala:31:7, :113:37] wire [19:0] _mac_unit_io_in_b_T_8 = io_in_b_0; // @[PE.scala:31:7, :137:35] wire [19:0] c1_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire [19:0] c2_lo_1 = io_in_d_0; // @[PE.scala:31:7] wire io_out_control_dataflow_0 = io_in_control_dataflow_0; // @[PE.scala:31:7] wire io_out_control_propagate_0 = io_in_control_propagate_0; // @[PE.scala:31:7] wire [4:0] io_out_control_shift_0 = io_in_control_shift_0; // @[PE.scala:31:7] wire [2:0] io_out_id_0 = io_in_id_0; // @[PE.scala:31:7] wire io_out_last_0 = io_in_last_0; // @[PE.scala:31:7] wire io_out_valid_0 = io_in_valid_0; // @[PE.scala:31:7] wire [19:0] io_out_b_0; // @[PE.scala:31:7] wire [19:0] io_out_c_0; // @[PE.scala:31:7] reg [31:0] c1; // @[PE.scala:70:15] wire [31:0] _io_out_c_zeros_T_1 = c1; // @[PE.scala:70:15] wire [31:0] _mac_unit_io_in_b_T_6 = c1; // @[PE.scala:70:15, :127:38] reg [31:0] c2; // @[PE.scala:71:15] wire [31:0] _io_out_c_zeros_T_10 = c2; // @[PE.scala:71:15] wire [31:0] _mac_unit_io_in_b_T_4 = c2; // @[PE.scala:71:15, :121:38] reg last_s; // @[PE.scala:89:25] wire flip = last_s != io_in_control_propagate_0; // @[PE.scala:31:7, :89:25, :90:21] wire [4:0] shift_offset = flip ? io_in_control_shift_0 : 5'h0; // @[PE.scala:31:7, :90:21, :91:25] wire _GEN = shift_offset == 5'h0; // @[PE.scala:91:25] wire _io_out_c_point_five_T; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T = _GEN; // @[Arithmetic.scala:101:32] wire _io_out_c_point_five_T_5; // @[Arithmetic.scala:101:32] assign _io_out_c_point_five_T_5 = _GEN; // @[Arithmetic.scala:101:32] wire [5:0] _GEN_0 = {1'h0, shift_offset} - 6'h1; // @[PE.scala:91:25] wire [5:0] _io_out_c_point_five_T_1; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_1 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_2; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_2 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [5:0] _io_out_c_point_five_T_6; // @[Arithmetic.scala:101:53] assign _io_out_c_point_five_T_6 = _GEN_0; // @[Arithmetic.scala:101:53] wire [5:0] _io_out_c_zeros_T_11; // @[Arithmetic.scala:102:66] assign _io_out_c_zeros_T_11 = _GEN_0; // @[Arithmetic.scala:101:53, :102:66] wire [4:0] _io_out_c_point_five_T_2 = _io_out_c_point_five_T_1[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_3 = $signed($signed(c1) >>> _io_out_c_point_five_T_2); // @[PE.scala:70:15] wire _io_out_c_point_five_T_4 = _io_out_c_point_five_T_3[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five = ~_io_out_c_point_five_T & _io_out_c_point_five_T_4; // @[Arithmetic.scala:101:{29,32,50}] wire _GEN_1 = shift_offset < 5'h2; // @[PE.scala:91:25] wire _io_out_c_zeros_T; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T = _GEN_1; // @[Arithmetic.scala:102:27] wire _io_out_c_zeros_T_9; // @[Arithmetic.scala:102:27] assign _io_out_c_zeros_T_9 = _GEN_1; // @[Arithmetic.scala:102:27] wire [4:0] _io_out_c_zeros_T_3 = _io_out_c_zeros_T_2[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_4 = 32'h1 << _io_out_c_zeros_T_3; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_5 = {1'h0, _io_out_c_zeros_T_4} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_6 = _io_out_c_zeros_T_5[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_7 = _io_out_c_zeros_T_1 & _io_out_c_zeros_T_6; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_8 = _io_out_c_zeros_T ? 32'h0 : _io_out_c_zeros_T_7; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros = |_io_out_c_zeros_T_8; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_2 = {27'h0, shift_offset}; // @[PE.scala:91:25] wire [31:0] _GEN_3 = $signed($signed(c1) >>> _GEN_2); // @[PE.scala:70:15] wire [31:0] _io_out_c_ones_digit_T; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T = _GEN_3; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T; // @[Arithmetic.scala:107:15] assign _io_out_c_T = _GEN_3; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit = _io_out_c_ones_digit_T[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T = io_out_c_zeros | io_out_c_ones_digit; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_1 = io_out_c_point_five & _io_out_c_r_T; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r = _io_out_c_r_T_1; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_1 = {1'h0, io_out_c_r}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_2 = {_io_out_c_T[31], _io_out_c_T} + {{31{_io_out_c_T_1[1]}}, _io_out_c_T_1}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_3 = _io_out_c_T_2[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_4 = _io_out_c_T_3; // @[Arithmetic.scala:107:28] wire _io_out_c_T_5 = $signed(_io_out_c_T_4) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_6 = $signed(_io_out_c_T_4) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_7 = _io_out_c_T_6 ? 32'hFFF80000 : _io_out_c_T_4; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_8 = _io_out_c_T_5 ? 32'h7FFFF : _io_out_c_T_7; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_9 = _io_out_c_T_8[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_10 = _io_out_c_T_9; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_1 = _mac_unit_io_in_b_T; // @[PE.scala:106:37] wire [7:0] _mac_unit_io_in_b_WIRE = _mac_unit_io_in_b_T_1[7:0]; // @[PE.scala:106:37] wire c1_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire c2_sign = io_in_d_0[19]; // @[PE.scala:31:7] wire [1:0] _GEN_4 = {2{c1_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c1_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c1_lo_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c1_lo_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c1_hi_lo_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [1:0] c1_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c1_hi_hi_hi = _GEN_4; // @[Arithmetic.scala:118:18] wire [2:0] c1_lo_lo = {c1_lo_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_lo_hi = {c1_lo_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_lo = {c1_lo_hi, c1_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c1_hi_lo = {c1_hi_lo_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c1_hi_hi = {c1_hi_hi_hi, c1_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c1_hi = {c1_hi_hi, c1_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c1_T = {c1_hi, c1_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c1_T_1 = {_c1_T, c1_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c1_T_2 = _c1_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c1_WIRE = _c1_T_2; // @[Arithmetic.scala:118:61] wire [4:0] _io_out_c_point_five_T_7 = _io_out_c_point_five_T_6[4:0]; // @[Arithmetic.scala:101:53] wire [31:0] _io_out_c_point_five_T_8 = $signed($signed(c2) >>> _io_out_c_point_five_T_7); // @[PE.scala:71:15] wire _io_out_c_point_five_T_9 = _io_out_c_point_five_T_8[0]; // @[Arithmetic.scala:101:50] wire io_out_c_point_five_1 = ~_io_out_c_point_five_T_5 & _io_out_c_point_five_T_9; // @[Arithmetic.scala:101:{29,32,50}] wire [4:0] _io_out_c_zeros_T_12 = _io_out_c_zeros_T_11[4:0]; // @[Arithmetic.scala:102:66] wire [31:0] _io_out_c_zeros_T_13 = 32'h1 << _io_out_c_zeros_T_12; // @[Arithmetic.scala:102:{60,66}] wire [32:0] _io_out_c_zeros_T_14 = {1'h0, _io_out_c_zeros_T_13} - 33'h1; // @[Arithmetic.scala:102:{60,81}] wire [31:0] _io_out_c_zeros_T_15 = _io_out_c_zeros_T_14[31:0]; // @[Arithmetic.scala:102:81] wire [31:0] _io_out_c_zeros_T_16 = _io_out_c_zeros_T_10 & _io_out_c_zeros_T_15; // @[Arithmetic.scala:102:{45,52,81}] wire [31:0] _io_out_c_zeros_T_17 = _io_out_c_zeros_T_9 ? 32'h0 : _io_out_c_zeros_T_16; // @[Arithmetic.scala:102:{24,27,52}] wire io_out_c_zeros_1 = |_io_out_c_zeros_T_17; // @[Arithmetic.scala:102:{24,89}] wire [31:0] _GEN_5 = $signed($signed(c2) >>> _GEN_2); // @[PE.scala:71:15] wire [31:0] _io_out_c_ones_digit_T_1; // @[Arithmetic.scala:103:30] assign _io_out_c_ones_digit_T_1 = _GEN_5; // @[Arithmetic.scala:103:30] wire [31:0] _io_out_c_T_11; // @[Arithmetic.scala:107:15] assign _io_out_c_T_11 = _GEN_5; // @[Arithmetic.scala:103:30, :107:15] wire io_out_c_ones_digit_1 = _io_out_c_ones_digit_T_1[0]; // @[Arithmetic.scala:103:30] wire _io_out_c_r_T_2 = io_out_c_zeros_1 | io_out_c_ones_digit_1; // @[Arithmetic.scala:102:89, :103:30, :105:38] wire _io_out_c_r_T_3 = io_out_c_point_five_1 & _io_out_c_r_T_2; // @[Arithmetic.scala:101:29, :105:{29,38}] wire io_out_c_r_1 = _io_out_c_r_T_3; // @[Arithmetic.scala:105:{29,53}] wire [1:0] _io_out_c_T_12 = {1'h0, io_out_c_r_1}; // @[Arithmetic.scala:105:53, :107:33] wire [32:0] _io_out_c_T_13 = {_io_out_c_T_11[31], _io_out_c_T_11} + {{31{_io_out_c_T_12[1]}}, _io_out_c_T_12}; // @[Arithmetic.scala:107:{15,28,33}] wire [31:0] _io_out_c_T_14 = _io_out_c_T_13[31:0]; // @[Arithmetic.scala:107:28] wire [31:0] _io_out_c_T_15 = _io_out_c_T_14; // @[Arithmetic.scala:107:28] wire _io_out_c_T_16 = $signed(_io_out_c_T_15) > 32'sh7FFFF; // @[Arithmetic.scala:107:28, :125:33] wire _io_out_c_T_17 = $signed(_io_out_c_T_15) < -32'sh80000; // @[Arithmetic.scala:107:28, :125:60] wire [31:0] _io_out_c_T_18 = _io_out_c_T_17 ? 32'hFFF80000 : _io_out_c_T_15; // @[Mux.scala:126:16] wire [31:0] _io_out_c_T_19 = _io_out_c_T_16 ? 32'h7FFFF : _io_out_c_T_18; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_20 = _io_out_c_T_19[19:0]; // @[Mux.scala:126:16] wire [19:0] _io_out_c_T_21 = _io_out_c_T_20; // @[Arithmetic.scala:125:{81,99}] wire [19:0] _mac_unit_io_in_b_T_3 = _mac_unit_io_in_b_T_2; // @[PE.scala:113:37] wire [7:0] _mac_unit_io_in_b_WIRE_1 = _mac_unit_io_in_b_T_3[7:0]; // @[PE.scala:113:37] wire [1:0] _GEN_6 = {2{c2_sign}}; // @[Arithmetic.scala:117:26, :118:18] wire [1:0] c2_lo_lo_hi; // @[Arithmetic.scala:118:18] assign c2_lo_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_lo_hi_hi; // @[Arithmetic.scala:118:18] assign c2_lo_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_lo_hi; // @[Arithmetic.scala:118:18] assign c2_hi_lo_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [1:0] c2_hi_hi_hi; // @[Arithmetic.scala:118:18] assign c2_hi_hi_hi = _GEN_6; // @[Arithmetic.scala:118:18] wire [2:0] c2_lo_lo = {c2_lo_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_lo_hi = {c2_lo_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_lo = {c2_lo_hi, c2_lo_lo}; // @[Arithmetic.scala:118:18] wire [2:0] c2_hi_lo = {c2_hi_lo_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [2:0] c2_hi_hi = {c2_hi_hi_hi, c2_sign}; // @[Arithmetic.scala:117:26, :118:18] wire [5:0] c2_hi = {c2_hi_hi, c2_hi_lo}; // @[Arithmetic.scala:118:18] wire [11:0] _c2_T = {c2_hi, c2_lo}; // @[Arithmetic.scala:118:18] wire [31:0] _c2_T_1 = {_c2_T, c2_lo_1}; // @[Arithmetic.scala:118:{14,18}] wire [31:0] _c2_T_2 = _c2_T_1; // @[Arithmetic.scala:118:{14,61}] wire [31:0] _c2_WIRE = _c2_T_2; // @[Arithmetic.scala:118:61] wire [31:0] _mac_unit_io_in_b_T_5 = _mac_unit_io_in_b_T_4; // @[PE.scala:121:38] wire [7:0] _mac_unit_io_in_b_WIRE_2 = _mac_unit_io_in_b_T_5[7:0]; // @[PE.scala:121:38] wire [31:0] _mac_unit_io_in_b_T_7 = _mac_unit_io_in_b_T_6; // @[PE.scala:127:38] wire [7:0] _mac_unit_io_in_b_WIRE_3 = _mac_unit_io_in_b_T_7[7:0]; // @[PE.scala:127:38] assign io_out_c_0 = io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? c1[19:0] : c2[19:0]) : io_in_control_propagate_0 ? _io_out_c_T_10 : _io_out_c_T_21; // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :104:16, :111:16, :118:101, :119:30, :120:16, :126:16] assign io_out_b_0 = io_in_control_dataflow_0 ? _mac_unit_io_out_d : io_in_b_0; // @[PE.scala:31:7, :64:24, :102:95, :103:30, :118:101] wire [19:0] _mac_unit_io_in_b_T_9 = _mac_unit_io_in_b_T_8; // @[PE.scala:137:35] wire [7:0] _mac_unit_io_in_b_WIRE_4 = _mac_unit_io_in_b_T_9[7:0]; // @[PE.scala:137:35] wire [31:0] _GEN_7 = {{12{io_in_d_0[19]}}, io_in_d_0}; // @[PE.scala:31:7, :124:10] wire [31:0] _GEN_8 = {{12{_mac_unit_io_out_d[19]}}, _mac_unit_io_out_d}; // @[PE.scala:64:24, :108:10] always @(posedge clock) begin // @[PE.scala:31:7] if (io_in_valid_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0) begin // @[PE.scala:31:7] if (io_in_control_dataflow_0 & io_in_control_propagate_0) // @[PE.scala:31:7, :70:15, :118:101, :119:30, :124:10] c1 <= _GEN_7; // @[PE.scala:70:15, :124:10] if (~io_in_control_dataflow_0 | io_in_control_propagate_0) begin // @[PE.scala:31:7, :71:15, :118:101, :119:30] end else // @[PE.scala:71:15, :118:101, :119:30] c2 <= _GEN_7; // @[PE.scala:71:15, :124:10] end else begin // @[PE.scala:31:7] c1 <= io_in_control_propagate_0 ? _c1_WIRE : _GEN_8; // @[PE.scala:31:7, :70:15, :103:30, :108:10, :109:10, :115:10] c2 <= io_in_control_propagate_0 ? _GEN_8 : _c2_WIRE; // @[PE.scala:31:7, :71:15, :103:30, :108:10, :116:10] end last_s <= io_in_control_propagate_0; // @[PE.scala:31:7, :89:25] end always @(posedge) MacUnit_207 mac_unit ( // @[PE.scala:64:24] .clock (clock), .reset (reset), .io_in_a (io_in_a_0), // @[PE.scala:31:7] .io_in_b (io_in_control_dataflow_0 ? (io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE_2 : _mac_unit_io_in_b_WIRE_3) : io_in_control_propagate_0 ? _mac_unit_io_in_b_WIRE : _mac_unit_io_in_b_WIRE_1), // @[PE.scala:31:7, :102:95, :103:30, :106:{24,37}, :113:{24,37}, :118:101, :119:30, :121:{24,38}, :127:{24,38}] .io_in_c (io_in_control_dataflow_0 ? {{12{io_in_b_0[19]}}, io_in_b_0} : io_in_control_propagate_0 ? c2 : c1), // @[PE.scala:31:7, :70:15, :71:15, :102:95, :103:30, :107:24, :114:24, :118:101, :122:24] .io_out_d (_mac_unit_io_out_d) ); // @[PE.scala:64:24] assign io_out_a = io_out_a_0; // @[PE.scala:31:7] assign io_out_b = io_out_b_0; // @[PE.scala:31:7] assign io_out_c = io_out_c_0; // @[PE.scala:31:7] assign io_out_control_dataflow = io_out_control_dataflow_0; // @[PE.scala:31:7] assign io_out_control_propagate = io_out_control_propagate_0; // @[PE.scala:31:7] assign io_out_control_shift = io_out_control_shift_0; // @[PE.scala:31:7] assign io_out_id = io_out_id_0; // @[PE.scala:31:7] assign io_out_last = io_out_last_0; // @[PE.scala:31:7] assign io_out_valid = io_out_valid_0; // @[PE.scala:31:7] assign io_bad_dataflow = io_bad_dataflow_0; // @[PE.scala:31:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File AsyncQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ case class AsyncQueueParams( depth: Int = 8, sync: Int = 3, safe: Boolean = true, // If safe is true, then effort is made to resynchronize the crossing indices when either side is reset. // This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty. narrow: Boolean = false) // If narrow is true then the read mux is moved to the source side of the crossing. // This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing, // at the expense of a combinational path from the sink to the source and back to the sink. { require (depth > 0 && isPow2(depth)) require (sync >= 2) val bits = log2Ceil(depth) val wires = if (narrow) 1 else depth } object AsyncQueueParams { // When there is only one entry, we don't need narrow. def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false) } class AsyncBundleSafety extends Bundle { val ridx_valid = Input (Bool()) val widx_valid = Output(Bool()) val source_reset_n = Output(Bool()) val sink_reset_n = Input (Bool()) } class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle { // Data-path synchronization val mem = Output(Vec(params.wires, gen)) val ridx = Input (UInt((params.bits+1).W)) val widx = Output(UInt((params.bits+1).W)) val index = params.narrow.option(Input(UInt(params.bits.W))) // Signals used to self-stabilize a safe AsyncQueue val safe = params.safe.option(new AsyncBundleSafety) } object GrayCounter { def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = { val incremented = Wire(UInt(bits.W)) val binary = RegNext(next=incremented, init=0.U).suggestName(name) incremented := Mux(clear, 0.U, binary + increment.asUInt) incremented ^ (incremented >> 1) } } class AsyncValidSync(sync: Int, desc: String) extends RawModule { val io = IO(new Bundle { val in = Input(Bool()) val out = Output(Bool()) }) val clock = IO(Input(Clock())) val reset = IO(Input(AsyncReset())) withClockAndReset(clock, reset){ io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc)) } } class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSource_${gen.typeName}" val io = IO(new Bundle { // These come from the source domain val enq = Flipped(Decoupled(gen)) // These cross to the sink clock domain val async = new AsyncBundle(gen, params) }) val bits = params.bits val sink_ready = WireInit(true.B) val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all. val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin")) val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray")) val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U) val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1)) when (io.enq.fire) { mem(index) := io.enq.bits } val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg")) io.enq.ready := ready_reg && sink_ready val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray")) io.async.widx := widx_reg io.async.index match { case Some(index) => io.async.mem(0) := mem(index) case None => io.async.mem := mem } io.async.safe.foreach { sio => val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0")) val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1")) val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend")) val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid")) source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_valid .reset := reset.asAsyncReset source_valid_0.clock := clock source_valid_1.clock := clock sink_extend .clock := clock sink_valid .clock := clock source_valid_0.io.in := true.B source_valid_1.io.in := source_valid_0.io.out sio.widx_valid := source_valid_1.io.out sink_extend.io.in := sio.ridx_valid sink_valid.io.in := sink_extend.io.out sink_ready := sink_valid.io.out sio.source_reset_n := !reset.asBool // Assert that if there is stuff in the queue, then reset cannot happen // Impossible to write because dequeue can occur on the receiving side, // then reset allowed to happen, but write side cannot know that dequeue // occurred. // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected") // assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty") } } class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSink_${gen.typeName}" val io = IO(new Bundle { // These come from the sink domain val deq = Decoupled(gen) // These cross to the source clock domain val async = Flipped(new AsyncBundle(gen, params)) }) val bits = params.bits val source_ready = WireInit(true.B) val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin")) val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray")) val valid = source_ready && ridx =/= widx // The mux is safe because timing analysis ensures ridx has reached the register // On an ASIC, changes to the unread location cannot affect the selected value // On an FPGA, only one input changes at a time => mem updates don't cause glitches // The register only latches when the selected valued is not being written val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1)) io.async.index.foreach { _ := index } // This register does not NEED to be reset, as its contents will not // be considered unless the asynchronously reset deq valid register is set. // It is possible that bits latches when the source domain is reset / has power cut // This is safe, because isolation gates brought mem low before the zeroed widx reached us val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index) io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg")) val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg")) io.deq.valid := valid_reg && source_ready val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray")) io.async.ridx := ridx_reg io.async.safe.foreach { sio => val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0")) val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1")) val source_extend = Module(new AsyncValidSync(params.sync, "source_extend")) val source_valid = Module(new AsyncValidSync(params.sync, "source_valid")) sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_valid .reset := reset.asAsyncReset sink_valid_0 .clock := clock sink_valid_1 .clock := clock source_extend.clock := clock source_valid .clock := clock sink_valid_0.io.in := true.B sink_valid_1.io.in := sink_valid_0.io.out sio.ridx_valid := sink_valid_1.io.out source_extend.io.in := sio.widx_valid source_valid.io.in := source_extend.io.out source_ready := source_valid.io.out sio.sink_reset_n := !reset.asBool // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // // val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool // val reset_and_extend_prev = RegNext(reset_and_extend, true.B) // val reset_rise = !reset_and_extend_prev && reset_and_extend // val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0) // assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty") } } object FromAsyncBundle { // Sometimes it makes sense for the sink to have different sync than the source def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync) def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = { val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync))) sink.io.async <> x sink.io.deq } } object ToAsyncBundle { def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = { val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params)) source.io.enq <> x source.io.async } } class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] { val io = IO(new CrossingIO(gen)) val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) } val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) } source.io.enq <> io.enq io.deq <> sink.io.deq sink.io.async <> source.io.async }
module AsyncValidSync_206( // @[AsyncQueue.scala:58:7] input io_in, // @[AsyncQueue.scala:59:14] output io_out, // @[AsyncQueue.scala:59:14] input clock, // @[AsyncQueue.scala:63:17] input reset // @[AsyncQueue.scala:64:17] ); wire io_in_0 = io_in; // @[AsyncQueue.scala:58:7] wire _io_out_WIRE; // @[ShiftReg.scala:48:24] wire io_out_0; // @[AsyncQueue.scala:58:7] assign io_out_0 = _io_out_WIRE; // @[ShiftReg.scala:48:24] AsyncResetSynchronizerShiftReg_w1_d3_i0_223 io_out_source_extend ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (reset), .io_d (io_in_0), // @[AsyncQueue.scala:58:7] .io_q (_io_out_WIRE) ); // @[ShiftReg.scala:45:23] assign io_out = io_out_0; // @[AsyncQueue.scala:58:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File RegisterRouter.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{AddressSet, TransferSizes} import freechips.rocketchip.resources.{Device, Resource, ResourceBindings} import freechips.rocketchip.prci.{NoCrossing} import freechips.rocketchip.regmapper.{RegField, RegMapper, RegMapperParams, RegMapperInput, RegisterRouter} import freechips.rocketchip.util.{BundleField, ControlKey, ElaborationArtefacts, GenRegDescsAnno} import scala.math.min class TLRegisterRouterExtraBundle(val sourceBits: Int, val sizeBits: Int) extends Bundle { val source = UInt((sourceBits max 1).W) val size = UInt((sizeBits max 1).W) } case object TLRegisterRouterExtra extends ControlKey[TLRegisterRouterExtraBundle]("tlrr_extra") case class TLRegisterRouterExtraField(sourceBits: Int, sizeBits: Int) extends BundleField[TLRegisterRouterExtraBundle](TLRegisterRouterExtra, Output(new TLRegisterRouterExtraBundle(sourceBits, sizeBits)), x => { x.size := 0.U x.source := 0.U }) /** TLRegisterNode is a specialized TL SinkNode that encapsulates MMIO registers. * It provides functionality for describing and outputting metdata about the registers in several formats. * It also provides a concrete implementation of a regmap function that will be used * to wire a map of internal registers associated with this node to the node's interconnect port. */ case class TLRegisterNode( address: Seq[AddressSet], device: Device, deviceKey: String = "reg/control", concurrency: Int = 0, beatBytes: Int = 4, undefZero: Boolean = true, executable: Boolean = false)( implicit valName: ValName) extends SinkNode(TLImp)(Seq(TLSlavePortParameters.v1( Seq(TLSlaveParameters.v1( address = address, resources = Seq(Resource(device, deviceKey)), executable = executable, supportsGet = TransferSizes(1, beatBytes), supportsPutPartial = TransferSizes(1, beatBytes), supportsPutFull = TransferSizes(1, beatBytes), fifoId = Some(0))), // requests are handled in order beatBytes = beatBytes, minLatency = min(concurrency, 1)))) with TLFormatNode // the Queue adds at most one cycle { val size = 1 << log2Ceil(1 + address.map(_.max).max - address.map(_.base).min) require (size >= beatBytes) address.foreach { case a => require (a.widen(size-1).base == address.head.widen(size-1).base, s"TLRegisterNode addresses (${address}) must be aligned to its size ${size}") } // Calling this method causes the matching TL2 bundle to be // configured to route all requests to the listed RegFields. def regmap(mapping: RegField.Map*) = { val (bundleIn, edge) = this.in(0) val a = bundleIn.a val d = bundleIn.d val fields = TLRegisterRouterExtraField(edge.bundle.sourceBits, edge.bundle.sizeBits) +: a.bits.params.echoFields val params = RegMapperParams(log2Up(size/beatBytes), beatBytes, fields) val in = Wire(Decoupled(new RegMapperInput(params))) in.bits.read := a.bits.opcode === TLMessages.Get in.bits.index := edge.addr_hi(a.bits) in.bits.data := a.bits.data in.bits.mask := a.bits.mask Connectable.waiveUnmatched(in.bits.extra, a.bits.echo) match { case (lhs, rhs) => lhs :<= rhs } val a_extra = in.bits.extra(TLRegisterRouterExtra) a_extra.source := a.bits.source a_extra.size := a.bits.size // Invoke the register map builder val out = RegMapper(beatBytes, concurrency, undefZero, in, mapping:_*) // No flow control needed in.valid := a.valid a.ready := in.ready d.valid := out.valid out.ready := d.ready // We must restore the size to enable width adapters to work val d_extra = out.bits.extra(TLRegisterRouterExtra) d.bits := edge.AccessAck(toSource = d_extra.source, lgSize = d_extra.size) // avoid a Mux on the data bus by manually overriding two fields d.bits.data := out.bits.data Connectable.waiveUnmatched(d.bits.echo, out.bits.extra) match { case (lhs, rhs) => lhs :<= rhs } d.bits.opcode := Mux(out.bits.read, TLMessages.AccessAckData, TLMessages.AccessAck) // Tie off unused channels bundleIn.b.valid := false.B bundleIn.c.ready := true.B bundleIn.e.ready := true.B genRegDescsJson(mapping:_*) } def genRegDescsJson(mapping: RegField.Map*): Unit = { // Dump out the register map for documentation purposes. val base = address.head.base val baseHex = s"0x${base.toInt.toHexString}" val name = s"${device.describe(ResourceBindings()).name}.At${baseHex}" val json = GenRegDescsAnno.serialize(base, name, mapping:_*) var suffix = 0 while( ElaborationArtefacts.contains(s"${baseHex}.${suffix}.regmap.json")) { suffix = suffix + 1 } ElaborationArtefacts.add(s"${baseHex}.${suffix}.regmap.json", json) val module = Module.currentModule.get.asInstanceOf[RawModule] GenRegDescsAnno.anno( module, base, mapping:_*) } } /** Mix HasTLControlRegMap into any subclass of RegisterRouter to gain helper functions for attaching a device control register map to TileLink. * - The intended use case is that controlNode will diplomatically publish a SW-visible device's memory-mapped control registers. * - Use the clock crossing helper controlXing to externally connect controlNode to a TileLink interconnect. * - Use the mapping helper function regmap to internally fill out the space of device control registers. */ trait HasTLControlRegMap { this: RegisterRouter => protected val controlNode = TLRegisterNode( address = address, device = device, deviceKey = "reg/control", concurrency = concurrency, beatBytes = beatBytes, undefZero = undefZero, executable = executable) // Externally, this helper should be used to connect the register control port to a bus val controlXing: TLInwardClockCrossingHelper = this.crossIn(controlNode) // Backwards-compatibility default node accessor with no clock crossing lazy val node: TLInwardNode = controlXing(NoCrossing) // Internally, this function should be used to populate the control port with registers protected def regmap(mapping: RegField.Map*): Unit = { controlNode.regmap(mapping:_*) } } File MuxLiteral.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.log2Ceil import scala.reflect.ClassTag /* MuxLiteral creates a lookup table from a key to a list of values. * Unlike MuxLookup, the table keys must be exclusive literals. */ object MuxLiteral { def apply[T <: Data:ClassTag](index: UInt, default: T, first: (UInt, T), rest: (UInt, T)*): T = apply(index, default, first :: rest.toList) def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(UInt, T)]): T = MuxTable(index, default, cases.map { case (k, v) => (k.litValue, v) }) } object MuxSeq { def apply[T <: Data:ClassTag](index: UInt, default: T, first: T, rest: T*): T = apply(index, default, first :: rest.toList) def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[T]): T = MuxTable(index, default, cases.zipWithIndex.map { case (v, i) => (BigInt(i), v) }) } object MuxTable { def apply[T <: Data:ClassTag](index: UInt, default: T, first: (BigInt, T), rest: (BigInt, T)*): T = apply(index, default, first :: rest.toList) def apply[T <: Data:ClassTag](index: UInt, default: T, cases: Seq[(BigInt, T)]): T = { /* All keys must be >= 0 and distinct */ cases.foreach { case (k, _) => require (k >= 0) } require (cases.map(_._1).distinct.size == cases.size) /* Filter out any cases identical to the default */ val simple = cases.filter { case (k, v) => !default.isLit || !v.isLit || v.litValue != default.litValue } val maxKey = (BigInt(0) +: simple.map(_._1)).max val endIndex = BigInt(1) << log2Ceil(maxKey+1) if (simple.isEmpty) { default } else if (endIndex <= 2*simple.size) { /* The dense encoding case uses a Vec */ val table = Array.fill(endIndex.toInt) { default } simple.foreach { case (k, v) => table(k.toInt) = v } Mux(index >= endIndex.U, default, VecInit(table)(index)) } else { /* The sparse encoding case uses switch */ val out = WireDefault(default) simple.foldLeft(new chisel3.util.SwitchContext(index, None, Set.empty)) { case (acc, (k, v)) => acc.is (k.U) { out := v } } out } } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } } File Plic.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.devices.tilelink import chisel3._ import chisel3.experimental._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.{AddressSet} import freechips.rocketchip.resources.{Description, Resource, ResourceBinding, ResourceBindings, ResourceInt, SimpleDevice} import freechips.rocketchip.interrupts.{IntNexusNode, IntSinkParameters, IntSinkPortParameters, IntSourceParameters, IntSourcePortParameters} import freechips.rocketchip.regmapper.{RegField, RegFieldDesc, RegFieldRdAction, RegFieldWrType, RegReadFn, RegWriteFn} import freechips.rocketchip.subsystem.{BaseSubsystem, CBUS, TLBusWrapperLocation} import freechips.rocketchip.tilelink.{TLFragmenter, TLRegisterNode} import freechips.rocketchip.util.{Annotated, MuxT, property} import scala.math.min import freechips.rocketchip.util.UIntToAugmentedUInt import freechips.rocketchip.util.SeqToAugmentedSeq class GatewayPLICIO extends Bundle { val valid = Output(Bool()) val ready = Input(Bool()) val complete = Input(Bool()) } class LevelGateway extends Module { val io = IO(new Bundle { val interrupt = Input(Bool()) val plic = new GatewayPLICIO }) val inFlight = RegInit(false.B) when (io.interrupt && io.plic.ready) { inFlight := true.B } when (io.plic.complete) { inFlight := false.B } io.plic.valid := io.interrupt && !inFlight } object PLICConsts { def maxDevices = 1023 def maxMaxHarts = 15872 def priorityBase = 0x0 def pendingBase = 0x1000 def enableBase = 0x2000 def hartBase = 0x200000 def claimOffset = 4 def priorityBytes = 4 def enableOffset(i: Int) = i * ((maxDevices+7)/8) def hartOffset(i: Int) = i * 0x1000 def enableBase(i: Int):Int = enableOffset(i) + enableBase def hartBase(i: Int):Int = hartOffset(i) + hartBase def size(maxHarts: Int): Int = { require(maxHarts > 0 && maxHarts <= maxMaxHarts, s"Must be: maxHarts=$maxHarts > 0 && maxHarts <= PLICConsts.maxMaxHarts=${PLICConsts.maxMaxHarts}") 1 << log2Ceil(hartBase(maxHarts)) } require(hartBase >= enableBase(maxMaxHarts)) } case class PLICParams(baseAddress: BigInt = 0xC000000, maxPriorities: Int = 7, intStages: Int = 0, maxHarts: Int = PLICConsts.maxMaxHarts) { require (maxPriorities >= 0) def address = AddressSet(baseAddress, PLICConsts.size(maxHarts)-1) } case object PLICKey extends Field[Option[PLICParams]](None) case class PLICAttachParams( slaveWhere: TLBusWrapperLocation = CBUS ) case object PLICAttachKey extends Field(PLICAttachParams()) /** Platform-Level Interrupt Controller */ class TLPLIC(params: PLICParams, beatBytes: Int)(implicit p: Parameters) extends LazyModule { // plic0 => max devices 1023 val device: SimpleDevice = new SimpleDevice("interrupt-controller", Seq("riscv,plic0")) { override val alwaysExtended = true override def describe(resources: ResourceBindings): Description = { val Description(name, mapping) = super.describe(resources) val extra = Map( "interrupt-controller" -> Nil, "riscv,ndev" -> Seq(ResourceInt(nDevices)), "riscv,max-priority" -> Seq(ResourceInt(nPriorities)), "#interrupt-cells" -> Seq(ResourceInt(1))) Description(name, mapping ++ extra) } } val node : TLRegisterNode = TLRegisterNode( address = Seq(params.address), device = device, beatBytes = beatBytes, undefZero = true, concurrency = 1) // limiting concurrency handles RAW hazards on claim registers val intnode: IntNexusNode = IntNexusNode( sourceFn = { _ => IntSourcePortParameters(Seq(IntSourceParameters(1, Seq(Resource(device, "int"))))) }, sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) }, outputRequiresInput = false, inputRequiresOutput = false) /* Negotiated sizes */ def nDevices: Int = intnode.edges.in.map(_.source.num).sum def minPriorities = min(params.maxPriorities, nDevices) def nPriorities = (1 << log2Ceil(minPriorities+1)) - 1 // round up to next 2^n-1 def nHarts = intnode.edges.out.map(_.source.num).sum // Assign all the devices unique ranges lazy val sources = intnode.edges.in.map(_.source) lazy val flatSources = (sources zip sources.map(_.num).scanLeft(0)(_+_).init).map { case (s, o) => s.sources.map(z => z.copy(range = z.range.offset(o))) }.flatten ResourceBinding { flatSources.foreach { s => s.resources.foreach { r => // +1 because interrupt 0 is reserved (s.range.start until s.range.end).foreach { i => r.bind(device, ResourceInt(i+1)) } } } } lazy val module = new Impl class Impl extends LazyModuleImp(this) { Annotated.params(this, params) val (io_devices, edgesIn) = intnode.in.unzip val (io_harts, _) = intnode.out.unzip // Compact the interrupt vector the same way val interrupts = intnode.in.map { case (i, e) => i.take(e.source.num) }.flatten // This flattens the harts into an MSMSMSMSMS... or MMMMM.... sequence val harts = io_harts.flatten def getNInterrupts = interrupts.size println(s"Interrupt map (${nHarts} harts ${nDevices} interrupts):") flatSources.foreach { s => // +1 because 0 is reserved, +1-1 because the range is half-open println(s" [${s.range.start+1}, ${s.range.end}] => ${s.name}") } println("") require (nDevices == interrupts.size, s"Must be: nDevices=$nDevices == interrupts.size=${interrupts.size}") require (nHarts == harts.size, s"Must be: nHarts=$nHarts == harts.size=${harts.size}") require(nDevices <= PLICConsts.maxDevices, s"Must be: nDevices=$nDevices <= PLICConsts.maxDevices=${PLICConsts.maxDevices}") require(nHarts > 0 && nHarts <= params.maxHarts, s"Must be: nHarts=$nHarts > 0 && nHarts <= PLICParams.maxHarts=${params.maxHarts}") // For now, use LevelGateways for all TL2 interrupts val gateways = interrupts.map { case i => val gateway = Module(new LevelGateway) gateway.io.interrupt := i gateway.io.plic } val prioBits = log2Ceil(nPriorities+1) val priority = if (nPriorities > 0) Reg(Vec(nDevices, UInt(prioBits.W))) else WireDefault(VecInit.fill(nDevices max 1)(1.U)) val threshold = if (nPriorities > 0) Reg(Vec(nHarts, UInt(prioBits.W))) else WireDefault(VecInit.fill(nHarts)(0.U)) val pending = RegInit(VecInit.fill(nDevices max 1){false.B}) /* Construct the enable registers, chunked into 8-bit segments to reduce verilog size */ val firstEnable = nDevices min 7 val fullEnables = (nDevices - firstEnable) / 8 val tailEnable = nDevices - firstEnable - 8*fullEnables def enableRegs = (Reg(UInt(firstEnable.W)) +: Seq.fill(fullEnables) { Reg(UInt(8.W)) }) ++ (if (tailEnable > 0) Some(Reg(UInt(tailEnable.W))) else None) val enables = Seq.fill(nHarts) { enableRegs } val enableVec = VecInit(enables.map(x => Cat(x.reverse))) val enableVec0 = VecInit(enableVec.map(x => Cat(x, 0.U(1.W)))) val maxDevs = Reg(Vec(nHarts, UInt(log2Ceil(nDevices+1).W))) val pendingUInt = Cat(pending.reverse) if(nDevices > 0) { for (hart <- 0 until nHarts) { val fanin = Module(new PLICFanIn(nDevices, prioBits)) fanin.io.prio := priority fanin.io.ip := enableVec(hart) & pendingUInt maxDevs(hart) := fanin.io.dev harts(hart) := ShiftRegister(RegNext(fanin.io.max) > threshold(hart), params.intStages) } } // Priority registers are 32-bit aligned so treat each as its own group. // Otherwise, the off-by-one nature of the priority registers gets confusing. require(PLICConsts.priorityBytes == 4, s"PLIC Priority register descriptions assume 32-bits per priority, not ${PLICConsts.priorityBytes}") def priorityRegDesc(i: Int) = RegFieldDesc( name = s"priority_$i", desc = s"Acting priority of interrupt source $i", group = Some(s"priority_${i}"), groupDesc = Some(s"Acting priority of interrupt source ${i}"), reset = if (nPriorities > 0) None else Some(1)) def pendingRegDesc(i: Int) = RegFieldDesc( name = s"pending_$i", desc = s"Set to 1 if interrupt source $i is pending, regardless of its enable or priority setting.", group = Some("pending"), groupDesc = Some("Pending Bit Array. 1 Bit for each interrupt source."), volatile = true) def enableRegDesc(i: Int, j: Int, wide: Int) = { val low = if (j == 0) 1 else j*8 val high = low + wide - 1 RegFieldDesc( name = s"enables_${j}", desc = s"Targets ${low}-${high}. Set bits to 1 if interrupt should be enabled.", group = Some(s"enables_${i}"), groupDesc = Some(s"Enable bits for each interrupt source for target $i. 1 bit for each interrupt source.")) } def priorityRegField(x: UInt, i: Int) = if (nPriorities > 0) { RegField(prioBits, x, priorityRegDesc(i)) } else { RegField.r(prioBits, x, priorityRegDesc(i)) } val priorityRegFields = priority.zipWithIndex.map { case (p, i) => PLICConsts.priorityBase+PLICConsts.priorityBytes*(i+1) -> Seq(priorityRegField(p, i+1)) } val pendingRegFields = Seq(PLICConsts.pendingBase -> (RegField(1) +: pending.zipWithIndex.map { case (b, i) => RegField.r(1, b, pendingRegDesc(i+1))})) val enableRegFields = enables.zipWithIndex.map { case (e, i) => PLICConsts.enableBase(i) -> (RegField(1) +: e.zipWithIndex.map { case (x, j) => RegField(x.getWidth, x, enableRegDesc(i, j, x.getWidth)) }) } // When a hart reads a claim/complete register, then the // device which is currently its highest priority is no longer pending. // This code exploits the fact that, practically, only one claim/complete // register can be read at a time. We check for this because if the address map // were to change, it may no longer be true. // Note: PLIC doesn't care which hart reads the register. val claimer = Wire(Vec(nHarts, Bool())) assert((claimer.asUInt & (claimer.asUInt - 1.U)) === 0.U) // One-Hot val claiming = Seq.tabulate(nHarts){i => Mux(claimer(i), maxDevs(i), 0.U)}.reduceLeft(_|_) val claimedDevs = VecInit(UIntToOH(claiming, nDevices+1).asBools) ((pending zip gateways) zip claimedDevs.tail) foreach { case ((p, g), c) => g.ready := !p when (c || g.valid) { p := !c } } // When a hart writes a claim/complete register, then // the written device (as long as it is actually enabled for that // hart) is marked complete. // This code exploits the fact that, practically, only one claim/complete register // can be written at a time. We check for this because if the address map // were to change, it may no longer be true. // Note -- PLIC doesn't care which hart writes the register. val completer = Wire(Vec(nHarts, Bool())) assert((completer.asUInt & (completer.asUInt - 1.U)) === 0.U) // One-Hot val completerDev = Wire(UInt(log2Up(nDevices + 1).W)) val completedDevs = Mux(completer.reduce(_ || _), UIntToOH(completerDev, nDevices+1), 0.U) (gateways zip completedDevs.asBools.tail) foreach { case (g, c) => g.complete := c } def thresholdRegDesc(i: Int) = RegFieldDesc( name = s"threshold_$i", desc = s"Interrupt & claim threshold for target $i. Maximum value is ${nPriorities}.", reset = if (nPriorities > 0) None else Some(1)) def thresholdRegField(x: UInt, i: Int) = if (nPriorities > 0) { RegField(prioBits, x, thresholdRegDesc(i)) } else { RegField.r(prioBits, x, thresholdRegDesc(i)) } val hartRegFields = Seq.tabulate(nHarts) { i => PLICConsts.hartBase(i) -> Seq( thresholdRegField(threshold(i), i), RegField(32-prioBits), RegField(32, RegReadFn { valid => claimer(i) := valid (true.B, maxDevs(i)) }, RegWriteFn { (valid, data) => assert(completerDev === data.extract(log2Ceil(nDevices+1)-1, 0), "completerDev should be consistent for all harts") completerDev := data.extract(log2Ceil(nDevices+1)-1, 0) completer(i) := valid && enableVec0(i)(completerDev) true.B }, Some(RegFieldDesc(s"claim_complete_$i", s"Claim/Complete register for Target $i. Reading this register returns the claimed interrupt number and makes it no longer pending." + s"Writing the interrupt number back completes the interrupt.", reset = None, wrType = Some(RegFieldWrType.MODIFY), rdAction = Some(RegFieldRdAction.MODIFY), volatile = true)) ) ) } node.regmap((priorityRegFields ++ pendingRegFields ++ enableRegFields ++ hartRegFields):_*) if (nDevices >= 2) { val claimed = claimer(0) && maxDevs(0) > 0.U val completed = completer(0) property.cover(claimed && RegEnable(claimed, false.B, claimed || completed), "TWO_CLAIMS", "two claims with no intervening complete") property.cover(completed && RegEnable(completed, false.B, claimed || completed), "TWO_COMPLETES", "two completes with no intervening claim") val ep = enables(0).asUInt & pending.asUInt val ep2 = RegNext(ep) val diff = ep & ~ep2 property.cover((diff & (diff - 1.U)) =/= 0.U, "TWO_INTS_PENDING", "two enabled interrupts became pending on same cycle") if (nPriorities > 0) ccover(maxDevs(0) > (1.U << priority(0).getWidth) && maxDevs(0) <= Cat(1.U, threshold(0)), "THRESHOLD", "interrupt pending but less than threshold") } def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = property.cover(cond, s"PLIC_$label", "Interrupts;;" + desc) } } class PLICFanIn(nDevices: Int, prioBits: Int) extends Module { val io = IO(new Bundle { val prio = Flipped(Vec(nDevices, UInt(prioBits.W))) val ip = Flipped(UInt(nDevices.W)) val dev = UInt(log2Ceil(nDevices+1).W) val max = UInt(prioBits.W) }) def findMax(x: Seq[UInt]): (UInt, UInt) = { if (x.length > 1) { val half = 1 << (log2Ceil(x.length) - 1) val left = findMax(x take half) val right = findMax(x drop half) MuxT(left._1 >= right._1, left, (right._1, half.U | right._2)) } else (x.head, 0.U) } val effectivePriority = (1.U << prioBits) +: (io.ip.asBools zip io.prio).map { case (p, x) => Cat(p, x) } val (maxPri, maxDev) = findMax(effectivePriority) io.max := maxPri // strips the always-constant high '1' bit io.dev := maxDev } /** Trait that will connect a PLIC to a subsystem */ trait CanHavePeripheryPLIC { this: BaseSubsystem => val (plicOpt, plicDomainOpt) = p(PLICKey).map { params => val tlbus = locateTLBusWrapper(p(PLICAttachKey).slaveWhere) val plicDomainWrapper = tlbus.generateSynchronousDomain("PLIC").suggestName("plic_domain") val plic = plicDomainWrapper { LazyModule(new TLPLIC(params, tlbus.beatBytes)) } plicDomainWrapper { plic.node := tlbus.coupleTo("plic") { TLFragmenter(tlbus, Some("PLIC")) := _ } } plicDomainWrapper { plic.intnode :=* ibus.toPLIC } (plic, plicDomainWrapper) }.unzip }
module TLPLIC( // @[Plic.scala:132:9] input clock, // @[Plic.scala:132:9] input reset, // @[Plic.scala:132:9] input auto_int_in_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_1_0, // @[LazyModuleImp.scala:107:25] output auto_int_out_0_0, // @[LazyModuleImp.scala:107:25] output auto_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [1:0] auto_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [13:0] auto_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [27:0] auto_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [13:0] auto_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [63:0] auto_in_d_bits_data // @[LazyModuleImp.scala:107:25] ); wire out_front_ready; // @[RegisterRouter.scala:87:24] wire out_bits_read; // @[RegisterRouter.scala:87:24] wire [13:0] out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24] wire [22:0] in_bits_index; // @[RegisterRouter.scala:73:18] wire in_bits_read; // @[RegisterRouter.scala:73:18] wire _out_back_front_q_io_deq_valid; // @[RegisterRouter.scala:87:24] wire _out_back_front_q_io_deq_bits_read; // @[RegisterRouter.scala:87:24] wire [22:0] _out_back_front_q_io_deq_bits_index; // @[RegisterRouter.scala:87:24] wire [63:0] _out_back_front_q_io_deq_bits_data; // @[RegisterRouter.scala:87:24] wire [7:0] _out_back_front_q_io_deq_bits_mask; // @[RegisterRouter.scala:87:24] wire _fanin_1_io_dev; // @[Plic.scala:189:27] wire _fanin_1_io_max; // @[Plic.scala:189:27] wire _fanin_io_dev; // @[Plic.scala:189:27] wire _fanin_io_max; // @[Plic.scala:189:27] wire _gateways_gateway_io_plic_valid; // @[Plic.scala:160:27] wire auto_int_in_0_0 = auto_int_in_0; // @[Plic.scala:132:9] wire auto_in_a_valid_0 = auto_in_a_valid; // @[Plic.scala:132:9] wire [2:0] auto_in_a_bits_opcode_0 = auto_in_a_bits_opcode; // @[Plic.scala:132:9] wire [2:0] auto_in_a_bits_param_0 = auto_in_a_bits_param; // @[Plic.scala:132:9] wire [1:0] auto_in_a_bits_size_0 = auto_in_a_bits_size; // @[Plic.scala:132:9] wire [13:0] auto_in_a_bits_source_0 = auto_in_a_bits_source; // @[Plic.scala:132:9] wire [27:0] auto_in_a_bits_address_0 = auto_in_a_bits_address; // @[Plic.scala:132:9] wire [7:0] auto_in_a_bits_mask_0 = auto_in_a_bits_mask; // @[Plic.scala:132:9] wire [63:0] auto_in_a_bits_data_0 = auto_in_a_bits_data; // @[Plic.scala:132:9] wire auto_in_a_bits_corrupt_0 = auto_in_a_bits_corrupt; // @[Plic.scala:132:9] wire auto_in_d_ready_0 = auto_in_d_ready; // @[Plic.scala:132:9] wire _out_T_73 = reset; // @[Plic.scala:298:19] wire _out_T_109 = reset; // @[Plic.scala:298:19] wire out_rifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_17 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_4 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_21 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_25 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_29 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_7 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_33 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_8 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_37 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_41 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_45 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_11 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_49 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_12 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_53 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_57 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_61 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rifireMux_out_15 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_65 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_4 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_5 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_6 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_7 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_8 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_9 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_10 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_11 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_12 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_13 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_14 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rifireMux_WIRE_15 = 1'h1; // @[MuxLiteral.scala:49:48] wire out_rifireMux = 1'h1; // @[MuxLiteral.scala:49:10] wire out_wifireMux_out = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_18 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_4 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_22 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_26 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_30 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_7 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_34 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_8 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_38 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_42 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_46 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_11 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_50 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_12 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_54 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_58 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_62 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wifireMux_out_15 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_66 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_4 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_5 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_6 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_7 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_8 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_9 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_10 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_11 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_12 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_13 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_14 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wifireMux_WIRE_15 = 1'h1; // @[MuxLiteral.scala:49:48] wire out_wifireMux = 1'h1; // @[MuxLiteral.scala:49:10] wire out_rofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_17 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_4 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_21 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_25 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_29 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_7 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_33 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_8 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_37 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_41 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_45 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_11 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_49 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_12 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_53 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_57 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_61 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_rofireMux_out_15 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_65 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_4 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_5 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_6 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_7 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_8 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_9 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_10 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_11 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_12 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_13 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_14 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_rofireMux_WIRE_15 = 1'h1; // @[MuxLiteral.scala:49:48] wire out_rofireMux = 1'h1; // @[MuxLiteral.scala:49:10] wire out_wofireMux_out = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_1 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_2 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_3 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_18 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_4 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_22 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_5 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_26 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_6 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_30 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_7 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_34 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_8 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_38 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_9 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_42 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_10 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_46 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_11 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_50 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_12 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_54 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_13 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_58 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_14 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_62 = 1'h1; // @[RegisterRouter.scala:87:24] wire out_wofireMux_out_15 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_66 = 1'h1; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_WIRE_0 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_1 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_2 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_3 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_4 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_5 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_6 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_7 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_8 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_9 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_10 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_11 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_12 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_13 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_14 = 1'h1; // @[MuxLiteral.scala:49:48] wire _out_wofireMux_WIRE_15 = 1'h1; // @[MuxLiteral.scala:49:48] wire out_wofireMux = 1'h1; // @[MuxLiteral.scala:49:10] wire out_iready = 1'h1; // @[RegisterRouter.scala:87:24] wire out_oready = 1'h1; // @[RegisterRouter.scala:87:24] wire [1:0] auto_in_d_bits_param = 2'h0; // @[Plic.scala:132:9] wire [1:0] nodeIn_d_bits_param = 2'h0; // @[MixedNode.scala:551:17] wire [1:0] nodeIn_d_bits_d_param = 2'h0; // @[Edges.scala:792:17] wire auto_in_d_bits_sink = 1'h0; // @[Plic.scala:132:9] wire auto_in_d_bits_denied = 1'h0; // @[Plic.scala:132:9] wire auto_in_d_bits_corrupt = 1'h0; // @[Plic.scala:132:9] wire nodeIn_d_bits_sink = 1'h0; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_denied = 1'h0; // @[MixedNode.scala:551:17] wire nodeIn_d_bits_corrupt = 1'h0; // @[MixedNode.scala:551:17] wire _pending_WIRE_0 = 1'h0; // @[Plic.scala:172:55] wire _out_T_19 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_T_20 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_prepend_T = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_T_39 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_T_40 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_prepend_T_1 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_T_129 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_T_130 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_prepend_T_6 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_8 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_16 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_28 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_32 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_40 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_48 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_52 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_56 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_60 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_64 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_66 = 1'h0; // @[MuxLiteral.scala:49:17] wire _out_wifireMux_T_9 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_17 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_29 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_33 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_41 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_49 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_53 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_57 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_61 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_65 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_67 = 1'h0; // @[MuxLiteral.scala:49:17] wire _out_rofireMux_T_8 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_16 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_28 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_32 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_40 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_48 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_52 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_56 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_60 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_64 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_66 = 1'h0; // @[MuxLiteral.scala:49:17] wire _out_wofireMux_T_9 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_17 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_29 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_33 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_41 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_49 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_53 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_57 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_61 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_65 = 1'h0; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_67 = 1'h0; // @[MuxLiteral.scala:49:17] wire nodeIn_d_bits_d_sink = 1'h0; // @[Edges.scala:792:17] wire nodeIn_d_bits_d_denied = 1'h0; // @[Edges.scala:792:17] wire nodeIn_d_bits_d_corrupt = 1'h0; // @[Edges.scala:792:17] wire [63:0] nodeIn_d_bits_d_data = 64'h0; // @[Edges.scala:792:17] wire [2:0] nodeIn_d_bits_d_opcode = 3'h0; // @[Edges.scala:792:17] wire [31:0] _out_prepend_T_7 = 32'h0; // @[RegisterRouter.scala:87:24] wire [22:0] out_maskMatch = 23'h7BF9EF; // @[RegisterRouter.scala:87:24] wire intnodeIn_0 = auto_int_in_0_0; // @[Plic.scala:132:9] wire x1_intnodeOut_0; // @[MixedNode.scala:542:17] wire intnodeOut_0; // @[MixedNode.scala:542:17] wire nodeIn_a_ready; // @[MixedNode.scala:551:17] wire nodeIn_a_valid = auto_in_a_valid_0; // @[Plic.scala:132:9] wire [2:0] nodeIn_a_bits_opcode = auto_in_a_bits_opcode_0; // @[Plic.scala:132:9] wire [2:0] nodeIn_a_bits_param = auto_in_a_bits_param_0; // @[Plic.scala:132:9] wire [1:0] nodeIn_a_bits_size = auto_in_a_bits_size_0; // @[Plic.scala:132:9] wire [13:0] nodeIn_a_bits_source = auto_in_a_bits_source_0; // @[Plic.scala:132:9] wire [27:0] nodeIn_a_bits_address = auto_in_a_bits_address_0; // @[Plic.scala:132:9] wire [7:0] nodeIn_a_bits_mask = auto_in_a_bits_mask_0; // @[Plic.scala:132:9] wire [63:0] nodeIn_a_bits_data = auto_in_a_bits_data_0; // @[Plic.scala:132:9] wire nodeIn_a_bits_corrupt = auto_in_a_bits_corrupt_0; // @[Plic.scala:132:9] wire nodeIn_d_ready = auto_in_d_ready_0; // @[Plic.scala:132:9] wire nodeIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] nodeIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] nodeIn_d_bits_size; // @[MixedNode.scala:551:17] wire [13:0] nodeIn_d_bits_source; // @[MixedNode.scala:551:17] wire [63:0] nodeIn_d_bits_data; // @[MixedNode.scala:551:17] wire auto_int_out_1_0_0; // @[Plic.scala:132:9] wire auto_int_out_0_0_0; // @[Plic.scala:132:9] wire auto_in_a_ready_0; // @[Plic.scala:132:9] wire [2:0] auto_in_d_bits_opcode_0; // @[Plic.scala:132:9] wire [1:0] auto_in_d_bits_size_0; // @[Plic.scala:132:9] wire [13:0] auto_in_d_bits_source_0; // @[Plic.scala:132:9] wire [63:0] auto_in_d_bits_data_0; // @[Plic.scala:132:9] wire auto_in_d_valid_0; // @[Plic.scala:132:9] wire in_ready; // @[RegisterRouter.scala:73:18] assign auto_in_a_ready_0 = nodeIn_a_ready; // @[Plic.scala:132:9] wire in_valid = nodeIn_a_valid; // @[RegisterRouter.scala:73:18] wire [1:0] in_bits_extra_tlrr_extra_size = nodeIn_a_bits_size; // @[RegisterRouter.scala:73:18] wire [13:0] in_bits_extra_tlrr_extra_source = nodeIn_a_bits_source; // @[RegisterRouter.scala:73:18] wire [7:0] in_bits_mask = nodeIn_a_bits_mask; // @[RegisterRouter.scala:73:18] wire [63:0] in_bits_data = nodeIn_a_bits_data; // @[RegisterRouter.scala:73:18] wire out_ready = nodeIn_d_ready; // @[RegisterRouter.scala:87:24] wire out_valid; // @[RegisterRouter.scala:87:24] assign auto_in_d_valid_0 = nodeIn_d_valid; // @[Plic.scala:132:9] assign auto_in_d_bits_opcode_0 = nodeIn_d_bits_opcode; // @[Plic.scala:132:9] wire [1:0] nodeIn_d_bits_d_size; // @[Edges.scala:792:17] assign auto_in_d_bits_size_0 = nodeIn_d_bits_size; // @[Plic.scala:132:9] wire [13:0] nodeIn_d_bits_d_source; // @[Edges.scala:792:17] assign auto_in_d_bits_source_0 = nodeIn_d_bits_source; // @[Plic.scala:132:9] wire [63:0] out_bits_data; // @[RegisterRouter.scala:87:24] assign auto_in_d_bits_data_0 = nodeIn_d_bits_data; // @[Plic.scala:132:9] wire _intnodeOut_0_T; // @[Plic.scala:193:60] assign auto_int_out_0_0_0 = intnodeOut_0; // @[Plic.scala:132:9] wire _intnodeOut_0_T_1; // @[Plic.scala:193:60] assign auto_int_out_1_0_0 = x1_intnodeOut_0; // @[Plic.scala:132:9] reg priority_0; // @[Plic.scala:167:31] reg threshold_0; // @[Plic.scala:170:31] wire _out_T_95 = threshold_0; // @[RegisterRouter.scala:87:24] reg threshold_1; // @[Plic.scala:170:31] wire _out_T_59 = threshold_1; // @[RegisterRouter.scala:87:24] reg pending_0; // @[Plic.scala:172:26] reg enables_0_0; // @[Plic.scala:178:26] wire enableVec_0 = enables_0_0; // @[Plic.scala:178:26, :182:28] reg enables_1_0; // @[Plic.scala:178:26] wire enableVec_1 = enables_1_0; // @[Plic.scala:178:26, :182:28] wire [1:0] _enableVec0_T = {enableVec_0, 1'h0}; // @[Plic.scala:182:28, :183:52] wire [1:0] enableVec0_0 = _enableVec0_T; // @[Plic.scala:183:{29,52}] wire [1:0] _enableVec0_T_1 = {enableVec_1, 1'h0}; // @[Plic.scala:182:28, :183:52] wire [1:0] enableVec0_1 = _enableVec0_T_1; // @[Plic.scala:183:{29,52}] reg maxDevs_0; // @[Plic.scala:185:22] reg maxDevs_1; // @[Plic.scala:185:22] wire _fanin_io_ip_T = enableVec_0 & pending_0; // @[Plic.scala:172:26, :182:28, :191:40] reg intnodeOut_0_REG; // @[Plic.scala:193:45] assign _intnodeOut_0_T = intnodeOut_0_REG > threshold_0; // @[Plic.scala:170:31, :193:{45,60}] assign intnodeOut_0 = _intnodeOut_0_T; // @[Plic.scala:193:60] wire _fanin_io_ip_T_1 = enableVec_1 & pending_0; // @[Plic.scala:172:26, :182:28, :191:40] reg intnodeOut_0_REG_1; // @[Plic.scala:193:45] assign _intnodeOut_0_T_1 = intnodeOut_0_REG_1 > threshold_1; // @[Plic.scala:170:31, :193:{45,60}] assign x1_intnodeOut_0 = _intnodeOut_0_T_1; // @[Plic.scala:193:60] wire out_f_roready_9; // @[RegisterRouter.scala:87:24] wire out_f_roready_6; // @[RegisterRouter.scala:87:24] wire claimer_0; // @[Plic.scala:250:23] wire claimer_1; // @[Plic.scala:250:23] wire _claiming_T = claimer_0 & maxDevs_0; // @[Plic.scala:185:22, :250:23, :252:49] wire _claiming_T_1 = claimer_1 & maxDevs_1; // @[Plic.scala:185:22, :250:23, :252:49] wire claiming = _claiming_T | _claiming_T_1; // @[Plic.scala:252:{49,92}] wire claimedDevs_shiftAmount = claiming; // @[OneHot.scala:64:49] wire [1:0] _claimedDevs_T = 2'h1 << claimedDevs_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [1:0] _claimedDevs_T_1 = _claimedDevs_T; // @[OneHot.scala:65:{12,27}] wire _claimedDevs_T_2 = _claimedDevs_T_1[0]; // @[OneHot.scala:65:27] wire claimedDevs_0 = _claimedDevs_T_2; // @[Plic.scala:253:{30,62}] wire _claimedDevs_T_3 = _claimedDevs_T_1[1]; // @[OneHot.scala:65:27] wire claimedDevs_1 = _claimedDevs_T_3; // @[Plic.scala:253:{30,62}] wire _gateway_io_plic_ready_T = ~pending_0; // @[Plic.scala:172:26, :256:18] wire _pending_0_T = ~claimedDevs_1; // @[Plic.scala:253:30, :257:34] wire _out_completer_0_T_2; // @[Plic.scala:301:35] wire _out_completer_1_T_2; // @[Plic.scala:301:35] wire completer_0; // @[Plic.scala:267:25] wire completer_1; // @[Plic.scala:267:25] wire _out_completerDev_T_1; // @[package.scala:163:13] wire completerDev; // @[Plic.scala:269:28] wire completedDevs_shiftAmount = completerDev; // @[OneHot.scala:64:49] wire _completedDevs_T = completer_0 | completer_1; // @[Plic.scala:267:25, :270:48] wire [1:0] _completedDevs_T_1 = 2'h1 << completedDevs_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [1:0] _completedDevs_T_2 = _completedDevs_T_1; // @[OneHot.scala:65:{12,27}] wire [1:0] completedDevs = _completedDevs_T ? _completedDevs_T_2 : 2'h0; // @[OneHot.scala:65:27] wire _out_in_ready_T; // @[RegisterRouter.scala:87:24] assign nodeIn_a_ready = in_ready; // @[RegisterRouter.scala:73:18] wire _in_bits_read_T; // @[RegisterRouter.scala:74:36] wire _out_front_valid_T = in_valid; // @[RegisterRouter.scala:73:18, :87:24] wire out_front_bits_read = in_bits_read; // @[RegisterRouter.scala:73:18, :87:24] wire [22:0] out_front_bits_index = in_bits_index; // @[RegisterRouter.scala:73:18, :87:24] wire [63:0] out_front_bits_data = in_bits_data; // @[RegisterRouter.scala:73:18, :87:24] wire [7:0] out_front_bits_mask = in_bits_mask; // @[RegisterRouter.scala:73:18, :87:24] wire [13:0] out_front_bits_extra_tlrr_extra_source = in_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:73:18, :87:24] wire [1:0] out_front_bits_extra_tlrr_extra_size = in_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:73:18, :87:24] assign _in_bits_read_T = nodeIn_a_bits_opcode == 3'h4; // @[RegisterRouter.scala:74:36] assign in_bits_read = _in_bits_read_T; // @[RegisterRouter.scala:73:18, :74:36] wire [24:0] _in_bits_index_T = nodeIn_a_bits_address[27:3]; // @[Edges.scala:192:34] assign in_bits_index = _in_bits_index_T[22:0]; // @[RegisterRouter.scala:73:18, :75:19] wire _out_front_q_io_deq_ready_T = out_ready; // @[RegisterRouter.scala:87:24] wire _out_out_valid_T; // @[RegisterRouter.scala:87:24] assign nodeIn_d_valid = out_valid; // @[RegisterRouter.scala:87:24] wire [63:0] _out_out_bits_data_T_12; // @[RegisterRouter.scala:87:24] wire _nodeIn_d_bits_opcode_T = out_bits_read; // @[RegisterRouter.scala:87:24, :105:25] assign nodeIn_d_bits_data = out_bits_data; // @[RegisterRouter.scala:87:24] assign nodeIn_d_bits_d_source = out_bits_extra_tlrr_extra_source; // @[RegisterRouter.scala:87:24] wire [1:0] out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24] assign nodeIn_d_bits_d_size = out_bits_extra_tlrr_extra_size; // @[RegisterRouter.scala:87:24] assign _out_in_ready_T = out_front_ready; // @[RegisterRouter.scala:87:24] wire out_front_valid; // @[RegisterRouter.scala:87:24] wire [22:0] out_findex = out_front_bits_index & 23'h7BF9EF; // @[RegisterRouter.scala:87:24] wire [22:0] out_bindex = _out_back_front_q_io_deq_bits_index & 23'h7BF9EF; // @[RegisterRouter.scala:87:24] wire _GEN = out_findex == 23'h0; // @[RegisterRouter.scala:87:24] wire _out_T; // @[RegisterRouter.scala:87:24] assign _out_T = _GEN; // @[RegisterRouter.scala:87:24] wire _out_T_2; // @[RegisterRouter.scala:87:24] assign _out_T_2 = _GEN; // @[RegisterRouter.scala:87:24] wire _out_T_4; // @[RegisterRouter.scala:87:24] assign _out_T_4 = _GEN; // @[RegisterRouter.scala:87:24] wire _out_T_6; // @[RegisterRouter.scala:87:24] assign _out_T_6 = _GEN; // @[RegisterRouter.scala:87:24] wire _out_T_8; // @[RegisterRouter.scala:87:24] assign _out_T_8 = _GEN; // @[RegisterRouter.scala:87:24] wire _out_T_10; // @[RegisterRouter.scala:87:24] assign _out_T_10 = _GEN; // @[RegisterRouter.scala:87:24] wire _GEN_0 = out_bindex == 23'h0; // @[RegisterRouter.scala:87:24] wire _out_T_1; // @[RegisterRouter.scala:87:24] assign _out_T_1 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_3; // @[RegisterRouter.scala:87:24] assign _out_T_3 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_5; // @[RegisterRouter.scala:87:24] assign _out_T_5 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_7; // @[RegisterRouter.scala:87:24] assign _out_T_7 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_9; // @[RegisterRouter.scala:87:24] assign _out_T_9 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_T_11; // @[RegisterRouter.scala:87:24] assign _out_T_11 = _GEN_0; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_23; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_11; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_43; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_35; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_19; // @[RegisterRouter.scala:87:24] wire _out_rifireMux_T_3; // @[RegisterRouter.scala:87:24] wire out_rivalid_0; // @[RegisterRouter.scala:87:24] wire out_rivalid_1; // @[RegisterRouter.scala:87:24] wire out_rivalid_2; // @[RegisterRouter.scala:87:24] wire out_rivalid_3; // @[RegisterRouter.scala:87:24] wire out_rivalid_4; // @[RegisterRouter.scala:87:24] wire out_rivalid_5; // @[RegisterRouter.scala:87:24] wire out_rivalid_6; // @[RegisterRouter.scala:87:24] wire out_rivalid_7; // @[RegisterRouter.scala:87:24] wire out_rivalid_8; // @[RegisterRouter.scala:87:24] wire out_rivalid_9; // @[RegisterRouter.scala:87:24] wire out_rivalid_10; // @[RegisterRouter.scala:87:24] wire out_rivalid_11; // @[RegisterRouter.scala:87:24] wire out_rivalid_12; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_24; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_12; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_44; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_36; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_20; // @[RegisterRouter.scala:87:24] wire _out_wifireMux_T_4; // @[RegisterRouter.scala:87:24] wire out_wivalid_0; // @[RegisterRouter.scala:87:24] wire out_wivalid_1; // @[RegisterRouter.scala:87:24] wire out_wivalid_2; // @[RegisterRouter.scala:87:24] wire out_wivalid_3; // @[RegisterRouter.scala:87:24] wire out_wivalid_4; // @[RegisterRouter.scala:87:24] wire out_wivalid_5; // @[RegisterRouter.scala:87:24] wire out_wivalid_6; // @[RegisterRouter.scala:87:24] wire out_wivalid_7; // @[RegisterRouter.scala:87:24] wire out_wivalid_8; // @[RegisterRouter.scala:87:24] wire out_wivalid_9; // @[RegisterRouter.scala:87:24] wire out_wivalid_10; // @[RegisterRouter.scala:87:24] wire out_wivalid_11; // @[RegisterRouter.scala:87:24] wire out_wivalid_12; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_23; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_11; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_43; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_35; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_19; // @[RegisterRouter.scala:87:24] wire _out_rofireMux_T_3; // @[RegisterRouter.scala:87:24] wire out_roready_0; // @[RegisterRouter.scala:87:24] wire out_roready_1; // @[RegisterRouter.scala:87:24] wire out_roready_2; // @[RegisterRouter.scala:87:24] wire out_roready_3; // @[RegisterRouter.scala:87:24] wire out_roready_4; // @[RegisterRouter.scala:87:24] wire out_roready_5; // @[RegisterRouter.scala:87:24] wire out_roready_6; // @[RegisterRouter.scala:87:24] wire out_roready_7; // @[RegisterRouter.scala:87:24] wire out_roready_8; // @[RegisterRouter.scala:87:24] wire out_roready_9; // @[RegisterRouter.scala:87:24] wire out_roready_10; // @[RegisterRouter.scala:87:24] wire out_roready_11; // @[RegisterRouter.scala:87:24] wire out_roready_12; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_24; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_12; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_44; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_36; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_20; // @[RegisterRouter.scala:87:24] wire _out_wofireMux_T_4; // @[RegisterRouter.scala:87:24] wire out_woready_0; // @[RegisterRouter.scala:87:24] wire out_woready_1; // @[RegisterRouter.scala:87:24] wire out_woready_2; // @[RegisterRouter.scala:87:24] wire out_woready_3; // @[RegisterRouter.scala:87:24] wire out_woready_4; // @[RegisterRouter.scala:87:24] wire out_woready_5; // @[RegisterRouter.scala:87:24] wire out_woready_6; // @[RegisterRouter.scala:87:24] wire out_woready_7; // @[RegisterRouter.scala:87:24] wire out_woready_8; // @[RegisterRouter.scala:87:24] wire out_woready_9; // @[RegisterRouter.scala:87:24] wire out_woready_10; // @[RegisterRouter.scala:87:24] wire out_woready_11; // @[RegisterRouter.scala:87:24] wire out_woready_12; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T = out_front_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_1 = out_front_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_2 = out_front_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_3 = out_front_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_4 = out_front_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_5 = out_front_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_6 = out_front_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire _out_frontMask_T_7 = out_front_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_8 = {8{_out_frontMask_T}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_9 = {8{_out_frontMask_T_1}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_10 = {8{_out_frontMask_T_2}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_11 = {8{_out_frontMask_T_3}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_12 = {8{_out_frontMask_T_4}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_13 = {8{_out_frontMask_T_5}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_14 = {8{_out_frontMask_T_6}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_frontMask_T_15 = {8{_out_frontMask_T_7}}; // @[RegisterRouter.scala:87:24] wire [15:0] out_frontMask_lo_lo = {_out_frontMask_T_9, _out_frontMask_T_8}; // @[RegisterRouter.scala:87:24] wire [15:0] out_frontMask_lo_hi = {_out_frontMask_T_11, _out_frontMask_T_10}; // @[RegisterRouter.scala:87:24] wire [31:0] out_frontMask_lo = {out_frontMask_lo_hi, out_frontMask_lo_lo}; // @[RegisterRouter.scala:87:24] wire [15:0] out_frontMask_hi_lo = {_out_frontMask_T_13, _out_frontMask_T_12}; // @[RegisterRouter.scala:87:24] wire [15:0] out_frontMask_hi_hi = {_out_frontMask_T_15, _out_frontMask_T_14}; // @[RegisterRouter.scala:87:24] wire [31:0] out_frontMask_hi = {out_frontMask_hi_hi, out_frontMask_hi_lo}; // @[RegisterRouter.scala:87:24] wire [63:0] out_frontMask = {out_frontMask_hi, out_frontMask_lo}; // @[RegisterRouter.scala:87:24] wire _out_backMask_T = _out_back_front_q_io_deq_bits_mask[0]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_1 = _out_back_front_q_io_deq_bits_mask[1]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_2 = _out_back_front_q_io_deq_bits_mask[2]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_3 = _out_back_front_q_io_deq_bits_mask[3]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_4 = _out_back_front_q_io_deq_bits_mask[4]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_5 = _out_back_front_q_io_deq_bits_mask[5]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_6 = _out_back_front_q_io_deq_bits_mask[6]; // @[RegisterRouter.scala:87:24] wire _out_backMask_T_7 = _out_back_front_q_io_deq_bits_mask[7]; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_8 = {8{_out_backMask_T}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_9 = {8{_out_backMask_T_1}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_10 = {8{_out_backMask_T_2}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_11 = {8{_out_backMask_T_3}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_12 = {8{_out_backMask_T_4}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_13 = {8{_out_backMask_T_5}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_14 = {8{_out_backMask_T_6}}; // @[RegisterRouter.scala:87:24] wire [7:0] _out_backMask_T_15 = {8{_out_backMask_T_7}}; // @[RegisterRouter.scala:87:24] wire [15:0] out_backMask_lo_lo = {_out_backMask_T_9, _out_backMask_T_8}; // @[RegisterRouter.scala:87:24] wire [15:0] out_backMask_lo_hi = {_out_backMask_T_11, _out_backMask_T_10}; // @[RegisterRouter.scala:87:24] wire [31:0] out_backMask_lo = {out_backMask_lo_hi, out_backMask_lo_lo}; // @[RegisterRouter.scala:87:24] wire [15:0] out_backMask_hi_lo = {_out_backMask_T_13, _out_backMask_T_12}; // @[RegisterRouter.scala:87:24] wire [15:0] out_backMask_hi_hi = {_out_backMask_T_15, _out_backMask_T_14}; // @[RegisterRouter.scala:87:24] wire [31:0] out_backMask_hi = {out_backMask_hi_hi, out_backMask_hi_lo}; // @[RegisterRouter.scala:87:24] wire [63:0] out_backMask = {out_backMask_hi, out_backMask_lo}; // @[RegisterRouter.scala:87:24] wire _out_rimask_T = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_2 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_2 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_4 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_4 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_7 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_7 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_10 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_10 = out_frontMask[0]; // @[RegisterRouter.scala:87:24] wire out_rimask = _out_rimask_T; // @[RegisterRouter.scala:87:24] wire out_wimask = _out_wimask_T; // @[RegisterRouter.scala:87:24] wire _out_romask_T = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_womask_T = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_2 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_2 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_4 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_4 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_7 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_7 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_10 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_10 = out_backMask[0]; // @[RegisterRouter.scala:87:24] wire out_romask = _out_romask_T; // @[RegisterRouter.scala:87:24] wire out_womask = _out_womask_T; // @[RegisterRouter.scala:87:24] wire out_f_rivalid = out_rivalid_0 & out_rimask; // @[RegisterRouter.scala:87:24] wire _out_T_13 = out_f_rivalid; // @[RegisterRouter.scala:87:24] wire out_f_roready = out_roready_0 & out_romask; // @[RegisterRouter.scala:87:24] wire _out_T_14 = out_f_roready; // @[RegisterRouter.scala:87:24] wire out_f_wivalid = out_wivalid_0 & out_wimask; // @[RegisterRouter.scala:87:24] wire out_f_woready = out_woready_0 & out_womask; // @[RegisterRouter.scala:87:24] wire _out_T_12 = _out_back_front_q_io_deq_bits_data[0]; // @[RegisterRouter.scala:87:24] wire _out_T_32 = _out_back_front_q_io_deq_bits_data[0]; // @[RegisterRouter.scala:87:24] wire _out_T_50 = _out_back_front_q_io_deq_bits_data[0]; // @[RegisterRouter.scala:87:24] wire _out_T_86 = _out_back_front_q_io_deq_bits_data[0]; // @[RegisterRouter.scala:87:24] wire _out_T_122 = _out_back_front_q_io_deq_bits_data[0]; // @[RegisterRouter.scala:87:24] wire _out_T_15 = ~out_rimask; // @[RegisterRouter.scala:87:24] wire _out_T_16 = ~out_wimask; // @[RegisterRouter.scala:87:24] wire _out_T_17 = ~out_romask; // @[RegisterRouter.scala:87:24] wire _out_T_18 = ~out_womask; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_1 = out_frontMask[1]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_1 = out_frontMask[1]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_3 = out_frontMask[1]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_3 = out_frontMask[1]; // @[RegisterRouter.scala:87:24] wire _out_rimask_T_11 = out_frontMask[1]; // @[RegisterRouter.scala:87:24] wire _out_wimask_T_11 = out_frontMask[1]; // @[RegisterRouter.scala:87:24] wire out_rimask_1 = _out_rimask_T_1; // @[RegisterRouter.scala:87:24] wire out_wimask_1 = _out_wimask_T_1; // @[RegisterRouter.scala:87:24] wire _out_romask_T_1 = out_backMask[1]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_1 = out_backMask[1]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_3 = out_backMask[1]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_3 = out_backMask[1]; // @[RegisterRouter.scala:87:24] wire _out_romask_T_11 = out_backMask[1]; // @[RegisterRouter.scala:87:24] wire _out_womask_T_11 = out_backMask[1]; // @[RegisterRouter.scala:87:24] wire out_romask_1 = _out_romask_T_1; // @[RegisterRouter.scala:87:24] wire out_womask_1 = _out_womask_T_1; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_1 = out_rivalid_1 & out_rimask_1; // @[RegisterRouter.scala:87:24] wire _out_T_22 = out_f_rivalid_1; // @[RegisterRouter.scala:87:24] wire out_f_roready_1 = out_roready_1 & out_romask_1; // @[RegisterRouter.scala:87:24] wire _out_T_23 = out_f_roready_1; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_1 = out_wivalid_1 & out_wimask_1; // @[RegisterRouter.scala:87:24] wire _out_T_24 = out_f_wivalid_1; // @[RegisterRouter.scala:87:24] wire out_f_woready_1 = out_woready_1 & out_womask_1; // @[RegisterRouter.scala:87:24] wire _out_T_25 = out_f_woready_1; // @[RegisterRouter.scala:87:24] wire _out_T_21 = _out_back_front_q_io_deq_bits_data[1]; // @[RegisterRouter.scala:87:24] wire _out_T_41 = _out_back_front_q_io_deq_bits_data[1]; // @[RegisterRouter.scala:87:24] wire _out_T_131 = _out_back_front_q_io_deq_bits_data[1]; // @[RegisterRouter.scala:87:24] wire _out_T_26 = ~out_rimask_1; // @[RegisterRouter.scala:87:24] wire _out_T_27 = ~out_wimask_1; // @[RegisterRouter.scala:87:24] wire _out_T_28 = ~out_romask_1; // @[RegisterRouter.scala:87:24] wire _out_T_29 = ~out_womask_1; // @[RegisterRouter.scala:87:24] wire [1:0] out_prepend = {enables_1_0, 1'h0}; // @[RegisterRouter.scala:87:24] wire [1:0] _out_T_30 = out_prepend; // @[RegisterRouter.scala:87:24] wire [1:0] _out_T_31 = _out_T_30; // @[RegisterRouter.scala:87:24] wire out_rimask_2 = _out_rimask_T_2; // @[RegisterRouter.scala:87:24] wire out_wimask_2 = _out_wimask_T_2; // @[RegisterRouter.scala:87:24] wire out_romask_2 = _out_romask_T_2; // @[RegisterRouter.scala:87:24] wire out_womask_2 = _out_womask_T_2; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_2 = out_rivalid_2 & out_rimask_2; // @[RegisterRouter.scala:87:24] wire _out_T_33 = out_f_rivalid_2; // @[RegisterRouter.scala:87:24] wire out_f_roready_2 = out_roready_2 & out_romask_2; // @[RegisterRouter.scala:87:24] wire _out_T_34 = out_f_roready_2; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_2 = out_wivalid_2 & out_wimask_2; // @[RegisterRouter.scala:87:24] wire out_f_woready_2 = out_woready_2 & out_womask_2; // @[RegisterRouter.scala:87:24] wire _out_T_35 = ~out_rimask_2; // @[RegisterRouter.scala:87:24] wire _out_T_36 = ~out_wimask_2; // @[RegisterRouter.scala:87:24] wire _out_T_37 = ~out_romask_2; // @[RegisterRouter.scala:87:24] wire _out_T_38 = ~out_womask_2; // @[RegisterRouter.scala:87:24] wire out_rimask_3 = _out_rimask_T_3; // @[RegisterRouter.scala:87:24] wire out_wimask_3 = _out_wimask_T_3; // @[RegisterRouter.scala:87:24] wire out_romask_3 = _out_romask_T_3; // @[RegisterRouter.scala:87:24] wire out_womask_3 = _out_womask_T_3; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_3 = out_rivalid_3 & out_rimask_3; // @[RegisterRouter.scala:87:24] wire _out_T_42 = out_f_rivalid_3; // @[RegisterRouter.scala:87:24] wire out_f_roready_3 = out_roready_3 & out_romask_3; // @[RegisterRouter.scala:87:24] wire _out_T_43 = out_f_roready_3; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_3 = out_wivalid_3 & out_wimask_3; // @[RegisterRouter.scala:87:24] wire out_f_woready_3 = out_woready_3 & out_womask_3; // @[RegisterRouter.scala:87:24] wire _out_T_44 = ~out_rimask_3; // @[RegisterRouter.scala:87:24] wire _out_T_45 = ~out_wimask_3; // @[RegisterRouter.scala:87:24] wire _out_T_46 = ~out_romask_3; // @[RegisterRouter.scala:87:24] wire _out_T_47 = ~out_womask_3; // @[RegisterRouter.scala:87:24] wire [1:0] out_prepend_1 = {pending_0, 1'h0}; // @[RegisterRouter.scala:87:24] wire [1:0] _out_T_48 = out_prepend_1; // @[RegisterRouter.scala:87:24] wire [1:0] _out_T_49 = _out_T_48; // @[RegisterRouter.scala:87:24] wire out_rimask_4 = _out_rimask_T_4; // @[RegisterRouter.scala:87:24] wire out_wimask_4 = _out_wimask_T_4; // @[RegisterRouter.scala:87:24] wire out_romask_4 = _out_romask_T_4; // @[RegisterRouter.scala:87:24] wire out_womask_4 = _out_womask_T_4; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_4 = out_rivalid_4 & out_rimask_4; // @[RegisterRouter.scala:87:24] wire _out_T_51 = out_f_rivalid_4; // @[RegisterRouter.scala:87:24] wire out_f_roready_4 = out_roready_4 & out_romask_4; // @[RegisterRouter.scala:87:24] wire _out_T_52 = out_f_roready_4; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_4 = out_wivalid_4 & out_wimask_4; // @[RegisterRouter.scala:87:24] wire _out_T_53 = out_f_wivalid_4; // @[RegisterRouter.scala:87:24] wire out_f_woready_4 = out_woready_4 & out_womask_4; // @[RegisterRouter.scala:87:24] wire _out_T_54 = out_f_woready_4; // @[RegisterRouter.scala:87:24] wire _out_T_55 = ~out_rimask_4; // @[RegisterRouter.scala:87:24] wire _out_T_56 = ~out_wimask_4; // @[RegisterRouter.scala:87:24] wire _out_T_57 = ~out_romask_4; // @[RegisterRouter.scala:87:24] wire _out_T_58 = ~out_womask_4; // @[RegisterRouter.scala:87:24] wire _out_T_60 = _out_T_59; // @[RegisterRouter.scala:87:24] wire _out_prepend_T_2 = _out_T_60; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_5 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_5 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_rimask_T_8 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_wimask_T_8 = out_frontMask[31:1]; // @[RegisterRouter.scala:87:24] wire out_rimask_5 = |_out_rimask_T_5; // @[RegisterRouter.scala:87:24] wire out_wimask_5 = &_out_wimask_T_5; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_5 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_5 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_romask_T_8 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_womask_T_8 = out_backMask[31:1]; // @[RegisterRouter.scala:87:24] wire out_romask_5 = |_out_romask_T_5; // @[RegisterRouter.scala:87:24] wire out_womask_5 = &_out_womask_T_5; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_5 = out_rivalid_5 & out_rimask_5; // @[RegisterRouter.scala:87:24] wire _out_T_62 = out_f_rivalid_5; // @[RegisterRouter.scala:87:24] wire out_f_roready_5 = out_roready_5 & out_romask_5; // @[RegisterRouter.scala:87:24] wire _out_T_63 = out_f_roready_5; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_5 = out_wivalid_5 & out_wimask_5; // @[RegisterRouter.scala:87:24] wire out_f_woready_5 = out_woready_5 & out_womask_5; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_61 = _out_back_front_q_io_deq_bits_data[31:1]; // @[RegisterRouter.scala:87:24] wire [30:0] _out_T_97 = _out_back_front_q_io_deq_bits_data[31:1]; // @[RegisterRouter.scala:87:24] wire _out_T_64 = ~out_rimask_5; // @[RegisterRouter.scala:87:24] wire _out_T_65 = ~out_wimask_5; // @[RegisterRouter.scala:87:24] wire _out_T_66 = ~out_romask_5; // @[RegisterRouter.scala:87:24] wire _out_T_67 = ~out_womask_5; // @[RegisterRouter.scala:87:24] wire [1:0] out_prepend_2 = {1'h0, _out_prepend_T_2}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_68 = {30'h0, out_prepend_2}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_69 = _out_T_68; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_3 = _out_T_69; // @[RegisterRouter.scala:87:24] wire [31:0] _out_rimask_T_6 = out_frontMask[63:32]; // @[RegisterRouter.scala:87:24] wire [31:0] _out_wimask_T_6 = out_frontMask[63:32]; // @[RegisterRouter.scala:87:24] wire [31:0] _out_rimask_T_9 = out_frontMask[63:32]; // @[RegisterRouter.scala:87:24] wire [31:0] _out_wimask_T_9 = out_frontMask[63:32]; // @[RegisterRouter.scala:87:24] wire out_rimask_6 = |_out_rimask_T_6; // @[RegisterRouter.scala:87:24] wire out_wimask_6 = &_out_wimask_T_6; // @[RegisterRouter.scala:87:24] wire [31:0] _out_romask_T_6 = out_backMask[63:32]; // @[RegisterRouter.scala:87:24] wire [31:0] _out_womask_T_6 = out_backMask[63:32]; // @[RegisterRouter.scala:87:24] wire [31:0] _out_romask_T_9 = out_backMask[63:32]; // @[RegisterRouter.scala:87:24] wire [31:0] _out_womask_T_9 = out_backMask[63:32]; // @[RegisterRouter.scala:87:24] wire out_romask_6 = |_out_romask_T_6; // @[RegisterRouter.scala:87:24] wire out_womask_6 = &_out_womask_T_6; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_6 = out_rivalid_6 & out_rimask_6; // @[RegisterRouter.scala:87:24] wire _out_T_76 = out_f_rivalid_6; // @[RegisterRouter.scala:87:24] assign out_f_roready_6 = out_roready_6 & out_romask_6; // @[RegisterRouter.scala:87:24] assign claimer_1 = out_f_roready_6; // @[RegisterRouter.scala:87:24] wire _out_T_77 = out_f_roready_6; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_6 = out_wivalid_6 & out_wimask_6; // @[RegisterRouter.scala:87:24] wire _out_T_78 = out_f_wivalid_6; // @[RegisterRouter.scala:87:24] wire out_f_woready_6 = out_woready_6 & out_womask_6; // @[RegisterRouter.scala:87:24] wire _out_T_79 = out_f_woready_6; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_70 = _out_back_front_q_io_deq_bits_data[63:32]; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_106 = _out_back_front_q_io_deq_bits_data[63:32]; // @[RegisterRouter.scala:87:24] wire _out_T_71 = _out_T_70[0]; // @[package.scala:163:13] wire _out_completerDev_T = _out_T_70[0]; // @[package.scala:163:13] wire _out_T_72 = completerDev == _out_T_71; // @[package.scala:163:13] wire _out_T_74 = ~_out_T_73; // @[Plic.scala:298:19] wire _out_T_75 = ~_out_T_72; // @[Plic.scala:298:{19,33}] wire [1:0] _GEN_1 = {1'h0, completerDev}; // @[Plic.scala:269:28, :301:51] wire [1:0] _out_completer_1_T = enableVec0_1 >> _GEN_1; // @[Plic.scala:183:29, :301:51] wire _out_completer_1_T_1 = _out_completer_1_T[0]; // @[Plic.scala:301:51] assign _out_completer_1_T_2 = out_f_woready_6 & _out_completer_1_T_1; // @[RegisterRouter.scala:87:24] assign completer_1 = _out_completer_1_T_2; // @[Plic.scala:267:25, :301:35] wire _out_T_80 = ~out_rimask_6; // @[RegisterRouter.scala:87:24] wire _out_T_81 = ~out_wimask_6; // @[RegisterRouter.scala:87:24] wire _out_T_82 = ~out_romask_6; // @[RegisterRouter.scala:87:24] wire _out_T_83 = ~out_womask_6; // @[RegisterRouter.scala:87:24] wire [32:0] out_prepend_3 = {maxDevs_1, _out_prepend_T_3}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_84 = {31'h0, out_prepend_3}; // @[RegisterRouter.scala:87:24] wire [63:0] _out_T_85 = _out_T_84; // @[RegisterRouter.scala:87:24] wire out_rimask_7 = _out_rimask_T_7; // @[RegisterRouter.scala:87:24] wire out_wimask_7 = _out_wimask_T_7; // @[RegisterRouter.scala:87:24] wire out_romask_7 = _out_romask_T_7; // @[RegisterRouter.scala:87:24] wire out_womask_7 = _out_womask_T_7; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_7 = out_rivalid_7 & out_rimask_7; // @[RegisterRouter.scala:87:24] wire _out_T_87 = out_f_rivalid_7; // @[RegisterRouter.scala:87:24] wire out_f_roready_7 = out_roready_7 & out_romask_7; // @[RegisterRouter.scala:87:24] wire _out_T_88 = out_f_roready_7; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_7 = out_wivalid_7 & out_wimask_7; // @[RegisterRouter.scala:87:24] wire _out_T_89 = out_f_wivalid_7; // @[RegisterRouter.scala:87:24] wire out_f_woready_7 = out_woready_7 & out_womask_7; // @[RegisterRouter.scala:87:24] wire _out_T_90 = out_f_woready_7; // @[RegisterRouter.scala:87:24] wire _out_T_91 = ~out_rimask_7; // @[RegisterRouter.scala:87:24] wire _out_T_92 = ~out_wimask_7; // @[RegisterRouter.scala:87:24] wire _out_T_93 = ~out_romask_7; // @[RegisterRouter.scala:87:24] wire _out_T_94 = ~out_womask_7; // @[RegisterRouter.scala:87:24] wire _out_T_96 = _out_T_95; // @[RegisterRouter.scala:87:24] wire _out_prepend_T_4 = _out_T_96; // @[RegisterRouter.scala:87:24] wire out_rimask_8 = |_out_rimask_T_8; // @[RegisterRouter.scala:87:24] wire out_wimask_8 = &_out_wimask_T_8; // @[RegisterRouter.scala:87:24] wire out_romask_8 = |_out_romask_T_8; // @[RegisterRouter.scala:87:24] wire out_womask_8 = &_out_womask_T_8; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_8 = out_rivalid_8 & out_rimask_8; // @[RegisterRouter.scala:87:24] wire _out_T_98 = out_f_rivalid_8; // @[RegisterRouter.scala:87:24] wire out_f_roready_8 = out_roready_8 & out_romask_8; // @[RegisterRouter.scala:87:24] wire _out_T_99 = out_f_roready_8; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_8 = out_wivalid_8 & out_wimask_8; // @[RegisterRouter.scala:87:24] wire out_f_woready_8 = out_woready_8 & out_womask_8; // @[RegisterRouter.scala:87:24] wire _out_T_100 = ~out_rimask_8; // @[RegisterRouter.scala:87:24] wire _out_T_101 = ~out_wimask_8; // @[RegisterRouter.scala:87:24] wire _out_T_102 = ~out_romask_8; // @[RegisterRouter.scala:87:24] wire _out_T_103 = ~out_womask_8; // @[RegisterRouter.scala:87:24] wire [1:0] out_prepend_4 = {1'h0, _out_prepend_T_4}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_104 = {30'h0, out_prepend_4}; // @[RegisterRouter.scala:87:24] wire [31:0] _out_T_105 = _out_T_104; // @[RegisterRouter.scala:87:24] wire [31:0] _out_prepend_T_5 = _out_T_105; // @[RegisterRouter.scala:87:24] wire out_rimask_9 = |_out_rimask_T_9; // @[RegisterRouter.scala:87:24] wire out_wimask_9 = &_out_wimask_T_9; // @[RegisterRouter.scala:87:24] wire out_romask_9 = |_out_romask_T_9; // @[RegisterRouter.scala:87:24] wire out_womask_9 = &_out_womask_T_9; // @[RegisterRouter.scala:87:24] wire out_f_rivalid_9 = out_rivalid_9 & out_rimask_9; // @[RegisterRouter.scala:87:24] wire _out_T_112 = out_f_rivalid_9; // @[RegisterRouter.scala:87:24] assign out_f_roready_9 = out_roready_9 & out_romask_9; // @[RegisterRouter.scala:87:24] assign claimer_0 = out_f_roready_9; // @[RegisterRouter.scala:87:24] wire _out_T_113 = out_f_roready_9; // @[RegisterRouter.scala:87:24] wire out_f_wivalid_9 = out_wivalid_9 & out_wimask_9; // @[RegisterRouter.scala:87:24] wire _out_T_114 = out_f_wivalid_9; // @[RegisterRouter.scala:87:24] wire out_f_woready_9 = out_woready_9 & out_womask_9; // @[RegisterRouter.scala:87:24] wire _out_T_115 = out_f_woready_9; // @[RegisterRouter.scala:87:24] wire _out_T_107 = _out_T_106[0]; // @[package.scala:163:13] assign _out_completerDev_T_1 = _out_T_106[0]; // @[package.scala:163:13] wire _out_T_108 = completerDev == _out_T_107; // @[package.scala:163:13] wire _out_T_110 = ~_out_T_109; // @[Plic.scala:298:19] wire _out_T_111 = ~_out_T_108; // @[Plic.scala:298:{19,33}]
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: package constellation.channel import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy._ import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.util._ import constellation.noc.{HasNoCParams} class NoCMonitor(val cParam: ChannelParams)(implicit val p: Parameters) extends Module with HasNoCParams { val io = IO(new Bundle { val in = Input(new Channel(cParam)) }) val in_flight = RegInit(VecInit(Seq.fill(cParam.nVirtualChannels) { false.B })) for (i <- 0 until cParam.srcSpeedup) { val flit = io.in.flit(i) when (flit.valid) { when (flit.bits.head) { in_flight(flit.bits.virt_channel_id) := true.B assert (!in_flight(flit.bits.virt_channel_id), "Flit head/tail sequencing is broken") } when (flit.bits.tail) { in_flight(flit.bits.virt_channel_id) := false.B } } val possibleFlows = cParam.possibleFlows when (flit.valid && flit.bits.head) { cParam match { case n: ChannelParams => n.virtualChannelParams.zipWithIndex.foreach { case (v,i) => assert(flit.bits.virt_channel_id =/= i.U || v.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } case _ => assert(cParam.possibleFlows.toSeq.map(_.isFlow(flit.bits.flow)).orR) } } } } File Types.scala: package constellation.routing import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Parameters} import constellation.noc.{HasNoCParams} import constellation.channel.{Flit} /** A representation for 1 specific virtual channel in wormhole routing * * @param src the source node * @param vc ID for the virtual channel * @param dst the destination node * @param n_vc the number of virtual channels */ // BEGIN: ChannelRoutingInfo case class ChannelRoutingInfo( src: Int, dst: Int, vc: Int, n_vc: Int ) { // END: ChannelRoutingInfo require (src >= -1 && dst >= -1 && vc >= 0, s"Illegal $this") require (!(src == -1 && dst == -1), s"Illegal $this") require (vc < n_vc, s"Illegal $this") val isIngress = src == -1 val isEgress = dst == -1 } /** Represents the properties of a packet that are relevant for routing * ingressId and egressId uniquely identify a flow, but vnet and dst are used here * to simplify the implementation of routingrelations * * @param ingressId packet's source ingress point * @param egressId packet's destination egress point * @param vNet virtual subnetwork identifier * @param dst packet's destination node ID */ // BEGIN: FlowRoutingInfo case class FlowRoutingInfo( ingressId: Int, egressId: Int, vNetId: Int, ingressNode: Int, ingressNodeId: Int, egressNode: Int, egressNodeId: Int, fifo: Boolean ) { // END: FlowRoutingInfo def isFlow(f: FlowRoutingBundle): Bool = { (f.ingress_node === ingressNode.U && f.egress_node === egressNode.U && f.ingress_node_id === ingressNodeId.U && f.egress_node_id === egressNodeId.U) } def asLiteral(b: FlowRoutingBundle): BigInt = { Seq( (vNetId , b.vnet_id), (ingressNode , b.ingress_node), (ingressNodeId , b.ingress_node_id), (egressNode , b.egress_node), (egressNodeId , b.egress_node_id) ).foldLeft(0)((l, t) => { (l << t._2.getWidth) | t._1 }) } } class FlowRoutingBundle(implicit val p: Parameters) extends Bundle with HasNoCParams { // Instead of tracking ingress/egress ID, track the physical destination id and the offset at the destination // This simplifies the routing tables val vnet_id = UInt(log2Ceil(nVirtualNetworks).W) val ingress_node = UInt(log2Ceil(nNodes).W) val ingress_node_id = UInt(log2Ceil(maxIngressesAtNode).W) val egress_node = UInt(log2Ceil(nNodes).W) val egress_node_id = UInt(log2Ceil(maxEgressesAtNode).W) }
module NoCMonitor_7( // @[Monitor.scala:11:7] input clock, // @[Monitor.scala:11:7] input reset, // @[Monitor.scala:11:7] input io_in_flit_0_valid, // @[Monitor.scala:12:14] input io_in_flit_0_bits_head, // @[Monitor.scala:12:14] input io_in_flit_0_bits_tail, // @[Monitor.scala:12:14] input [5:0] io_in_flit_0_bits_flow_ingress_node, // @[Monitor.scala:12:14] input [2:0] io_in_flit_0_bits_flow_ingress_node_id, // @[Monitor.scala:12:14] input [5:0] io_in_flit_0_bits_flow_egress_node, // @[Monitor.scala:12:14] input [2:0] io_in_flit_0_bits_flow_egress_node_id, // @[Monitor.scala:12:14] input [4:0] io_in_flit_0_bits_virt_channel_id // @[Monitor.scala:12:14] ); reg in_flight_0; // @[Monitor.scala:16:26] reg in_flight_1; // @[Monitor.scala:16:26] reg in_flight_2; // @[Monitor.scala:16:26] reg in_flight_3; // @[Monitor.scala:16:26] reg in_flight_4; // @[Monitor.scala:16:26] reg in_flight_5; // @[Monitor.scala:16:26] reg in_flight_6; // @[Monitor.scala:16:26] reg in_flight_7; // @[Monitor.scala:16:26] reg in_flight_8; // @[Monitor.scala:16:26] reg in_flight_9; // @[Monitor.scala:16:26] reg in_flight_10; // @[Monitor.scala:16:26] reg in_flight_11; // @[Monitor.scala:16:26] reg in_flight_12; // @[Monitor.scala:16:26] reg in_flight_13; // @[Monitor.scala:16:26] reg in_flight_14; // @[Monitor.scala:16:26] reg in_flight_15; // @[Monitor.scala:16:26] reg in_flight_16; // @[Monitor.scala:16:26] reg in_flight_17; // @[Monitor.scala:16:26] reg in_flight_18; // @[Monitor.scala:16:26] reg in_flight_19; // @[Monitor.scala:16:26] reg in_flight_20; // @[Monitor.scala:16:26] reg in_flight_21; // @[Monitor.scala:16:26] wire _GEN = io_in_flit_0_bits_virt_channel_id == 5'h0; // @[Monitor.scala:21:46] wire _GEN_0 = io_in_flit_0_bits_virt_channel_id == 5'h1; // @[Monitor.scala:21:46] wire _GEN_1 = io_in_flit_0_bits_virt_channel_id == 5'h2; // @[Monitor.scala:21:46] wire _GEN_2 = io_in_flit_0_bits_virt_channel_id == 5'h3; // @[Monitor.scala:21:46] wire _GEN_3 = io_in_flit_0_bits_virt_channel_id == 5'h4; // @[Monitor.scala:21:46] wire _GEN_4 = io_in_flit_0_bits_virt_channel_id == 5'h5; // @[Monitor.scala:21:46] wire _GEN_5 = io_in_flit_0_bits_virt_channel_id == 5'h6; // @[Monitor.scala:21:46] wire _GEN_6 = io_in_flit_0_bits_virt_channel_id == 5'h7; // @[Monitor.scala:21:46] wire _GEN_7 = io_in_flit_0_bits_virt_channel_id == 5'hA; // @[Monitor.scala:21:46] wire _GEN_8 = io_in_flit_0_bits_virt_channel_id == 5'hB; // @[Monitor.scala:21:46] wire _GEN_9 = io_in_flit_0_bits_virt_channel_id == 5'hE; // @[Monitor.scala:21:46] wire _GEN_10 = io_in_flit_0_bits_virt_channel_id == 5'hF; // @[Monitor.scala:21:46] wire _GEN_11 = io_in_flit_0_bits_virt_channel_id == 5'h10; // @[Monitor.scala:21:46] wire _GEN_12 = io_in_flit_0_bits_virt_channel_id == 5'h11; // @[Monitor.scala:21:46] wire _GEN_13 = io_in_flit_0_bits_virt_channel_id == 5'h12; // @[Monitor.scala:21:46] wire _GEN_14 = io_in_flit_0_bits_virt_channel_id == 5'h13; // @[Monitor.scala:21:46]
Generate the Verilog code corresponding to the following Chisel files. File DescribedSRAM.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3.{Data, SyncReadMem, Vec} import chisel3.util.log2Ceil object DescribedSRAM { def apply[T <: Data]( name: String, desc: String, size: BigInt, // depth data: T ): SyncReadMem[T] = { val mem = SyncReadMem(size, data) mem.suggestName(name) val granWidth = data match { case v: Vec[_] => v.head.getWidth case d => d.getWidth } val uid = 0 Annotated.srams( component = mem, name = name, address_width = log2Ceil(size), data_width = data.getWidth, depth = size, description = desc, write_mask_granularity = granWidth ) mem } }
module array_1_0( // @[DescribedSRAM.scala:17:26] input [7:0] R0_addr, input R0_en, input R0_clk, output [127:0] R0_data, input [7:0] W0_addr, input W0_en, input W0_clk, input [127:0] W0_data, input [1:0] W0_mask ); array_0_0_ext array_0_0_ext ( // @[DescribedSRAM.scala:17:26] .R0_addr (R0_addr), .R0_en (R0_en), .R0_clk (R0_clk), .R0_data (R0_data), .W0_addr (W0_addr), .W0_en (W0_en), .W0_clk (W0_clk), .W0_data (W0_data), .W0_mask (W0_mask) ); // @[DescribedSRAM.scala:17:26] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_346( // @[SynchronizerReg.scala:68:19] input clock, // @[SynchronizerReg.scala:68:19] input reset, // @[SynchronizerReg.scala:68:19] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:68:19] wire _sync_2_T = io_d_0; // @[SynchronizerReg.scala:54:22, :68:19] wire io_q_0; // @[SynchronizerReg.scala:68:19] reg sync_0; // @[SynchronizerReg.scala:51:87] assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19] reg sync_1; // @[SynchronizerReg.scala:51:87] reg sync_2; // @[SynchronizerReg.scala:51:87] always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19] if (reset) begin // @[SynchronizerReg.scala:68:19] sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87] end else begin // @[SynchronizerReg.scala:68:19] sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87] sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87] sync_2 <= _sync_2_T; // @[SynchronizerReg.scala:51:87, :54:22] end always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_36( // @[SynchronizerReg.scala:68:19] input clock, // @[SynchronizerReg.scala:68:19] input reset, // @[SynchronizerReg.scala:68:19] output io_q // @[ShiftReg.scala:36:14] ); wire io_d = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19] wire _sync_2_T = 1'h1; // @[SynchronizerReg.scala:54:22, :68:19] wire io_q_0; // @[SynchronizerReg.scala:68:19] reg sync_0; // @[SynchronizerReg.scala:51:87] assign io_q_0 = sync_0; // @[SynchronizerReg.scala:51:87, :68:19] reg sync_1; // @[SynchronizerReg.scala:51:87] reg sync_2; // @[SynchronizerReg.scala:51:87] always @(posedge clock or posedge reset) begin // @[SynchronizerReg.scala:68:19] if (reset) begin // @[SynchronizerReg.scala:68:19] sync_0 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_1 <= 1'h0; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h0; // @[SynchronizerReg.scala:51:87] end else begin // @[SynchronizerReg.scala:68:19] sync_0 <= sync_1; // @[SynchronizerReg.scala:51:87] sync_1 <= sync_2; // @[SynchronizerReg.scala:51:87] sync_2 <= 1'h1; // @[SynchronizerReg.scala:51:87, :54:22, :68:19] end always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File PE.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ class PEControl[T <: Data : Arithmetic](accType: T) extends Bundle { val dataflow = UInt(1.W) // TODO make this an Enum val propagate = UInt(1.W) // Which register should be propagated (and which should be accumulated)? val shift = UInt(log2Up(accType.getWidth).W) // TODO this isn't correct for Floats } class MacUnit[T <: Data](inputType: T, cType: T, dType: T) (implicit ev: Arithmetic[T]) extends Module { import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(inputType) val in_c = Input(cType) val out_d = Output(dType) }) io.out_d := io.in_c.mac(io.in_a, io.in_b) } // TODO update documentation /** * A PE implementing a MAC operation. Configured as fully combinational when integrated into a Mesh. * @param width Data width of operands */ class PE[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, max_simultaneous_matmuls: Int) (implicit ev: Arithmetic[T]) extends Module { // Debugging variables import ev._ val io = IO(new Bundle { val in_a = Input(inputType) val in_b = Input(outputType) val in_d = Input(outputType) val out_a = Output(inputType) val out_b = Output(outputType) val out_c = Output(outputType) val in_control = Input(new PEControl(accType)) val out_control = Output(new PEControl(accType)) val in_id = Input(UInt(log2Up(max_simultaneous_matmuls).W)) val out_id = Output(UInt(log2Up(max_simultaneous_matmuls).W)) val in_last = Input(Bool()) val out_last = Output(Bool()) val in_valid = Input(Bool()) val out_valid = Output(Bool()) val bad_dataflow = Output(Bool()) }) val cType = if (df == Dataflow.WS) inputType else accType // When creating PEs that support multiple dataflows, the // elaboration/synthesis tools often fail to consolidate and de-duplicate // MAC units. To force mac circuitry to be re-used, we create a "mac_unit" // module here which just performs a single MAC operation val mac_unit = Module(new MacUnit(inputType, if (df == Dataflow.WS) outputType else accType, outputType)) val a = io.in_a val b = io.in_b val d = io.in_d val c1 = Reg(cType) val c2 = Reg(cType) val dataflow = io.in_control.dataflow val prop = io.in_control.propagate val shift = io.in_control.shift val id = io.in_id val last = io.in_last val valid = io.in_valid io.out_a := a io.out_control.dataflow := dataflow io.out_control.propagate := prop io.out_control.shift := shift io.out_id := id io.out_last := last io.out_valid := valid mac_unit.io.in_a := a val last_s = RegEnable(prop, valid) val flip = last_s =/= prop val shift_offset = Mux(flip, shift, 0.U) // Which dataflow are we using? val OUTPUT_STATIONARY = Dataflow.OS.id.U(1.W) val WEIGHT_STATIONARY = Dataflow.WS.id.U(1.W) // Is c1 being computed on, or propagated forward (in the output-stationary dataflow)? val COMPUTE = 0.U(1.W) val PROPAGATE = 1.U(1.W) io.bad_dataflow := false.B when ((df == Dataflow.OS).B || ((df == Dataflow.BOTH).B && dataflow === OUTPUT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := (c1 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 c2 := mac_unit.io.out_d c1 := d.withWidthOf(cType) }.otherwise { io.out_c := (c2 >> shift_offset).clippedToWidthOf(outputType) io.out_b := b mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c1 c1 := mac_unit.io.out_d c2 := d.withWidthOf(cType) } }.elsewhen ((df == Dataflow.WS).B || ((df == Dataflow.BOTH).B && dataflow === WEIGHT_STATIONARY)) { when(prop === PROPAGATE) { io.out_c := c1 mac_unit.io.in_b := c2.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c1 := d }.otherwise { io.out_c := c2 mac_unit.io.in_b := c1.asTypeOf(inputType) mac_unit.io.in_c := b io.out_b := mac_unit.io.out_d c2 := d } }.otherwise { io.bad_dataflow := true.B //assert(false.B, "unknown dataflow") io.out_c := DontCare io.out_b := DontCare mac_unit.io.in_b := b.asTypeOf(inputType) mac_unit.io.in_c := c2 } when (!valid) { c1 := c1 c2 := c2 mac_unit.io.in_b := DontCare mac_unit.io.in_c := DontCare } } File Arithmetic.scala: // A simple type class for Chisel datatypes that can add and multiply. To add your own type, simply create your own: // implicit MyTypeArithmetic extends Arithmetic[MyType] { ... } package gemmini import chisel3._ import chisel3.util._ import hardfloat._ // Bundles that represent the raw bits of custom datatypes case class Float(expWidth: Int, sigWidth: Int) extends Bundle { val bits = UInt((expWidth + sigWidth).W) val bias: Int = (1 << (expWidth-1)) - 1 } case class DummySInt(w: Int) extends Bundle { val bits = UInt(w.W) def dontCare: DummySInt = { val o = Wire(new DummySInt(w)) o.bits := 0.U o } } // The Arithmetic typeclass which implements various arithmetic operations on custom datatypes abstract class Arithmetic[T <: Data] { implicit def cast(t: T): ArithmeticOps[T] } abstract class ArithmeticOps[T <: Data](self: T) { def *(t: T): T def mac(m1: T, m2: T): T // Returns (m1 * m2 + self) def +(t: T): T def -(t: T): T def >>(u: UInt): T // This is a rounding shift! Rounds away from 0 def >(t: T): Bool def identity: T def withWidthOf(t: T): T def clippedToWidthOf(t: T): T // Like "withWidthOf", except that it saturates def relu: T def zero: T def minimum: T // Optional parameters, which only need to be defined if you want to enable various optimizations for transformers def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[T])] = None def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = None def mult_with_reciprocal[U <: Data](reciprocal: U) = self } object Arithmetic { implicit object UIntArithmetic extends Arithmetic[UInt] { override implicit def cast(self: UInt) = new ArithmeticOps(self) { override def *(t: UInt) = self * t override def mac(m1: UInt, m2: UInt) = m1 * m2 + self override def +(t: UInt) = self + t override def -(t: UInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = point_five & (zeros | ones_digit) (self >> u).asUInt + r } override def >(t: UInt): Bool = self > t override def withWidthOf(t: UInt) = self.asTypeOf(t) override def clippedToWidthOf(t: UInt) = { val sat = ((1 << (t.getWidth-1))-1).U Mux(self > sat, sat, self)(t.getWidth-1, 0) } override def relu: UInt = self override def zero: UInt = 0.U override def identity: UInt = 1.U override def minimum: UInt = 0.U } } implicit object SIntArithmetic extends Arithmetic[SInt] { override implicit def cast(self: SInt) = new ArithmeticOps(self) { override def *(t: SInt) = self * t override def mac(m1: SInt, m2: SInt) = m1 * m2 + self override def +(t: SInt) = self + t override def -(t: SInt) = self - t override def >>(u: UInt) = { // The equation we use can be found here: https://riscv.github.io/documents/riscv-v-spec/#_vector_fixed_point_rounding_mode_register_vxrm // TODO Do we need to explicitly handle the cases where "u" is a small number (like 0)? What is the default behavior here? val point_five = Mux(u === 0.U, 0.U, self(u - 1.U)) val zeros = Mux(u <= 1.U, 0.U, self.asUInt & ((1.U << (u - 1.U)).asUInt - 1.U)) =/= 0.U val ones_digit = self(u) val r = (point_five & (zeros | ones_digit)).asBool (self >> u).asSInt + Mux(r, 1.S, 0.S) } override def >(t: SInt): Bool = self > t override def withWidthOf(t: SInt) = { if (self.getWidth >= t.getWidth) self(t.getWidth-1, 0).asSInt else { val sign_bits = t.getWidth - self.getWidth val sign = self(self.getWidth-1) Cat(Cat(Seq.fill(sign_bits)(sign)), self).asTypeOf(t) } } override def clippedToWidthOf(t: SInt): SInt = { val maxsat = ((1 << (t.getWidth-1))-1).S val minsat = (-(1 << (t.getWidth-1))).S MuxCase(self, Seq((self > maxsat) -> maxsat, (self < minsat) -> minsat))(t.getWidth-1, 0).asSInt } override def relu: SInt = Mux(self >= 0.S, self, 0.S) override def zero: SInt = 0.S override def identity: SInt = 1.S override def minimum: SInt = (-(1 << (self.getWidth-1))).S override def divider(denom_t: UInt, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(denom_t.cloneType)) val output = Wire(Decoupled(self.cloneType)) // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def sin_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def uin_to_float(x: UInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := x in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = sin_to_float(self) val denom_rec = uin_to_float(input.bits) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := self_rec divider.io.b := denom_rec divider.io.roundingMode := consts.round_minMag divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := float_to_in(divider.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def sqrt: Option[(DecoupledIO[UInt], DecoupledIO[SInt])] = { // TODO this uses a floating point divider, but we should use an integer divider instead val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(self.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider val expWidth = log2Up(self.getWidth) + 1 val sigWidth = self.getWidth def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_minMag // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag // consts.round_near_maxMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) // Instantiate the hardloat sqrt val sqrter = Module(new DivSqrtRecFN_small(expWidth, sigWidth, 0)) input.ready := sqrter.io.inReady sqrter.io.inValid := input.valid sqrter.io.sqrtOp := true.B sqrter.io.a := self_rec sqrter.io.b := DontCare sqrter.io.roundingMode := consts.round_minMag sqrter.io.detectTininess := consts.tininess_afterRounding output.valid := sqrter.io.outValid_sqrt output.bits := float_to_in(sqrter.io.out) assert(!output.valid || output.ready) Some((input, output)) } override def reciprocal[U <: Data](u: U, options: Int = 0): Option[(DecoupledIO[UInt], DecoupledIO[U])] = u match { case Float(expWidth, sigWidth) => val input = Wire(Decoupled(UInt(0.W))) val output = Wire(Decoupled(u.cloneType)) input.bits := DontCare // We translate our integer to floating-point form so that we can use the hardfloat divider def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } val self_rec = in_to_float(self) val one_rec = in_to_float(1.S) // Instantiate the hardloat divider val divider = Module(new DivSqrtRecFN_small(expWidth, sigWidth, options)) input.ready := divider.io.inReady divider.io.inValid := input.valid divider.io.sqrtOp := false.B divider.io.a := one_rec divider.io.b := self_rec divider.io.roundingMode := consts.round_near_even divider.io.detectTininess := consts.tininess_afterRounding output.valid := divider.io.outValid_div output.bits := fNFromRecFN(expWidth, sigWidth, divider.io.out).asTypeOf(u) assert(!output.valid || output.ready) Some((input, output)) case _ => None } override def mult_with_reciprocal[U <: Data](reciprocal: U): SInt = reciprocal match { case recip @ Float(expWidth, sigWidth) => def in_to_float(x: SInt) = { val in_to_rec_fn = Module(new INToRecFN(intWidth = self.getWidth, expWidth, sigWidth)) in_to_rec_fn.io.signedIn := true.B in_to_rec_fn.io.in := x.asUInt in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding in_to_rec_fn.io.out } def float_to_in(x: UInt) = { val rec_fn_to_in = Module(new RecFNToIN(expWidth = expWidth, sigWidth, self.getWidth)) rec_fn_to_in.io.signedOut := true.B rec_fn_to_in.io.in := x rec_fn_to_in.io.roundingMode := consts.round_minMag rec_fn_to_in.io.out.asSInt } val self_rec = in_to_float(self) val reciprocal_rec = recFNFromFN(expWidth, sigWidth, recip.bits) // Instantiate the hardloat divider val muladder = Module(new MulRecFN(expWidth, sigWidth)) muladder.io.roundingMode := consts.round_near_even muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := reciprocal_rec float_to_in(muladder.io.out) case _ => self } } } implicit object FloatArithmetic extends Arithmetic[Float] { // TODO Floating point arithmetic currently switches between recoded and standard formats for every operation. However, it should stay in the recoded format as it travels through the systolic array override implicit def cast(self: Float): ArithmeticOps[Float] = new ArithmeticOps(self) { override def *(t: Float): Float = { val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := t_rec_resized val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def mac(m1: Float, m2: Float): Float = { // Recode all operands val m1_rec = recFNFromFN(m1.expWidth, m1.sigWidth, m1.bits) val m2_rec = recFNFromFN(m2.expWidth, m2.sigWidth, m2.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize m1 to self's width val m1_resizer = Module(new RecFNToRecFN(m1.expWidth, m1.sigWidth, self.expWidth, self.sigWidth)) m1_resizer.io.in := m1_rec m1_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m1_resizer.io.detectTininess := consts.tininess_afterRounding val m1_rec_resized = m1_resizer.io.out // Resize m2 to self's width val m2_resizer = Module(new RecFNToRecFN(m2.expWidth, m2.sigWidth, self.expWidth, self.sigWidth)) m2_resizer.io.in := m2_rec m2_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag m2_resizer.io.detectTininess := consts.tininess_afterRounding val m2_rec_resized = m2_resizer.io.out // Perform multiply-add val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := m1_rec_resized muladder.io.b := m2_rec_resized muladder.io.c := self_rec // Convert result to standard format // TODO remove these intermediate recodings val out = Wire(Float(self.expWidth, self.sigWidth)) out.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) out } override def +(t: Float): Float = { require(self.getWidth >= t.getWidth) // This just makes it easier to write the resizing code // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Generate 1 as a float val in_to_rec_fn = Module(new INToRecFN(1, self.expWidth, self.sigWidth)) in_to_rec_fn.io.signedIn := false.B in_to_rec_fn.io.in := 1.U in_to_rec_fn.io.roundingMode := consts.round_near_even // consts.round_near_maxMag in_to_rec_fn.io.detectTininess := consts.tininess_afterRounding val one_rec = in_to_rec_fn.io.out // Resize t val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out // Perform addition val muladder = Module(new MulAddRecFN(self.expWidth, self.sigWidth)) muladder.io.op := 0.U muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := t_rec_resized muladder.io.b := one_rec muladder.io.c := self_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def -(t: Float): Float = { val t_sgn = t.bits(t.getWidth-1) val neg_t = Cat(~t_sgn, t.bits(t.getWidth-2,0)).asTypeOf(t) self + neg_t } override def >>(u: UInt): Float = { // Recode self val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Get 2^(-u) as a recoded float val shift_exp = Wire(UInt(self.expWidth.W)) shift_exp := self.bias.U - u val shift_fn = Cat(0.U(1.W), shift_exp, 0.U((self.sigWidth-1).W)) val shift_rec = recFNFromFN(self.expWidth, self.sigWidth, shift_fn) assert(shift_exp =/= 0.U, "scaling by denormalized numbers is not currently supported") // Multiply self and 2^(-u) val muladder = Module(new MulRecFN(self.expWidth, self.sigWidth)) muladder.io.roundingMode := consts.round_near_even // consts.round_near_maxMag muladder.io.detectTininess := consts.tininess_afterRounding muladder.io.a := self_rec muladder.io.b := shift_rec val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := fNFromRecFN(self.expWidth, self.sigWidth, muladder.io.out) result } override def >(t: Float): Bool = { // Recode all operands val t_rec = recFNFromFN(t.expWidth, t.sigWidth, t.bits) val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) // Resize t to self's width val t_resizer = Module(new RecFNToRecFN(t.expWidth, t.sigWidth, self.expWidth, self.sigWidth)) t_resizer.io.in := t_rec t_resizer.io.roundingMode := consts.round_near_even t_resizer.io.detectTininess := consts.tininess_afterRounding val t_rec_resized = t_resizer.io.out val comparator = Module(new CompareRecFN(self.expWidth, self.sigWidth)) comparator.io.a := self_rec comparator.io.b := t_rec_resized comparator.io.signaling := false.B comparator.io.gt } override def withWidthOf(t: Float): Float = { val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def clippedToWidthOf(t: Float): Float = { // TODO check for overflow. Right now, we just assume that overflow doesn't happen val self_rec = recFNFromFN(self.expWidth, self.sigWidth, self.bits) val resizer = Module(new RecFNToRecFN(self.expWidth, self.sigWidth, t.expWidth, t.sigWidth)) resizer.io.in := self_rec resizer.io.roundingMode := consts.round_near_even // consts.round_near_maxMag resizer.io.detectTininess := consts.tininess_afterRounding val result = Wire(Float(t.expWidth, t.sigWidth)) result.bits := fNFromRecFN(t.expWidth, t.sigWidth, resizer.io.out) result } override def relu: Float = { val raw = rawFloatFromFN(self.expWidth, self.sigWidth, self.bits) val result = Wire(Float(self.expWidth, self.sigWidth)) result.bits := Mux(!raw.isZero && raw.sign, 0.U, self.bits) result } override def zero: Float = 0.U.asTypeOf(self) override def identity: Float = Cat(0.U(2.W), ~(0.U((self.expWidth-1).W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) override def minimum: Float = Cat(1.U, ~(0.U(self.expWidth.W)), 0.U((self.sigWidth-1).W)).asTypeOf(self) } } implicit object DummySIntArithmetic extends Arithmetic[DummySInt] { override implicit def cast(self: DummySInt) = new ArithmeticOps(self) { override def *(t: DummySInt) = self.dontCare override def mac(m1: DummySInt, m2: DummySInt) = self.dontCare override def +(t: DummySInt) = self.dontCare override def -(t: DummySInt) = self.dontCare override def >>(t: UInt) = self.dontCare override def >(t: DummySInt): Bool = false.B override def identity = self.dontCare override def withWidthOf(t: DummySInt) = self.dontCare override def clippedToWidthOf(t: DummySInt) = self.dontCare override def relu = self.dontCare override def zero = self.dontCare override def minimum: DummySInt = self.dontCare } } }
module MacUnit_92( // @[PE.scala:14:7] input clock, // @[PE.scala:14:7] input reset, // @[PE.scala:14:7] input [7:0] io_in_a, // @[PE.scala:16:14] input [7:0] io_in_b, // @[PE.scala:16:14] input [19:0] io_in_c, // @[PE.scala:16:14] output [19:0] io_out_d // @[PE.scala:16:14] ); wire [7:0] io_in_a_0 = io_in_a; // @[PE.scala:14:7] wire [7:0] io_in_b_0 = io_in_b; // @[PE.scala:14:7] wire [19:0] io_in_c_0 = io_in_c; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_3; // @[Arithmetic.scala:93:54] wire [19:0] io_out_d_0; // @[PE.scala:14:7] wire [15:0] _io_out_d_T = {{8{io_in_a_0[7]}}, io_in_a_0} * {{8{io_in_b_0[7]}}, io_in_b_0}; // @[PE.scala:14:7] wire [20:0] _io_out_d_T_1 = {{5{_io_out_d_T[15]}}, _io_out_d_T} + {io_in_c_0[19], io_in_c_0}; // @[PE.scala:14:7] wire [19:0] _io_out_d_T_2 = _io_out_d_T_1[19:0]; // @[Arithmetic.scala:93:54] assign _io_out_d_T_3 = _io_out_d_T_2; // @[Arithmetic.scala:93:54] assign io_out_d_0 = _io_out_d_T_3; // @[PE.scala:14:7] assign io_out_d = io_out_d_0; // @[PE.scala:14:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File UnsafeAXI4ToTL.scala: package ara import chisel3._ import chisel3.util._ import freechips.rocketchip.amba._ import freechips.rocketchip.amba.axi4._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ class ReorderData(val dataWidth: Int, val respWidth: Int, val userFields: Seq[BundleFieldBase]) extends Bundle { val data = UInt(dataWidth.W) val resp = UInt(respWidth.W) val last = Bool() val user = BundleMap(userFields) } /** Parameters for [[BaseReservableListBuffer]] and all child classes. * * @param numEntries Total number of elements that can be stored in the 'data' RAM * @param numLists Maximum number of linked lists * @param numBeats Maximum number of beats per entry */ case class ReservableListBufferParameters(numEntries: Int, numLists: Int, numBeats: Int) { // Avoid zero-width wires when we call 'log2Ceil' val entryBits = if (numEntries == 1) 1 else log2Ceil(numEntries) val listBits = if (numLists == 1) 1 else log2Ceil(numLists) val beatBits = if (numBeats == 1) 1 else log2Ceil(numBeats) } case class UnsafeAXI4ToTLNode(numTlTxns: Int, wcorrupt: Boolean)(implicit valName: ValName) extends MixedAdapterNode(AXI4Imp, TLImp)( dFn = { case mp => TLMasterPortParameters.v2( masters = mp.masters.zipWithIndex.map { case (m, i) => // Support 'numTlTxns' read requests and 'numTlTxns' write requests at once. val numSourceIds = numTlTxns * 2 TLMasterParameters.v2( name = m.name, sourceId = IdRange(i * numSourceIds, (i + 1) * numSourceIds), nodePath = m.nodePath ) }, echoFields = mp.echoFields, requestFields = AMBAProtField() +: mp.requestFields, responseKeys = mp.responseKeys ) }, uFn = { mp => AXI4SlavePortParameters( slaves = mp.managers.map { m => val maxXfer = TransferSizes(1, mp.beatBytes * (1 << AXI4Parameters.lenBits)) AXI4SlaveParameters( address = m.address, resources = m.resources, regionType = m.regionType, executable = m.executable, nodePath = m.nodePath, supportsWrite = m.supportsPutPartial.intersect(maxXfer), supportsRead = m.supportsGet.intersect(maxXfer), interleavedId = Some(0) // TL2 never interleaves D beats ) }, beatBytes = mp.beatBytes, minLatency = mp.minLatency, responseFields = mp.responseFields, requestKeys = (if (wcorrupt) Seq(AMBACorrupt) else Seq()) ++ mp.requestKeys.filter(_ != AMBAProt) ) } ) class UnsafeAXI4ToTL(numTlTxns: Int, wcorrupt: Boolean)(implicit p: Parameters) extends LazyModule { require(numTlTxns >= 1) require(isPow2(numTlTxns), s"Number of TileLink transactions ($numTlTxns) must be a power of 2") val node = UnsafeAXI4ToTLNode(numTlTxns, wcorrupt) lazy val module = new LazyModuleImp(this) { (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => edgeIn.master.masters.foreach { m => require(m.aligned, "AXI4ToTL requires aligned requests") } val numIds = edgeIn.master.endId val beatBytes = edgeOut.slave.beatBytes val maxTransfer = edgeOut.slave.maxTransfer val maxBeats = maxTransfer / beatBytes // Look for an Error device to redirect bad requests val errorDevs = edgeOut.slave.managers.filter(_.nodePath.last.lazyModule.className == "TLError") require(!errorDevs.isEmpty, "There is no TLError reachable from AXI4ToTL. One must be instantiated.") val errorDev = errorDevs.maxBy(_.maxTransfer) val errorDevAddr = errorDev.address.head.base require( errorDev.supportsPutPartial.contains(maxTransfer), s"Error device supports ${errorDev.supportsPutPartial} PutPartial but must support $maxTransfer" ) require( errorDev.supportsGet.contains(maxTransfer), s"Error device supports ${errorDev.supportsGet} Get but must support $maxTransfer" ) // All of the read-response reordering logic. val listBufData = new ReorderData(beatBytes * 8, edgeIn.bundle.respBits, out.d.bits.user.fields) val listBufParams = ReservableListBufferParameters(numTlTxns, numIds, maxBeats) val listBuffer = if (numTlTxns > 1) { Module(new ReservableListBuffer(listBufData, listBufParams)) } else { Module(new PassthroughListBuffer(listBufData, listBufParams)) } // To differentiate between read and write transaction IDs, we will set the MSB of the TileLink 'source' field to // 0 for read requests and 1 for write requests. val isReadSourceBit = 0.U(1.W) val isWriteSourceBit = 1.U(1.W) /* Read request logic */ val rOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val rBytes1 = in.ar.bits.bytes1() val rSize = OH1ToUInt(rBytes1) val rOk = edgeOut.slave.supportsGetSafe(in.ar.bits.addr, rSize) val rId = if (numTlTxns > 1) { Cat(isReadSourceBit, listBuffer.ioReservedIndex) } else { isReadSourceBit } val rAddr = Mux(rOk, in.ar.bits.addr, errorDevAddr.U | in.ar.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Indicates if there are still valid TileLink source IDs left to use. val canIssueR = listBuffer.ioReserve.ready listBuffer.ioReserve.bits := in.ar.bits.id listBuffer.ioReserve.valid := in.ar.valid && rOut.ready in.ar.ready := rOut.ready && canIssueR rOut.valid := in.ar.valid && canIssueR rOut.bits :<= edgeOut.Get(rId, rAddr, rSize)._2 rOut.bits.user :<= in.ar.bits.user rOut.bits.user.lift(AMBAProt).foreach { rProt => rProt.privileged := in.ar.bits.prot(0) rProt.secure := !in.ar.bits.prot(1) rProt.fetch := in.ar.bits.prot(2) rProt.bufferable := in.ar.bits.cache(0) rProt.modifiable := in.ar.bits.cache(1) rProt.readalloc := in.ar.bits.cache(2) rProt.writealloc := in.ar.bits.cache(3) } /* Write request logic */ // Strip off the MSB, which identifies the transaction as read vs write. val strippedResponseSourceId = if (numTlTxns > 1) { out.d.bits.source((out.d.bits.source).getWidth - 2, 0) } else { // When there's only 1 TileLink transaction allowed for read/write, then this field is always 0. 0.U(1.W) } // Track when a write request burst is in progress. val writeBurstBusy = RegInit(false.B) when(in.w.fire) { writeBurstBusy := !in.w.bits.last } val usedWriteIds = RegInit(0.U(numTlTxns.W)) val canIssueW = !usedWriteIds.andR val usedWriteIdsSet = WireDefault(0.U(numTlTxns.W)) val usedWriteIdsClr = WireDefault(0.U(numTlTxns.W)) usedWriteIds := (usedWriteIds & ~usedWriteIdsClr) | usedWriteIdsSet // Since write responses can show up in the middle of a write burst, we need to ensure the write burst ID doesn't // change mid-burst. val freeWriteIdOHRaw = Wire(UInt(numTlTxns.W)) val freeWriteIdOH = freeWriteIdOHRaw holdUnless !writeBurstBusy val freeWriteIdIndex = OHToUInt(freeWriteIdOH) freeWriteIdOHRaw := ~(leftOR(~usedWriteIds) << 1) & ~usedWriteIds val wOut = Wire(Decoupled(new TLBundleA(edgeOut.bundle))) val wBytes1 = in.aw.bits.bytes1() val wSize = OH1ToUInt(wBytes1) val wOk = edgeOut.slave.supportsPutPartialSafe(in.aw.bits.addr, wSize) val wId = if (numTlTxns > 1) { Cat(isWriteSourceBit, freeWriteIdIndex) } else { isWriteSourceBit } val wAddr = Mux(wOk, in.aw.bits.addr, errorDevAddr.U | in.aw.bits.addr(log2Ceil(beatBytes) - 1, 0)) // Here, we're taking advantage of the Irrevocable behavior of AXI4 (once 'valid' is asserted it must remain // asserted until the handshake occurs). We will only accept W-channel beats when we have a valid AW beat, but // the AW-channel beat won't fire until the final W-channel beat fires. So, we have stable address/size/strb // bits during a W-channel burst. in.aw.ready := wOut.ready && in.w.valid && in.w.bits.last && canIssueW in.w.ready := wOut.ready && in.aw.valid && canIssueW wOut.valid := in.aw.valid && in.w.valid && canIssueW wOut.bits :<= edgeOut.Put(wId, wAddr, wSize, in.w.bits.data, in.w.bits.strb)._2 in.w.bits.user.lift(AMBACorrupt).foreach { wOut.bits.corrupt := _ } wOut.bits.user :<= in.aw.bits.user wOut.bits.user.lift(AMBAProt).foreach { wProt => wProt.privileged := in.aw.bits.prot(0) wProt.secure := !in.aw.bits.prot(1) wProt.fetch := in.aw.bits.prot(2) wProt.bufferable := in.aw.bits.cache(0) wProt.modifiable := in.aw.bits.cache(1) wProt.readalloc := in.aw.bits.cache(2) wProt.writealloc := in.aw.bits.cache(3) } // Merge the AXI4 read/write requests into the TL-A channel. TLArbiter(TLArbiter.roundRobin)(out.a, (0.U, rOut), (in.aw.bits.len, wOut)) /* Read/write response logic */ val okB = Wire(Irrevocable(new AXI4BundleB(edgeIn.bundle))) val okR = Wire(Irrevocable(new AXI4BundleR(edgeIn.bundle))) val dResp = Mux(out.d.bits.denied || out.d.bits.corrupt, AXI4Parameters.RESP_SLVERR, AXI4Parameters.RESP_OKAY) val dHasData = edgeOut.hasData(out.d.bits) val (_dFirst, dLast, _dDone, dCount) = edgeOut.count(out.d) val dNumBeats1 = edgeOut.numBeats1(out.d.bits) // Handle cases where writeack arrives before write is done val writeEarlyAck = (UIntToOH(strippedResponseSourceId) & usedWriteIds) === 0.U out.d.ready := Mux(dHasData, listBuffer.ioResponse.ready, okB.ready && !writeEarlyAck) listBuffer.ioDataOut.ready := okR.ready okR.valid := listBuffer.ioDataOut.valid okB.valid := out.d.valid && !dHasData && !writeEarlyAck listBuffer.ioResponse.valid := out.d.valid && dHasData listBuffer.ioResponse.bits.index := strippedResponseSourceId listBuffer.ioResponse.bits.data.data := out.d.bits.data listBuffer.ioResponse.bits.data.resp := dResp listBuffer.ioResponse.bits.data.last := dLast listBuffer.ioResponse.bits.data.user :<= out.d.bits.user listBuffer.ioResponse.bits.count := dCount listBuffer.ioResponse.bits.numBeats1 := dNumBeats1 okR.bits.id := listBuffer.ioDataOut.bits.listIndex okR.bits.data := listBuffer.ioDataOut.bits.payload.data okR.bits.resp := listBuffer.ioDataOut.bits.payload.resp okR.bits.last := listBuffer.ioDataOut.bits.payload.last okR.bits.user :<= listBuffer.ioDataOut.bits.payload.user // Upon the final beat in a write request, record a mapping from TileLink source ID to AXI write ID. Upon a write // response, mark the write transaction as complete. val writeIdMap = Mem(numTlTxns, UInt(log2Ceil(numIds).W)) val writeResponseId = writeIdMap.read(strippedResponseSourceId) when(wOut.fire) { writeIdMap.write(freeWriteIdIndex, in.aw.bits.id) } when(edgeOut.done(wOut)) { usedWriteIdsSet := freeWriteIdOH } when(okB.fire) { usedWriteIdsClr := UIntToOH(strippedResponseSourceId, numTlTxns) } okB.bits.id := writeResponseId okB.bits.resp := dResp okB.bits.user :<= out.d.bits.user // AXI4 needs irrevocable behaviour in.r <> Queue.irrevocable(okR, 1, flow = true) in.b <> Queue.irrevocable(okB, 1, flow = true) // Unused channels out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B /* Alignment constraints. The AXI4Fragmenter should guarantee all of these constraints. */ def checkRequest[T <: AXI4BundleA](a: IrrevocableIO[T], reqType: String): Unit = { val lReqType = reqType.toLowerCase when(a.valid) { assert(a.bits.len < maxBeats.U, s"$reqType burst length (%d) must be less than $maxBeats", a.bits.len + 1.U) // Narrow transfers and FIXED bursts must be single-beat bursts. when(a.bits.len =/= 0.U) { assert( a.bits.size === log2Ceil(beatBytes).U, s"Narrow $lReqType transfers (%d < $beatBytes bytes) can't be multi-beat bursts (%d beats)", 1.U << a.bits.size, a.bits.len + 1.U ) assert( a.bits.burst =/= AXI4Parameters.BURST_FIXED, s"Fixed $lReqType bursts can't be multi-beat bursts (%d beats)", a.bits.len + 1.U ) } // Furthermore, the transfer size (a.bits.bytes1() + 1.U) must be naturally-aligned to the address (in // particular, during both WRAP and INCR bursts), but this constraint is already checked by TileLink // Monitors. Note that this alignment requirement means that WRAP bursts are identical to INCR bursts. } } checkRequest(in.ar, "Read") checkRequest(in.aw, "Write") } } } object UnsafeAXI4ToTL { def apply(numTlTxns: Int = 1, wcorrupt: Boolean = true)(implicit p: Parameters) = { val axi42tl = LazyModule(new UnsafeAXI4ToTL(numTlTxns, wcorrupt)) axi42tl.node } } /* ReservableListBuffer logic, and associated classes. */ class ResponsePayload[T <: Data](val data: T, val params: ReservableListBufferParameters) extends Bundle { val index = UInt(params.entryBits.W) val count = UInt(params.beatBits.W) val numBeats1 = UInt(params.beatBits.W) } class DataOutPayload[T <: Data](val payload: T, val params: ReservableListBufferParameters) extends Bundle { val listIndex = UInt(params.listBits.W) } /** Abstract base class to unify [[ReservableListBuffer]] and [[PassthroughListBuffer]]. */ abstract class BaseReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends Module { require(params.numEntries > 0) require(params.numLists > 0) val ioReserve = IO(Flipped(Decoupled(UInt(params.listBits.W)))) val ioReservedIndex = IO(Output(UInt(params.entryBits.W))) val ioResponse = IO(Flipped(Decoupled(new ResponsePayload(gen, params)))) val ioDataOut = IO(Decoupled(new DataOutPayload(gen, params))) } /** A modified version of 'ListBuffer' from 'sifive/block-inclusivecache-sifive'. This module forces users to reserve * linked list entries (through the 'ioReserve' port) before writing data into those linked lists (through the * 'ioResponse' port). Each response is tagged to indicate which linked list it is written into. The responses for a * given linked list can come back out-of-order, but they will be read out through the 'ioDataOut' port in-order. * * ==Constructor== * @param gen Chisel type of linked list data element * @param params Other parameters * * ==Module IO== * @param ioReserve Index of list to reserve a new element in * @param ioReservedIndex Index of the entry that was reserved in the linked list, valid when 'ioReserve.fire' * @param ioResponse Payload containing response data and linked-list-entry index * @param ioDataOut Payload containing data read from response linked list and linked list index */ class ReservableListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { val valid = RegInit(0.U(params.numLists.W)) val head = Mem(params.numLists, UInt(params.entryBits.W)) val tail = Mem(params.numLists, UInt(params.entryBits.W)) val used = RegInit(0.U(params.numEntries.W)) val next = Mem(params.numEntries, UInt(params.entryBits.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val dataMems = Seq.fill(params.numBeats) { SyncReadMem(params.numEntries, gen) } val dataIsPresent = RegInit(0.U(params.numEntries.W)) val beats = Mem(params.numEntries, UInt(params.beatBits.W)) // The 'data' SRAM should be single-ported (read-or-write), since dual-ported SRAMs are significantly slower. val dataMemReadEnable = WireDefault(false.B) val dataMemWriteEnable = WireDefault(false.B) assert(!(dataMemReadEnable && dataMemWriteEnable)) // 'freeOH' has a single bit set, which is the least-significant bit that is cleared in 'used'. So, it's the // lowest-index entry in the 'data' RAM which is free. val freeOH = Wire(UInt(params.numEntries.W)) val freeIndex = OHToUInt(freeOH) freeOH := ~(leftOR(~used) << 1) & ~used ioReservedIndex := freeIndex val validSet = WireDefault(0.U(params.numLists.W)) val validClr = WireDefault(0.U(params.numLists.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) val dataIsPresentSet = WireDefault(0.U(params.numEntries.W)) val dataIsPresentClr = WireDefault(0.U(params.numEntries.W)) valid := (valid & ~validClr) | validSet used := (used & ~usedClr) | usedSet dataIsPresent := (dataIsPresent & ~dataIsPresentClr) | dataIsPresentSet /* Reservation logic signals */ val reserveTail = Wire(UInt(params.entryBits.W)) val reserveIsValid = Wire(Bool()) /* Response logic signals */ val responseIndex = Wire(UInt(params.entryBits.W)) val responseListIndex = Wire(UInt(params.listBits.W)) val responseHead = Wire(UInt(params.entryBits.W)) val responseTail = Wire(UInt(params.entryBits.W)) val nextResponseHead = Wire(UInt(params.entryBits.W)) val nextDataIsPresent = Wire(Bool()) val isResponseInOrder = Wire(Bool()) val isEndOfList = Wire(Bool()) val isLastBeat = Wire(Bool()) val isLastResponseBeat = Wire(Bool()) val isLastUnwindBeat = Wire(Bool()) /* Reservation logic */ reserveTail := tail.read(ioReserve.bits) reserveIsValid := valid(ioReserve.bits) ioReserve.ready := !used.andR // When we want to append-to and destroy the same linked list on the same cycle, we need to take special care that we // actually start a new list, rather than appending to a list that's about to disappear. val reserveResponseSameList = ioReserve.bits === responseListIndex val appendToAndDestroyList = ioReserve.fire && ioDataOut.fire && reserveResponseSameList && isEndOfList && isLastBeat when(ioReserve.fire) { validSet := UIntToOH(ioReserve.bits, params.numLists) usedSet := freeOH when(reserveIsValid && !appendToAndDestroyList) { next.write(reserveTail, freeIndex) }.otherwise { head.write(ioReserve.bits, freeIndex) } tail.write(ioReserve.bits, freeIndex) map.write(freeIndex, ioReserve.bits) } /* Response logic */ // The majority of the response logic (reading from and writing to the various RAMs) is common between the // response-from-IO case (ioResponse.fire) and the response-from-unwind case (unwindDataIsValid). // The read from the 'next' RAM should be performed at the address given by 'responseHead'. However, we only use the // 'nextResponseHead' signal when 'isResponseInOrder' is asserted (both in the response-from-IO and // response-from-unwind cases), which implies that 'responseHead' equals 'responseIndex'. 'responseHead' comes after // two back-to-back RAM reads, so indexing into the 'next' RAM with 'responseIndex' is much quicker. responseHead := head.read(responseListIndex) responseTail := tail.read(responseListIndex) nextResponseHead := next.read(responseIndex) nextDataIsPresent := dataIsPresent(nextResponseHead) // Note that when 'isEndOfList' is asserted, 'nextResponseHead' (and therefore 'nextDataIsPresent') is invalid, since // there isn't a next element in the linked list. isResponseInOrder := responseHead === responseIndex isEndOfList := responseHead === responseTail isLastResponseBeat := ioResponse.bits.count === ioResponse.bits.numBeats1 // When a response's last beat is sent to the output channel, mark it as completed. This can happen in two // situations: // 1. We receive an in-order response, which travels straight from 'ioResponse' to 'ioDataOut'. The 'data' SRAM // reservation was never needed. // 2. An entry is read out of the 'data' SRAM (within the unwind FSM). when(ioDataOut.fire && isLastBeat) { // Mark the reservation as no-longer-used. usedClr := UIntToOH(responseIndex, params.numEntries) // If the response is in-order, then we're popping an element from this linked list. when(isEndOfList) { // Once we pop the last element from a linked list, mark it as no-longer-present. validClr := UIntToOH(responseListIndex, params.numLists) }.otherwise { // Move the linked list's head pointer to the new head pointer. head.write(responseListIndex, nextResponseHead) } } // If we get an out-of-order response, then stash it in the 'data' SRAM for later unwinding. when(ioResponse.fire && !isResponseInOrder) { dataMemWriteEnable := true.B when(isLastResponseBeat) { dataIsPresentSet := UIntToOH(ioResponse.bits.index, params.numEntries) beats.write(ioResponse.bits.index, ioResponse.bits.numBeats1) } } // Use the 'ioResponse.bits.count' index (AKA the beat number) to select which 'data' SRAM to write to. val responseCountOH = UIntToOH(ioResponse.bits.count, params.numBeats) (responseCountOH.asBools zip dataMems) foreach { case (select, seqMem) => when(select && dataMemWriteEnable) { seqMem.write(ioResponse.bits.index, ioResponse.bits.data) } } /* Response unwind logic */ // Unwind FSM state definitions val sIdle :: sUnwinding :: Nil = Enum(2) val unwindState = RegInit(sIdle) val busyUnwinding = unwindState === sUnwinding val startUnwind = Wire(Bool()) val stopUnwind = Wire(Bool()) when(startUnwind) { unwindState := sUnwinding }.elsewhen(stopUnwind) { unwindState := sIdle } assert(!(startUnwind && stopUnwind)) // Start the unwind FSM when there is an old out-of-order response stored in the 'data' SRAM that is now about to // become the next in-order response. As noted previously, when 'isEndOfList' is asserted, 'nextDataIsPresent' is // invalid. // // Note that since an in-order response from 'ioResponse' to 'ioDataOut' starts the unwind FSM, we don't have to // worry about overwriting the 'data' SRAM's output when we start the unwind FSM. startUnwind := ioResponse.fire && isResponseInOrder && isLastResponseBeat && !isEndOfList && nextDataIsPresent // Stop the unwind FSM when the output channel consumes the final beat of an element from the unwind FSM, and one of // two things happens: // 1. We're still waiting for the next in-order response for this list (!nextDataIsPresent) // 2. There are no more outstanding responses in this list (isEndOfList) // // Including 'busyUnwinding' ensures this is a single-cycle pulse, and it never fires while in-order transactions are // passing from 'ioResponse' to 'ioDataOut'. stopUnwind := busyUnwinding && ioDataOut.fire && isLastUnwindBeat && (!nextDataIsPresent || isEndOfList) val isUnwindBurstOver = Wire(Bool()) val startNewBurst = startUnwind || (isUnwindBurstOver && dataMemReadEnable) // Track the number of beats left to unwind for each list entry. At the start of a new burst, we flop the number of // beats in this burst (minus 1) into 'unwindBeats1', and we reset the 'beatCounter' counter. With each beat, we // increment 'beatCounter' until it reaches 'unwindBeats1'. val unwindBeats1 = Reg(UInt(params.beatBits.W)) val nextBeatCounter = Wire(UInt(params.beatBits.W)) val beatCounter = RegNext(nextBeatCounter) isUnwindBurstOver := beatCounter === unwindBeats1 when(startNewBurst) { unwindBeats1 := beats.read(nextResponseHead) nextBeatCounter := 0.U }.elsewhen(dataMemReadEnable) { nextBeatCounter := beatCounter + 1.U }.otherwise { nextBeatCounter := beatCounter } // When unwinding, feed the next linked-list head pointer (read out of the 'next' RAM) back so we can unwind the next // entry in this linked list. Only update the pointer when we're actually moving to the next 'data' SRAM entry (which // happens at the start of reading a new stored burst). val unwindResponseIndex = RegEnable(nextResponseHead, startNewBurst) responseIndex := Mux(busyUnwinding, unwindResponseIndex, ioResponse.bits.index) // Hold 'nextResponseHead' static while we're in the middle of unwinding a multi-beat burst entry. We don't want the // SRAM read address to shift while reading beats from a burst. Note that this is identical to 'nextResponseHead // holdUnless startNewBurst', but 'unwindResponseIndex' already implements the 'RegEnable' signal in 'holdUnless'. val unwindReadAddress = Mux(startNewBurst, nextResponseHead, unwindResponseIndex) // The 'data' SRAM's output is valid if we read from the SRAM on the previous cycle. The SRAM's output stays valid // until it is consumed by the output channel (and if we don't read from the SRAM again on that same cycle). val unwindDataIsValid = RegInit(false.B) when(dataMemReadEnable) { unwindDataIsValid := true.B }.elsewhen(ioDataOut.fire) { unwindDataIsValid := false.B } isLastUnwindBeat := isUnwindBurstOver && unwindDataIsValid // Indicates if this is the last beat for both 'ioResponse'-to-'ioDataOut' and unwind-to-'ioDataOut' beats. isLastBeat := Mux(busyUnwinding, isLastUnwindBeat, isLastResponseBeat) // Select which SRAM to read from based on the beat counter. val dataOutputVec = Wire(Vec(params.numBeats, gen)) val nextBeatCounterOH = UIntToOH(nextBeatCounter, params.numBeats) (nextBeatCounterOH.asBools zip dataMems).zipWithIndex foreach { case ((select, seqMem), i) => dataOutputVec(i) := seqMem.read(unwindReadAddress, select && dataMemReadEnable) } // Select the current 'data' SRAM output beat, and save the output in a register in case we're being back-pressured // by 'ioDataOut'. This implements the functionality of 'readAndHold', but only on the single SRAM we're reading // from. val dataOutput = dataOutputVec(beatCounter) holdUnless RegNext(dataMemReadEnable) // Mark 'data' burst entries as no-longer-present as they get read out of the SRAM. when(dataMemReadEnable) { dataIsPresentClr := UIntToOH(unwindReadAddress, params.numEntries) } // As noted above, when starting the unwind FSM, we know the 'data' SRAM's output isn't valid, so it's safe to issue // a read command. Otherwise, only issue an SRAM read when the next 'unwindState' is 'sUnwinding', and if we know // we're not going to overwrite the SRAM's current output (the SRAM output is already valid, and it's not going to be // consumed by the output channel). val dontReadFromDataMem = unwindDataIsValid && !ioDataOut.ready dataMemReadEnable := startUnwind || (busyUnwinding && !stopUnwind && !dontReadFromDataMem) // While unwinding, prevent new reservations from overwriting the current 'map' entry that we're using. We need // 'responseListIndex' to be coherent for the entire unwind process. val rawResponseListIndex = map.read(responseIndex) val unwindResponseListIndex = RegEnable(rawResponseListIndex, startNewBurst) responseListIndex := Mux(busyUnwinding, unwindResponseListIndex, rawResponseListIndex) // Accept responses either when they can be passed through to the output channel, or if they're out-of-order and are // just going to be stashed in the 'data' SRAM. Never accept a response payload when we're busy unwinding, since that // could result in reading from and writing to the 'data' SRAM in the same cycle, and we want that SRAM to be // single-ported. ioResponse.ready := (ioDataOut.ready || !isResponseInOrder) && !busyUnwinding // Either pass an in-order response to the output channel, or data read from the unwind FSM. ioDataOut.valid := Mux(busyUnwinding, unwindDataIsValid, ioResponse.valid && isResponseInOrder) ioDataOut.bits.listIndex := responseListIndex ioDataOut.bits.payload := Mux(busyUnwinding, dataOutput, ioResponse.bits.data) // It's an error to get a response that isn't associated with a valid linked list. when(ioResponse.fire || unwindDataIsValid) { assert( valid(responseListIndex), "No linked list exists at index %d, mapped from %d", responseListIndex, responseIndex ) } when(busyUnwinding && dataMemReadEnable) { assert(isResponseInOrder, "Unwind FSM must read entries from SRAM in order") } } /** Specialized version of [[ReservableListBuffer]] for the case of numEntries == 1. * * Much of the complex logic in [[ReservableListBuffer]] can disappear in this case. For instance, we don't have to * reorder any responses, or store any linked lists. */ class PassthroughListBuffer[T <: Data](gen: T, params: ReservableListBufferParameters) extends BaseReservableListBuffer(gen, params) { require(params.numEntries == 1, s"PassthroughListBuffer is only valid when 'numEntries' (${params.numEntries}) is 1") val used = RegInit(0.U(params.numEntries.W)) val map = Mem(params.numEntries, UInt(params.listBits.W)) val usedSet = WireDefault(0.U(params.numEntries.W)) val usedClr = WireDefault(0.U(params.numEntries.W)) used := (used & ~usedClr) | usedSet ioReserve.ready := used === 0.U // Store which list index was reserved, we need to return this value when we get a response. when(ioReserve.fire) { usedSet := 1.U map.write(0.U, ioReserve.bits) } // There's only one valid linked list entry, which is at index 0. ioReservedIndex := 0.U val isLastResponseBeat = ioResponse.bits.count === ioResponse.bits.numBeats1 // Mark the linked list as empty when we get the last beat in a response. // Note that 'ioResponse.fire === ioDataOut.fire'. when(ioResponse.fire && isLastResponseBeat) { usedClr := 1.U } // Always pass the response data straight through, since we never need to reorder the response data. ioDataOut.bits.listIndex := map.read(0.U) ioDataOut.bits.payload := ioResponse.bits.data ioDataOut.valid := ioResponse.valid ioResponse.ready := ioDataOut.ready }
module dataMems_431( // @[UnsafeAXI4ToTL.scala:365:62] input [4:0] R0_addr, input R0_en, input R0_clk, output [66:0] R0_data, input [4:0] W0_addr, input W0_en, input W0_clk, input [66:0] W0_data ); dataMems_0_ext dataMems_0_ext ( // @[UnsafeAXI4ToTL.scala:365:62] .R0_addr (R0_addr), .R0_en (R0_en), .R0_clk (R0_clk), .R0_data (R0_data), .W0_addr (W0_addr), .W0_en (W0_en), .W0_clk (W0_clk), .W0_data (W0_data) ); // @[UnsafeAXI4ToTL.scala:365:62] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_153( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] input io_d, // @[ShiftReg.scala:36:14] output io_q // @[ShiftReg.scala:36:14] ); wire io_d_0 = io_d; // @[SynchronizerReg.scala:80:7] wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire _output_T_1 = io_d_0; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_273 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_d (_output_T_1), // @[SynchronizerReg.scala:87:41] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File util.scala: //****************************************************************************** // Copyright (c) 2015 - 2019, The Regents of the University of California (Regents). // All Rights Reserved. See LICENSE and LICENSE.SiFive for license details. //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // Utility Functions //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ package boom.v3.util import chisel3._ import chisel3.util._ import freechips.rocketchip.rocket.Instructions._ import freechips.rocketchip.rocket._ import freechips.rocketchip.util.{Str} import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.tile.{TileKey} import boom.v3.common.{MicroOp} import boom.v3.exu.{BrUpdateInfo} /** * Object to XOR fold a input register of fullLength into a compressedLength. */ object Fold { def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = { val clen = compressedLength val hlen = fullLength if (hlen <= clen) { input } else { var res = 0.U(clen.W) var remaining = input.asUInt for (i <- 0 to hlen-1 by clen) { val len = if (i + clen > hlen ) (hlen - i) else clen require(len > 0) res = res(clen-1,0) ^ remaining(len-1,0) remaining = remaining >> len.U } res } } } /** * Object to check if MicroOp was killed due to a branch mispredict. * Uses "Fast" branch masks */ object IsKilledByBranch { def apply(brupdate: BrUpdateInfo, uop: MicroOp): Bool = { return maskMatch(brupdate.b1.mispredict_mask, uop.br_mask) } def apply(brupdate: BrUpdateInfo, uop_mask: UInt): Bool = { return maskMatch(brupdate.b1.mispredict_mask, uop_mask) } } /** * Object to return new MicroOp with a new BR mask given a MicroOp mask * and old BR mask. */ object GetNewUopAndBrMask { def apply(uop: MicroOp, brupdate: BrUpdateInfo) (implicit p: Parameters): MicroOp = { val newuop = WireInit(uop) newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask newuop } } /** * Object to return a BR mask given a MicroOp mask and old BR mask. */ object GetNewBrMask { def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = { return uop.br_mask & ~brupdate.b1.resolve_mask } def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = { return br_mask & ~brupdate.b1.resolve_mask } } object UpdateBrMask { def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = { val out = WireInit(uop) out.br_mask := GetNewBrMask(brupdate, uop) out } def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = { val out = WireInit(bundle) out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask) out } def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: Valid[T]): Valid[T] = { val out = WireInit(bundle) out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask) out.valid := bundle.valid && !IsKilledByBranch(brupdate, bundle.bits.uop.br_mask) out } } /** * Object to check if at least 1 bit matches in two masks */ object maskMatch { def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U } /** * Object to clear one bit in a mask given an index */ object clearMaskBit { def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0) } /** * Object to shift a register over by one bit and concat a new one */ object PerformShiftRegister { def apply(reg_val: UInt, new_bit: Bool): UInt = { reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt reg_val } } /** * Object to shift a register over by one bit, wrapping the top bit around to the bottom * (XOR'ed with a new-bit), and evicting a bit at index HLEN. * This is used to simulate a longer HLEN-width shift register that is folded * down to a compressed CLEN. */ object PerformCircularShiftRegister { def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = { val carry = csr(clen-1) val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U) newval } } /** * Object to increment an input value, wrapping it if * necessary. */ object WrapAdd { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, amt: UInt, n: Int): UInt = { if (isPow2(n)) { (value + amt)(log2Ceil(n)-1,0) } else { val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt) Mux(sum >= n.U, sum - n.U, sum) } } } /** * Object to decrement an input value, wrapping it if * necessary. */ object WrapSub { // "n" is the number of increments, so we wrap to n-1. def apply(value: UInt, amt: Int, n: Int): UInt = { if (isPow2(n)) { (value - amt.U)(log2Ceil(n)-1,0) } else { val v = Cat(0.U(1.W), value) val b = Cat(0.U(1.W), amt.U) Mux(value >= amt.U, value - amt.U, n.U - amt.U + value) } } } /** * Object to increment an input value, wrapping it if * necessary. */ object WrapInc { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, n: Int): UInt = { if (isPow2(n)) { (value + 1.U)(log2Ceil(n)-1,0) } else { val wrap = (value === (n-1).U) Mux(wrap, 0.U, value + 1.U) } } } /** * Object to decrement an input value, wrapping it if * necessary. */ object WrapDec { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, n: Int): UInt = { if (isPow2(n)) { (value - 1.U)(log2Ceil(n)-1,0) } else { val wrap = (value === 0.U) Mux(wrap, (n-1).U, value - 1.U) } } } /** * Object to mask off lower bits of a PC to align to a "b" * Byte boundary. */ object AlignPCToBoundary { def apply(pc: UInt, b: Int): UInt = { // Invert for scenario where pc longer than b // (which would clear all bits above size(b)). ~(~pc | (b-1).U) } } /** * Object to rotate a signal left by one */ object RotateL1 { def apply(signal: UInt): UInt = { val w = signal.getWidth val out = Cat(signal(w-2,0), signal(w-1)) return out } } /** * Object to sext a value to a particular length. */ object Sext { def apply(x: UInt, length: Int): UInt = { if (x.getWidth == length) return x else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x) } } /** * Object to translate from BOOM's special "packed immediate" to a 32b signed immediate * Asking for U-type gives it shifted up 12 bits. */ object ImmGen { import boom.v3.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U} def apply(ip: UInt, isel: UInt): SInt = { val sign = ip(LONGEST_IMM_SZ-1).asSInt val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign) val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign) val i11 = Mux(isel === IS_U, 0.S, Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign)) val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt) val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt) val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S) return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0).asSInt } } /** * Object to get the FP rounding mode out of a packed immediate. */ object ImmGenRm { def apply(ip: UInt): UInt = { return ip(2,0) } } /** * Object to get the FP function fype from a packed immediate. * Note: only works if !(IS_B or IS_S) */ object ImmGenTyp { def apply(ip: UInt): UInt = { return ip(9,8) } } /** * Object to see if an instruction is a JALR. */ object DebugIsJALR { def apply(inst: UInt): Bool = { // TODO Chisel not sure why this won't compile // val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)), // Array( // JALR -> Bool(true))) inst(6,0) === "b1100111".U } } /** * Object to take an instruction and output its branch or jal target. Only used * for a debug assert (no where else would we jump straight from instruction * bits to a target). */ object DebugGetBJImm { def apply(inst: UInt): UInt = { // TODO Chisel not sure why this won't compile //val csignals = //rocket.DecodeLogic(inst, // List(Bool(false), Bool(false)), // Array( // BEQ -> List(Bool(true ), Bool(false)), // BNE -> List(Bool(true ), Bool(false)), // BGE -> List(Bool(true ), Bool(false)), // BGEU -> List(Bool(true ), Bool(false)), // BLT -> List(Bool(true ), Bool(false)), // BLTU -> List(Bool(true ), Bool(false)) // )) //val is_br :: nothing :: Nil = csignals val is_br = (inst(6,0) === "b1100011".U) val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W)) val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W)) Mux(is_br, br_targ, jal_targ) } } /** * Object to return the lowest bit position after the head. */ object AgePriorityEncoder { def apply(in: Seq[Bool], head: UInt): UInt = { val n = in.size val width = log2Ceil(in.size) val n_padded = 1 << width val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in val idx = PriorityEncoder(temp_vec) idx(width-1, 0) //discard msb } } /** * Object to determine whether queue * index i0 is older than index i1. */ object IsOlder { def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head)) } /** * Set all bits at or below the highest order '1'. */ object MaskLower { def apply(in: UInt) = { val n = in.getWidth (0 until n).map(i => in >> i.U).reduce(_|_) } } /** * Set all bits at or above the lowest order '1'. */ object MaskUpper { def apply(in: UInt) = { val n = in.getWidth (0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_) } } /** * Transpose a matrix of Chisel Vecs. */ object Transpose { def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = { val n = in(0).size VecInit((0 until n).map(i => VecInit(in.map(row => row(i))))) } } /** * N-wide one-hot priority encoder. */ object SelectFirstN { def apply(in: UInt, n: Int) = { val sels = Wire(Vec(n, UInt(in.getWidth.W))) var mask = in for (i <- 0 until n) { sels(i) := PriorityEncoderOH(mask) mask = mask & ~sels(i) } sels } } /** * Connect the first k of n valid input interfaces to k output interfaces. */ class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module { require(n >= k) val io = IO(new Bundle { val in = Vec(n, Flipped(DecoupledIO(gen))) val out = Vec(k, DecoupledIO(gen)) }) if (n == k) { io.out <> io.in } else { val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c)) val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col => (col zip io.in.map(_.valid)) map {case (c,v) => c && v}) val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_)) val out_valids = sels map (col => col.reduce(_||_)) val out_data = sels map (s => Mux1H(s, io.in.map(_.bits))) in_readys zip io.in foreach {case (r,i) => i.ready := r} out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d} } } /** * Create a queue that can be killed with a branch kill signal. * Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq). */ class BranchKillableQueue[T <: boom.v3.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v3.common.MicroOp => Bool = u => true.B, flow: Boolean = true) (implicit p: org.chipsalliance.cde.config.Parameters) extends boom.v3.common.BoomModule()(p) with boom.v3.common.HasBoomCoreParameters { val io = IO(new Bundle { val enq = Flipped(Decoupled(gen)) val deq = Decoupled(gen) val brupdate = Input(new BrUpdateInfo()) val flush = Input(Bool()) val empty = Output(Bool()) val count = Output(UInt(log2Ceil(entries).W)) }) val ram = Mem(entries, gen) val valids = RegInit(VecInit(Seq.fill(entries) {false.B})) val uops = Reg(Vec(entries, new MicroOp)) val enq_ptr = Counter(entries) val deq_ptr = Counter(entries) val maybe_full = RegInit(false.B) val ptr_match = enq_ptr.value === deq_ptr.value io.empty := ptr_match && !maybe_full val full = ptr_match && maybe_full val do_enq = WireInit(io.enq.fire) val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty) for (i <- 0 until entries) { val mask = uops(i).br_mask val uop = uops(i) valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, mask) && !(io.flush && flush_fn(uop)) when (valids(i)) { uops(i).br_mask := GetNewBrMask(io.brupdate, mask) } } when (do_enq) { ram(enq_ptr.value) := io.enq.bits valids(enq_ptr.value) := true.B //!IsKilledByBranch(io.brupdate, io.enq.bits.uop) uops(enq_ptr.value) := io.enq.bits.uop uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop) enq_ptr.inc() } when (do_deq) { valids(deq_ptr.value) := false.B deq_ptr.inc() } when (do_enq =/= do_deq) { maybe_full := do_enq } io.enq.ready := !full val out = Wire(gen) out := ram(deq_ptr.value) out.uop := uops(deq_ptr.value) io.deq.valid := !io.empty && valids(deq_ptr.value) && !IsKilledByBranch(io.brupdate, out.uop) && !(io.flush && flush_fn(out.uop)) io.deq.bits := out io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, out.uop) // For flow queue behavior. if (flow) { when (io.empty) { io.deq.valid := io.enq.valid //&& !IsKilledByBranch(io.brupdate, io.enq.bits.uop) io.deq.bits := io.enq.bits io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop) do_deq := false.B when (io.deq.ready) { do_enq := false.B } } } private val ptr_diff = enq_ptr.value - deq_ptr.value if (isPow2(entries)) { io.count := Cat(maybe_full && ptr_match, ptr_diff) } else { io.count := Mux(ptr_match, Mux(maybe_full, entries.asUInt, 0.U), Mux(deq_ptr.value > enq_ptr.value, entries.asUInt + ptr_diff, ptr_diff)) } } // ------------------------------------------ // Printf helper functions // ------------------------------------------ object BoolToChar { /** * Take in a Chisel Bool and convert it into a Str * based on the Chars given * * @param c_bool Chisel Bool * @param trueChar Scala Char if bool is true * @param falseChar Scala Char if bool is false * @return UInt ASCII Char for "trueChar" or "falseChar" */ def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = { Mux(c_bool, Str(trueChar), Str(falseChar)) } } object CfiTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param cfi_type specific cfi type * @return Vec of Strs (must be indexed to get specific char) */ def apply(cfi_type: UInt) = { val strings = Seq("----", "BR ", "JAL ", "JALR") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(cfi_type) } } object BpdTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param bpd_type specific bpd type * @return Vec of Strs (must be indexed to get specific char) */ def apply(bpd_type: UInt) = { val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(bpd_type) } } object RobTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param rob_type specific rob type * @return Vec of Strs (must be indexed to get specific char) */ def apply(rob_type: UInt) = { val strings = Seq("RST", "NML", "RBK", " WT") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(rob_type) } } object XRegToChars { /** * Get a Vec of Strs that can be used for printing * * @param xreg specific register number * @return Vec of Strs (must be indexed to get specific char) */ def apply(xreg: UInt) = { val strings = Seq(" x0", " ra", " sp", " gp", " tp", " t0", " t1", " t2", " s0", " s1", " a0", " a1", " a2", " a3", " a4", " a5", " a6", " a7", " s2", " s3", " s4", " s5", " s6", " s7", " s8", " s9", "s10", "s11", " t3", " t4", " t5", " t6") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(xreg) } } object FPRegToChars { /** * Get a Vec of Strs that can be used for printing * * @param fpreg specific register number * @return Vec of Strs (must be indexed to get specific char) */ def apply(fpreg: UInt) = { val strings = Seq(" ft0", " ft1", " ft2", " ft3", " ft4", " ft5", " ft6", " ft7", " fs0", " fs1", " fa0", " fa1", " fa2", " fa3", " fa4", " fa5", " fa6", " fa7", " fs2", " fs3", " fs4", " fs5", " fs6", " fs7", " fs8", " fs9", "fs10", "fs11", " ft8", " ft9", "ft10", "ft11") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(fpreg) } } object BoomCoreStringPrefix { /** * Add prefix to BOOM strings (currently only adds the hartId) * * @param strs list of strings * @return String combining the list with the prefix per line */ def apply(strs: String*)(implicit p: Parameters) = { val prefix = "[C" + s"${p(TileKey).tileId}" + "] " strs.map(str => prefix + str + "\n").mkString("") } } File tage.scala: package boom.v3.ifu import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import boom.v3.common._ import boom.v3.util.{BoomCoreStringPrefix, MaskLower, WrapInc} import scala.math.min class TageResp extends Bundle { val ctr = UInt(3.W) val u = UInt(2.W) } class TageTable(val nRows: Int, val tagSz: Int, val histLength: Int, val uBitPeriod: Int) (implicit p: Parameters) extends BoomModule()(p) with HasBoomFrontendParameters { require(histLength <= globalHistoryLength) val nWrBypassEntries = 2 val io = IO( new Bundle { val f1_req_valid = Input(Bool()) val f1_req_pc = Input(UInt(vaddrBitsExtended.W)) val f1_req_ghist = Input(UInt(globalHistoryLength.W)) val f3_resp = Output(Vec(bankWidth, Valid(new TageResp))) val update_mask = Input(Vec(bankWidth, Bool())) val update_taken = Input(Vec(bankWidth, Bool())) val update_alloc = Input(Vec(bankWidth, Bool())) val update_old_ctr = Input(Vec(bankWidth, UInt(3.W))) val update_pc = Input(UInt()) val update_hist = Input(UInt()) val update_u_mask = Input(Vec(bankWidth, Bool())) val update_u = Input(Vec(bankWidth, UInt(2.W))) }) def compute_folded_hist(hist: UInt, l: Int) = { val nChunks = (histLength + l - 1) / l val hist_chunks = (0 until nChunks) map {i => hist(min((i+1)*l, histLength)-1, i*l) } hist_chunks.reduce(_^_) } def compute_tag_and_hash(unhashed_idx: UInt, hist: UInt) = { val idx_history = compute_folded_hist(hist, log2Ceil(nRows)) val idx = (unhashed_idx ^ idx_history)(log2Ceil(nRows)-1,0) val tag_history = compute_folded_hist(hist, tagSz) val tag = ((unhashed_idx >> log2Ceil(nRows)) ^ tag_history)(tagSz-1,0) (idx, tag) } def inc_ctr(ctr: UInt, taken: Bool): UInt = { Mux(!taken, Mux(ctr === 0.U, 0.U, ctr - 1.U), Mux(ctr === 7.U, 7.U, ctr + 1.U)) } val doing_reset = RegInit(true.B) val reset_idx = RegInit(0.U(log2Ceil(nRows).W)) reset_idx := reset_idx + doing_reset when (reset_idx === (nRows-1).U) { doing_reset := false.B } class TageEntry extends Bundle { val valid = Bool() // TODO: Remove this valid bit val tag = UInt(tagSz.W) val ctr = UInt(3.W) } val tageEntrySz = 1 + tagSz + 3 val (s1_hashed_idx, s1_tag) = compute_tag_and_hash(fetchIdx(io.f1_req_pc), io.f1_req_ghist) val hi_us = SyncReadMem(nRows, Vec(bankWidth, Bool())) val lo_us = SyncReadMem(nRows, Vec(bankWidth, Bool())) val table = SyncReadMem(nRows, Vec(bankWidth, UInt(tageEntrySz.W))) val mems = Seq((f"tage_l$histLength", nRows, bankWidth * tageEntrySz)) val s2_tag = RegNext(s1_tag) val s2_req_rtage = VecInit(table.read(s1_hashed_idx, io.f1_req_valid).map(_.asTypeOf(new TageEntry))) val s2_req_rhius = hi_us.read(s1_hashed_idx, io.f1_req_valid) val s2_req_rlous = lo_us.read(s1_hashed_idx, io.f1_req_valid) val s2_req_rhits = VecInit(s2_req_rtage.map(e => e.valid && e.tag === s2_tag && !doing_reset)) for (w <- 0 until bankWidth) { // This bit indicates the TAGE table matched here io.f3_resp(w).valid := RegNext(s2_req_rhits(w)) io.f3_resp(w).bits.u := RegNext(Cat(s2_req_rhius(w), s2_req_rlous(w))) io.f3_resp(w).bits.ctr := RegNext(s2_req_rtage(w).ctr) } val clear_u_ctr = RegInit(0.U((log2Ceil(uBitPeriod) + log2Ceil(nRows) + 1).W)) when (doing_reset) { clear_u_ctr := 1.U } .otherwise { clear_u_ctr := clear_u_ctr + 1.U } val doing_clear_u = clear_u_ctr(log2Ceil(uBitPeriod)-1,0) === 0.U val doing_clear_u_hi = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 1.U val doing_clear_u_lo = doing_clear_u && clear_u_ctr(log2Ceil(uBitPeriod) + log2Ceil(nRows)) === 0.U val clear_u_idx = clear_u_ctr >> log2Ceil(uBitPeriod) val (update_idx, update_tag) = compute_tag_and_hash(fetchIdx(io.update_pc), io.update_hist) val update_wdata = Wire(Vec(bankWidth, new TageEntry)) table.write( Mux(doing_reset, reset_idx , update_idx), Mux(doing_reset, VecInit(Seq.fill(bankWidth) { 0.U(tageEntrySz.W) }), VecInit(update_wdata.map(_.asUInt))), Mux(doing_reset, ~(0.U(bankWidth.W)) , io.update_mask.asUInt).asBools ) val update_hi_wdata = Wire(Vec(bankWidth, Bool())) hi_us.write( Mux(doing_reset, reset_idx, Mux(doing_clear_u_hi, clear_u_idx, update_idx)), Mux(doing_reset || doing_clear_u_hi, VecInit((0.U(bankWidth.W)).asBools), update_hi_wdata), Mux(doing_reset || doing_clear_u_hi, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools ) val update_lo_wdata = Wire(Vec(bankWidth, Bool())) lo_us.write( Mux(doing_reset, reset_idx, Mux(doing_clear_u_lo, clear_u_idx, update_idx)), Mux(doing_reset || doing_clear_u_lo, VecInit((0.U(bankWidth.W)).asBools), update_lo_wdata), Mux(doing_reset || doing_clear_u_lo, ~(0.U(bankWidth.W)), io.update_u_mask.asUInt).asBools ) val wrbypass_tags = Reg(Vec(nWrBypassEntries, UInt(tagSz.W))) val wrbypass_idxs = Reg(Vec(nWrBypassEntries, UInt(log2Ceil(nRows).W))) val wrbypass = Reg(Vec(nWrBypassEntries, Vec(bankWidth, UInt(3.W)))) val wrbypass_enq_idx = RegInit(0.U(log2Ceil(nWrBypassEntries).W)) val wrbypass_hits = VecInit((0 until nWrBypassEntries) map { i => !doing_reset && wrbypass_tags(i) === update_tag && wrbypass_idxs(i) === update_idx }) val wrbypass_hit = wrbypass_hits.reduce(_||_) val wrbypass_hit_idx = PriorityEncoder(wrbypass_hits) for (w <- 0 until bankWidth) { update_wdata(w).ctr := Mux(io.update_alloc(w), Mux(io.update_taken(w), 4.U, 3.U ), Mux(wrbypass_hit, inc_ctr(wrbypass(wrbypass_hit_idx)(w), io.update_taken(w)), inc_ctr(io.update_old_ctr(w), io.update_taken(w)) ) ) update_wdata(w).valid := true.B update_wdata(w).tag := update_tag update_hi_wdata(w) := io.update_u(w)(1) update_lo_wdata(w) := io.update_u(w)(0) } when (io.update_mask.reduce(_||_)) { when (wrbypass_hits.reduce(_||_)) { wrbypass(wrbypass_hit_idx) := VecInit(update_wdata.map(_.ctr)) } .otherwise { wrbypass (wrbypass_enq_idx) := VecInit(update_wdata.map(_.ctr)) wrbypass_tags(wrbypass_enq_idx) := update_tag wrbypass_idxs(wrbypass_enq_idx) := update_idx wrbypass_enq_idx := WrapInc(wrbypass_enq_idx, nWrBypassEntries) } } } case class BoomTageParams( // nSets, histLen, tagSz tableInfo: Seq[Tuple3[Int, Int, Int]] = Seq(( 128, 2, 7), ( 128, 4, 7), ( 256, 8, 8), ( 256, 16, 8), ( 128, 32, 9), ( 128, 64, 9)), uBitPeriod: Int = 2048 ) class TageBranchPredictorBank(params: BoomTageParams = BoomTageParams())(implicit p: Parameters) extends BranchPredictorBank()(p) { val tageUBitPeriod = params.uBitPeriod val tageNTables = params.tableInfo.size class TageMeta extends Bundle { val provider = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W))) val alt_differs = Vec(bankWidth, Output(Bool())) val provider_u = Vec(bankWidth, Output(UInt(2.W))) val provider_ctr = Vec(bankWidth, Output(UInt(3.W))) val allocate = Vec(bankWidth, Valid(UInt(log2Ceil(tageNTables).W))) } val f3_meta = Wire(new TageMeta) override val metaSz = f3_meta.asUInt.getWidth require(metaSz <= bpdMaxMetaLength) def inc_u(u: UInt, alt_differs: Bool, mispredict: Bool): UInt = { Mux(!alt_differs, u, Mux(mispredict, Mux(u === 0.U, 0.U, u - 1.U), Mux(u === 3.U, 3.U, u + 1.U))) } val tt = params.tableInfo map { case (n, l, s) => { val t = Module(new TageTable(n, s, l, params.uBitPeriod)) t.io.f1_req_valid := RegNext(io.f0_valid) t.io.f1_req_pc := RegNext(io.f0_pc) t.io.f1_req_ghist := io.f1_ghist (t, t.mems) } } val tables = tt.map(_._1) val mems = tt.map(_._2).flatten val f3_resps = VecInit(tables.map(_.io.f3_resp)) val s1_update_meta = s1_update.bits.meta.asTypeOf(new TageMeta) val s1_update_mispredict_mask = UIntToOH(s1_update.bits.cfi_idx.bits) & Fill(bankWidth, s1_update.bits.cfi_mispredicted) val s1_update_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, Bool())))) val s1_update_u_mask = WireInit((0.U).asTypeOf(Vec(tageNTables, Vec(bankWidth, UInt(1.W))))) val s1_update_taken = Wire(Vec(tageNTables, Vec(bankWidth, Bool()))) val s1_update_old_ctr = Wire(Vec(tageNTables, Vec(bankWidth, UInt(3.W)))) val s1_update_alloc = Wire(Vec(tageNTables, Vec(bankWidth, Bool()))) val s1_update_u = Wire(Vec(tageNTables, Vec(bankWidth, UInt(2.W)))) s1_update_taken := DontCare s1_update_old_ctr := DontCare s1_update_alloc := DontCare s1_update_u := DontCare for (w <- 0 until bankWidth) { var altpred = io.resp_in(0).f3(w).taken val final_altpred = WireInit(io.resp_in(0).f3(w).taken) var provided = false.B var provider = 0.U io.resp.f3(w).taken := io.resp_in(0).f3(w).taken for (i <- 0 until tageNTables) { val hit = f3_resps(i)(w).valid val ctr = f3_resps(i)(w).bits.ctr when (hit) { io.resp.f3(w).taken := Mux(ctr === 3.U || ctr === 4.U, altpred, ctr(2)) final_altpred := altpred } provided = provided || hit provider = Mux(hit, i.U, provider) altpred = Mux(hit, f3_resps(i)(w).bits.ctr(2), altpred) } f3_meta.provider(w).valid := provided f3_meta.provider(w).bits := provider f3_meta.alt_differs(w) := final_altpred =/= io.resp.f3(w).taken f3_meta.provider_u(w) := f3_resps(provider)(w).bits.u f3_meta.provider_ctr(w) := f3_resps(provider)(w).bits.ctr // Create a mask of tables which did not hit our query, and also contain useless entries // and also uses a longer history than the provider val allocatable_slots = ( VecInit(f3_resps.map(r => !r(w).valid && r(w).bits.u === 0.U)).asUInt & ~(MaskLower(UIntToOH(provider)) & Fill(tageNTables, provided)) ) val alloc_lfsr = random.LFSR(tageNTables max 2) val first_entry = PriorityEncoder(allocatable_slots) val masked_entry = PriorityEncoder(allocatable_slots & alloc_lfsr) val alloc_entry = Mux(allocatable_slots(masked_entry), masked_entry, first_entry) f3_meta.allocate(w).valid := allocatable_slots =/= 0.U f3_meta.allocate(w).bits := alloc_entry val update_was_taken = (s1_update.bits.cfi_idx.valid && (s1_update.bits.cfi_idx.bits === w.U) && s1_update.bits.cfi_taken) when (s1_update.bits.br_mask(w) && s1_update.valid && s1_update.bits.is_commit_update) { when (s1_update_meta.provider(w).valid) { val provider = s1_update_meta.provider(w).bits s1_update_mask(provider)(w) := true.B s1_update_u_mask(provider)(w) := true.B val new_u = inc_u(s1_update_meta.provider_u(w), s1_update_meta.alt_differs(w), s1_update_mispredict_mask(w)) s1_update_u (provider)(w) := new_u s1_update_taken (provider)(w) := update_was_taken s1_update_old_ctr(provider)(w) := s1_update_meta.provider_ctr(w) s1_update_alloc (provider)(w) := false.B } } } when (s1_update.valid && s1_update.bits.is_commit_update && s1_update.bits.cfi_mispredicted && s1_update.bits.cfi_idx.valid) { val idx = s1_update.bits.cfi_idx.bits val allocate = s1_update_meta.allocate(idx) when (allocate.valid) { s1_update_mask (allocate.bits)(idx) := true.B s1_update_taken(allocate.bits)(idx) := s1_update.bits.cfi_taken s1_update_alloc(allocate.bits)(idx) := true.B s1_update_u_mask(allocate.bits)(idx) := true.B s1_update_u (allocate.bits)(idx) := 0.U } .otherwise { val provider = s1_update_meta.provider(idx) val decr_mask = Mux(provider.valid, ~MaskLower(UIntToOH(provider.bits)), 0.U) for (i <- 0 until tageNTables) { when (decr_mask(i)) { s1_update_u_mask(i)(idx) := true.B s1_update_u (i)(idx) := 0.U } } } } for (i <- 0 until tageNTables) { for (w <- 0 until bankWidth) { tables(i).io.update_mask(w) := RegNext(s1_update_mask(i)(w)) tables(i).io.update_taken(w) := RegNext(s1_update_taken(i)(w)) tables(i).io.update_alloc(w) := RegNext(s1_update_alloc(i)(w)) tables(i).io.update_old_ctr(w) := RegNext(s1_update_old_ctr(i)(w)) tables(i).io.update_u_mask(w) := RegNext(s1_update_u_mask(i)(w)) tables(i).io.update_u(w) := RegNext(s1_update_u(i)(w)) } tables(i).io.update_pc := RegNext(s1_update.bits.pc) tables(i).io.update_hist := RegNext(s1_update.bits.ghist) } //io.f3_meta := Cat(f3_meta.asUInt, micro.io.f3_meta(micro.metaSz-1,0), base.io.f3_meta(base.metaSz-1, 0)) io.f3_meta := f3_meta.asUInt }
module TageTable_9( // @[tage.scala:24:7] input clock, // @[tage.scala:24:7] input reset, // @[tage.scala:24:7] input io_f1_req_valid, // @[tage.scala:31:14] input [39:0] io_f1_req_pc, // @[tage.scala:31:14] input [63:0] io_f1_req_ghist, // @[tage.scala:31:14] output io_f3_resp_0_valid, // @[tage.scala:31:14] output [2:0] io_f3_resp_0_bits_ctr, // @[tage.scala:31:14] output [1:0] io_f3_resp_0_bits_u, // @[tage.scala:31:14] output io_f3_resp_1_valid, // @[tage.scala:31:14] output [2:0] io_f3_resp_1_bits_ctr, // @[tage.scala:31:14] output [1:0] io_f3_resp_1_bits_u, // @[tage.scala:31:14] output io_f3_resp_2_valid, // @[tage.scala:31:14] output [2:0] io_f3_resp_2_bits_ctr, // @[tage.scala:31:14] output [1:0] io_f3_resp_2_bits_u, // @[tage.scala:31:14] output io_f3_resp_3_valid, // @[tage.scala:31:14] output [2:0] io_f3_resp_3_bits_ctr, // @[tage.scala:31:14] output [1:0] io_f3_resp_3_bits_u, // @[tage.scala:31:14] input io_update_mask_0, // @[tage.scala:31:14] input io_update_mask_1, // @[tage.scala:31:14] input io_update_mask_2, // @[tage.scala:31:14] input io_update_mask_3, // @[tage.scala:31:14] input io_update_taken_0, // @[tage.scala:31:14] input io_update_taken_1, // @[tage.scala:31:14] input io_update_taken_2, // @[tage.scala:31:14] input io_update_taken_3, // @[tage.scala:31:14] input io_update_alloc_0, // @[tage.scala:31:14] input io_update_alloc_1, // @[tage.scala:31:14] input io_update_alloc_2, // @[tage.scala:31:14] input io_update_alloc_3, // @[tage.scala:31:14] input [2:0] io_update_old_ctr_0, // @[tage.scala:31:14] input [2:0] io_update_old_ctr_1, // @[tage.scala:31:14] input [2:0] io_update_old_ctr_2, // @[tage.scala:31:14] input [2:0] io_update_old_ctr_3, // @[tage.scala:31:14] input [39:0] io_update_pc, // @[tage.scala:31:14] input [63:0] io_update_hist, // @[tage.scala:31:14] input io_update_u_mask_0, // @[tage.scala:31:14] input io_update_u_mask_1, // @[tage.scala:31:14] input io_update_u_mask_2, // @[tage.scala:31:14] input io_update_u_mask_3, // @[tage.scala:31:14] input [1:0] io_update_u_0, // @[tage.scala:31:14] input [1:0] io_update_u_1, // @[tage.scala:31:14] input [1:0] io_update_u_2, // @[tage.scala:31:14] input [1:0] io_update_u_3 // @[tage.scala:31:14] ); wire lo_us_MPORT_2_data_3; // @[tage.scala:137:8] wire lo_us_MPORT_2_data_2; // @[tage.scala:137:8] wire lo_us_MPORT_2_data_1; // @[tage.scala:137:8] wire lo_us_MPORT_2_data_0; // @[tage.scala:137:8] wire hi_us_MPORT_1_data_3; // @[tage.scala:130:8] wire hi_us_MPORT_1_data_2; // @[tage.scala:130:8] wire hi_us_MPORT_1_data_1; // @[tage.scala:130:8] wire hi_us_MPORT_1_data_0; // @[tage.scala:130:8] wire [11:0] table_MPORT_data_3; // @[tage.scala:123:8] wire [11:0] table_MPORT_data_2; // @[tage.scala:123:8] wire [11:0] table_MPORT_data_1; // @[tage.scala:123:8] wire [11:0] table_MPORT_data_0; // @[tage.scala:123:8] wire _s2_req_rtage_WIRE_7_valid; // @[tage.scala:97:87] wire [7:0] _s2_req_rtage_WIRE_7_tag; // @[tage.scala:97:87] wire [2:0] _s2_req_rtage_WIRE_7_ctr; // @[tage.scala:97:87] wire _s2_req_rtage_WIRE_5_valid; // @[tage.scala:97:87] wire [7:0] _s2_req_rtage_WIRE_5_tag; // @[tage.scala:97:87] wire [2:0] _s2_req_rtage_WIRE_5_ctr; // @[tage.scala:97:87] wire _s2_req_rtage_WIRE_3_valid; // @[tage.scala:97:87] wire [7:0] _s2_req_rtage_WIRE_3_tag; // @[tage.scala:97:87] wire [2:0] _s2_req_rtage_WIRE_3_ctr; // @[tage.scala:97:87] wire _s2_req_rtage_WIRE_1_valid; // @[tage.scala:97:87] wire [7:0] _s2_req_rtage_WIRE_1_tag; // @[tage.scala:97:87] wire [2:0] _s2_req_rtage_WIRE_1_ctr; // @[tage.scala:97:87] wire [47:0] _table_R0_data; // @[tage.scala:91:27] wire [3:0] _lo_us_R0_data; // @[tage.scala:90:27] wire [3:0] _hi_us_R0_data; // @[tage.scala:89:27] wire io_f1_req_valid_0 = io_f1_req_valid; // @[tage.scala:24:7] wire [39:0] io_f1_req_pc_0 = io_f1_req_pc; // @[tage.scala:24:7] wire [63:0] io_f1_req_ghist_0 = io_f1_req_ghist; // @[tage.scala:24:7] wire io_update_mask_0_0 = io_update_mask_0; // @[tage.scala:24:7] wire io_update_mask_1_0 = io_update_mask_1; // @[tage.scala:24:7] wire io_update_mask_2_0 = io_update_mask_2; // @[tage.scala:24:7] wire io_update_mask_3_0 = io_update_mask_3; // @[tage.scala:24:7] wire io_update_taken_0_0 = io_update_taken_0; // @[tage.scala:24:7] wire io_update_taken_1_0 = io_update_taken_1; // @[tage.scala:24:7] wire io_update_taken_2_0 = io_update_taken_2; // @[tage.scala:24:7] wire io_update_taken_3_0 = io_update_taken_3; // @[tage.scala:24:7] wire io_update_alloc_0_0 = io_update_alloc_0; // @[tage.scala:24:7] wire io_update_alloc_1_0 = io_update_alloc_1; // @[tage.scala:24:7] wire io_update_alloc_2_0 = io_update_alloc_2; // @[tage.scala:24:7] wire io_update_alloc_3_0 = io_update_alloc_3; // @[tage.scala:24:7] wire [2:0] io_update_old_ctr_0_0 = io_update_old_ctr_0; // @[tage.scala:24:7] wire [2:0] io_update_old_ctr_1_0 = io_update_old_ctr_1; // @[tage.scala:24:7] wire [2:0] io_update_old_ctr_2_0 = io_update_old_ctr_2; // @[tage.scala:24:7] wire [2:0] io_update_old_ctr_3_0 = io_update_old_ctr_3; // @[tage.scala:24:7] wire [39:0] io_update_pc_0 = io_update_pc; // @[tage.scala:24:7] wire [63:0] io_update_hist_0 = io_update_hist; // @[tage.scala:24:7] wire io_update_u_mask_0_0 = io_update_u_mask_0; // @[tage.scala:24:7] wire io_update_u_mask_1_0 = io_update_u_mask_1; // @[tage.scala:24:7] wire io_update_u_mask_2_0 = io_update_u_mask_2; // @[tage.scala:24:7] wire io_update_u_mask_3_0 = io_update_u_mask_3; // @[tage.scala:24:7] wire [1:0] io_update_u_0_0 = io_update_u_0; // @[tage.scala:24:7] wire [1:0] io_update_u_1_0 = io_update_u_1; // @[tage.scala:24:7] wire [1:0] io_update_u_2_0 = io_update_u_2; // @[tage.scala:24:7] wire [1:0] io_update_u_3_0 = io_update_u_3; // @[tage.scala:24:7] wire update_wdata_0_valid = 1'h1; // @[tage.scala:119:26] wire update_wdata_1_valid = 1'h1; // @[tage.scala:119:26] wire update_wdata_2_valid = 1'h1; // @[tage.scala:119:26] wire update_wdata_3_valid = 1'h1; // @[tage.scala:119:26] wire [2:0] io_f3_resp_0_bits_ctr_0; // @[tage.scala:24:7] wire [1:0] io_f3_resp_0_bits_u_0; // @[tage.scala:24:7] wire io_f3_resp_0_valid_0; // @[tage.scala:24:7] wire [2:0] io_f3_resp_1_bits_ctr_0; // @[tage.scala:24:7] wire [1:0] io_f3_resp_1_bits_u_0; // @[tage.scala:24:7] wire io_f3_resp_1_valid_0; // @[tage.scala:24:7] wire [2:0] io_f3_resp_2_bits_ctr_0; // @[tage.scala:24:7] wire [1:0] io_f3_resp_2_bits_u_0; // @[tage.scala:24:7] wire io_f3_resp_2_valid_0; // @[tage.scala:24:7] wire [2:0] io_f3_resp_3_bits_ctr_0; // @[tage.scala:24:7] wire [1:0] io_f3_resp_3_bits_u_0; // @[tage.scala:24:7] wire io_f3_resp_3_valid_0; // @[tage.scala:24:7] reg doing_reset; // @[tage.scala:72:28] reg [7:0] reset_idx; // @[tage.scala:73:26] wire [8:0] _reset_idx_T = {1'h0, reset_idx} + {8'h0, doing_reset}; // @[tage.scala:72:28, :73:26, :74:26] wire [7:0] _reset_idx_T_1 = _reset_idx_T[7:0]; // @[tage.scala:74:26] wire [7:0] idx_history_hist_chunks_0 = io_f1_req_ghist_0[7:0]; // @[tage.scala:24:7, :53:11] wire [7:0] tag_history_hist_chunks_0 = io_f1_req_ghist_0[7:0]; // @[tage.scala:24:7, :53:11] wire [7:0] idx_history_hist_chunks_1 = io_f1_req_ghist_0[15:8]; // @[tage.scala:24:7, :53:11] wire [7:0] tag_history_hist_chunks_1 = io_f1_req_ghist_0[15:8]; // @[tage.scala:24:7, :53:11] wire [7:0] idx_history = idx_history_hist_chunks_0 ^ idx_history_hist_chunks_1; // @[tage.scala:53:11, :55:25] wire [28:0] _tag_T = io_f1_req_pc_0[39:11]; // @[frontend.scala:162:35] wire [36:0] _idx_T = {_tag_T, io_f1_req_pc_0[10:3] ^ idx_history}; // @[frontend.scala:162:35] wire [7:0] s1_hashed_idx = _idx_T[7:0]; // @[tage.scala:60:{29,43}] wire [7:0] _s2_req_rtage_WIRE = s1_hashed_idx; // @[tage.scala:60:43, :97:40] wire [7:0] _s2_req_rhius_WIRE = s1_hashed_idx; // @[tage.scala:60:43, :98:32] wire [7:0] _s2_req_rlous_WIRE = s1_hashed_idx; // @[tage.scala:60:43, :99:32] wire [7:0] tag_history = tag_history_hist_chunks_0 ^ tag_history_hist_chunks_1; // @[tage.scala:53:11, :55:25] wire [28:0] _tag_T_1 = {_tag_T[28:8], _tag_T[7:0] ^ tag_history}; // @[tage.scala:55:25, :62:{30,50}] wire [7:0] s1_tag = _tag_T_1[7:0]; // @[tage.scala:62:{50,64}] wire [11:0] _s2_req_rtage_WIRE_2 = _table_R0_data[11:0]; // @[tage.scala:91:27, :97:87] wire [11:0] _s2_req_rtage_WIRE_4 = _table_R0_data[23:12]; // @[tage.scala:91:27, :97:87] wire [11:0] _s2_req_rtage_WIRE_6 = _table_R0_data[35:24]; // @[tage.scala:91:27, :97:87] wire [11:0] _s2_req_rtage_WIRE_8 = _table_R0_data[47:36]; // @[tage.scala:91:27, :97:87] reg [7:0] s2_tag; // @[tage.scala:95:29] wire _s2_req_rtage_T_2; // @[tage.scala:97:87] wire [7:0] _s2_req_rtage_T_1; // @[tage.scala:97:87] wire s2_req_rtage_0_valid = _s2_req_rtage_WIRE_1_valid; // @[tage.scala:97:{29,87}] wire [2:0] _s2_req_rtage_T; // @[tage.scala:97:87] wire [7:0] s2_req_rtage_0_tag = _s2_req_rtage_WIRE_1_tag; // @[tage.scala:97:{29,87}] wire [2:0] s2_req_rtage_0_ctr = _s2_req_rtage_WIRE_1_ctr; // @[tage.scala:97:{29,87}] assign _s2_req_rtage_T = _s2_req_rtage_WIRE_2[2:0]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_1_ctr = _s2_req_rtage_T; // @[tage.scala:97:87] assign _s2_req_rtage_T_1 = _s2_req_rtage_WIRE_2[10:3]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_1_tag = _s2_req_rtage_T_1; // @[tage.scala:97:87] assign _s2_req_rtage_T_2 = _s2_req_rtage_WIRE_2[11]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_1_valid = _s2_req_rtage_T_2; // @[tage.scala:97:87] wire _s2_req_rtage_T_5; // @[tage.scala:97:87] wire [7:0] _s2_req_rtage_T_4; // @[tage.scala:97:87] wire s2_req_rtage_1_valid = _s2_req_rtage_WIRE_3_valid; // @[tage.scala:97:{29,87}] wire [2:0] _s2_req_rtage_T_3; // @[tage.scala:97:87] wire [7:0] s2_req_rtage_1_tag = _s2_req_rtage_WIRE_3_tag; // @[tage.scala:97:{29,87}] wire [2:0] s2_req_rtage_1_ctr = _s2_req_rtage_WIRE_3_ctr; // @[tage.scala:97:{29,87}] assign _s2_req_rtage_T_3 = _s2_req_rtage_WIRE_4[2:0]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_3_ctr = _s2_req_rtage_T_3; // @[tage.scala:97:87] assign _s2_req_rtage_T_4 = _s2_req_rtage_WIRE_4[10:3]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_3_tag = _s2_req_rtage_T_4; // @[tage.scala:97:87] assign _s2_req_rtage_T_5 = _s2_req_rtage_WIRE_4[11]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_3_valid = _s2_req_rtage_T_5; // @[tage.scala:97:87] wire _s2_req_rtage_T_8; // @[tage.scala:97:87] wire [7:0] _s2_req_rtage_T_7; // @[tage.scala:97:87] wire s2_req_rtage_2_valid = _s2_req_rtage_WIRE_5_valid; // @[tage.scala:97:{29,87}] wire [2:0] _s2_req_rtage_T_6; // @[tage.scala:97:87] wire [7:0] s2_req_rtage_2_tag = _s2_req_rtage_WIRE_5_tag; // @[tage.scala:97:{29,87}] wire [2:0] s2_req_rtage_2_ctr = _s2_req_rtage_WIRE_5_ctr; // @[tage.scala:97:{29,87}] assign _s2_req_rtage_T_6 = _s2_req_rtage_WIRE_6[2:0]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_5_ctr = _s2_req_rtage_T_6; // @[tage.scala:97:87] assign _s2_req_rtage_T_7 = _s2_req_rtage_WIRE_6[10:3]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_5_tag = _s2_req_rtage_T_7; // @[tage.scala:97:87] assign _s2_req_rtage_T_8 = _s2_req_rtage_WIRE_6[11]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_5_valid = _s2_req_rtage_T_8; // @[tage.scala:97:87] wire _s2_req_rtage_T_11; // @[tage.scala:97:87] wire [7:0] _s2_req_rtage_T_10; // @[tage.scala:97:87] wire s2_req_rtage_3_valid = _s2_req_rtage_WIRE_7_valid; // @[tage.scala:97:{29,87}] wire [2:0] _s2_req_rtage_T_9; // @[tage.scala:97:87] wire [7:0] s2_req_rtage_3_tag = _s2_req_rtage_WIRE_7_tag; // @[tage.scala:97:{29,87}] wire [2:0] s2_req_rtage_3_ctr = _s2_req_rtage_WIRE_7_ctr; // @[tage.scala:97:{29,87}] assign _s2_req_rtage_T_9 = _s2_req_rtage_WIRE_8[2:0]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_7_ctr = _s2_req_rtage_T_9; // @[tage.scala:97:87] assign _s2_req_rtage_T_10 = _s2_req_rtage_WIRE_8[10:3]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_7_tag = _s2_req_rtage_T_10; // @[tage.scala:97:87] assign _s2_req_rtage_T_11 = _s2_req_rtage_WIRE_8[11]; // @[tage.scala:97:87] assign _s2_req_rtage_WIRE_7_valid = _s2_req_rtage_T_11; // @[tage.scala:97:87] wire _s2_req_rhits_T = s2_req_rtage_0_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69] wire _s2_req_rhits_T_1 = s2_req_rtage_0_valid & _s2_req_rhits_T; // @[tage.scala:97:29, :100:{60,69}] wire _s2_req_rhits_T_2 = ~doing_reset; // @[tage.scala:72:28, :100:83] wire _s2_req_rhits_T_3 = _s2_req_rhits_T_1 & _s2_req_rhits_T_2; // @[tage.scala:100:{60,80,83}] wire s2_req_rhits_0 = _s2_req_rhits_T_3; // @[tage.scala:100:{29,80}] wire _s2_req_rhits_T_4 = s2_req_rtage_1_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69] wire _s2_req_rhits_T_5 = s2_req_rtage_1_valid & _s2_req_rhits_T_4; // @[tage.scala:97:29, :100:{60,69}] wire _s2_req_rhits_T_6 = ~doing_reset; // @[tage.scala:72:28, :100:83] wire _s2_req_rhits_T_7 = _s2_req_rhits_T_5 & _s2_req_rhits_T_6; // @[tage.scala:100:{60,80,83}] wire s2_req_rhits_1 = _s2_req_rhits_T_7; // @[tage.scala:100:{29,80}] wire _s2_req_rhits_T_8 = s2_req_rtage_2_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69] wire _s2_req_rhits_T_9 = s2_req_rtage_2_valid & _s2_req_rhits_T_8; // @[tage.scala:97:29, :100:{60,69}] wire _s2_req_rhits_T_10 = ~doing_reset; // @[tage.scala:72:28, :100:83] wire _s2_req_rhits_T_11 = _s2_req_rhits_T_9 & _s2_req_rhits_T_10; // @[tage.scala:100:{60,80,83}] wire s2_req_rhits_2 = _s2_req_rhits_T_11; // @[tage.scala:100:{29,80}] wire _s2_req_rhits_T_12 = s2_req_rtage_3_tag == s2_tag; // @[tage.scala:95:29, :97:29, :100:69] wire _s2_req_rhits_T_13 = s2_req_rtage_3_valid & _s2_req_rhits_T_12; // @[tage.scala:97:29, :100:{60,69}] wire _s2_req_rhits_T_14 = ~doing_reset; // @[tage.scala:72:28, :100:83] wire _s2_req_rhits_T_15 = _s2_req_rhits_T_13 & _s2_req_rhits_T_14; // @[tage.scala:100:{60,80,83}] wire s2_req_rhits_3 = _s2_req_rhits_T_15; // @[tage.scala:100:{29,80}] reg io_f3_resp_0_valid_REG; // @[tage.scala:104:38] assign io_f3_resp_0_valid_0 = io_f3_resp_0_valid_REG; // @[tage.scala:24:7, :104:38] wire [1:0] _io_f3_resp_0_bits_u_T = {_hi_us_R0_data[0], _lo_us_R0_data[0]}; // @[tage.scala:89:27, :90:27, :105:42] reg [1:0] io_f3_resp_0_bits_u_REG; // @[tage.scala:105:38] assign io_f3_resp_0_bits_u_0 = io_f3_resp_0_bits_u_REG; // @[tage.scala:24:7, :105:38] reg [2:0] io_f3_resp_0_bits_ctr_REG; // @[tage.scala:106:38] assign io_f3_resp_0_bits_ctr_0 = io_f3_resp_0_bits_ctr_REG; // @[tage.scala:24:7, :106:38] reg io_f3_resp_1_valid_REG; // @[tage.scala:104:38] assign io_f3_resp_1_valid_0 = io_f3_resp_1_valid_REG; // @[tage.scala:24:7, :104:38] wire [1:0] _io_f3_resp_1_bits_u_T = {_hi_us_R0_data[1], _lo_us_R0_data[1]}; // @[tage.scala:89:27, :90:27, :105:42] reg [1:0] io_f3_resp_1_bits_u_REG; // @[tage.scala:105:38] assign io_f3_resp_1_bits_u_0 = io_f3_resp_1_bits_u_REG; // @[tage.scala:24:7, :105:38] reg [2:0] io_f3_resp_1_bits_ctr_REG; // @[tage.scala:106:38] assign io_f3_resp_1_bits_ctr_0 = io_f3_resp_1_bits_ctr_REG; // @[tage.scala:24:7, :106:38] reg io_f3_resp_2_valid_REG; // @[tage.scala:104:38] assign io_f3_resp_2_valid_0 = io_f3_resp_2_valid_REG; // @[tage.scala:24:7, :104:38] wire [1:0] _io_f3_resp_2_bits_u_T = {_hi_us_R0_data[2], _lo_us_R0_data[2]}; // @[tage.scala:89:27, :90:27, :105:42] reg [1:0] io_f3_resp_2_bits_u_REG; // @[tage.scala:105:38] assign io_f3_resp_2_bits_u_0 = io_f3_resp_2_bits_u_REG; // @[tage.scala:24:7, :105:38] reg [2:0] io_f3_resp_2_bits_ctr_REG; // @[tage.scala:106:38] assign io_f3_resp_2_bits_ctr_0 = io_f3_resp_2_bits_ctr_REG; // @[tage.scala:24:7, :106:38] reg io_f3_resp_3_valid_REG; // @[tage.scala:104:38] assign io_f3_resp_3_valid_0 = io_f3_resp_3_valid_REG; // @[tage.scala:24:7, :104:38] wire [1:0] _io_f3_resp_3_bits_u_T = {_hi_us_R0_data[3], _lo_us_R0_data[3]}; // @[tage.scala:89:27, :90:27, :105:42] reg [1:0] io_f3_resp_3_bits_u_REG; // @[tage.scala:105:38] assign io_f3_resp_3_bits_u_0 = io_f3_resp_3_bits_u_REG; // @[tage.scala:24:7, :105:38] reg [2:0] io_f3_resp_3_bits_ctr_REG; // @[tage.scala:106:38] assign io_f3_resp_3_bits_ctr_0 = io_f3_resp_3_bits_ctr_REG; // @[tage.scala:24:7, :106:38] reg [19:0] clear_u_ctr; // @[tage.scala:109:28] wire [20:0] _clear_u_ctr_T = {1'h0, clear_u_ctr} + 21'h1; // @[tage.scala:109:28, :110:85] wire [19:0] _clear_u_ctr_T_1 = _clear_u_ctr_T[19:0]; // @[tage.scala:110:85] wire [10:0] _doing_clear_u_T = clear_u_ctr[10:0]; // @[tage.scala:109:28, :112:34] wire doing_clear_u = _doing_clear_u_T == 11'h0; // @[tage.scala:112:{34,61}] wire _doing_clear_u_hi_T = clear_u_ctr[19]; // @[tage.scala:109:28, :113:54] wire _doing_clear_u_lo_T = clear_u_ctr[19]; // @[tage.scala:109:28, :113:54, :114:54] wire _doing_clear_u_hi_T_1 = _doing_clear_u_hi_T; // @[tage.scala:113:{54,95}] wire doing_clear_u_hi = doing_clear_u & _doing_clear_u_hi_T_1; // @[tage.scala:112:61, :113:{40,95}] wire _doing_clear_u_lo_T_1 = ~_doing_clear_u_lo_T; // @[tage.scala:114:{54,95}] wire doing_clear_u_lo = doing_clear_u & _doing_clear_u_lo_T_1; // @[tage.scala:112:61, :114:{40,95}] wire [8:0] clear_u_idx = clear_u_ctr[19:11]; // @[tage.scala:109:28, :115:33] wire [7:0] idx_history_hist_chunks_0_1 = io_update_hist_0[7:0]; // @[tage.scala:24:7, :53:11] wire [7:0] tag_history_hist_chunks_0_1 = io_update_hist_0[7:0]; // @[tage.scala:24:7, :53:11] wire [7:0] idx_history_hist_chunks_1_1 = io_update_hist_0[15:8]; // @[tage.scala:24:7, :53:11] wire [7:0] tag_history_hist_chunks_1_1 = io_update_hist_0[15:8]; // @[tage.scala:24:7, :53:11] wire [7:0] idx_history_1 = idx_history_hist_chunks_0_1 ^ idx_history_hist_chunks_1_1; // @[tage.scala:53:11, :55:25] wire [28:0] _tag_T_2 = io_update_pc_0[39:11]; // @[frontend.scala:162:35] wire [36:0] _idx_T_1 = {_tag_T_2, io_update_pc_0[10:3] ^ idx_history_1}; // @[frontend.scala:162:35] wire [7:0] update_idx = _idx_T_1[7:0]; // @[tage.scala:60:{29,43}] wire [7:0] tag_history_1 = tag_history_hist_chunks_0_1 ^ tag_history_hist_chunks_1_1; // @[tage.scala:53:11, :55:25] wire [28:0] _tag_T_3 = {_tag_T_2[28:8], _tag_T_2[7:0] ^ tag_history_1}; // @[tage.scala:55:25, :62:{30,50}] wire [7:0] update_tag = _tag_T_3[7:0]; // @[tage.scala:62:{50,64}] wire [7:0] update_wdata_0_tag = update_tag; // @[tage.scala:62:64, :119:26] wire [7:0] update_wdata_1_tag = update_tag; // @[tage.scala:62:64, :119:26] wire [7:0] update_wdata_2_tag = update_tag; // @[tage.scala:62:64, :119:26] wire [7:0] update_wdata_3_tag = update_tag; // @[tage.scala:62:64, :119:26] wire [2:0] _update_wdata_0_ctr_T_22; // @[tage.scala:155:33] wire [2:0] _update_wdata_1_ctr_T_22; // @[tage.scala:155:33] wire [2:0] _update_wdata_2_ctr_T_22; // @[tage.scala:155:33] wire [2:0] _update_wdata_3_ctr_T_22; // @[tage.scala:155:33] wire [2:0] update_wdata_0_ctr; // @[tage.scala:119:26] wire [2:0] update_wdata_1_ctr; // @[tage.scala:119:26] wire [2:0] update_wdata_2_ctr; // @[tage.scala:119:26] wire [2:0] update_wdata_3_ctr; // @[tage.scala:119:26] wire [8:0] hi = {1'h1, update_wdata_0_tag}; // @[tage.scala:119:26, :123:102] wire [8:0] hi_1 = {1'h1, update_wdata_1_tag}; // @[tage.scala:119:26, :123:102] wire [8:0] hi_2 = {1'h1, update_wdata_2_tag}; // @[tage.scala:119:26, :123:102] wire [8:0] hi_3 = {1'h1, update_wdata_3_tag}; // @[tage.scala:119:26, :123:102] assign table_MPORT_data_0 = doing_reset ? 12'h0 : {hi, update_wdata_0_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}] assign table_MPORT_data_1 = doing_reset ? 12'h0 : {hi_1, update_wdata_1_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}] assign table_MPORT_data_2 = doing_reset ? 12'h0 : {hi_2, update_wdata_2_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}] assign table_MPORT_data_3 = doing_reset ? 12'h0 : {hi_3, update_wdata_3_ctr}; // @[tage.scala:72:28, :119:26, :123:{8,102}] wire [1:0] lo = {io_update_mask_1_0, io_update_mask_0_0}; // @[tage.scala:24:7, :124:90] wire [1:0] hi_4 = {io_update_mask_3_0, io_update_mask_2_0}; // @[tage.scala:24:7, :124:90] wire _update_hi_wdata_0_T; // @[tage.scala:166:44] wire _update_hi_wdata_1_T; // @[tage.scala:166:44] wire _update_hi_wdata_2_T; // @[tage.scala:166:44] wire _update_hi_wdata_3_T; // @[tage.scala:166:44] wire update_hi_wdata_0; // @[tage.scala:127:29] wire update_hi_wdata_1; // @[tage.scala:127:29] wire update_hi_wdata_2; // @[tage.scala:127:29] wire update_hi_wdata_3; // @[tage.scala:127:29] wire _T_20 = doing_reset | doing_clear_u_hi; // @[tage.scala:72:28, :113:40, :130:21] assign hi_us_MPORT_1_data_0 = ~_T_20 & update_hi_wdata_0; // @[tage.scala:127:29, :130:{8,21}] assign hi_us_MPORT_1_data_1 = ~_T_20 & update_hi_wdata_1; // @[tage.scala:127:29, :130:{8,21}] assign hi_us_MPORT_1_data_2 = ~_T_20 & update_hi_wdata_2; // @[tage.scala:127:29, :130:{8,21}] assign hi_us_MPORT_1_data_3 = ~_T_20 & update_hi_wdata_3; // @[tage.scala:127:29, :130:{8,21}] wire [1:0] _GEN = {io_update_u_mask_1_0, io_update_u_mask_0_0}; // @[tage.scala:24:7, :131:80] wire [1:0] lo_1; // @[tage.scala:131:80] assign lo_1 = _GEN; // @[tage.scala:131:80] wire [1:0] lo_2; // @[tage.scala:138:80] assign lo_2 = _GEN; // @[tage.scala:131:80, :138:80] wire [1:0] _GEN_0 = {io_update_u_mask_3_0, io_update_u_mask_2_0}; // @[tage.scala:24:7, :131:80] wire [1:0] hi_5; // @[tage.scala:131:80] assign hi_5 = _GEN_0; // @[tage.scala:131:80] wire [1:0] hi_6; // @[tage.scala:138:80] assign hi_6 = _GEN_0; // @[tage.scala:131:80, :138:80] wire _update_lo_wdata_0_T; // @[tage.scala:167:44] wire _update_lo_wdata_1_T; // @[tage.scala:167:44] wire _update_lo_wdata_2_T; // @[tage.scala:167:44] wire _update_lo_wdata_3_T; // @[tage.scala:167:44] wire update_lo_wdata_0; // @[tage.scala:134:29] wire update_lo_wdata_1; // @[tage.scala:134:29] wire update_lo_wdata_2; // @[tage.scala:134:29] wire update_lo_wdata_3; // @[tage.scala:134:29] wire _T_33 = doing_reset | doing_clear_u_lo; // @[tage.scala:72:28, :114:40, :137:21] assign lo_us_MPORT_2_data_0 = ~_T_33 & update_lo_wdata_0; // @[tage.scala:134:29, :137:{8,21}] assign lo_us_MPORT_2_data_1 = ~_T_33 & update_lo_wdata_1; // @[tage.scala:134:29, :137:{8,21}] assign lo_us_MPORT_2_data_2 = ~_T_33 & update_lo_wdata_2; // @[tage.scala:134:29, :137:{8,21}] assign lo_us_MPORT_2_data_3 = ~_T_33 & update_lo_wdata_3; // @[tage.scala:134:29, :137:{8,21}] reg [7:0] wrbypass_tags_0; // @[tage.scala:141:29] reg [7:0] wrbypass_tags_1; // @[tage.scala:141:29] reg [7:0] wrbypass_idxs_0; // @[tage.scala:142:29] reg [7:0] wrbypass_idxs_1; // @[tage.scala:142:29] reg [2:0] wrbypass_0_0; // @[tage.scala:143:29] reg [2:0] wrbypass_0_1; // @[tage.scala:143:29] reg [2:0] wrbypass_0_2; // @[tage.scala:143:29] reg [2:0] wrbypass_0_3; // @[tage.scala:143:29] reg [2:0] wrbypass_1_0; // @[tage.scala:143:29] reg [2:0] wrbypass_1_1; // @[tage.scala:143:29] reg [2:0] wrbypass_1_2; // @[tage.scala:143:29] reg [2:0] wrbypass_1_3; // @[tage.scala:143:29] reg wrbypass_enq_idx; // @[tage.scala:144:33] wire _wrbypass_hits_T = ~doing_reset; // @[tage.scala:72:28, :100:83, :147:5] wire _wrbypass_hits_T_1 = wrbypass_tags_0 == update_tag; // @[tage.scala:62:64, :141:29, :148:22] wire _wrbypass_hits_T_2 = _wrbypass_hits_T & _wrbypass_hits_T_1; // @[tage.scala:147:{5,18}, :148:22] wire _wrbypass_hits_T_3 = wrbypass_idxs_0 == update_idx; // @[tage.scala:60:43, :142:29, :149:22] wire _wrbypass_hits_T_4 = _wrbypass_hits_T_2 & _wrbypass_hits_T_3; // @[tage.scala:147:18, :148:37, :149:22] wire wrbypass_hits_0 = _wrbypass_hits_T_4; // @[tage.scala:146:33, :148:37] wire _wrbypass_hits_T_5 = ~doing_reset; // @[tage.scala:72:28, :100:83, :147:5] wire _wrbypass_hits_T_6 = wrbypass_tags_1 == update_tag; // @[tage.scala:62:64, :141:29, :148:22] wire _wrbypass_hits_T_7 = _wrbypass_hits_T_5 & _wrbypass_hits_T_6; // @[tage.scala:147:{5,18}, :148:22] wire _wrbypass_hits_T_8 = wrbypass_idxs_1 == update_idx; // @[tage.scala:60:43, :142:29, :149:22] wire _wrbypass_hits_T_9 = _wrbypass_hits_T_7 & _wrbypass_hits_T_8; // @[tage.scala:147:18, :148:37, :149:22] wire wrbypass_hits_1 = _wrbypass_hits_T_9; // @[tage.scala:146:33, :148:37] wire wrbypass_hit = wrbypass_hits_0 | wrbypass_hits_1; // @[tage.scala:146:33, :151:48] wire wrbypass_hit_idx = ~wrbypass_hits_0; // @[Mux.scala:50:70] wire [2:0] _update_wdata_0_ctr_T = io_update_taken_0_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10] wire _update_wdata_0_ctr_T_1 = ~io_update_taken_0_0; // @[tage.scala:24:7, :67:9] wire [2:0] _GEN_1 = wrbypass_hit_idx ? wrbypass_1_0 : wrbypass_0_0; // @[Mux.scala:50:70] wire [2:0] _GEN_2 = wrbypass_hit_idx ? wrbypass_1_1 : wrbypass_0_1; // @[Mux.scala:50:70] wire [2:0] _GEN_3 = wrbypass_hit_idx ? wrbypass_1_2 : wrbypass_0_2; // @[Mux.scala:50:70] wire [2:0] _GEN_4 = wrbypass_hit_idx ? wrbypass_1_3 : wrbypass_0_3; // @[Mux.scala:50:70] wire _update_wdata_0_ctr_T_2 = _GEN_1 == 3'h0; // @[tage.scala:67:25] wire [3:0] _GEN_5 = {1'h0, _GEN_1}; // @[tage.scala:67:{25,43}] wire [3:0] _update_wdata_0_ctr_T_3 = _GEN_5 - 4'h1; // @[tage.scala:67:43] wire [2:0] _update_wdata_0_ctr_T_4 = _update_wdata_0_ctr_T_3[2:0]; // @[tage.scala:67:43] wire [2:0] _update_wdata_0_ctr_T_5 = _update_wdata_0_ctr_T_2 ? 3'h0 : _update_wdata_0_ctr_T_4; // @[tage.scala:67:{20,25,43}] wire _update_wdata_0_ctr_T_6 = &_GEN_1; // @[tage.scala:67:25, :68:25] wire [3:0] _update_wdata_0_ctr_T_7 = _GEN_5 + 4'h1; // @[tage.scala:67:43, :68:43] wire [2:0] _update_wdata_0_ctr_T_8 = _update_wdata_0_ctr_T_7[2:0]; // @[tage.scala:68:43] wire [2:0] _update_wdata_0_ctr_T_9 = _update_wdata_0_ctr_T_6 ? 3'h7 : _update_wdata_0_ctr_T_8; // @[tage.scala:68:{20,25,43}] wire [2:0] _update_wdata_0_ctr_T_10 = _update_wdata_0_ctr_T_1 ? _update_wdata_0_ctr_T_5 : _update_wdata_0_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20] wire _update_wdata_0_ctr_T_11 = ~io_update_taken_0_0; // @[tage.scala:24:7, :67:9] wire _update_wdata_0_ctr_T_12 = io_update_old_ctr_0_0 == 3'h0; // @[tage.scala:24:7, :67:25] wire [3:0] _GEN_6 = {1'h0, io_update_old_ctr_0_0}; // @[tage.scala:24:7, :67:43] wire [3:0] _update_wdata_0_ctr_T_13 = _GEN_6 - 4'h1; // @[tage.scala:67:43] wire [2:0] _update_wdata_0_ctr_T_14 = _update_wdata_0_ctr_T_13[2:0]; // @[tage.scala:67:43] wire [2:0] _update_wdata_0_ctr_T_15 = _update_wdata_0_ctr_T_12 ? 3'h0 : _update_wdata_0_ctr_T_14; // @[tage.scala:67:{20,25,43}] wire _update_wdata_0_ctr_T_16 = &io_update_old_ctr_0_0; // @[tage.scala:24:7, :68:25] wire [3:0] _update_wdata_0_ctr_T_17 = _GEN_6 + 4'h1; // @[tage.scala:67:43, :68:43] wire [2:0] _update_wdata_0_ctr_T_18 = _update_wdata_0_ctr_T_17[2:0]; // @[tage.scala:68:43] wire [2:0] _update_wdata_0_ctr_T_19 = _update_wdata_0_ctr_T_16 ? 3'h7 : _update_wdata_0_ctr_T_18; // @[tage.scala:68:{20,25,43}] wire [2:0] _update_wdata_0_ctr_T_20 = _update_wdata_0_ctr_T_11 ? _update_wdata_0_ctr_T_15 : _update_wdata_0_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20] wire [2:0] _update_wdata_0_ctr_T_21 = wrbypass_hit ? _update_wdata_0_ctr_T_10 : _update_wdata_0_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10] assign _update_wdata_0_ctr_T_22 = io_update_alloc_0_0 ? _update_wdata_0_ctr_T : _update_wdata_0_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10] assign update_wdata_0_ctr = _update_wdata_0_ctr_T_22; // @[tage.scala:119:26, :155:33] assign _update_hi_wdata_0_T = io_update_u_0_0[1]; // @[tage.scala:24:7, :166:44] assign update_hi_wdata_0 = _update_hi_wdata_0_T; // @[tage.scala:127:29, :166:44] assign _update_lo_wdata_0_T = io_update_u_0_0[0]; // @[tage.scala:24:7, :167:44] assign update_lo_wdata_0 = _update_lo_wdata_0_T; // @[tage.scala:134:29, :167:44] wire [2:0] _update_wdata_1_ctr_T = io_update_taken_1_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10] wire _update_wdata_1_ctr_T_1 = ~io_update_taken_1_0; // @[tage.scala:24:7, :67:9] wire _update_wdata_1_ctr_T_2 = _GEN_2 == 3'h0; // @[tage.scala:67:25] wire [3:0] _GEN_7 = {1'h0, _GEN_2}; // @[tage.scala:67:{25,43}] wire [3:0] _update_wdata_1_ctr_T_3 = _GEN_7 - 4'h1; // @[tage.scala:67:43] wire [2:0] _update_wdata_1_ctr_T_4 = _update_wdata_1_ctr_T_3[2:0]; // @[tage.scala:67:43] wire [2:0] _update_wdata_1_ctr_T_5 = _update_wdata_1_ctr_T_2 ? 3'h0 : _update_wdata_1_ctr_T_4; // @[tage.scala:67:{20,25,43}] wire _update_wdata_1_ctr_T_6 = &_GEN_2; // @[tage.scala:67:25, :68:25] wire [3:0] _update_wdata_1_ctr_T_7 = _GEN_7 + 4'h1; // @[tage.scala:67:43, :68:43] wire [2:0] _update_wdata_1_ctr_T_8 = _update_wdata_1_ctr_T_7[2:0]; // @[tage.scala:68:43] wire [2:0] _update_wdata_1_ctr_T_9 = _update_wdata_1_ctr_T_6 ? 3'h7 : _update_wdata_1_ctr_T_8; // @[tage.scala:68:{20,25,43}] wire [2:0] _update_wdata_1_ctr_T_10 = _update_wdata_1_ctr_T_1 ? _update_wdata_1_ctr_T_5 : _update_wdata_1_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20] wire _update_wdata_1_ctr_T_11 = ~io_update_taken_1_0; // @[tage.scala:24:7, :67:9] wire _update_wdata_1_ctr_T_12 = io_update_old_ctr_1_0 == 3'h0; // @[tage.scala:24:7, :67:25] wire [3:0] _GEN_8 = {1'h0, io_update_old_ctr_1_0}; // @[tage.scala:24:7, :67:43] wire [3:0] _update_wdata_1_ctr_T_13 = _GEN_8 - 4'h1; // @[tage.scala:67:43] wire [2:0] _update_wdata_1_ctr_T_14 = _update_wdata_1_ctr_T_13[2:0]; // @[tage.scala:67:43] wire [2:0] _update_wdata_1_ctr_T_15 = _update_wdata_1_ctr_T_12 ? 3'h0 : _update_wdata_1_ctr_T_14; // @[tage.scala:67:{20,25,43}] wire _update_wdata_1_ctr_T_16 = &io_update_old_ctr_1_0; // @[tage.scala:24:7, :68:25] wire [3:0] _update_wdata_1_ctr_T_17 = _GEN_8 + 4'h1; // @[tage.scala:67:43, :68:43] wire [2:0] _update_wdata_1_ctr_T_18 = _update_wdata_1_ctr_T_17[2:0]; // @[tage.scala:68:43] wire [2:0] _update_wdata_1_ctr_T_19 = _update_wdata_1_ctr_T_16 ? 3'h7 : _update_wdata_1_ctr_T_18; // @[tage.scala:68:{20,25,43}] wire [2:0] _update_wdata_1_ctr_T_20 = _update_wdata_1_ctr_T_11 ? _update_wdata_1_ctr_T_15 : _update_wdata_1_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20] wire [2:0] _update_wdata_1_ctr_T_21 = wrbypass_hit ? _update_wdata_1_ctr_T_10 : _update_wdata_1_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10] assign _update_wdata_1_ctr_T_22 = io_update_alloc_1_0 ? _update_wdata_1_ctr_T : _update_wdata_1_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10] assign update_wdata_1_ctr = _update_wdata_1_ctr_T_22; // @[tage.scala:119:26, :155:33] assign _update_hi_wdata_1_T = io_update_u_1_0[1]; // @[tage.scala:24:7, :166:44] assign update_hi_wdata_1 = _update_hi_wdata_1_T; // @[tage.scala:127:29, :166:44] assign _update_lo_wdata_1_T = io_update_u_1_0[0]; // @[tage.scala:24:7, :167:44] assign update_lo_wdata_1 = _update_lo_wdata_1_T; // @[tage.scala:134:29, :167:44] wire [2:0] _update_wdata_2_ctr_T = io_update_taken_2_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10] wire _update_wdata_2_ctr_T_1 = ~io_update_taken_2_0; // @[tage.scala:24:7, :67:9] wire _update_wdata_2_ctr_T_2 = _GEN_3 == 3'h0; // @[tage.scala:67:25] wire [3:0] _GEN_9 = {1'h0, _GEN_3}; // @[tage.scala:67:{25,43}] wire [3:0] _update_wdata_2_ctr_T_3 = _GEN_9 - 4'h1; // @[tage.scala:67:43] wire [2:0] _update_wdata_2_ctr_T_4 = _update_wdata_2_ctr_T_3[2:0]; // @[tage.scala:67:43] wire [2:0] _update_wdata_2_ctr_T_5 = _update_wdata_2_ctr_T_2 ? 3'h0 : _update_wdata_2_ctr_T_4; // @[tage.scala:67:{20,25,43}] wire _update_wdata_2_ctr_T_6 = &_GEN_3; // @[tage.scala:67:25, :68:25] wire [3:0] _update_wdata_2_ctr_T_7 = _GEN_9 + 4'h1; // @[tage.scala:67:43, :68:43] wire [2:0] _update_wdata_2_ctr_T_8 = _update_wdata_2_ctr_T_7[2:0]; // @[tage.scala:68:43] wire [2:0] _update_wdata_2_ctr_T_9 = _update_wdata_2_ctr_T_6 ? 3'h7 : _update_wdata_2_ctr_T_8; // @[tage.scala:68:{20,25,43}] wire [2:0] _update_wdata_2_ctr_T_10 = _update_wdata_2_ctr_T_1 ? _update_wdata_2_ctr_T_5 : _update_wdata_2_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20] wire _update_wdata_2_ctr_T_11 = ~io_update_taken_2_0; // @[tage.scala:24:7, :67:9] wire _update_wdata_2_ctr_T_12 = io_update_old_ctr_2_0 == 3'h0; // @[tage.scala:24:7, :67:25] wire [3:0] _GEN_10 = {1'h0, io_update_old_ctr_2_0}; // @[tage.scala:24:7, :67:43] wire [3:0] _update_wdata_2_ctr_T_13 = _GEN_10 - 4'h1; // @[tage.scala:67:43] wire [2:0] _update_wdata_2_ctr_T_14 = _update_wdata_2_ctr_T_13[2:0]; // @[tage.scala:67:43] wire [2:0] _update_wdata_2_ctr_T_15 = _update_wdata_2_ctr_T_12 ? 3'h0 : _update_wdata_2_ctr_T_14; // @[tage.scala:67:{20,25,43}] wire _update_wdata_2_ctr_T_16 = &io_update_old_ctr_2_0; // @[tage.scala:24:7, :68:25] wire [3:0] _update_wdata_2_ctr_T_17 = _GEN_10 + 4'h1; // @[tage.scala:67:43, :68:43] wire [2:0] _update_wdata_2_ctr_T_18 = _update_wdata_2_ctr_T_17[2:0]; // @[tage.scala:68:43] wire [2:0] _update_wdata_2_ctr_T_19 = _update_wdata_2_ctr_T_16 ? 3'h7 : _update_wdata_2_ctr_T_18; // @[tage.scala:68:{20,25,43}] wire [2:0] _update_wdata_2_ctr_T_20 = _update_wdata_2_ctr_T_11 ? _update_wdata_2_ctr_T_15 : _update_wdata_2_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20] wire [2:0] _update_wdata_2_ctr_T_21 = wrbypass_hit ? _update_wdata_2_ctr_T_10 : _update_wdata_2_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10] assign _update_wdata_2_ctr_T_22 = io_update_alloc_2_0 ? _update_wdata_2_ctr_T : _update_wdata_2_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10] assign update_wdata_2_ctr = _update_wdata_2_ctr_T_22; // @[tage.scala:119:26, :155:33] assign _update_hi_wdata_2_T = io_update_u_2_0[1]; // @[tage.scala:24:7, :166:44] assign update_hi_wdata_2 = _update_hi_wdata_2_T; // @[tage.scala:127:29, :166:44] assign _update_lo_wdata_2_T = io_update_u_2_0[0]; // @[tage.scala:24:7, :167:44] assign update_lo_wdata_2 = _update_lo_wdata_2_T; // @[tage.scala:134:29, :167:44] wire [2:0] _update_wdata_3_ctr_T = io_update_taken_3_0 ? 3'h4 : 3'h3; // @[tage.scala:24:7, :156:10] wire _update_wdata_3_ctr_T_1 = ~io_update_taken_3_0; // @[tage.scala:24:7, :67:9] wire _update_wdata_3_ctr_T_2 = _GEN_4 == 3'h0; // @[tage.scala:67:25] wire [3:0] _GEN_11 = {1'h0, _GEN_4}; // @[tage.scala:67:{25,43}] wire [3:0] _update_wdata_3_ctr_T_3 = _GEN_11 - 4'h1; // @[tage.scala:67:43] wire [2:0] _update_wdata_3_ctr_T_4 = _update_wdata_3_ctr_T_3[2:0]; // @[tage.scala:67:43] wire [2:0] _update_wdata_3_ctr_T_5 = _update_wdata_3_ctr_T_2 ? 3'h0 : _update_wdata_3_ctr_T_4; // @[tage.scala:67:{20,25,43}] wire _update_wdata_3_ctr_T_6 = &_GEN_4; // @[tage.scala:67:25, :68:25] wire [3:0] _update_wdata_3_ctr_T_7 = _GEN_11 + 4'h1; // @[tage.scala:67:43, :68:43] wire [2:0] _update_wdata_3_ctr_T_8 = _update_wdata_3_ctr_T_7[2:0]; // @[tage.scala:68:43] wire [2:0] _update_wdata_3_ctr_T_9 = _update_wdata_3_ctr_T_6 ? 3'h7 : _update_wdata_3_ctr_T_8; // @[tage.scala:68:{20,25,43}] wire [2:0] _update_wdata_3_ctr_T_10 = _update_wdata_3_ctr_T_1 ? _update_wdata_3_ctr_T_5 : _update_wdata_3_ctr_T_9; // @[tage.scala:67:{8,9,20}, :68:20] wire _update_wdata_3_ctr_T_11 = ~io_update_taken_3_0; // @[tage.scala:24:7, :67:9] wire _update_wdata_3_ctr_T_12 = io_update_old_ctr_3_0 == 3'h0; // @[tage.scala:24:7, :67:25] wire [3:0] _GEN_12 = {1'h0, io_update_old_ctr_3_0}; // @[tage.scala:24:7, :67:43] wire [3:0] _update_wdata_3_ctr_T_13 = _GEN_12 - 4'h1; // @[tage.scala:67:43] wire [2:0] _update_wdata_3_ctr_T_14 = _update_wdata_3_ctr_T_13[2:0]; // @[tage.scala:67:43] wire [2:0] _update_wdata_3_ctr_T_15 = _update_wdata_3_ctr_T_12 ? 3'h0 : _update_wdata_3_ctr_T_14; // @[tage.scala:67:{20,25,43}] wire _update_wdata_3_ctr_T_16 = &io_update_old_ctr_3_0; // @[tage.scala:24:7, :68:25] wire [3:0] _update_wdata_3_ctr_T_17 = _GEN_12 + 4'h1; // @[tage.scala:67:43, :68:43] wire [2:0] _update_wdata_3_ctr_T_18 = _update_wdata_3_ctr_T_17[2:0]; // @[tage.scala:68:43] wire [2:0] _update_wdata_3_ctr_T_19 = _update_wdata_3_ctr_T_16 ? 3'h7 : _update_wdata_3_ctr_T_18; // @[tage.scala:68:{20,25,43}] wire [2:0] _update_wdata_3_ctr_T_20 = _update_wdata_3_ctr_T_11 ? _update_wdata_3_ctr_T_15 : _update_wdata_3_ctr_T_19; // @[tage.scala:67:{8,9,20}, :68:20] wire [2:0] _update_wdata_3_ctr_T_21 = wrbypass_hit ? _update_wdata_3_ctr_T_10 : _update_wdata_3_ctr_T_20; // @[tage.scala:67:8, :151:48, :159:10] assign _update_wdata_3_ctr_T_22 = io_update_alloc_3_0 ? _update_wdata_3_ctr_T : _update_wdata_3_ctr_T_21; // @[tage.scala:24:7, :155:33, :156:10, :159:10] assign update_wdata_3_ctr = _update_wdata_3_ctr_T_22; // @[tage.scala:119:26, :155:33] assign _update_hi_wdata_3_T = io_update_u_3_0[1]; // @[tage.scala:24:7, :166:44] assign update_hi_wdata_3 = _update_hi_wdata_3_T; // @[tage.scala:127:29, :166:44] assign _update_lo_wdata_3_T = io_update_u_3_0[0]; // @[tage.scala:24:7, :167:44] assign update_lo_wdata_3 = _update_lo_wdata_3_T; // @[tage.scala:134:29, :167:44] wire [1:0] _wrbypass_enq_idx_T = {1'h0, wrbypass_enq_idx} + 2'h1; // @[util.scala:203:14] wire _wrbypass_enq_idx_T_1 = _wrbypass_enq_idx_T[0]; // @[util.scala:203:14] wire _wrbypass_enq_idx_T_2 = _wrbypass_enq_idx_T_1; // @[util.scala:203:{14,20}] wire _T_44 = io_update_mask_0_0 | io_update_mask_1_0 | io_update_mask_2_0 | io_update_mask_3_0; // @[tage.scala:24:7, :170:32] wire _GEN_13 = wrbypass_hit ? wrbypass_hit_idx : wrbypass_enq_idx; // @[Mux.scala:50:70] wire _GEN_14 = ~_T_44 | wrbypass_hit | wrbypass_enq_idx; // @[tage.scala:141:29, :143:29, :144:33, :151:48, :170:{32,38}, :171:39, :175:39] wire _GEN_15 = ~_T_44 | wrbypass_hit | ~wrbypass_enq_idx; // @[tage.scala:141:29, :143:29, :144:33, :151:48, :170:{32,38}, :171:39, :175:39] always @(posedge clock) begin // @[tage.scala:24:7] if (reset) begin // @[tage.scala:24:7] doing_reset <= 1'h1; // @[tage.scala:72:28] reset_idx <= 8'h0; // @[tage.scala:73:26] clear_u_ctr <= 20'h0; // @[tage.scala:109:28] wrbypass_enq_idx <= 1'h0; // @[tage.scala:144:33] end else begin // @[tage.scala:24:7] doing_reset <= reset_idx != 8'hFF & doing_reset; // @[tage.scala:72:28, :73:26, :75:{19,36,50}] reset_idx <= _reset_idx_T_1; // @[tage.scala:73:26, :74:26] clear_u_ctr <= doing_reset ? 20'h1 : _clear_u_ctr_T_1; // @[tage.scala:72:28, :109:28, :110:{22,36,70,85}] if (~_T_44 | wrbypass_hit) begin // @[tage.scala:143:29, :144:33, :151:48, :170:{32,38}, :171:39] end else // @[tage.scala:144:33, :170:38, :171:39] wrbypass_enq_idx <= _wrbypass_enq_idx_T_2; // @[util.scala:203:20] end s2_tag <= s1_tag; // @[tage.scala:62:64, :95:29] io_f3_resp_0_valid_REG <= s2_req_rhits_0; // @[tage.scala:100:29, :104:38] io_f3_resp_0_bits_u_REG <= _io_f3_resp_0_bits_u_T; // @[tage.scala:105:{38,42}] io_f3_resp_0_bits_ctr_REG <= s2_req_rtage_0_ctr; // @[tage.scala:97:29, :106:38] io_f3_resp_1_valid_REG <= s2_req_rhits_1; // @[tage.scala:100:29, :104:38] io_f3_resp_1_bits_u_REG <= _io_f3_resp_1_bits_u_T; // @[tage.scala:105:{38,42}] io_f3_resp_1_bits_ctr_REG <= s2_req_rtage_1_ctr; // @[tage.scala:97:29, :106:38] io_f3_resp_2_valid_REG <= s2_req_rhits_2; // @[tage.scala:100:29, :104:38] io_f3_resp_2_bits_u_REG <= _io_f3_resp_2_bits_u_T; // @[tage.scala:105:{38,42}] io_f3_resp_2_bits_ctr_REG <= s2_req_rtage_2_ctr; // @[tage.scala:97:29, :106:38] io_f3_resp_3_valid_REG <= s2_req_rhits_3; // @[tage.scala:100:29, :104:38] io_f3_resp_3_bits_u_REG <= _io_f3_resp_3_bits_u_T; // @[tage.scala:105:{38,42}] io_f3_resp_3_bits_ctr_REG <= s2_req_rtage_3_ctr; // @[tage.scala:97:29, :106:38] if (_GEN_14) begin // @[tage.scala:141:29, :170:38, :171:39, :175:39] end else // @[tage.scala:141:29, :170:38, :171:39, :175:39] wrbypass_tags_0 <= update_tag; // @[tage.scala:62:64, :141:29] if (_GEN_15) begin // @[tage.scala:141:29, :170:38, :171:39, :175:39] end else // @[tage.scala:141:29, :170:38, :171:39, :175:39] wrbypass_tags_1 <= update_tag; // @[tage.scala:62:64, :141:29] if (_GEN_14) begin // @[tage.scala:141:29, :142:29, :170:38, :171:39, :175:39, :176:39] end else // @[tage.scala:142:29, :170:38, :171:39, :176:39] wrbypass_idxs_0 <= update_idx; // @[tage.scala:60:43, :142:29] if (_GEN_15) begin // @[tage.scala:141:29, :142:29, :170:38, :171:39, :175:39, :176:39] end else // @[tage.scala:142:29, :170:38, :171:39, :176:39] wrbypass_idxs_1 <= update_idx; // @[tage.scala:60:43, :142:29] if (~_T_44 | _GEN_13) begin // @[tage.scala:143:29, :170:{32,38}, :171:39, :172:34, :174:39] end else begin // @[tage.scala:143:29, :170:38, :171:39] wrbypass_0_0 <= update_wdata_0_ctr; // @[tage.scala:119:26, :143:29] wrbypass_0_1 <= update_wdata_1_ctr; // @[tage.scala:119:26, :143:29] wrbypass_0_2 <= update_wdata_2_ctr; // @[tage.scala:119:26, :143:29] wrbypass_0_3 <= update_wdata_3_ctr; // @[tage.scala:119:26, :143:29] end if (_T_44 & _GEN_13) begin // @[tage.scala:143:29, :170:{32,38}, :171:39, :172:34, :174:39] wrbypass_1_0 <= update_wdata_0_ctr; // @[tage.scala:119:26, :143:29] wrbypass_1_1 <= update_wdata_1_ctr; // @[tage.scala:119:26, :143:29] wrbypass_1_2 <= update_wdata_2_ctr; // @[tage.scala:119:26, :143:29] wrbypass_1_3 <= update_wdata_3_ctr; // @[tage.scala:119:26, :143:29] end always @(posedge) hi_us_8 hi_us ( // @[tage.scala:89:27] .R0_addr (_s2_req_rhius_WIRE), // @[tage.scala:98:32] .R0_en (io_f1_req_valid_0), // @[tage.scala:24:7] .R0_clk (clock), .R0_data (_hi_us_R0_data), .W0_addr (doing_reset ? reset_idx : doing_clear_u_hi ? clear_u_idx[7:0] : update_idx), // @[tage.scala:60:43, :72:28, :73:26, :113:40, :115:33, :129:{8,36}] .W0_clk (clock), .W0_data ({hi_us_MPORT_1_data_3, hi_us_MPORT_1_data_2, hi_us_MPORT_1_data_1, hi_us_MPORT_1_data_0}), // @[tage.scala:89:27, :130:8] .W0_mask (_T_20 ? 4'hF : {hi_5, lo_1}) // @[tage.scala:130:21, :131:{8,80}] ); // @[tage.scala:89:27] lo_us_8 lo_us ( // @[tage.scala:90:27] .R0_addr (_s2_req_rlous_WIRE), // @[tage.scala:99:32] .R0_en (io_f1_req_valid_0), // @[tage.scala:24:7] .R0_clk (clock), .R0_data (_lo_us_R0_data), .W0_addr (doing_reset ? reset_idx : doing_clear_u_lo ? clear_u_idx[7:0] : update_idx), // @[tage.scala:60:43, :72:28, :73:26, :114:40, :115:33, :136:{8,36}] .W0_clk (clock), .W0_data ({lo_us_MPORT_2_data_3, lo_us_MPORT_2_data_2, lo_us_MPORT_2_data_1, lo_us_MPORT_2_data_0}), // @[tage.scala:90:27, :137:8] .W0_mask (_T_33 ? 4'hF : {hi_6, lo_2}) // @[tage.scala:137:21, :138:{8,80}] ); // @[tage.scala:90:27] table_8 table_0 ( // @[tage.scala:91:27] .R0_addr (_s2_req_rtage_WIRE), // @[tage.scala:97:40] .R0_en (io_f1_req_valid_0), // @[tage.scala:24:7] .R0_clk (clock), .R0_data (_table_R0_data), .W0_addr (doing_reset ? reset_idx : update_idx), // @[tage.scala:60:43, :72:28, :73:26, :122:8] .W0_clk (clock), .W0_data ({table_MPORT_data_3, table_MPORT_data_2, table_MPORT_data_1, table_MPORT_data_0}), // @[tage.scala:91:27, :123:8] .W0_mask (doing_reset ? 4'hF : {hi_4, lo}) // @[tage.scala:72:28, :124:{8,90}] ); // @[tage.scala:91:27] assign io_f3_resp_0_valid = io_f3_resp_0_valid_0; // @[tage.scala:24:7] assign io_f3_resp_0_bits_ctr = io_f3_resp_0_bits_ctr_0; // @[tage.scala:24:7] assign io_f3_resp_0_bits_u = io_f3_resp_0_bits_u_0; // @[tage.scala:24:7] assign io_f3_resp_1_valid = io_f3_resp_1_valid_0; // @[tage.scala:24:7] assign io_f3_resp_1_bits_ctr = io_f3_resp_1_bits_ctr_0; // @[tage.scala:24:7] assign io_f3_resp_1_bits_u = io_f3_resp_1_bits_u_0; // @[tage.scala:24:7] assign io_f3_resp_2_valid = io_f3_resp_2_valid_0; // @[tage.scala:24:7] assign io_f3_resp_2_bits_ctr = io_f3_resp_2_bits_ctr_0; // @[tage.scala:24:7] assign io_f3_resp_2_bits_u = io_f3_resp_2_bits_u_0; // @[tage.scala:24:7] assign io_f3_resp_3_valid = io_f3_resp_3_valid_0; // @[tage.scala:24:7] assign io_f3_resp_3_bits_ctr = io_f3_resp_3_bits_ctr_0; // @[tage.scala:24:7] assign io_f3_resp_3_bits_u = io_f3_resp_3_bits_u_0; // @[tage.scala:24:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File util.scala: //****************************************************************************** // Copyright (c) 2015 - 2019, The Regents of the University of California (Regents). // All Rights Reserved. See LICENSE and LICENSE.SiFive for license details. //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // Utility Functions //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ package boom.v3.util import chisel3._ import chisel3.util._ import freechips.rocketchip.rocket.Instructions._ import freechips.rocketchip.rocket._ import freechips.rocketchip.util.{Str} import org.chipsalliance.cde.config.{Parameters} import freechips.rocketchip.tile.{TileKey} import boom.v3.common.{MicroOp} import boom.v3.exu.{BrUpdateInfo} /** * Object to XOR fold a input register of fullLength into a compressedLength. */ object Fold { def apply(input: UInt, compressedLength: Int, fullLength: Int): UInt = { val clen = compressedLength val hlen = fullLength if (hlen <= clen) { input } else { var res = 0.U(clen.W) var remaining = input.asUInt for (i <- 0 to hlen-1 by clen) { val len = if (i + clen > hlen ) (hlen - i) else clen require(len > 0) res = res(clen-1,0) ^ remaining(len-1,0) remaining = remaining >> len.U } res } } } /** * Object to check if MicroOp was killed due to a branch mispredict. * Uses "Fast" branch masks */ object IsKilledByBranch { def apply(brupdate: BrUpdateInfo, uop: MicroOp): Bool = { return maskMatch(brupdate.b1.mispredict_mask, uop.br_mask) } def apply(brupdate: BrUpdateInfo, uop_mask: UInt): Bool = { return maskMatch(brupdate.b1.mispredict_mask, uop_mask) } } /** * Object to return new MicroOp with a new BR mask given a MicroOp mask * and old BR mask. */ object GetNewUopAndBrMask { def apply(uop: MicroOp, brupdate: BrUpdateInfo) (implicit p: Parameters): MicroOp = { val newuop = WireInit(uop) newuop.br_mask := uop.br_mask & ~brupdate.b1.resolve_mask newuop } } /** * Object to return a BR mask given a MicroOp mask and old BR mask. */ object GetNewBrMask { def apply(brupdate: BrUpdateInfo, uop: MicroOp): UInt = { return uop.br_mask & ~brupdate.b1.resolve_mask } def apply(brupdate: BrUpdateInfo, br_mask: UInt): UInt = { return br_mask & ~brupdate.b1.resolve_mask } } object UpdateBrMask { def apply(brupdate: BrUpdateInfo, uop: MicroOp): MicroOp = { val out = WireInit(uop) out.br_mask := GetNewBrMask(brupdate, uop) out } def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: T): T = { val out = WireInit(bundle) out.uop.br_mask := GetNewBrMask(brupdate, bundle.uop.br_mask) out } def apply[T <: boom.v3.common.HasBoomUOP](brupdate: BrUpdateInfo, bundle: Valid[T]): Valid[T] = { val out = WireInit(bundle) out.bits.uop.br_mask := GetNewBrMask(brupdate, bundle.bits.uop.br_mask) out.valid := bundle.valid && !IsKilledByBranch(brupdate, bundle.bits.uop.br_mask) out } } /** * Object to check if at least 1 bit matches in two masks */ object maskMatch { def apply(msk1: UInt, msk2: UInt): Bool = (msk1 & msk2) =/= 0.U } /** * Object to clear one bit in a mask given an index */ object clearMaskBit { def apply(msk: UInt, idx: UInt): UInt = (msk & ~(1.U << idx))(msk.getWidth-1, 0) } /** * Object to shift a register over by one bit and concat a new one */ object PerformShiftRegister { def apply(reg_val: UInt, new_bit: Bool): UInt = { reg_val := Cat(reg_val(reg_val.getWidth-1, 0).asUInt, new_bit.asUInt).asUInt reg_val } } /** * Object to shift a register over by one bit, wrapping the top bit around to the bottom * (XOR'ed with a new-bit), and evicting a bit at index HLEN. * This is used to simulate a longer HLEN-width shift register that is folded * down to a compressed CLEN. */ object PerformCircularShiftRegister { def apply(csr: UInt, new_bit: Bool, evict_bit: Bool, hlen: Int, clen: Int): UInt = { val carry = csr(clen-1) val newval = Cat(csr, new_bit ^ carry) ^ (evict_bit << (hlen % clen).U) newval } } /** * Object to increment an input value, wrapping it if * necessary. */ object WrapAdd { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, amt: UInt, n: Int): UInt = { if (isPow2(n)) { (value + amt)(log2Ceil(n)-1,0) } else { val sum = Cat(0.U(1.W), value) + Cat(0.U(1.W), amt) Mux(sum >= n.U, sum - n.U, sum) } } } /** * Object to decrement an input value, wrapping it if * necessary. */ object WrapSub { // "n" is the number of increments, so we wrap to n-1. def apply(value: UInt, amt: Int, n: Int): UInt = { if (isPow2(n)) { (value - amt.U)(log2Ceil(n)-1,0) } else { val v = Cat(0.U(1.W), value) val b = Cat(0.U(1.W), amt.U) Mux(value >= amt.U, value - amt.U, n.U - amt.U + value) } } } /** * Object to increment an input value, wrapping it if * necessary. */ object WrapInc { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, n: Int): UInt = { if (isPow2(n)) { (value + 1.U)(log2Ceil(n)-1,0) } else { val wrap = (value === (n-1).U) Mux(wrap, 0.U, value + 1.U) } } } /** * Object to decrement an input value, wrapping it if * necessary. */ object WrapDec { // "n" is the number of increments, so we wrap at n-1. def apply(value: UInt, n: Int): UInt = { if (isPow2(n)) { (value - 1.U)(log2Ceil(n)-1,0) } else { val wrap = (value === 0.U) Mux(wrap, (n-1).U, value - 1.U) } } } /** * Object to mask off lower bits of a PC to align to a "b" * Byte boundary. */ object AlignPCToBoundary { def apply(pc: UInt, b: Int): UInt = { // Invert for scenario where pc longer than b // (which would clear all bits above size(b)). ~(~pc | (b-1).U) } } /** * Object to rotate a signal left by one */ object RotateL1 { def apply(signal: UInt): UInt = { val w = signal.getWidth val out = Cat(signal(w-2,0), signal(w-1)) return out } } /** * Object to sext a value to a particular length. */ object Sext { def apply(x: UInt, length: Int): UInt = { if (x.getWidth == length) return x else return Cat(Fill(length-x.getWidth, x(x.getWidth-1)), x) } } /** * Object to translate from BOOM's special "packed immediate" to a 32b signed immediate * Asking for U-type gives it shifted up 12 bits. */ object ImmGen { import boom.v3.common.{LONGEST_IMM_SZ, IS_B, IS_I, IS_J, IS_S, IS_U} def apply(ip: UInt, isel: UInt): SInt = { val sign = ip(LONGEST_IMM_SZ-1).asSInt val i30_20 = Mux(isel === IS_U, ip(18,8).asSInt, sign) val i19_12 = Mux(isel === IS_U || isel === IS_J, ip(7,0).asSInt, sign) val i11 = Mux(isel === IS_U, 0.S, Mux(isel === IS_J || isel === IS_B, ip(8).asSInt, sign)) val i10_5 = Mux(isel === IS_U, 0.S, ip(18,14).asSInt) val i4_1 = Mux(isel === IS_U, 0.S, ip(13,9).asSInt) val i0 = Mux(isel === IS_S || isel === IS_I, ip(8).asSInt, 0.S) return Cat(sign, i30_20, i19_12, i11, i10_5, i4_1, i0).asSInt } } /** * Object to get the FP rounding mode out of a packed immediate. */ object ImmGenRm { def apply(ip: UInt): UInt = { return ip(2,0) } } /** * Object to get the FP function fype from a packed immediate. * Note: only works if !(IS_B or IS_S) */ object ImmGenTyp { def apply(ip: UInt): UInt = { return ip(9,8) } } /** * Object to see if an instruction is a JALR. */ object DebugIsJALR { def apply(inst: UInt): Bool = { // TODO Chisel not sure why this won't compile // val is_jalr = rocket.DecodeLogic(inst, List(Bool(false)), // Array( // JALR -> Bool(true))) inst(6,0) === "b1100111".U } } /** * Object to take an instruction and output its branch or jal target. Only used * for a debug assert (no where else would we jump straight from instruction * bits to a target). */ object DebugGetBJImm { def apply(inst: UInt): UInt = { // TODO Chisel not sure why this won't compile //val csignals = //rocket.DecodeLogic(inst, // List(Bool(false), Bool(false)), // Array( // BEQ -> List(Bool(true ), Bool(false)), // BNE -> List(Bool(true ), Bool(false)), // BGE -> List(Bool(true ), Bool(false)), // BGEU -> List(Bool(true ), Bool(false)), // BLT -> List(Bool(true ), Bool(false)), // BLTU -> List(Bool(true ), Bool(false)) // )) //val is_br :: nothing :: Nil = csignals val is_br = (inst(6,0) === "b1100011".U) val br_targ = Cat(Fill(12, inst(31)), Fill(8,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W)) val jal_targ= Cat(Fill(12, inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W)) Mux(is_br, br_targ, jal_targ) } } /** * Object to return the lowest bit position after the head. */ object AgePriorityEncoder { def apply(in: Seq[Bool], head: UInt): UInt = { val n = in.size val width = log2Ceil(in.size) val n_padded = 1 << width val temp_vec = (0 until n_padded).map(i => if (i < n) in(i) && i.U >= head else false.B) ++ in val idx = PriorityEncoder(temp_vec) idx(width-1, 0) //discard msb } } /** * Object to determine whether queue * index i0 is older than index i1. */ object IsOlder { def apply(i0: UInt, i1: UInt, head: UInt) = ((i0 < i1) ^ (i0 < head) ^ (i1 < head)) } /** * Set all bits at or below the highest order '1'. */ object MaskLower { def apply(in: UInt) = { val n = in.getWidth (0 until n).map(i => in >> i.U).reduce(_|_) } } /** * Set all bits at or above the lowest order '1'. */ object MaskUpper { def apply(in: UInt) = { val n = in.getWidth (0 until n).map(i => (in << i.U)(n-1,0)).reduce(_|_) } } /** * Transpose a matrix of Chisel Vecs. */ object Transpose { def apply[T <: chisel3.Data](in: Vec[Vec[T]]) = { val n = in(0).size VecInit((0 until n).map(i => VecInit(in.map(row => row(i))))) } } /** * N-wide one-hot priority encoder. */ object SelectFirstN { def apply(in: UInt, n: Int) = { val sels = Wire(Vec(n, UInt(in.getWidth.W))) var mask = in for (i <- 0 until n) { sels(i) := PriorityEncoderOH(mask) mask = mask & ~sels(i) } sels } } /** * Connect the first k of n valid input interfaces to k output interfaces. */ class Compactor[T <: chisel3.Data](n: Int, k: Int, gen: T) extends Module { require(n >= k) val io = IO(new Bundle { val in = Vec(n, Flipped(DecoupledIO(gen))) val out = Vec(k, DecoupledIO(gen)) }) if (n == k) { io.out <> io.in } else { val counts = io.in.map(_.valid).scanLeft(1.U(k.W)) ((c,e) => Mux(e, (c<<1)(k-1,0), c)) val sels = Transpose(VecInit(counts map (c => VecInit(c.asBools)))) map (col => (col zip io.in.map(_.valid)) map {case (c,v) => c && v}) val in_readys = counts map (row => (row.asBools zip io.out.map(_.ready)) map {case (c,r) => c && r} reduce (_||_)) val out_valids = sels map (col => col.reduce(_||_)) val out_data = sels map (s => Mux1H(s, io.in.map(_.bits))) in_readys zip io.in foreach {case (r,i) => i.ready := r} out_valids zip out_data zip io.out foreach {case ((v,d),o) => o.valid := v; o.bits := d} } } /** * Create a queue that can be killed with a branch kill signal. * Assumption: enq.valid only high if not killed by branch (so don't check IsKilled on io.enq). */ class BranchKillableQueue[T <: boom.v3.common.HasBoomUOP](gen: T, entries: Int, flush_fn: boom.v3.common.MicroOp => Bool = u => true.B, flow: Boolean = true) (implicit p: org.chipsalliance.cde.config.Parameters) extends boom.v3.common.BoomModule()(p) with boom.v3.common.HasBoomCoreParameters { val io = IO(new Bundle { val enq = Flipped(Decoupled(gen)) val deq = Decoupled(gen) val brupdate = Input(new BrUpdateInfo()) val flush = Input(Bool()) val empty = Output(Bool()) val count = Output(UInt(log2Ceil(entries).W)) }) val ram = Mem(entries, gen) val valids = RegInit(VecInit(Seq.fill(entries) {false.B})) val uops = Reg(Vec(entries, new MicroOp)) val enq_ptr = Counter(entries) val deq_ptr = Counter(entries) val maybe_full = RegInit(false.B) val ptr_match = enq_ptr.value === deq_ptr.value io.empty := ptr_match && !maybe_full val full = ptr_match && maybe_full val do_enq = WireInit(io.enq.fire) val do_deq = WireInit((io.deq.ready || !valids(deq_ptr.value)) && !io.empty) for (i <- 0 until entries) { val mask = uops(i).br_mask val uop = uops(i) valids(i) := valids(i) && !IsKilledByBranch(io.brupdate, mask) && !(io.flush && flush_fn(uop)) when (valids(i)) { uops(i).br_mask := GetNewBrMask(io.brupdate, mask) } } when (do_enq) { ram(enq_ptr.value) := io.enq.bits valids(enq_ptr.value) := true.B //!IsKilledByBranch(io.brupdate, io.enq.bits.uop) uops(enq_ptr.value) := io.enq.bits.uop uops(enq_ptr.value).br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop) enq_ptr.inc() } when (do_deq) { valids(deq_ptr.value) := false.B deq_ptr.inc() } when (do_enq =/= do_deq) { maybe_full := do_enq } io.enq.ready := !full val out = Wire(gen) out := ram(deq_ptr.value) out.uop := uops(deq_ptr.value) io.deq.valid := !io.empty && valids(deq_ptr.value) && !IsKilledByBranch(io.brupdate, out.uop) && !(io.flush && flush_fn(out.uop)) io.deq.bits := out io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, out.uop) // For flow queue behavior. if (flow) { when (io.empty) { io.deq.valid := io.enq.valid //&& !IsKilledByBranch(io.brupdate, io.enq.bits.uop) io.deq.bits := io.enq.bits io.deq.bits.uop.br_mask := GetNewBrMask(io.brupdate, io.enq.bits.uop) do_deq := false.B when (io.deq.ready) { do_enq := false.B } } } private val ptr_diff = enq_ptr.value - deq_ptr.value if (isPow2(entries)) { io.count := Cat(maybe_full && ptr_match, ptr_diff) } else { io.count := Mux(ptr_match, Mux(maybe_full, entries.asUInt, 0.U), Mux(deq_ptr.value > enq_ptr.value, entries.asUInt + ptr_diff, ptr_diff)) } } // ------------------------------------------ // Printf helper functions // ------------------------------------------ object BoolToChar { /** * Take in a Chisel Bool and convert it into a Str * based on the Chars given * * @param c_bool Chisel Bool * @param trueChar Scala Char if bool is true * @param falseChar Scala Char if bool is false * @return UInt ASCII Char for "trueChar" or "falseChar" */ def apply(c_bool: Bool, trueChar: Char, falseChar: Char = '-'): UInt = { Mux(c_bool, Str(trueChar), Str(falseChar)) } } object CfiTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param cfi_type specific cfi type * @return Vec of Strs (must be indexed to get specific char) */ def apply(cfi_type: UInt) = { val strings = Seq("----", "BR ", "JAL ", "JALR") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(cfi_type) } } object BpdTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param bpd_type specific bpd type * @return Vec of Strs (must be indexed to get specific char) */ def apply(bpd_type: UInt) = { val strings = Seq("BR ", "JUMP", "----", "RET ", "----", "CALL", "----", "----") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(bpd_type) } } object RobTypeToChars { /** * Get a Vec of Strs that can be used for printing * * @param rob_type specific rob type * @return Vec of Strs (must be indexed to get specific char) */ def apply(rob_type: UInt) = { val strings = Seq("RST", "NML", "RBK", " WT") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(rob_type) } } object XRegToChars { /** * Get a Vec of Strs that can be used for printing * * @param xreg specific register number * @return Vec of Strs (must be indexed to get specific char) */ def apply(xreg: UInt) = { val strings = Seq(" x0", " ra", " sp", " gp", " tp", " t0", " t1", " t2", " s0", " s1", " a0", " a1", " a2", " a3", " a4", " a5", " a6", " a7", " s2", " s3", " s4", " s5", " s6", " s7", " s8", " s9", "s10", "s11", " t3", " t4", " t5", " t6") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(xreg) } } object FPRegToChars { /** * Get a Vec of Strs that can be used for printing * * @param fpreg specific register number * @return Vec of Strs (must be indexed to get specific char) */ def apply(fpreg: UInt) = { val strings = Seq(" ft0", " ft1", " ft2", " ft3", " ft4", " ft5", " ft6", " ft7", " fs0", " fs1", " fa0", " fa1", " fa2", " fa3", " fa4", " fa5", " fa6", " fa7", " fs2", " fs3", " fs4", " fs5", " fs6", " fs7", " fs8", " fs9", "fs10", "fs11", " ft8", " ft9", "ft10", "ft11") val multiVec = VecInit(for(string <- strings) yield { VecInit(for (c <- string) yield { Str(c) }) }) multiVec(fpreg) } } object BoomCoreStringPrefix { /** * Add prefix to BOOM strings (currently only adds the hartId) * * @param strs list of strings * @return String combining the list with the prefix per line */ def apply(strs: String*)(implicit p: Parameters) = { val prefix = "[C" + s"${p(TileKey).tileId}" + "] " strs.map(str => prefix + str + "\n").mkString("") } } File consts.scala: //****************************************************************************** // Copyright (c) 2011 - 2018, The Regents of the University of California (Regents). // All Rights Reserved. See LICENSE and LICENSE.SiFive for license details. //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // RISCV Processor Constants //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ package boom.v3.common.constants import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util.Str import freechips.rocketchip.rocket.RVCExpander /** * Mixin for issue queue types */ trait IQType { val IQT_SZ = 3 val IQT_INT = 1.U(IQT_SZ.W) val IQT_MEM = 2.U(IQT_SZ.W) val IQT_FP = 4.U(IQT_SZ.W) val IQT_MFP = 6.U(IQT_SZ.W) } /** * Mixin for scalar operation constants */ trait ScalarOpConstants { val X = BitPat("b?") val Y = BitPat("b1") val N = BitPat("b0") //************************************ // Extra Constants // Which branch predictor predicted us val BSRC_SZ = 2 val BSRC_1 = 0.U(BSRC_SZ.W) // 1-cycle branch pred val BSRC_2 = 1.U(BSRC_SZ.W) // 2-cycle branch pred val BSRC_3 = 2.U(BSRC_SZ.W) // 3-cycle branch pred val BSRC_C = 3.U(BSRC_SZ.W) // core branch resolution //************************************ // Control Signals // CFI types val CFI_SZ = 3 val CFI_X = 0.U(CFI_SZ.W) // Not a CFI instruction val CFI_BR = 1.U(CFI_SZ.W) // Branch val CFI_JAL = 2.U(CFI_SZ.W) // JAL val CFI_JALR = 3.U(CFI_SZ.W) // JALR // PC Select Signal val PC_PLUS4 = 0.U(2.W) // PC + 4 val PC_BRJMP = 1.U(2.W) // brjmp_target val PC_JALR = 2.U(2.W) // jump_reg_target // Branch Type val BR_N = 0.U(4.W) // Next val BR_NE = 1.U(4.W) // Branch on NotEqual val BR_EQ = 2.U(4.W) // Branch on Equal val BR_GE = 3.U(4.W) // Branch on Greater/Equal val BR_GEU = 4.U(4.W) // Branch on Greater/Equal Unsigned val BR_LT = 5.U(4.W) // Branch on Less Than val BR_LTU = 6.U(4.W) // Branch on Less Than Unsigned val BR_J = 7.U(4.W) // Jump val BR_JR = 8.U(4.W) // Jump Register // RS1 Operand Select Signal val OP1_RS1 = 0.U(2.W) // Register Source #1 val OP1_ZERO= 1.U(2.W) val OP1_PC = 2.U(2.W) val OP1_X = BitPat("b??") // RS2 Operand Select Signal val OP2_RS2 = 0.U(3.W) // Register Source #2 val OP2_IMM = 1.U(3.W) // immediate val OP2_ZERO= 2.U(3.W) // constant 0 val OP2_NEXT= 3.U(3.W) // constant 2/4 (for PC+2/4) val OP2_IMMC= 4.U(3.W) // for CSR imm found in RS1 val OP2_X = BitPat("b???") // Register File Write Enable Signal val REN_0 = false.B val REN_1 = true.B // Is 32b Word or 64b Doubldword? val SZ_DW = 1 val DW_X = true.B // Bool(xLen==64) val DW_32 = false.B val DW_64 = true.B val DW_XPR = true.B // Bool(xLen==64) // Memory Enable Signal val MEN_0 = false.B val MEN_1 = true.B val MEN_X = false.B // Immediate Extend Select val IS_I = 0.U(3.W) // I-Type (LD,ALU) val IS_S = 1.U(3.W) // S-Type (ST) val IS_B = 2.U(3.W) // SB-Type (BR) val IS_U = 3.U(3.W) // U-Type (LUI/AUIPC) val IS_J = 4.U(3.W) // UJ-Type (J/JAL) val IS_X = BitPat("b???") // Decode Stage Control Signals val RT_FIX = 0.U(2.W) val RT_FLT = 1.U(2.W) val RT_PAS = 3.U(2.W) // pass-through (prs1 := lrs1, etc) val RT_X = 2.U(2.W) // not-a-register (but shouldn't get a busy-bit, etc.) // TODO rename RT_NAR // Micro-op opcodes // TODO change micro-op opcodes into using enum val UOPC_SZ = 7 val uopX = BitPat.dontCare(UOPC_SZ) val uopNOP = 0.U(UOPC_SZ.W) val uopLD = 1.U(UOPC_SZ.W) val uopSTA = 2.U(UOPC_SZ.W) // store address generation val uopSTD = 3.U(UOPC_SZ.W) // store data generation val uopLUI = 4.U(UOPC_SZ.W) val uopADDI = 5.U(UOPC_SZ.W) val uopANDI = 6.U(UOPC_SZ.W) val uopORI = 7.U(UOPC_SZ.W) val uopXORI = 8.U(UOPC_SZ.W) val uopSLTI = 9.U(UOPC_SZ.W) val uopSLTIU= 10.U(UOPC_SZ.W) val uopSLLI = 11.U(UOPC_SZ.W) val uopSRAI = 12.U(UOPC_SZ.W) val uopSRLI = 13.U(UOPC_SZ.W) val uopSLL = 14.U(UOPC_SZ.W) val uopADD = 15.U(UOPC_SZ.W) val uopSUB = 16.U(UOPC_SZ.W) val uopSLT = 17.U(UOPC_SZ.W) val uopSLTU = 18.U(UOPC_SZ.W) val uopAND = 19.U(UOPC_SZ.W) val uopOR = 20.U(UOPC_SZ.W) val uopXOR = 21.U(UOPC_SZ.W) val uopSRA = 22.U(UOPC_SZ.W) val uopSRL = 23.U(UOPC_SZ.W) val uopBEQ = 24.U(UOPC_SZ.W) val uopBNE = 25.U(UOPC_SZ.W) val uopBGE = 26.U(UOPC_SZ.W) val uopBGEU = 27.U(UOPC_SZ.W) val uopBLT = 28.U(UOPC_SZ.W) val uopBLTU = 29.U(UOPC_SZ.W) val uopCSRRW= 30.U(UOPC_SZ.W) val uopCSRRS= 31.U(UOPC_SZ.W) val uopCSRRC= 32.U(UOPC_SZ.W) val uopCSRRWI=33.U(UOPC_SZ.W) val uopCSRRSI=34.U(UOPC_SZ.W) val uopCSRRCI=35.U(UOPC_SZ.W) val uopJ = 36.U(UOPC_SZ.W) val uopJAL = 37.U(UOPC_SZ.W) val uopJALR = 38.U(UOPC_SZ.W) val uopAUIPC= 39.U(UOPC_SZ.W) //val uopSRET = 40.U(UOPC_SZ.W) val uopCFLSH= 41.U(UOPC_SZ.W) val uopFENCE= 42.U(UOPC_SZ.W) val uopADDIW= 43.U(UOPC_SZ.W) val uopADDW = 44.U(UOPC_SZ.W) val uopSUBW = 45.U(UOPC_SZ.W) val uopSLLIW= 46.U(UOPC_SZ.W) val uopSLLW = 47.U(UOPC_SZ.W) val uopSRAIW= 48.U(UOPC_SZ.W) val uopSRAW = 49.U(UOPC_SZ.W) val uopSRLIW= 50.U(UOPC_SZ.W) val uopSRLW = 51.U(UOPC_SZ.W) val uopMUL = 52.U(UOPC_SZ.W) val uopMULH = 53.U(UOPC_SZ.W) val uopMULHU= 54.U(UOPC_SZ.W) val uopMULHSU=55.U(UOPC_SZ.W) val uopMULW = 56.U(UOPC_SZ.W) val uopDIV = 57.U(UOPC_SZ.W) val uopDIVU = 58.U(UOPC_SZ.W) val uopREM = 59.U(UOPC_SZ.W) val uopREMU = 60.U(UOPC_SZ.W) val uopDIVW = 61.U(UOPC_SZ.W) val uopDIVUW= 62.U(UOPC_SZ.W) val uopREMW = 63.U(UOPC_SZ.W) val uopREMUW= 64.U(UOPC_SZ.W) val uopFENCEI = 65.U(UOPC_SZ.W) // = 66.U(UOPC_SZ.W) val uopAMO_AG = 67.U(UOPC_SZ.W) // AMO-address gen (use normal STD for datagen) val uopFMV_W_X = 68.U(UOPC_SZ.W) val uopFMV_D_X = 69.U(UOPC_SZ.W) val uopFMV_X_W = 70.U(UOPC_SZ.W) val uopFMV_X_D = 71.U(UOPC_SZ.W) val uopFSGNJ_S = 72.U(UOPC_SZ.W) val uopFSGNJ_D = 73.U(UOPC_SZ.W) val uopFCVT_S_D = 74.U(UOPC_SZ.W) val uopFCVT_D_S = 75.U(UOPC_SZ.W) val uopFCVT_S_X = 76.U(UOPC_SZ.W) val uopFCVT_D_X = 77.U(UOPC_SZ.W) val uopFCVT_X_S = 78.U(UOPC_SZ.W) val uopFCVT_X_D = 79.U(UOPC_SZ.W) val uopCMPR_S = 80.U(UOPC_SZ.W) val uopCMPR_D = 81.U(UOPC_SZ.W) val uopFCLASS_S = 82.U(UOPC_SZ.W) val uopFCLASS_D = 83.U(UOPC_SZ.W) val uopFMINMAX_S = 84.U(UOPC_SZ.W) val uopFMINMAX_D = 85.U(UOPC_SZ.W) // = 86.U(UOPC_SZ.W) val uopFADD_S = 87.U(UOPC_SZ.W) val uopFSUB_S = 88.U(UOPC_SZ.W) val uopFMUL_S = 89.U(UOPC_SZ.W) val uopFADD_D = 90.U(UOPC_SZ.W) val uopFSUB_D = 91.U(UOPC_SZ.W) val uopFMUL_D = 92.U(UOPC_SZ.W) val uopFMADD_S = 93.U(UOPC_SZ.W) val uopFMSUB_S = 94.U(UOPC_SZ.W) val uopFNMADD_S = 95.U(UOPC_SZ.W) val uopFNMSUB_S = 96.U(UOPC_SZ.W) val uopFMADD_D = 97.U(UOPC_SZ.W) val uopFMSUB_D = 98.U(UOPC_SZ.W) val uopFNMADD_D = 99.U(UOPC_SZ.W) val uopFNMSUB_D = 100.U(UOPC_SZ.W) val uopFDIV_S = 101.U(UOPC_SZ.W) val uopFDIV_D = 102.U(UOPC_SZ.W) val uopFSQRT_S = 103.U(UOPC_SZ.W) val uopFSQRT_D = 104.U(UOPC_SZ.W) val uopWFI = 105.U(UOPC_SZ.W) // pass uop down the CSR pipeline val uopERET = 106.U(UOPC_SZ.W) // pass uop down the CSR pipeline, also is ERET val uopSFENCE = 107.U(UOPC_SZ.W) val uopROCC = 108.U(UOPC_SZ.W) val uopMOV = 109.U(UOPC_SZ.W) // conditional mov decoded from "add rd, x0, rs2" // The Bubble Instruction (Machine generated NOP) // Insert (XOR x0,x0,x0) which is different from software compiler // generated NOPs which are (ADDI x0, x0, 0). // Reasoning for this is to let visualizers and stat-trackers differentiate // between software NOPs and machine-generated Bubbles in the pipeline. val BUBBLE = (0x4033).U(32.W) def NullMicroOp()(implicit p: Parameters): boom.v3.common.MicroOp = { val uop = Wire(new boom.v3.common.MicroOp) uop := DontCare // Overridden in the following lines uop.uopc := uopNOP // maybe not required, but helps on asserts that try to catch spurious behavior uop.bypassable := false.B uop.fp_val := false.B uop.uses_stq := false.B uop.uses_ldq := false.B uop.pdst := 0.U uop.dst_rtype := RT_X val cs = Wire(new boom.v3.common.CtrlSignals()) cs := DontCare // Overridden in the following lines cs.br_type := BR_N cs.csr_cmd := freechips.rocketchip.rocket.CSR.N cs.is_load := false.B cs.is_sta := false.B cs.is_std := false.B uop.ctrl := cs uop } } /** * Mixin for RISCV constants */ trait RISCVConstants { // abstract out instruction decode magic numbers val RD_MSB = 11 val RD_LSB = 7 val RS1_MSB = 19 val RS1_LSB = 15 val RS2_MSB = 24 val RS2_LSB = 20 val RS3_MSB = 31 val RS3_LSB = 27 val CSR_ADDR_MSB = 31 val CSR_ADDR_LSB = 20 val CSR_ADDR_SZ = 12 // location of the fifth bit in the shamt (for checking for illegal ops for SRAIW,etc.) val SHAMT_5_BIT = 25 val LONGEST_IMM_SZ = 20 val X0 = 0.U val RA = 1.U // return address register // memory consistency model // The C/C++ atomics MCM requires that two loads to the same address maintain program order. // The Cortex A9 does NOT enforce load/load ordering (which leads to buggy behavior). val MCM_ORDER_DEPENDENT_LOADS = true val jal_opc = (0x6f).U val jalr_opc = (0x67).U def GetUop(inst: UInt): UInt = inst(6,0) def GetRd (inst: UInt): UInt = inst(RD_MSB,RD_LSB) def GetRs1(inst: UInt): UInt = inst(RS1_MSB,RS1_LSB) def ExpandRVC(inst: UInt)(implicit p: Parameters): UInt = { val rvc_exp = Module(new RVCExpander) rvc_exp.io.in := inst Mux(rvc_exp.io.rvc, rvc_exp.io.out.bits, inst) } // Note: Accepts only EXPANDED rvc instructions def ComputeBranchTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = { val b_imm32 = Cat(Fill(20,inst(31)), inst(7), inst(30,25), inst(11,8), 0.U(1.W)) ((pc.asSInt + b_imm32.asSInt).asSInt & (-2).S).asUInt } // Note: Accepts only EXPANDED rvc instructions def ComputeJALTarget(pc: UInt, inst: UInt, xlen: Int)(implicit p: Parameters): UInt = { val j_imm32 = Cat(Fill(12,inst(31)), inst(19,12), inst(20), inst(30,25), inst(24,21), 0.U(1.W)) ((pc.asSInt + j_imm32.asSInt).asSInt & (-2).S).asUInt } // Note: Accepts only EXPANDED rvc instructions def GetCfiType(inst: UInt)(implicit p: Parameters): UInt = { val bdecode = Module(new boom.v3.exu.BranchDecode) bdecode.io.inst := inst bdecode.io.pc := 0.U bdecode.io.out.cfi_type } } /** * Mixin for exception cause constants */ trait ExcCauseConstants { // a memory disambigious misspeculation occurred val MINI_EXCEPTION_MEM_ORDERING = 16.U val MINI_EXCEPTION_CSR_REPLAY = 17.U require (!freechips.rocketchip.rocket.Causes.all.contains(16)) require (!freechips.rocketchip.rocket.Causes.all.contains(17)) } File issue-slot.scala: //****************************************************************************** // Copyright (c) 2015 - 2018, The Regents of the University of California (Regents). // All Rights Reserved. See LICENSE and LICENSE.SiFive for license details. //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // RISCV Processor Issue Slot Logic //-------------------------------------------------------------------------- //------------------------------------------------------------------------------ // // Note: stores (and AMOs) are "broken down" into 2 uops, but stored within a single issue-slot. // TODO XXX make a separate issueSlot for MemoryIssueSlots, and only they break apart stores. // TODO Disable ldspec for FP queue. package boom.v3.exu import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.Parameters import boom.v3.common._ import boom.v3.util._ import FUConstants._ /** * IO bundle to interact with Issue slot * * @param numWakeupPorts number of wakeup ports for the slot */ class IssueSlotIO(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomBundle { val valid = Output(Bool()) val will_be_valid = Output(Bool()) // TODO code review, do we need this signal so explicitely? val request = Output(Bool()) val request_hp = Output(Bool()) val grant = Input(Bool()) val brupdate = Input(new BrUpdateInfo()) val kill = Input(Bool()) // pipeline flush val clear = Input(Bool()) // entry being moved elsewhere (not mutually exclusive with grant) val ldspec_miss = Input(Bool()) // Previous cycle's speculative load wakeup was mispredicted. val wakeup_ports = Flipped(Vec(numWakeupPorts, Valid(new IqWakeup(maxPregSz)))) val pred_wakeup_port = Flipped(Valid(UInt(log2Ceil(ftqSz).W))) val spec_ld_wakeup = Flipped(Vec(memWidth, Valid(UInt(width=maxPregSz.W)))) val in_uop = Flipped(Valid(new MicroOp())) // if valid, this WILL overwrite an entry! val out_uop = Output(new MicroOp()) // the updated slot uop; will be shifted upwards in a collasping queue. val uop = Output(new MicroOp()) // the current Slot's uop. Sent down the pipeline when issued. val debug = { val result = new Bundle { val p1 = Bool() val p2 = Bool() val p3 = Bool() val ppred = Bool() val state = UInt(width=2.W) } Output(result) } } /** * Single issue slot. Holds a uop within the issue queue * * @param numWakeupPorts number of wakeup ports */ class IssueSlot(val numWakeupPorts: Int)(implicit p: Parameters) extends BoomModule with IssueUnitConstants { val io = IO(new IssueSlotIO(numWakeupPorts)) // slot invalid? // slot is valid, holding 1 uop // slot is valid, holds 2 uops (like a store) def is_invalid = state === s_invalid def is_valid = state =/= s_invalid val next_state = Wire(UInt()) // the next state of this slot (which might then get moved to a new slot) val next_uopc = Wire(UInt()) // the next uopc of this slot (which might then get moved to a new slot) val next_lrs1_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot) val next_lrs2_rtype = Wire(UInt()) // the next reg type of this slot (which might then get moved to a new slot) val state = RegInit(s_invalid) val p1 = RegInit(false.B) val p2 = RegInit(false.B) val p3 = RegInit(false.B) val ppred = RegInit(false.B) // Poison if woken up by speculative load. // Poison lasts 1 cycle (as ldMiss will come on the next cycle). // SO if poisoned is true, set it to false! val p1_poisoned = RegInit(false.B) val p2_poisoned = RegInit(false.B) p1_poisoned := false.B p2_poisoned := false.B val next_p1_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p1_poisoned, p1_poisoned) val next_p2_poisoned = Mux(io.in_uop.valid, io.in_uop.bits.iw_p2_poisoned, p2_poisoned) val slot_uop = RegInit(NullMicroOp) val next_uop = Mux(io.in_uop.valid, io.in_uop.bits, slot_uop) //----------------------------------------------------------------------------- // next slot state computation // compute the next state for THIS entry slot (in a collasping queue, the // current uop may get moved elsewhere, and a new uop can enter when (io.kill) { state := s_invalid } .elsewhen (io.in_uop.valid) { state := io.in_uop.bits.iw_state } .elsewhen (io.clear) { state := s_invalid } .otherwise { state := next_state } //----------------------------------------------------------------------------- // "update" state // compute the next state for the micro-op in this slot. This micro-op may // be moved elsewhere, so the "next_state" travels with it. // defaults next_state := state next_uopc := slot_uop.uopc next_lrs1_rtype := slot_uop.lrs1_rtype next_lrs2_rtype := slot_uop.lrs2_rtype when (io.kill) { next_state := s_invalid } .elsewhen ((io.grant && (state === s_valid_1)) || (io.grant && (state === s_valid_2) && p1 && p2 && ppred)) { // try to issue this uop. when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) { next_state := s_invalid } } .elsewhen (io.grant && (state === s_valid_2)) { when (!(io.ldspec_miss && (p1_poisoned || p2_poisoned))) { next_state := s_valid_1 when (p1) { slot_uop.uopc := uopSTD next_uopc := uopSTD slot_uop.lrs1_rtype := RT_X next_lrs1_rtype := RT_X } .otherwise { slot_uop.lrs2_rtype := RT_X next_lrs2_rtype := RT_X } } } when (io.in_uop.valid) { slot_uop := io.in_uop.bits assert (is_invalid || io.clear || io.kill, "trying to overwrite a valid issue slot.") } // Wakeup Compare Logic // these signals are the "next_p*" for the current slot's micro-op. // they are important for shifting the current slot_uop up to an other entry. val next_p1 = WireInit(p1) val next_p2 = WireInit(p2) val next_p3 = WireInit(p3) val next_ppred = WireInit(ppred) when (io.in_uop.valid) { p1 := !(io.in_uop.bits.prs1_busy) p2 := !(io.in_uop.bits.prs2_busy) p3 := !(io.in_uop.bits.prs3_busy) ppred := !(io.in_uop.bits.ppred_busy) } when (io.ldspec_miss && next_p1_poisoned) { assert(next_uop.prs1 =/= 0.U, "Poison bit can't be set for prs1=x0!") p1 := false.B } when (io.ldspec_miss && next_p2_poisoned) { assert(next_uop.prs2 =/= 0.U, "Poison bit can't be set for prs2=x0!") p2 := false.B } for (i <- 0 until numWakeupPorts) { when (io.wakeup_ports(i).valid && (io.wakeup_ports(i).bits.pdst === next_uop.prs1)) { p1 := true.B } when (io.wakeup_ports(i).valid && (io.wakeup_ports(i).bits.pdst === next_uop.prs2)) { p2 := true.B } when (io.wakeup_ports(i).valid && (io.wakeup_ports(i).bits.pdst === next_uop.prs3)) { p3 := true.B } } when (io.pred_wakeup_port.valid && io.pred_wakeup_port.bits === next_uop.ppred) { ppred := true.B } for (w <- 0 until memWidth) { assert (!(io.spec_ld_wakeup(w).valid && io.spec_ld_wakeup(w).bits === 0.U), "Loads to x0 should never speculatively wakeup other instructions") } // TODO disable if FP IQ. for (w <- 0 until memWidth) { when (io.spec_ld_wakeup(w).valid && io.spec_ld_wakeup(w).bits === next_uop.prs1 && next_uop.lrs1_rtype === RT_FIX) { p1 := true.B p1_poisoned := true.B assert (!next_p1_poisoned) } when (io.spec_ld_wakeup(w).valid && io.spec_ld_wakeup(w).bits === next_uop.prs2 && next_uop.lrs2_rtype === RT_FIX) { p2 := true.B p2_poisoned := true.B assert (!next_p2_poisoned) } } // Handle branch misspeculations val next_br_mask = GetNewBrMask(io.brupdate, slot_uop) // was this micro-op killed by a branch? if yes, we can't let it be valid if // we compact it into an other entry when (IsKilledByBranch(io.brupdate, slot_uop)) { next_state := s_invalid } when (!io.in_uop.valid) { slot_uop.br_mask := next_br_mask } //------------------------------------------------------------- // Request Logic io.request := is_valid && p1 && p2 && p3 && ppred && !io.kill val high_priority = slot_uop.is_br || slot_uop.is_jal || slot_uop.is_jalr io.request_hp := io.request && high_priority when (state === s_valid_1) { io.request := p1 && p2 && p3 && ppred && !io.kill } .elsewhen (state === s_valid_2) { io.request := (p1 || p2) && ppred && !io.kill } .otherwise { io.request := false.B } //assign outputs io.valid := is_valid io.uop := slot_uop io.uop.iw_p1_poisoned := p1_poisoned io.uop.iw_p2_poisoned := p2_poisoned // micro-op will vacate due to grant. val may_vacate = io.grant && ((state === s_valid_1) || (state === s_valid_2) && p1 && p2 && ppred) val squash_grant = io.ldspec_miss && (p1_poisoned || p2_poisoned) io.will_be_valid := is_valid && !(may_vacate && !squash_grant) io.out_uop := slot_uop io.out_uop.iw_state := next_state io.out_uop.uopc := next_uopc io.out_uop.lrs1_rtype := next_lrs1_rtype io.out_uop.lrs2_rtype := next_lrs2_rtype io.out_uop.br_mask := next_br_mask io.out_uop.prs1_busy := !p1 io.out_uop.prs2_busy := !p2 io.out_uop.prs3_busy := !p3 io.out_uop.ppred_busy := !ppred io.out_uop.iw_p1_poisoned := p1_poisoned io.out_uop.iw_p2_poisoned := p2_poisoned when (state === s_valid_2) { when (p1 && p2 && ppred) { ; // send out the entire instruction as one uop } .elsewhen (p1 && ppred) { io.uop.uopc := slot_uop.uopc io.uop.lrs2_rtype := RT_X } .elsewhen (p2 && ppred) { io.uop.uopc := uopSTD io.uop.lrs1_rtype := RT_X } } // debug outputs io.debug.p1 := p1 io.debug.p2 := p2 io.debug.p3 := p3 io.debug.ppred := ppred io.debug.state := state }
module IssueSlot_10( // @[issue-slot.scala:69:7] input clock, // @[issue-slot.scala:69:7] input reset, // @[issue-slot.scala:69:7] output io_valid, // @[issue-slot.scala:73:14] output io_will_be_valid, // @[issue-slot.scala:73:14] output io_request, // @[issue-slot.scala:73:14] output io_request_hp, // @[issue-slot.scala:73:14] input io_grant, // @[issue-slot.scala:73:14] input [15:0] io_brupdate_b1_resolve_mask, // @[issue-slot.scala:73:14] input [15:0] io_brupdate_b1_mispredict_mask, // @[issue-slot.scala:73:14] input [6:0] io_brupdate_b2_uop_uopc, // @[issue-slot.scala:73:14] input [31:0] io_brupdate_b2_uop_inst, // @[issue-slot.scala:73:14] input [31:0] io_brupdate_b2_uop_debug_inst, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_rvc, // @[issue-slot.scala:73:14] input [39:0] io_brupdate_b2_uop_debug_pc, // @[issue-slot.scala:73:14] input [2:0] io_brupdate_b2_uop_iq_type, // @[issue-slot.scala:73:14] input [9:0] io_brupdate_b2_uop_fu_code, // @[issue-slot.scala:73:14] input [3:0] io_brupdate_b2_uop_ctrl_br_type, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14] input [2:0] io_brupdate_b2_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14] input [2:0] io_brupdate_b2_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14] input [4:0] io_brupdate_b2_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14] input [2:0] io_brupdate_b2_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_ctrl_is_load, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_ctrl_is_sta, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_ctrl_is_std, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_uop_iw_state, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_iw_p1_poisoned, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_iw_p2_poisoned, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_br, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_jalr, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_jal, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_sfb, // @[issue-slot.scala:73:14] input [15:0] io_brupdate_b2_uop_br_mask, // @[issue-slot.scala:73:14] input [3:0] io_brupdate_b2_uop_br_tag, // @[issue-slot.scala:73:14] input [4:0] io_brupdate_b2_uop_ftq_idx, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_edge_inst, // @[issue-slot.scala:73:14] input [5:0] io_brupdate_b2_uop_pc_lob, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_taken, // @[issue-slot.scala:73:14] input [19:0] io_brupdate_b2_uop_imm_packed, // @[issue-slot.scala:73:14] input [11:0] io_brupdate_b2_uop_csr_addr, // @[issue-slot.scala:73:14] input [6:0] io_brupdate_b2_uop_rob_idx, // @[issue-slot.scala:73:14] input [4:0] io_brupdate_b2_uop_ldq_idx, // @[issue-slot.scala:73:14] input [4:0] io_brupdate_b2_uop_stq_idx, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_uop_rxq_idx, // @[issue-slot.scala:73:14] input [6:0] io_brupdate_b2_uop_pdst, // @[issue-slot.scala:73:14] input [6:0] io_brupdate_b2_uop_prs1, // @[issue-slot.scala:73:14] input [6:0] io_brupdate_b2_uop_prs2, // @[issue-slot.scala:73:14] input [6:0] io_brupdate_b2_uop_prs3, // @[issue-slot.scala:73:14] input [4:0] io_brupdate_b2_uop_ppred, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_prs1_busy, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_prs2_busy, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_prs3_busy, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_ppred_busy, // @[issue-slot.scala:73:14] input [6:0] io_brupdate_b2_uop_stale_pdst, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_exception, // @[issue-slot.scala:73:14] input [63:0] io_brupdate_b2_uop_exc_cause, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_bypassable, // @[issue-slot.scala:73:14] input [4:0] io_brupdate_b2_uop_mem_cmd, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_uop_mem_size, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_mem_signed, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_fence, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_fencei, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_amo, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_uses_ldq, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_uses_stq, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_is_unique, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_flush_on_commit, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_ldst_is_rs1, // @[issue-slot.scala:73:14] input [5:0] io_brupdate_b2_uop_ldst, // @[issue-slot.scala:73:14] input [5:0] io_brupdate_b2_uop_lrs1, // @[issue-slot.scala:73:14] input [5:0] io_brupdate_b2_uop_lrs2, // @[issue-slot.scala:73:14] input [5:0] io_brupdate_b2_uop_lrs3, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_ldst_val, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_uop_dst_rtype, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_uop_lrs1_rtype, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_uop_lrs2_rtype, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_frs3_en, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_fp_val, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_fp_single, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_xcpt_pf_if, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_xcpt_ae_if, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_xcpt_ma_if, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_bp_debug_if, // @[issue-slot.scala:73:14] input io_brupdate_b2_uop_bp_xcpt_if, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_uop_debug_fsrc, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_uop_debug_tsrc, // @[issue-slot.scala:73:14] input io_brupdate_b2_valid, // @[issue-slot.scala:73:14] input io_brupdate_b2_mispredict, // @[issue-slot.scala:73:14] input io_brupdate_b2_taken, // @[issue-slot.scala:73:14] input [2:0] io_brupdate_b2_cfi_type, // @[issue-slot.scala:73:14] input [1:0] io_brupdate_b2_pc_sel, // @[issue-slot.scala:73:14] input [39:0] io_brupdate_b2_jalr_target, // @[issue-slot.scala:73:14] input [20:0] io_brupdate_b2_target_offset, // @[issue-slot.scala:73:14] input io_kill, // @[issue-slot.scala:73:14] input io_clear, // @[issue-slot.scala:73:14] input io_wakeup_ports_0_valid, // @[issue-slot.scala:73:14] input [6:0] io_wakeup_ports_0_bits_pdst, // @[issue-slot.scala:73:14] input io_wakeup_ports_1_valid, // @[issue-slot.scala:73:14] input [6:0] io_wakeup_ports_1_bits_pdst, // @[issue-slot.scala:73:14] input io_in_uop_valid, // @[issue-slot.scala:73:14] input [6:0] io_in_uop_bits_uopc, // @[issue-slot.scala:73:14] input [31:0] io_in_uop_bits_inst, // @[issue-slot.scala:73:14] input [31:0] io_in_uop_bits_debug_inst, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_rvc, // @[issue-slot.scala:73:14] input [39:0] io_in_uop_bits_debug_pc, // @[issue-slot.scala:73:14] input [2:0] io_in_uop_bits_iq_type, // @[issue-slot.scala:73:14] input [9:0] io_in_uop_bits_fu_code, // @[issue-slot.scala:73:14] input [3:0] io_in_uop_bits_ctrl_br_type, // @[issue-slot.scala:73:14] input [1:0] io_in_uop_bits_ctrl_op1_sel, // @[issue-slot.scala:73:14] input [2:0] io_in_uop_bits_ctrl_op2_sel, // @[issue-slot.scala:73:14] input [2:0] io_in_uop_bits_ctrl_imm_sel, // @[issue-slot.scala:73:14] input [4:0] io_in_uop_bits_ctrl_op_fcn, // @[issue-slot.scala:73:14] input io_in_uop_bits_ctrl_fcn_dw, // @[issue-slot.scala:73:14] input [2:0] io_in_uop_bits_ctrl_csr_cmd, // @[issue-slot.scala:73:14] input io_in_uop_bits_ctrl_is_load, // @[issue-slot.scala:73:14] input io_in_uop_bits_ctrl_is_sta, // @[issue-slot.scala:73:14] input io_in_uop_bits_ctrl_is_std, // @[issue-slot.scala:73:14] input [1:0] io_in_uop_bits_iw_state, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_br, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_jalr, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_jal, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_sfb, // @[issue-slot.scala:73:14] input [15:0] io_in_uop_bits_br_mask, // @[issue-slot.scala:73:14] input [3:0] io_in_uop_bits_br_tag, // @[issue-slot.scala:73:14] input [4:0] io_in_uop_bits_ftq_idx, // @[issue-slot.scala:73:14] input io_in_uop_bits_edge_inst, // @[issue-slot.scala:73:14] input [5:0] io_in_uop_bits_pc_lob, // @[issue-slot.scala:73:14] input io_in_uop_bits_taken, // @[issue-slot.scala:73:14] input [19:0] io_in_uop_bits_imm_packed, // @[issue-slot.scala:73:14] input [11:0] io_in_uop_bits_csr_addr, // @[issue-slot.scala:73:14] input [6:0] io_in_uop_bits_rob_idx, // @[issue-slot.scala:73:14] input [4:0] io_in_uop_bits_ldq_idx, // @[issue-slot.scala:73:14] input [4:0] io_in_uop_bits_stq_idx, // @[issue-slot.scala:73:14] input [1:0] io_in_uop_bits_rxq_idx, // @[issue-slot.scala:73:14] input [6:0] io_in_uop_bits_pdst, // @[issue-slot.scala:73:14] input [6:0] io_in_uop_bits_prs1, // @[issue-slot.scala:73:14] input [6:0] io_in_uop_bits_prs2, // @[issue-slot.scala:73:14] input [6:0] io_in_uop_bits_prs3, // @[issue-slot.scala:73:14] input [4:0] io_in_uop_bits_ppred, // @[issue-slot.scala:73:14] input io_in_uop_bits_prs1_busy, // @[issue-slot.scala:73:14] input io_in_uop_bits_prs2_busy, // @[issue-slot.scala:73:14] input io_in_uop_bits_prs3_busy, // @[issue-slot.scala:73:14] input io_in_uop_bits_ppred_busy, // @[issue-slot.scala:73:14] input [6:0] io_in_uop_bits_stale_pdst, // @[issue-slot.scala:73:14] input io_in_uop_bits_exception, // @[issue-slot.scala:73:14] input [63:0] io_in_uop_bits_exc_cause, // @[issue-slot.scala:73:14] input io_in_uop_bits_bypassable, // @[issue-slot.scala:73:14] input [4:0] io_in_uop_bits_mem_cmd, // @[issue-slot.scala:73:14] input [1:0] io_in_uop_bits_mem_size, // @[issue-slot.scala:73:14] input io_in_uop_bits_mem_signed, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_fence, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_fencei, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_amo, // @[issue-slot.scala:73:14] input io_in_uop_bits_uses_ldq, // @[issue-slot.scala:73:14] input io_in_uop_bits_uses_stq, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_sys_pc2epc, // @[issue-slot.scala:73:14] input io_in_uop_bits_is_unique, // @[issue-slot.scala:73:14] input io_in_uop_bits_flush_on_commit, // @[issue-slot.scala:73:14] input io_in_uop_bits_ldst_is_rs1, // @[issue-slot.scala:73:14] input [5:0] io_in_uop_bits_ldst, // @[issue-slot.scala:73:14] input [5:0] io_in_uop_bits_lrs1, // @[issue-slot.scala:73:14] input [5:0] io_in_uop_bits_lrs2, // @[issue-slot.scala:73:14] input [5:0] io_in_uop_bits_lrs3, // @[issue-slot.scala:73:14] input io_in_uop_bits_ldst_val, // @[issue-slot.scala:73:14] input [1:0] io_in_uop_bits_dst_rtype, // @[issue-slot.scala:73:14] input [1:0] io_in_uop_bits_lrs1_rtype, // @[issue-slot.scala:73:14] input [1:0] io_in_uop_bits_lrs2_rtype, // @[issue-slot.scala:73:14] input io_in_uop_bits_frs3_en, // @[issue-slot.scala:73:14] input io_in_uop_bits_fp_val, // @[issue-slot.scala:73:14] input io_in_uop_bits_fp_single, // @[issue-slot.scala:73:14] input io_in_uop_bits_xcpt_pf_if, // @[issue-slot.scala:73:14] input io_in_uop_bits_xcpt_ae_if, // @[issue-slot.scala:73:14] input io_in_uop_bits_xcpt_ma_if, // @[issue-slot.scala:73:14] input io_in_uop_bits_bp_debug_if, // @[issue-slot.scala:73:14] input io_in_uop_bits_bp_xcpt_if, // @[issue-slot.scala:73:14] input [1:0] io_in_uop_bits_debug_fsrc, // @[issue-slot.scala:73:14] input [1:0] io_in_uop_bits_debug_tsrc, // @[issue-slot.scala:73:14] output [6:0] io_out_uop_uopc, // @[issue-slot.scala:73:14] output [31:0] io_out_uop_inst, // @[issue-slot.scala:73:14] output [31:0] io_out_uop_debug_inst, // @[issue-slot.scala:73:14] output io_out_uop_is_rvc, // @[issue-slot.scala:73:14] output [39:0] io_out_uop_debug_pc, // @[issue-slot.scala:73:14] output [2:0] io_out_uop_iq_type, // @[issue-slot.scala:73:14] output [9:0] io_out_uop_fu_code, // @[issue-slot.scala:73:14] output [3:0] io_out_uop_ctrl_br_type, // @[issue-slot.scala:73:14] output [1:0] io_out_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14] output [2:0] io_out_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14] output [2:0] io_out_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14] output [4:0] io_out_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14] output io_out_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14] output [2:0] io_out_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14] output io_out_uop_ctrl_is_load, // @[issue-slot.scala:73:14] output io_out_uop_ctrl_is_sta, // @[issue-slot.scala:73:14] output io_out_uop_ctrl_is_std, // @[issue-slot.scala:73:14] output [1:0] io_out_uop_iw_state, // @[issue-slot.scala:73:14] output io_out_uop_is_br, // @[issue-slot.scala:73:14] output io_out_uop_is_jalr, // @[issue-slot.scala:73:14] output io_out_uop_is_jal, // @[issue-slot.scala:73:14] output io_out_uop_is_sfb, // @[issue-slot.scala:73:14] output [15:0] io_out_uop_br_mask, // @[issue-slot.scala:73:14] output [3:0] io_out_uop_br_tag, // @[issue-slot.scala:73:14] output [4:0] io_out_uop_ftq_idx, // @[issue-slot.scala:73:14] output io_out_uop_edge_inst, // @[issue-slot.scala:73:14] output [5:0] io_out_uop_pc_lob, // @[issue-slot.scala:73:14] output io_out_uop_taken, // @[issue-slot.scala:73:14] output [19:0] io_out_uop_imm_packed, // @[issue-slot.scala:73:14] output [11:0] io_out_uop_csr_addr, // @[issue-slot.scala:73:14] output [6:0] io_out_uop_rob_idx, // @[issue-slot.scala:73:14] output [4:0] io_out_uop_ldq_idx, // @[issue-slot.scala:73:14] output [4:0] io_out_uop_stq_idx, // @[issue-slot.scala:73:14] output [1:0] io_out_uop_rxq_idx, // @[issue-slot.scala:73:14] output [6:0] io_out_uop_pdst, // @[issue-slot.scala:73:14] output [6:0] io_out_uop_prs1, // @[issue-slot.scala:73:14] output [6:0] io_out_uop_prs2, // @[issue-slot.scala:73:14] output [6:0] io_out_uop_prs3, // @[issue-slot.scala:73:14] output [4:0] io_out_uop_ppred, // @[issue-slot.scala:73:14] output io_out_uop_prs1_busy, // @[issue-slot.scala:73:14] output io_out_uop_prs2_busy, // @[issue-slot.scala:73:14] output io_out_uop_prs3_busy, // @[issue-slot.scala:73:14] output io_out_uop_ppred_busy, // @[issue-slot.scala:73:14] output [6:0] io_out_uop_stale_pdst, // @[issue-slot.scala:73:14] output io_out_uop_exception, // @[issue-slot.scala:73:14] output [63:0] io_out_uop_exc_cause, // @[issue-slot.scala:73:14] output io_out_uop_bypassable, // @[issue-slot.scala:73:14] output [4:0] io_out_uop_mem_cmd, // @[issue-slot.scala:73:14] output [1:0] io_out_uop_mem_size, // @[issue-slot.scala:73:14] output io_out_uop_mem_signed, // @[issue-slot.scala:73:14] output io_out_uop_is_fence, // @[issue-slot.scala:73:14] output io_out_uop_is_fencei, // @[issue-slot.scala:73:14] output io_out_uop_is_amo, // @[issue-slot.scala:73:14] output io_out_uop_uses_ldq, // @[issue-slot.scala:73:14] output io_out_uop_uses_stq, // @[issue-slot.scala:73:14] output io_out_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14] output io_out_uop_is_unique, // @[issue-slot.scala:73:14] output io_out_uop_flush_on_commit, // @[issue-slot.scala:73:14] output io_out_uop_ldst_is_rs1, // @[issue-slot.scala:73:14] output [5:0] io_out_uop_ldst, // @[issue-slot.scala:73:14] output [5:0] io_out_uop_lrs1, // @[issue-slot.scala:73:14] output [5:0] io_out_uop_lrs2, // @[issue-slot.scala:73:14] output [5:0] io_out_uop_lrs3, // @[issue-slot.scala:73:14] output io_out_uop_ldst_val, // @[issue-slot.scala:73:14] output [1:0] io_out_uop_dst_rtype, // @[issue-slot.scala:73:14] output [1:0] io_out_uop_lrs1_rtype, // @[issue-slot.scala:73:14] output [1:0] io_out_uop_lrs2_rtype, // @[issue-slot.scala:73:14] output io_out_uop_frs3_en, // @[issue-slot.scala:73:14] output io_out_uop_fp_val, // @[issue-slot.scala:73:14] output io_out_uop_fp_single, // @[issue-slot.scala:73:14] output io_out_uop_xcpt_pf_if, // @[issue-slot.scala:73:14] output io_out_uop_xcpt_ae_if, // @[issue-slot.scala:73:14] output io_out_uop_xcpt_ma_if, // @[issue-slot.scala:73:14] output io_out_uop_bp_debug_if, // @[issue-slot.scala:73:14] output io_out_uop_bp_xcpt_if, // @[issue-slot.scala:73:14] output [1:0] io_out_uop_debug_fsrc, // @[issue-slot.scala:73:14] output [1:0] io_out_uop_debug_tsrc, // @[issue-slot.scala:73:14] output [6:0] io_uop_uopc, // @[issue-slot.scala:73:14] output [31:0] io_uop_inst, // @[issue-slot.scala:73:14] output [31:0] io_uop_debug_inst, // @[issue-slot.scala:73:14] output io_uop_is_rvc, // @[issue-slot.scala:73:14] output [39:0] io_uop_debug_pc, // @[issue-slot.scala:73:14] output [2:0] io_uop_iq_type, // @[issue-slot.scala:73:14] output [9:0] io_uop_fu_code, // @[issue-slot.scala:73:14] output [3:0] io_uop_ctrl_br_type, // @[issue-slot.scala:73:14] output [1:0] io_uop_ctrl_op1_sel, // @[issue-slot.scala:73:14] output [2:0] io_uop_ctrl_op2_sel, // @[issue-slot.scala:73:14] output [2:0] io_uop_ctrl_imm_sel, // @[issue-slot.scala:73:14] output [4:0] io_uop_ctrl_op_fcn, // @[issue-slot.scala:73:14] output io_uop_ctrl_fcn_dw, // @[issue-slot.scala:73:14] output [2:0] io_uop_ctrl_csr_cmd, // @[issue-slot.scala:73:14] output io_uop_ctrl_is_load, // @[issue-slot.scala:73:14] output io_uop_ctrl_is_sta, // @[issue-slot.scala:73:14] output io_uop_ctrl_is_std, // @[issue-slot.scala:73:14] output [1:0] io_uop_iw_state, // @[issue-slot.scala:73:14] output io_uop_is_br, // @[issue-slot.scala:73:14] output io_uop_is_jalr, // @[issue-slot.scala:73:14] output io_uop_is_jal, // @[issue-slot.scala:73:14] output io_uop_is_sfb, // @[issue-slot.scala:73:14] output [15:0] io_uop_br_mask, // @[issue-slot.scala:73:14] output [3:0] io_uop_br_tag, // @[issue-slot.scala:73:14] output [4:0] io_uop_ftq_idx, // @[issue-slot.scala:73:14] output io_uop_edge_inst, // @[issue-slot.scala:73:14] output [5:0] io_uop_pc_lob, // @[issue-slot.scala:73:14] output io_uop_taken, // @[issue-slot.scala:73:14] output [19:0] io_uop_imm_packed, // @[issue-slot.scala:73:14] output [11:0] io_uop_csr_addr, // @[issue-slot.scala:73:14] output [6:0] io_uop_rob_idx, // @[issue-slot.scala:73:14] output [4:0] io_uop_ldq_idx, // @[issue-slot.scala:73:14] output [4:0] io_uop_stq_idx, // @[issue-slot.scala:73:14] output [1:0] io_uop_rxq_idx, // @[issue-slot.scala:73:14] output [6:0] io_uop_pdst, // @[issue-slot.scala:73:14] output [6:0] io_uop_prs1, // @[issue-slot.scala:73:14] output [6:0] io_uop_prs2, // @[issue-slot.scala:73:14] output [6:0] io_uop_prs3, // @[issue-slot.scala:73:14] output [4:0] io_uop_ppred, // @[issue-slot.scala:73:14] output io_uop_prs1_busy, // @[issue-slot.scala:73:14] output io_uop_prs2_busy, // @[issue-slot.scala:73:14] output io_uop_prs3_busy, // @[issue-slot.scala:73:14] output io_uop_ppred_busy, // @[issue-slot.scala:73:14] output [6:0] io_uop_stale_pdst, // @[issue-slot.scala:73:14] output io_uop_exception, // @[issue-slot.scala:73:14] output [63:0] io_uop_exc_cause, // @[issue-slot.scala:73:14] output io_uop_bypassable, // @[issue-slot.scala:73:14] output [4:0] io_uop_mem_cmd, // @[issue-slot.scala:73:14] output [1:0] io_uop_mem_size, // @[issue-slot.scala:73:14] output io_uop_mem_signed, // @[issue-slot.scala:73:14] output io_uop_is_fence, // @[issue-slot.scala:73:14] output io_uop_is_fencei, // @[issue-slot.scala:73:14] output io_uop_is_amo, // @[issue-slot.scala:73:14] output io_uop_uses_ldq, // @[issue-slot.scala:73:14] output io_uop_uses_stq, // @[issue-slot.scala:73:14] output io_uop_is_sys_pc2epc, // @[issue-slot.scala:73:14] output io_uop_is_unique, // @[issue-slot.scala:73:14] output io_uop_flush_on_commit, // @[issue-slot.scala:73:14] output io_uop_ldst_is_rs1, // @[issue-slot.scala:73:14] output [5:0] io_uop_ldst, // @[issue-slot.scala:73:14] output [5:0] io_uop_lrs1, // @[issue-slot.scala:73:14] output [5:0] io_uop_lrs2, // @[issue-slot.scala:73:14] output [5:0] io_uop_lrs3, // @[issue-slot.scala:73:14] output io_uop_ldst_val, // @[issue-slot.scala:73:14] output [1:0] io_uop_dst_rtype, // @[issue-slot.scala:73:14] output [1:0] io_uop_lrs1_rtype, // @[issue-slot.scala:73:14] output [1:0] io_uop_lrs2_rtype, // @[issue-slot.scala:73:14] output io_uop_frs3_en, // @[issue-slot.scala:73:14] output io_uop_fp_val, // @[issue-slot.scala:73:14] output io_uop_fp_single, // @[issue-slot.scala:73:14] output io_uop_xcpt_pf_if, // @[issue-slot.scala:73:14] output io_uop_xcpt_ae_if, // @[issue-slot.scala:73:14] output io_uop_xcpt_ma_if, // @[issue-slot.scala:73:14] output io_uop_bp_debug_if, // @[issue-slot.scala:73:14] output io_uop_bp_xcpt_if, // @[issue-slot.scala:73:14] output [1:0] io_uop_debug_fsrc, // @[issue-slot.scala:73:14] output [1:0] io_uop_debug_tsrc, // @[issue-slot.scala:73:14] output io_debug_p1, // @[issue-slot.scala:73:14] output io_debug_p2, // @[issue-slot.scala:73:14] output io_debug_p3, // @[issue-slot.scala:73:14] output io_debug_ppred, // @[issue-slot.scala:73:14] output [1:0] io_debug_state // @[issue-slot.scala:73:14] ); wire io_grant_0 = io_grant; // @[issue-slot.scala:69:7] wire [15:0] io_brupdate_b1_resolve_mask_0 = io_brupdate_b1_resolve_mask; // @[issue-slot.scala:69:7] wire [15:0] io_brupdate_b1_mispredict_mask_0 = io_brupdate_b1_mispredict_mask; // @[issue-slot.scala:69:7] wire [6:0] io_brupdate_b2_uop_uopc_0 = io_brupdate_b2_uop_uopc; // @[issue-slot.scala:69:7] wire [31:0] io_brupdate_b2_uop_inst_0 = io_brupdate_b2_uop_inst; // @[issue-slot.scala:69:7] wire [31:0] io_brupdate_b2_uop_debug_inst_0 = io_brupdate_b2_uop_debug_inst; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_rvc_0 = io_brupdate_b2_uop_is_rvc; // @[issue-slot.scala:69:7] wire [39:0] io_brupdate_b2_uop_debug_pc_0 = io_brupdate_b2_uop_debug_pc; // @[issue-slot.scala:69:7] wire [2:0] io_brupdate_b2_uop_iq_type_0 = io_brupdate_b2_uop_iq_type; // @[issue-slot.scala:69:7] wire [9:0] io_brupdate_b2_uop_fu_code_0 = io_brupdate_b2_uop_fu_code; // @[issue-slot.scala:69:7] wire [3:0] io_brupdate_b2_uop_ctrl_br_type_0 = io_brupdate_b2_uop_ctrl_br_type; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_uop_ctrl_op1_sel_0 = io_brupdate_b2_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7] wire [2:0] io_brupdate_b2_uop_ctrl_op2_sel_0 = io_brupdate_b2_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7] wire [2:0] io_brupdate_b2_uop_ctrl_imm_sel_0 = io_brupdate_b2_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7] wire [4:0] io_brupdate_b2_uop_ctrl_op_fcn_0 = io_brupdate_b2_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_ctrl_fcn_dw_0 = io_brupdate_b2_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7] wire [2:0] io_brupdate_b2_uop_ctrl_csr_cmd_0 = io_brupdate_b2_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_ctrl_is_load_0 = io_brupdate_b2_uop_ctrl_is_load; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_ctrl_is_sta_0 = io_brupdate_b2_uop_ctrl_is_sta; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_ctrl_is_std_0 = io_brupdate_b2_uop_ctrl_is_std; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_uop_iw_state_0 = io_brupdate_b2_uop_iw_state; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_iw_p1_poisoned_0 = io_brupdate_b2_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_iw_p2_poisoned_0 = io_brupdate_b2_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_br_0 = io_brupdate_b2_uop_is_br; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_jalr_0 = io_brupdate_b2_uop_is_jalr; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_jal_0 = io_brupdate_b2_uop_is_jal; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_sfb_0 = io_brupdate_b2_uop_is_sfb; // @[issue-slot.scala:69:7] wire [15:0] io_brupdate_b2_uop_br_mask_0 = io_brupdate_b2_uop_br_mask; // @[issue-slot.scala:69:7] wire [3:0] io_brupdate_b2_uop_br_tag_0 = io_brupdate_b2_uop_br_tag; // @[issue-slot.scala:69:7] wire [4:0] io_brupdate_b2_uop_ftq_idx_0 = io_brupdate_b2_uop_ftq_idx; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_edge_inst_0 = io_brupdate_b2_uop_edge_inst; // @[issue-slot.scala:69:7] wire [5:0] io_brupdate_b2_uop_pc_lob_0 = io_brupdate_b2_uop_pc_lob; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_taken_0 = io_brupdate_b2_uop_taken; // @[issue-slot.scala:69:7] wire [19:0] io_brupdate_b2_uop_imm_packed_0 = io_brupdate_b2_uop_imm_packed; // @[issue-slot.scala:69:7] wire [11:0] io_brupdate_b2_uop_csr_addr_0 = io_brupdate_b2_uop_csr_addr; // @[issue-slot.scala:69:7] wire [6:0] io_brupdate_b2_uop_rob_idx_0 = io_brupdate_b2_uop_rob_idx; // @[issue-slot.scala:69:7] wire [4:0] io_brupdate_b2_uop_ldq_idx_0 = io_brupdate_b2_uop_ldq_idx; // @[issue-slot.scala:69:7] wire [4:0] io_brupdate_b2_uop_stq_idx_0 = io_brupdate_b2_uop_stq_idx; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_uop_rxq_idx_0 = io_brupdate_b2_uop_rxq_idx; // @[issue-slot.scala:69:7] wire [6:0] io_brupdate_b2_uop_pdst_0 = io_brupdate_b2_uop_pdst; // @[issue-slot.scala:69:7] wire [6:0] io_brupdate_b2_uop_prs1_0 = io_brupdate_b2_uop_prs1; // @[issue-slot.scala:69:7] wire [6:0] io_brupdate_b2_uop_prs2_0 = io_brupdate_b2_uop_prs2; // @[issue-slot.scala:69:7] wire [6:0] io_brupdate_b2_uop_prs3_0 = io_brupdate_b2_uop_prs3; // @[issue-slot.scala:69:7] wire [4:0] io_brupdate_b2_uop_ppred_0 = io_brupdate_b2_uop_ppred; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_prs1_busy_0 = io_brupdate_b2_uop_prs1_busy; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_prs2_busy_0 = io_brupdate_b2_uop_prs2_busy; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_prs3_busy_0 = io_brupdate_b2_uop_prs3_busy; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_ppred_busy_0 = io_brupdate_b2_uop_ppred_busy; // @[issue-slot.scala:69:7] wire [6:0] io_brupdate_b2_uop_stale_pdst_0 = io_brupdate_b2_uop_stale_pdst; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_exception_0 = io_brupdate_b2_uop_exception; // @[issue-slot.scala:69:7] wire [63:0] io_brupdate_b2_uop_exc_cause_0 = io_brupdate_b2_uop_exc_cause; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_bypassable_0 = io_brupdate_b2_uop_bypassable; // @[issue-slot.scala:69:7] wire [4:0] io_brupdate_b2_uop_mem_cmd_0 = io_brupdate_b2_uop_mem_cmd; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_uop_mem_size_0 = io_brupdate_b2_uop_mem_size; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_mem_signed_0 = io_brupdate_b2_uop_mem_signed; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_fence_0 = io_brupdate_b2_uop_is_fence; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_fencei_0 = io_brupdate_b2_uop_is_fencei; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_amo_0 = io_brupdate_b2_uop_is_amo; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_uses_ldq_0 = io_brupdate_b2_uop_uses_ldq; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_uses_stq_0 = io_brupdate_b2_uop_uses_stq; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_sys_pc2epc_0 = io_brupdate_b2_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_is_unique_0 = io_brupdate_b2_uop_is_unique; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_flush_on_commit_0 = io_brupdate_b2_uop_flush_on_commit; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_ldst_is_rs1_0 = io_brupdate_b2_uop_ldst_is_rs1; // @[issue-slot.scala:69:7] wire [5:0] io_brupdate_b2_uop_ldst_0 = io_brupdate_b2_uop_ldst; // @[issue-slot.scala:69:7] wire [5:0] io_brupdate_b2_uop_lrs1_0 = io_brupdate_b2_uop_lrs1; // @[issue-slot.scala:69:7] wire [5:0] io_brupdate_b2_uop_lrs2_0 = io_brupdate_b2_uop_lrs2; // @[issue-slot.scala:69:7] wire [5:0] io_brupdate_b2_uop_lrs3_0 = io_brupdate_b2_uop_lrs3; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_ldst_val_0 = io_brupdate_b2_uop_ldst_val; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_uop_dst_rtype_0 = io_brupdate_b2_uop_dst_rtype; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_uop_lrs1_rtype_0 = io_brupdate_b2_uop_lrs1_rtype; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_uop_lrs2_rtype_0 = io_brupdate_b2_uop_lrs2_rtype; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_frs3_en_0 = io_brupdate_b2_uop_frs3_en; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_fp_val_0 = io_brupdate_b2_uop_fp_val; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_fp_single_0 = io_brupdate_b2_uop_fp_single; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_xcpt_pf_if_0 = io_brupdate_b2_uop_xcpt_pf_if; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_xcpt_ae_if_0 = io_brupdate_b2_uop_xcpt_ae_if; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_xcpt_ma_if_0 = io_brupdate_b2_uop_xcpt_ma_if; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_bp_debug_if_0 = io_brupdate_b2_uop_bp_debug_if; // @[issue-slot.scala:69:7] wire io_brupdate_b2_uop_bp_xcpt_if_0 = io_brupdate_b2_uop_bp_xcpt_if; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_uop_debug_fsrc_0 = io_brupdate_b2_uop_debug_fsrc; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_uop_debug_tsrc_0 = io_brupdate_b2_uop_debug_tsrc; // @[issue-slot.scala:69:7] wire io_brupdate_b2_valid_0 = io_brupdate_b2_valid; // @[issue-slot.scala:69:7] wire io_brupdate_b2_mispredict_0 = io_brupdate_b2_mispredict; // @[issue-slot.scala:69:7] wire io_brupdate_b2_taken_0 = io_brupdate_b2_taken; // @[issue-slot.scala:69:7] wire [2:0] io_brupdate_b2_cfi_type_0 = io_brupdate_b2_cfi_type; // @[issue-slot.scala:69:7] wire [1:0] io_brupdate_b2_pc_sel_0 = io_brupdate_b2_pc_sel; // @[issue-slot.scala:69:7] wire [39:0] io_brupdate_b2_jalr_target_0 = io_brupdate_b2_jalr_target; // @[issue-slot.scala:69:7] wire [20:0] io_brupdate_b2_target_offset_0 = io_brupdate_b2_target_offset; // @[issue-slot.scala:69:7] wire io_kill_0 = io_kill; // @[issue-slot.scala:69:7] wire io_clear_0 = io_clear; // @[issue-slot.scala:69:7] wire io_wakeup_ports_0_valid_0 = io_wakeup_ports_0_valid; // @[issue-slot.scala:69:7] wire [6:0] io_wakeup_ports_0_bits_pdst_0 = io_wakeup_ports_0_bits_pdst; // @[issue-slot.scala:69:7] wire io_wakeup_ports_1_valid_0 = io_wakeup_ports_1_valid; // @[issue-slot.scala:69:7] wire [6:0] io_wakeup_ports_1_bits_pdst_0 = io_wakeup_ports_1_bits_pdst; // @[issue-slot.scala:69:7] wire io_in_uop_valid_0 = io_in_uop_valid; // @[issue-slot.scala:69:7] wire [6:0] io_in_uop_bits_uopc_0 = io_in_uop_bits_uopc; // @[issue-slot.scala:69:7] wire [31:0] io_in_uop_bits_inst_0 = io_in_uop_bits_inst; // @[issue-slot.scala:69:7] wire [31:0] io_in_uop_bits_debug_inst_0 = io_in_uop_bits_debug_inst; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_rvc_0 = io_in_uop_bits_is_rvc; // @[issue-slot.scala:69:7] wire [39:0] io_in_uop_bits_debug_pc_0 = io_in_uop_bits_debug_pc; // @[issue-slot.scala:69:7] wire [2:0] io_in_uop_bits_iq_type_0 = io_in_uop_bits_iq_type; // @[issue-slot.scala:69:7] wire [9:0] io_in_uop_bits_fu_code_0 = io_in_uop_bits_fu_code; // @[issue-slot.scala:69:7] wire [3:0] io_in_uop_bits_ctrl_br_type_0 = io_in_uop_bits_ctrl_br_type; // @[issue-slot.scala:69:7] wire [1:0] io_in_uop_bits_ctrl_op1_sel_0 = io_in_uop_bits_ctrl_op1_sel; // @[issue-slot.scala:69:7] wire [2:0] io_in_uop_bits_ctrl_op2_sel_0 = io_in_uop_bits_ctrl_op2_sel; // @[issue-slot.scala:69:7] wire [2:0] io_in_uop_bits_ctrl_imm_sel_0 = io_in_uop_bits_ctrl_imm_sel; // @[issue-slot.scala:69:7] wire [4:0] io_in_uop_bits_ctrl_op_fcn_0 = io_in_uop_bits_ctrl_op_fcn; // @[issue-slot.scala:69:7] wire io_in_uop_bits_ctrl_fcn_dw_0 = io_in_uop_bits_ctrl_fcn_dw; // @[issue-slot.scala:69:7] wire [2:0] io_in_uop_bits_ctrl_csr_cmd_0 = io_in_uop_bits_ctrl_csr_cmd; // @[issue-slot.scala:69:7] wire io_in_uop_bits_ctrl_is_load_0 = io_in_uop_bits_ctrl_is_load; // @[issue-slot.scala:69:7] wire io_in_uop_bits_ctrl_is_sta_0 = io_in_uop_bits_ctrl_is_sta; // @[issue-slot.scala:69:7] wire io_in_uop_bits_ctrl_is_std_0 = io_in_uop_bits_ctrl_is_std; // @[issue-slot.scala:69:7] wire [1:0] io_in_uop_bits_iw_state_0 = io_in_uop_bits_iw_state; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_br_0 = io_in_uop_bits_is_br; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_jalr_0 = io_in_uop_bits_is_jalr; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_jal_0 = io_in_uop_bits_is_jal; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_sfb_0 = io_in_uop_bits_is_sfb; // @[issue-slot.scala:69:7] wire [15:0] io_in_uop_bits_br_mask_0 = io_in_uop_bits_br_mask; // @[issue-slot.scala:69:7] wire [3:0] io_in_uop_bits_br_tag_0 = io_in_uop_bits_br_tag; // @[issue-slot.scala:69:7] wire [4:0] io_in_uop_bits_ftq_idx_0 = io_in_uop_bits_ftq_idx; // @[issue-slot.scala:69:7] wire io_in_uop_bits_edge_inst_0 = io_in_uop_bits_edge_inst; // @[issue-slot.scala:69:7] wire [5:0] io_in_uop_bits_pc_lob_0 = io_in_uop_bits_pc_lob; // @[issue-slot.scala:69:7] wire io_in_uop_bits_taken_0 = io_in_uop_bits_taken; // @[issue-slot.scala:69:7] wire [19:0] io_in_uop_bits_imm_packed_0 = io_in_uop_bits_imm_packed; // @[issue-slot.scala:69:7] wire [11:0] io_in_uop_bits_csr_addr_0 = io_in_uop_bits_csr_addr; // @[issue-slot.scala:69:7] wire [6:0] io_in_uop_bits_rob_idx_0 = io_in_uop_bits_rob_idx; // @[issue-slot.scala:69:7] wire [4:0] io_in_uop_bits_ldq_idx_0 = io_in_uop_bits_ldq_idx; // @[issue-slot.scala:69:7] wire [4:0] io_in_uop_bits_stq_idx_0 = io_in_uop_bits_stq_idx; // @[issue-slot.scala:69:7] wire [1:0] io_in_uop_bits_rxq_idx_0 = io_in_uop_bits_rxq_idx; // @[issue-slot.scala:69:7] wire [6:0] io_in_uop_bits_pdst_0 = io_in_uop_bits_pdst; // @[issue-slot.scala:69:7] wire [6:0] io_in_uop_bits_prs1_0 = io_in_uop_bits_prs1; // @[issue-slot.scala:69:7] wire [6:0] io_in_uop_bits_prs2_0 = io_in_uop_bits_prs2; // @[issue-slot.scala:69:7] wire [6:0] io_in_uop_bits_prs3_0 = io_in_uop_bits_prs3; // @[issue-slot.scala:69:7] wire [4:0] io_in_uop_bits_ppred_0 = io_in_uop_bits_ppred; // @[issue-slot.scala:69:7] wire io_in_uop_bits_prs1_busy_0 = io_in_uop_bits_prs1_busy; // @[issue-slot.scala:69:7] wire io_in_uop_bits_prs2_busy_0 = io_in_uop_bits_prs2_busy; // @[issue-slot.scala:69:7] wire io_in_uop_bits_prs3_busy_0 = io_in_uop_bits_prs3_busy; // @[issue-slot.scala:69:7] wire io_in_uop_bits_ppred_busy_0 = io_in_uop_bits_ppred_busy; // @[issue-slot.scala:69:7] wire [6:0] io_in_uop_bits_stale_pdst_0 = io_in_uop_bits_stale_pdst; // @[issue-slot.scala:69:7] wire io_in_uop_bits_exception_0 = io_in_uop_bits_exception; // @[issue-slot.scala:69:7] wire [63:0] io_in_uop_bits_exc_cause_0 = io_in_uop_bits_exc_cause; // @[issue-slot.scala:69:7] wire io_in_uop_bits_bypassable_0 = io_in_uop_bits_bypassable; // @[issue-slot.scala:69:7] wire [4:0] io_in_uop_bits_mem_cmd_0 = io_in_uop_bits_mem_cmd; // @[issue-slot.scala:69:7] wire [1:0] io_in_uop_bits_mem_size_0 = io_in_uop_bits_mem_size; // @[issue-slot.scala:69:7] wire io_in_uop_bits_mem_signed_0 = io_in_uop_bits_mem_signed; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_fence_0 = io_in_uop_bits_is_fence; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_fencei_0 = io_in_uop_bits_is_fencei; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_amo_0 = io_in_uop_bits_is_amo; // @[issue-slot.scala:69:7] wire io_in_uop_bits_uses_ldq_0 = io_in_uop_bits_uses_ldq; // @[issue-slot.scala:69:7] wire io_in_uop_bits_uses_stq_0 = io_in_uop_bits_uses_stq; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_sys_pc2epc_0 = io_in_uop_bits_is_sys_pc2epc; // @[issue-slot.scala:69:7] wire io_in_uop_bits_is_unique_0 = io_in_uop_bits_is_unique; // @[issue-slot.scala:69:7] wire io_in_uop_bits_flush_on_commit_0 = io_in_uop_bits_flush_on_commit; // @[issue-slot.scala:69:7] wire io_in_uop_bits_ldst_is_rs1_0 = io_in_uop_bits_ldst_is_rs1; // @[issue-slot.scala:69:7] wire [5:0] io_in_uop_bits_ldst_0 = io_in_uop_bits_ldst; // @[issue-slot.scala:69:7] wire [5:0] io_in_uop_bits_lrs1_0 = io_in_uop_bits_lrs1; // @[issue-slot.scala:69:7] wire [5:0] io_in_uop_bits_lrs2_0 = io_in_uop_bits_lrs2; // @[issue-slot.scala:69:7] wire [5:0] io_in_uop_bits_lrs3_0 = io_in_uop_bits_lrs3; // @[issue-slot.scala:69:7] wire io_in_uop_bits_ldst_val_0 = io_in_uop_bits_ldst_val; // @[issue-slot.scala:69:7] wire [1:0] io_in_uop_bits_dst_rtype_0 = io_in_uop_bits_dst_rtype; // @[issue-slot.scala:69:7] wire [1:0] io_in_uop_bits_lrs1_rtype_0 = io_in_uop_bits_lrs1_rtype; // @[issue-slot.scala:69:7] wire [1:0] io_in_uop_bits_lrs2_rtype_0 = io_in_uop_bits_lrs2_rtype; // @[issue-slot.scala:69:7] wire io_in_uop_bits_frs3_en_0 = io_in_uop_bits_frs3_en; // @[issue-slot.scala:69:7] wire io_in_uop_bits_fp_val_0 = io_in_uop_bits_fp_val; // @[issue-slot.scala:69:7] wire io_in_uop_bits_fp_single_0 = io_in_uop_bits_fp_single; // @[issue-slot.scala:69:7] wire io_in_uop_bits_xcpt_pf_if_0 = io_in_uop_bits_xcpt_pf_if; // @[issue-slot.scala:69:7] wire io_in_uop_bits_xcpt_ae_if_0 = io_in_uop_bits_xcpt_ae_if; // @[issue-slot.scala:69:7] wire io_in_uop_bits_xcpt_ma_if_0 = io_in_uop_bits_xcpt_ma_if; // @[issue-slot.scala:69:7] wire io_in_uop_bits_bp_debug_if_0 = io_in_uop_bits_bp_debug_if; // @[issue-slot.scala:69:7] wire io_in_uop_bits_bp_xcpt_if_0 = io_in_uop_bits_bp_xcpt_if; // @[issue-slot.scala:69:7] wire [1:0] io_in_uop_bits_debug_fsrc_0 = io_in_uop_bits_debug_fsrc; // @[issue-slot.scala:69:7] wire [1:0] io_in_uop_bits_debug_tsrc_0 = io_in_uop_bits_debug_tsrc; // @[issue-slot.scala:69:7] wire io_ldspec_miss = 1'h0; // @[issue-slot.scala:69:7] wire io_wakeup_ports_0_bits_poisoned = 1'h0; // @[issue-slot.scala:69:7] wire io_wakeup_ports_1_bits_poisoned = 1'h0; // @[issue-slot.scala:69:7] wire io_pred_wakeup_port_valid = 1'h0; // @[issue-slot.scala:69:7] wire io_spec_ld_wakeup_0_valid = 1'h0; // @[issue-slot.scala:69:7] wire io_in_uop_bits_iw_p1_poisoned = 1'h0; // @[issue-slot.scala:69:7] wire io_in_uop_bits_iw_p2_poisoned = 1'h0; // @[issue-slot.scala:69:7] wire io_out_uop_iw_p1_poisoned = 1'h0; // @[issue-slot.scala:69:7] wire io_out_uop_iw_p2_poisoned = 1'h0; // @[issue-slot.scala:69:7] wire io_uop_iw_p1_poisoned = 1'h0; // @[issue-slot.scala:69:7] wire io_uop_iw_p2_poisoned = 1'h0; // @[issue-slot.scala:69:7] wire next_p1_poisoned = 1'h0; // @[issue-slot.scala:99:29] wire next_p2_poisoned = 1'h0; // @[issue-slot.scala:100:29] wire slot_uop_uop_is_rvc = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_ctrl_fcn_dw = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_ctrl_is_load = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_ctrl_is_sta = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_ctrl_is_std = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_iw_p1_poisoned = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_iw_p2_poisoned = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_is_br = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_is_jalr = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_is_jal = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_is_sfb = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_edge_inst = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_taken = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_prs1_busy = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_prs2_busy = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_prs3_busy = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_ppred_busy = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_exception = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_bypassable = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_mem_signed = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_is_fence = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_is_fencei = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_is_amo = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_uses_ldq = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_uses_stq = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_is_sys_pc2epc = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_is_unique = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_flush_on_commit = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_ldst_is_rs1 = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_ldst_val = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_frs3_en = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_fp_val = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_fp_single = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_xcpt_pf_if = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_xcpt_ae_if = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_xcpt_ma_if = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_bp_debug_if = 1'h0; // @[consts.scala:269:19] wire slot_uop_uop_bp_xcpt_if = 1'h0; // @[consts.scala:269:19] wire slot_uop_cs_fcn_dw = 1'h0; // @[consts.scala:279:18] wire slot_uop_cs_is_load = 1'h0; // @[consts.scala:279:18] wire slot_uop_cs_is_sta = 1'h0; // @[consts.scala:279:18] wire slot_uop_cs_is_std = 1'h0; // @[consts.scala:279:18] wire _squash_grant_T = 1'h0; // @[issue-slot.scala:261:53] wire squash_grant = 1'h0; // @[issue-slot.scala:261:37] wire [4:0] io_pred_wakeup_port_bits = 5'h0; // @[issue-slot.scala:69:7] wire [4:0] slot_uop_uop_ctrl_op_fcn = 5'h0; // @[consts.scala:269:19] wire [4:0] slot_uop_uop_ftq_idx = 5'h0; // @[consts.scala:269:19] wire [4:0] slot_uop_uop_ldq_idx = 5'h0; // @[consts.scala:269:19] wire [4:0] slot_uop_uop_stq_idx = 5'h0; // @[consts.scala:269:19] wire [4:0] slot_uop_uop_ppred = 5'h0; // @[consts.scala:269:19] wire [4:0] slot_uop_uop_mem_cmd = 5'h0; // @[consts.scala:269:19] wire [4:0] slot_uop_cs_op_fcn = 5'h0; // @[consts.scala:279:18] wire [6:0] io_spec_ld_wakeup_0_bits = 7'h0; // @[issue-slot.scala:69:7] wire [6:0] slot_uop_uop_uopc = 7'h0; // @[consts.scala:269:19] wire [6:0] slot_uop_uop_rob_idx = 7'h0; // @[consts.scala:269:19] wire [6:0] slot_uop_uop_pdst = 7'h0; // @[consts.scala:269:19] wire [6:0] slot_uop_uop_prs1 = 7'h0; // @[consts.scala:269:19] wire [6:0] slot_uop_uop_prs2 = 7'h0; // @[consts.scala:269:19] wire [6:0] slot_uop_uop_prs3 = 7'h0; // @[consts.scala:269:19] wire [6:0] slot_uop_uop_stale_pdst = 7'h0; // @[consts.scala:269:19] wire _io_will_be_valid_T_1 = 1'h1; // @[issue-slot.scala:262:51] wire [1:0] slot_uop_uop_ctrl_op1_sel = 2'h0; // @[consts.scala:269:19] wire [1:0] slot_uop_uop_iw_state = 2'h0; // @[consts.scala:269:19] wire [1:0] slot_uop_uop_rxq_idx = 2'h0; // @[consts.scala:269:19] wire [1:0] slot_uop_uop_mem_size = 2'h0; // @[consts.scala:269:19] wire [1:0] slot_uop_uop_lrs1_rtype = 2'h0; // @[consts.scala:269:19] wire [1:0] slot_uop_uop_lrs2_rtype = 2'h0; // @[consts.scala:269:19] wire [1:0] slot_uop_uop_debug_fsrc = 2'h0; // @[consts.scala:269:19] wire [1:0] slot_uop_uop_debug_tsrc = 2'h0; // @[consts.scala:269:19] wire [1:0] slot_uop_cs_op1_sel = 2'h0; // @[consts.scala:279:18] wire [2:0] slot_uop_uop_iq_type = 3'h0; // @[consts.scala:269:19] wire [2:0] slot_uop_uop_ctrl_op2_sel = 3'h0; // @[consts.scala:269:19] wire [2:0] slot_uop_uop_ctrl_imm_sel = 3'h0; // @[consts.scala:269:19] wire [2:0] slot_uop_uop_ctrl_csr_cmd = 3'h0; // @[consts.scala:269:19] wire [2:0] slot_uop_cs_op2_sel = 3'h0; // @[consts.scala:279:18] wire [2:0] slot_uop_cs_imm_sel = 3'h0; // @[consts.scala:279:18] wire [2:0] slot_uop_cs_csr_cmd = 3'h0; // @[consts.scala:279:18] wire [3:0] slot_uop_uop_ctrl_br_type = 4'h0; // @[consts.scala:269:19] wire [3:0] slot_uop_uop_br_tag = 4'h0; // @[consts.scala:269:19] wire [3:0] slot_uop_cs_br_type = 4'h0; // @[consts.scala:279:18] wire [1:0] slot_uop_uop_dst_rtype = 2'h2; // @[consts.scala:269:19] wire [5:0] slot_uop_uop_pc_lob = 6'h0; // @[consts.scala:269:19] wire [5:0] slot_uop_uop_ldst = 6'h0; // @[consts.scala:269:19] wire [5:0] slot_uop_uop_lrs1 = 6'h0; // @[consts.scala:269:19] wire [5:0] slot_uop_uop_lrs2 = 6'h0; // @[consts.scala:269:19] wire [5:0] slot_uop_uop_lrs3 = 6'h0; // @[consts.scala:269:19] wire [63:0] slot_uop_uop_exc_cause = 64'h0; // @[consts.scala:269:19] wire [11:0] slot_uop_uop_csr_addr = 12'h0; // @[consts.scala:269:19] wire [19:0] slot_uop_uop_imm_packed = 20'h0; // @[consts.scala:269:19] wire [15:0] slot_uop_uop_br_mask = 16'h0; // @[consts.scala:269:19] wire [9:0] slot_uop_uop_fu_code = 10'h0; // @[consts.scala:269:19] wire [39:0] slot_uop_uop_debug_pc = 40'h0; // @[consts.scala:269:19] wire [31:0] slot_uop_uop_inst = 32'h0; // @[consts.scala:269:19] wire [31:0] slot_uop_uop_debug_inst = 32'h0; // @[consts.scala:269:19] wire _io_valid_T; // @[issue-slot.scala:79:24] wire _io_will_be_valid_T_4; // @[issue-slot.scala:262:32] wire _io_request_hp_T; // @[issue-slot.scala:243:31] wire [6:0] next_uopc; // @[issue-slot.scala:82:29] wire [1:0] next_state; // @[issue-slot.scala:81:29] wire [15:0] next_br_mask; // @[util.scala:85:25] wire _io_out_uop_prs1_busy_T; // @[issue-slot.scala:270:28] wire _io_out_uop_prs2_busy_T; // @[issue-slot.scala:271:28] wire _io_out_uop_prs3_busy_T; // @[issue-slot.scala:272:28] wire _io_out_uop_ppred_busy_T; // @[issue-slot.scala:273:28] wire [1:0] next_lrs1_rtype; // @[issue-slot.scala:83:29] wire [1:0] next_lrs2_rtype; // @[issue-slot.scala:84:29] wire [3:0] io_out_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7] wire [1:0] io_out_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7] wire [2:0] io_out_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7] wire [2:0] io_out_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7] wire [4:0] io_out_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7] wire io_out_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7] wire [2:0] io_out_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7] wire io_out_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7] wire io_out_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7] wire io_out_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7] wire [6:0] io_out_uop_uopc_0; // @[issue-slot.scala:69:7] wire [31:0] io_out_uop_inst_0; // @[issue-slot.scala:69:7] wire [31:0] io_out_uop_debug_inst_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_rvc_0; // @[issue-slot.scala:69:7] wire [39:0] io_out_uop_debug_pc_0; // @[issue-slot.scala:69:7] wire [2:0] io_out_uop_iq_type_0; // @[issue-slot.scala:69:7] wire [9:0] io_out_uop_fu_code_0; // @[issue-slot.scala:69:7] wire [1:0] io_out_uop_iw_state_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_br_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_jalr_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_jal_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_sfb_0; // @[issue-slot.scala:69:7] wire [15:0] io_out_uop_br_mask_0; // @[issue-slot.scala:69:7] wire [3:0] io_out_uop_br_tag_0; // @[issue-slot.scala:69:7] wire [4:0] io_out_uop_ftq_idx_0; // @[issue-slot.scala:69:7] wire io_out_uop_edge_inst_0; // @[issue-slot.scala:69:7] wire [5:0] io_out_uop_pc_lob_0; // @[issue-slot.scala:69:7] wire io_out_uop_taken_0; // @[issue-slot.scala:69:7] wire [19:0] io_out_uop_imm_packed_0; // @[issue-slot.scala:69:7] wire [11:0] io_out_uop_csr_addr_0; // @[issue-slot.scala:69:7] wire [6:0] io_out_uop_rob_idx_0; // @[issue-slot.scala:69:7] wire [4:0] io_out_uop_ldq_idx_0; // @[issue-slot.scala:69:7] wire [4:0] io_out_uop_stq_idx_0; // @[issue-slot.scala:69:7] wire [1:0] io_out_uop_rxq_idx_0; // @[issue-slot.scala:69:7] wire [6:0] io_out_uop_pdst_0; // @[issue-slot.scala:69:7] wire [6:0] io_out_uop_prs1_0; // @[issue-slot.scala:69:7] wire [6:0] io_out_uop_prs2_0; // @[issue-slot.scala:69:7] wire [6:0] io_out_uop_prs3_0; // @[issue-slot.scala:69:7] wire [4:0] io_out_uop_ppred_0; // @[issue-slot.scala:69:7] wire io_out_uop_prs1_busy_0; // @[issue-slot.scala:69:7] wire io_out_uop_prs2_busy_0; // @[issue-slot.scala:69:7] wire io_out_uop_prs3_busy_0; // @[issue-slot.scala:69:7] wire io_out_uop_ppred_busy_0; // @[issue-slot.scala:69:7] wire [6:0] io_out_uop_stale_pdst_0; // @[issue-slot.scala:69:7] wire io_out_uop_exception_0; // @[issue-slot.scala:69:7] wire [63:0] io_out_uop_exc_cause_0; // @[issue-slot.scala:69:7] wire io_out_uop_bypassable_0; // @[issue-slot.scala:69:7] wire [4:0] io_out_uop_mem_cmd_0; // @[issue-slot.scala:69:7] wire [1:0] io_out_uop_mem_size_0; // @[issue-slot.scala:69:7] wire io_out_uop_mem_signed_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_fence_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_fencei_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_amo_0; // @[issue-slot.scala:69:7] wire io_out_uop_uses_ldq_0; // @[issue-slot.scala:69:7] wire io_out_uop_uses_stq_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7] wire io_out_uop_is_unique_0; // @[issue-slot.scala:69:7] wire io_out_uop_flush_on_commit_0; // @[issue-slot.scala:69:7] wire io_out_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7] wire [5:0] io_out_uop_ldst_0; // @[issue-slot.scala:69:7] wire [5:0] io_out_uop_lrs1_0; // @[issue-slot.scala:69:7] wire [5:0] io_out_uop_lrs2_0; // @[issue-slot.scala:69:7] wire [5:0] io_out_uop_lrs3_0; // @[issue-slot.scala:69:7] wire io_out_uop_ldst_val_0; // @[issue-slot.scala:69:7] wire [1:0] io_out_uop_dst_rtype_0; // @[issue-slot.scala:69:7] wire [1:0] io_out_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7] wire [1:0] io_out_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7] wire io_out_uop_frs3_en_0; // @[issue-slot.scala:69:7] wire io_out_uop_fp_val_0; // @[issue-slot.scala:69:7] wire io_out_uop_fp_single_0; // @[issue-slot.scala:69:7] wire io_out_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7] wire io_out_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7] wire io_out_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7] wire io_out_uop_bp_debug_if_0; // @[issue-slot.scala:69:7] wire io_out_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7] wire [1:0] io_out_uop_debug_fsrc_0; // @[issue-slot.scala:69:7] wire [1:0] io_out_uop_debug_tsrc_0; // @[issue-slot.scala:69:7] wire [3:0] io_uop_ctrl_br_type_0; // @[issue-slot.scala:69:7] wire [1:0] io_uop_ctrl_op1_sel_0; // @[issue-slot.scala:69:7] wire [2:0] io_uop_ctrl_op2_sel_0; // @[issue-slot.scala:69:7] wire [2:0] io_uop_ctrl_imm_sel_0; // @[issue-slot.scala:69:7] wire [4:0] io_uop_ctrl_op_fcn_0; // @[issue-slot.scala:69:7] wire io_uop_ctrl_fcn_dw_0; // @[issue-slot.scala:69:7] wire [2:0] io_uop_ctrl_csr_cmd_0; // @[issue-slot.scala:69:7] wire io_uop_ctrl_is_load_0; // @[issue-slot.scala:69:7] wire io_uop_ctrl_is_sta_0; // @[issue-slot.scala:69:7] wire io_uop_ctrl_is_std_0; // @[issue-slot.scala:69:7] wire [6:0] io_uop_uopc_0; // @[issue-slot.scala:69:7] wire [31:0] io_uop_inst_0; // @[issue-slot.scala:69:7] wire [31:0] io_uop_debug_inst_0; // @[issue-slot.scala:69:7] wire io_uop_is_rvc_0; // @[issue-slot.scala:69:7] wire [39:0] io_uop_debug_pc_0; // @[issue-slot.scala:69:7] wire [2:0] io_uop_iq_type_0; // @[issue-slot.scala:69:7] wire [9:0] io_uop_fu_code_0; // @[issue-slot.scala:69:7] wire [1:0] io_uop_iw_state_0; // @[issue-slot.scala:69:7] wire io_uop_is_br_0; // @[issue-slot.scala:69:7] wire io_uop_is_jalr_0; // @[issue-slot.scala:69:7] wire io_uop_is_jal_0; // @[issue-slot.scala:69:7] wire io_uop_is_sfb_0; // @[issue-slot.scala:69:7] wire [15:0] io_uop_br_mask_0; // @[issue-slot.scala:69:7] wire [3:0] io_uop_br_tag_0; // @[issue-slot.scala:69:7] wire [4:0] io_uop_ftq_idx_0; // @[issue-slot.scala:69:7] wire io_uop_edge_inst_0; // @[issue-slot.scala:69:7] wire [5:0] io_uop_pc_lob_0; // @[issue-slot.scala:69:7] wire io_uop_taken_0; // @[issue-slot.scala:69:7] wire [19:0] io_uop_imm_packed_0; // @[issue-slot.scala:69:7] wire [11:0] io_uop_csr_addr_0; // @[issue-slot.scala:69:7] wire [6:0] io_uop_rob_idx_0; // @[issue-slot.scala:69:7] wire [4:0] io_uop_ldq_idx_0; // @[issue-slot.scala:69:7] wire [4:0] io_uop_stq_idx_0; // @[issue-slot.scala:69:7] wire [1:0] io_uop_rxq_idx_0; // @[issue-slot.scala:69:7] wire [6:0] io_uop_pdst_0; // @[issue-slot.scala:69:7] wire [6:0] io_uop_prs1_0; // @[issue-slot.scala:69:7] wire [6:0] io_uop_prs2_0; // @[issue-slot.scala:69:7] wire [6:0] io_uop_prs3_0; // @[issue-slot.scala:69:7] wire [4:0] io_uop_ppred_0; // @[issue-slot.scala:69:7] wire io_uop_prs1_busy_0; // @[issue-slot.scala:69:7] wire io_uop_prs2_busy_0; // @[issue-slot.scala:69:7] wire io_uop_prs3_busy_0; // @[issue-slot.scala:69:7] wire io_uop_ppred_busy_0; // @[issue-slot.scala:69:7] wire [6:0] io_uop_stale_pdst_0; // @[issue-slot.scala:69:7] wire io_uop_exception_0; // @[issue-slot.scala:69:7] wire [63:0] io_uop_exc_cause_0; // @[issue-slot.scala:69:7] wire io_uop_bypassable_0; // @[issue-slot.scala:69:7] wire [4:0] io_uop_mem_cmd_0; // @[issue-slot.scala:69:7] wire [1:0] io_uop_mem_size_0; // @[issue-slot.scala:69:7] wire io_uop_mem_signed_0; // @[issue-slot.scala:69:7] wire io_uop_is_fence_0; // @[issue-slot.scala:69:7] wire io_uop_is_fencei_0; // @[issue-slot.scala:69:7] wire io_uop_is_amo_0; // @[issue-slot.scala:69:7] wire io_uop_uses_ldq_0; // @[issue-slot.scala:69:7] wire io_uop_uses_stq_0; // @[issue-slot.scala:69:7] wire io_uop_is_sys_pc2epc_0; // @[issue-slot.scala:69:7] wire io_uop_is_unique_0; // @[issue-slot.scala:69:7] wire io_uop_flush_on_commit_0; // @[issue-slot.scala:69:7] wire io_uop_ldst_is_rs1_0; // @[issue-slot.scala:69:7] wire [5:0] io_uop_ldst_0; // @[issue-slot.scala:69:7] wire [5:0] io_uop_lrs1_0; // @[issue-slot.scala:69:7] wire [5:0] io_uop_lrs2_0; // @[issue-slot.scala:69:7] wire [5:0] io_uop_lrs3_0; // @[issue-slot.scala:69:7] wire io_uop_ldst_val_0; // @[issue-slot.scala:69:7] wire [1:0] io_uop_dst_rtype_0; // @[issue-slot.scala:69:7] wire [1:0] io_uop_lrs1_rtype_0; // @[issue-slot.scala:69:7] wire [1:0] io_uop_lrs2_rtype_0; // @[issue-slot.scala:69:7] wire io_uop_frs3_en_0; // @[issue-slot.scala:69:7] wire io_uop_fp_val_0; // @[issue-slot.scala:69:7] wire io_uop_fp_single_0; // @[issue-slot.scala:69:7] wire io_uop_xcpt_pf_if_0; // @[issue-slot.scala:69:7] wire io_uop_xcpt_ae_if_0; // @[issue-slot.scala:69:7] wire io_uop_xcpt_ma_if_0; // @[issue-slot.scala:69:7] wire io_uop_bp_debug_if_0; // @[issue-slot.scala:69:7] wire io_uop_bp_xcpt_if_0; // @[issue-slot.scala:69:7] wire [1:0] io_uop_debug_fsrc_0; // @[issue-slot.scala:69:7] wire [1:0] io_uop_debug_tsrc_0; // @[issue-slot.scala:69:7] wire io_debug_p1_0; // @[issue-slot.scala:69:7] wire io_debug_p2_0; // @[issue-slot.scala:69:7] wire io_debug_p3_0; // @[issue-slot.scala:69:7] wire io_debug_ppred_0; // @[issue-slot.scala:69:7] wire [1:0] io_debug_state_0; // @[issue-slot.scala:69:7] wire io_valid_0; // @[issue-slot.scala:69:7] wire io_will_be_valid_0; // @[issue-slot.scala:69:7] wire io_request_0; // @[issue-slot.scala:69:7] wire io_request_hp_0; // @[issue-slot.scala:69:7] assign io_out_uop_iw_state_0 = next_state; // @[issue-slot.scala:69:7, :81:29] assign io_out_uop_uopc_0 = next_uopc; // @[issue-slot.scala:69:7, :82:29] assign io_out_uop_lrs1_rtype_0 = next_lrs1_rtype; // @[issue-slot.scala:69:7, :83:29] assign io_out_uop_lrs2_rtype_0 = next_lrs2_rtype; // @[issue-slot.scala:69:7, :84:29] reg [1:0] state; // @[issue-slot.scala:86:22] assign io_debug_state_0 = state; // @[issue-slot.scala:69:7, :86:22] reg p1; // @[issue-slot.scala:87:22] assign io_debug_p1_0 = p1; // @[issue-slot.scala:69:7, :87:22] wire next_p1 = p1; // @[issue-slot.scala:87:22, :163:25] reg p2; // @[issue-slot.scala:88:22] assign io_debug_p2_0 = p2; // @[issue-slot.scala:69:7, :88:22] wire next_p2 = p2; // @[issue-slot.scala:88:22, :164:25] reg p3; // @[issue-slot.scala:89:22] assign io_debug_p3_0 = p3; // @[issue-slot.scala:69:7, :89:22] wire next_p3 = p3; // @[issue-slot.scala:89:22, :165:25] reg ppred; // @[issue-slot.scala:90:22] assign io_debug_ppred_0 = ppred; // @[issue-slot.scala:69:7, :90:22] wire next_ppred = ppred; // @[issue-slot.scala:90:22, :166:28] reg [6:0] slot_uop_uopc; // @[issue-slot.scala:102:25] reg [31:0] slot_uop_inst; // @[issue-slot.scala:102:25] assign io_out_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25] assign io_uop_inst_0 = slot_uop_inst; // @[issue-slot.scala:69:7, :102:25] reg [31:0] slot_uop_debug_inst; // @[issue-slot.scala:102:25] assign io_out_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25] assign io_uop_debug_inst_0 = slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_is_rvc; // @[issue-slot.scala:102:25] assign io_out_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_rvc_0 = slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25] reg [39:0] slot_uop_debug_pc; // @[issue-slot.scala:102:25] assign io_out_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25] assign io_uop_debug_pc_0 = slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25] reg [2:0] slot_uop_iq_type; // @[issue-slot.scala:102:25] assign io_out_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25] assign io_uop_iq_type_0 = slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25] reg [9:0] slot_uop_fu_code; // @[issue-slot.scala:102:25] assign io_out_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25] assign io_uop_fu_code_0 = slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25] reg [3:0] slot_uop_ctrl_br_type; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_br_type_0 = slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25] reg [1:0] slot_uop_ctrl_op1_sel; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_op1_sel_0 = slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25] reg [2:0] slot_uop_ctrl_op2_sel; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_op2_sel_0 = slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25] reg [2:0] slot_uop_ctrl_imm_sel; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_imm_sel_0 = slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25] reg [4:0] slot_uop_ctrl_op_fcn; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_op_fcn_0 = slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_fcn_dw_0 = slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25] reg [2:0] slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_csr_cmd_0 = slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_ctrl_is_load; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_is_load_0 = slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_ctrl_is_sta; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_is_sta_0 = slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_ctrl_is_std; // @[issue-slot.scala:102:25] assign io_out_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ctrl_is_std_0 = slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25] reg [1:0] slot_uop_iw_state; // @[issue-slot.scala:102:25] assign io_uop_iw_state_0 = slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_iw_p1_poisoned; // @[issue-slot.scala:102:25] reg slot_uop_iw_p2_poisoned; // @[issue-slot.scala:102:25] reg slot_uop_is_br; // @[issue-slot.scala:102:25] assign io_out_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_br_0 = slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_is_jalr; // @[issue-slot.scala:102:25] assign io_out_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_jalr_0 = slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_is_jal; // @[issue-slot.scala:102:25] assign io_out_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_jal_0 = slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_is_sfb; // @[issue-slot.scala:102:25] assign io_out_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_sfb_0 = slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25] reg [15:0] slot_uop_br_mask; // @[issue-slot.scala:102:25] assign io_uop_br_mask_0 = slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25] reg [3:0] slot_uop_br_tag; // @[issue-slot.scala:102:25] assign io_out_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25] assign io_uop_br_tag_0 = slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25] reg [4:0] slot_uop_ftq_idx; // @[issue-slot.scala:102:25] assign io_out_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ftq_idx_0 = slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_edge_inst; // @[issue-slot.scala:102:25] assign io_out_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25] assign io_uop_edge_inst_0 = slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25] reg [5:0] slot_uop_pc_lob; // @[issue-slot.scala:102:25] assign io_out_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25] assign io_uop_pc_lob_0 = slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_taken; // @[issue-slot.scala:102:25] assign io_out_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25] assign io_uop_taken_0 = slot_uop_taken; // @[issue-slot.scala:69:7, :102:25] reg [19:0] slot_uop_imm_packed; // @[issue-slot.scala:102:25] assign io_out_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25] assign io_uop_imm_packed_0 = slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25] reg [11:0] slot_uop_csr_addr; // @[issue-slot.scala:102:25] assign io_out_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25] assign io_uop_csr_addr_0 = slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25] reg [6:0] slot_uop_rob_idx; // @[issue-slot.scala:102:25] assign io_out_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25] assign io_uop_rob_idx_0 = slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25] reg [4:0] slot_uop_ldq_idx; // @[issue-slot.scala:102:25] assign io_out_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ldq_idx_0 = slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25] reg [4:0] slot_uop_stq_idx; // @[issue-slot.scala:102:25] assign io_out_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25] assign io_uop_stq_idx_0 = slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25] reg [1:0] slot_uop_rxq_idx; // @[issue-slot.scala:102:25] assign io_out_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25] assign io_uop_rxq_idx_0 = slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25] reg [6:0] slot_uop_pdst; // @[issue-slot.scala:102:25] assign io_out_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25] assign io_uop_pdst_0 = slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25] reg [6:0] slot_uop_prs1; // @[issue-slot.scala:102:25] assign io_out_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25] assign io_uop_prs1_0 = slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25] reg [6:0] slot_uop_prs2; // @[issue-slot.scala:102:25] assign io_out_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25] assign io_uop_prs2_0 = slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25] reg [6:0] slot_uop_prs3; // @[issue-slot.scala:102:25] assign io_out_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25] assign io_uop_prs3_0 = slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25] reg [4:0] slot_uop_ppred; // @[issue-slot.scala:102:25] assign io_out_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ppred_0 = slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_prs1_busy; // @[issue-slot.scala:102:25] assign io_uop_prs1_busy_0 = slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_prs2_busy; // @[issue-slot.scala:102:25] assign io_uop_prs2_busy_0 = slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_prs3_busy; // @[issue-slot.scala:102:25] assign io_uop_prs3_busy_0 = slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_ppred_busy; // @[issue-slot.scala:102:25] assign io_uop_ppred_busy_0 = slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25] reg [6:0] slot_uop_stale_pdst; // @[issue-slot.scala:102:25] assign io_out_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25] assign io_uop_stale_pdst_0 = slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_exception; // @[issue-slot.scala:102:25] assign io_out_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25] assign io_uop_exception_0 = slot_uop_exception; // @[issue-slot.scala:69:7, :102:25] reg [63:0] slot_uop_exc_cause; // @[issue-slot.scala:102:25] assign io_out_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25] assign io_uop_exc_cause_0 = slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_bypassable; // @[issue-slot.scala:102:25] assign io_out_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25] assign io_uop_bypassable_0 = slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25] reg [4:0] slot_uop_mem_cmd; // @[issue-slot.scala:102:25] assign io_out_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25] assign io_uop_mem_cmd_0 = slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25] reg [1:0] slot_uop_mem_size; // @[issue-slot.scala:102:25] assign io_out_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25] assign io_uop_mem_size_0 = slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_mem_signed; // @[issue-slot.scala:102:25] assign io_out_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25] assign io_uop_mem_signed_0 = slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_is_fence; // @[issue-slot.scala:102:25] assign io_out_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_fence_0 = slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_is_fencei; // @[issue-slot.scala:102:25] assign io_out_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_fencei_0 = slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_is_amo; // @[issue-slot.scala:102:25] assign io_out_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_amo_0 = slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_uses_ldq; // @[issue-slot.scala:102:25] assign io_out_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25] assign io_uop_uses_ldq_0 = slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_uses_stq; // @[issue-slot.scala:102:25] assign io_out_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25] assign io_uop_uses_stq_0 = slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_is_sys_pc2epc; // @[issue-slot.scala:102:25] assign io_out_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_sys_pc2epc_0 = slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_is_unique; // @[issue-slot.scala:102:25] assign io_out_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25] assign io_uop_is_unique_0 = slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_flush_on_commit; // @[issue-slot.scala:102:25] assign io_out_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25] assign io_uop_flush_on_commit_0 = slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_ldst_is_rs1; // @[issue-slot.scala:102:25] assign io_out_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ldst_is_rs1_0 = slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25] reg [5:0] slot_uop_ldst; // @[issue-slot.scala:102:25] assign io_out_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ldst_0 = slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25] reg [5:0] slot_uop_lrs1; // @[issue-slot.scala:102:25] assign io_out_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25] assign io_uop_lrs1_0 = slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25] reg [5:0] slot_uop_lrs2; // @[issue-slot.scala:102:25] assign io_out_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25] assign io_uop_lrs2_0 = slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25] reg [5:0] slot_uop_lrs3; // @[issue-slot.scala:102:25] assign io_out_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25] assign io_uop_lrs3_0 = slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_ldst_val; // @[issue-slot.scala:102:25] assign io_out_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25] assign io_uop_ldst_val_0 = slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25] reg [1:0] slot_uop_dst_rtype; // @[issue-slot.scala:102:25] assign io_out_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25] assign io_uop_dst_rtype_0 = slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25] reg [1:0] slot_uop_lrs1_rtype; // @[issue-slot.scala:102:25] reg [1:0] slot_uop_lrs2_rtype; // @[issue-slot.scala:102:25] reg slot_uop_frs3_en; // @[issue-slot.scala:102:25] assign io_out_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25] assign io_uop_frs3_en_0 = slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_fp_val; // @[issue-slot.scala:102:25] assign io_out_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25] assign io_uop_fp_val_0 = slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_fp_single; // @[issue-slot.scala:102:25] assign io_out_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25] assign io_uop_fp_single_0 = slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_xcpt_pf_if; // @[issue-slot.scala:102:25] assign io_out_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25] assign io_uop_xcpt_pf_if_0 = slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_xcpt_ae_if; // @[issue-slot.scala:102:25] assign io_out_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25] assign io_uop_xcpt_ae_if_0 = slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_xcpt_ma_if; // @[issue-slot.scala:102:25] assign io_out_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25] assign io_uop_xcpt_ma_if_0 = slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_bp_debug_if; // @[issue-slot.scala:102:25] assign io_out_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25] assign io_uop_bp_debug_if_0 = slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25] reg slot_uop_bp_xcpt_if; // @[issue-slot.scala:102:25] assign io_out_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25] assign io_uop_bp_xcpt_if_0 = slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25] reg [1:0] slot_uop_debug_fsrc; // @[issue-slot.scala:102:25] assign io_out_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25] assign io_uop_debug_fsrc_0 = slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25] reg [1:0] slot_uop_debug_tsrc; // @[issue-slot.scala:102:25] assign io_out_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25] assign io_uop_debug_tsrc_0 = slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25] wire [6:0] next_uop_uopc = io_in_uop_valid_0 ? io_in_uop_bits_uopc_0 : slot_uop_uopc; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [31:0] next_uop_inst = io_in_uop_valid_0 ? io_in_uop_bits_inst_0 : slot_uop_inst; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [31:0] next_uop_debug_inst = io_in_uop_valid_0 ? io_in_uop_bits_debug_inst_0 : slot_uop_debug_inst; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_rvc = io_in_uop_valid_0 ? io_in_uop_bits_is_rvc_0 : slot_uop_is_rvc; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [39:0] next_uop_debug_pc = io_in_uop_valid_0 ? io_in_uop_bits_debug_pc_0 : slot_uop_debug_pc; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [2:0] next_uop_iq_type = io_in_uop_valid_0 ? io_in_uop_bits_iq_type_0 : slot_uop_iq_type; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [9:0] next_uop_fu_code = io_in_uop_valid_0 ? io_in_uop_bits_fu_code_0 : slot_uop_fu_code; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [3:0] next_uop_ctrl_br_type = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_br_type_0 : slot_uop_ctrl_br_type; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [1:0] next_uop_ctrl_op1_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op1_sel_0 : slot_uop_ctrl_op1_sel; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [2:0] next_uop_ctrl_op2_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op2_sel_0 : slot_uop_ctrl_op2_sel; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [2:0] next_uop_ctrl_imm_sel = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_imm_sel_0 : slot_uop_ctrl_imm_sel; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [4:0] next_uop_ctrl_op_fcn = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_op_fcn_0 : slot_uop_ctrl_op_fcn; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_ctrl_fcn_dw = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_fcn_dw_0 : slot_uop_ctrl_fcn_dw; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [2:0] next_uop_ctrl_csr_cmd = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_csr_cmd_0 : slot_uop_ctrl_csr_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_ctrl_is_load = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_load_0 : slot_uop_ctrl_is_load; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_ctrl_is_sta = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_sta_0 : slot_uop_ctrl_is_sta; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_ctrl_is_std = io_in_uop_valid_0 ? io_in_uop_bits_ctrl_is_std_0 : slot_uop_ctrl_is_std; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [1:0] next_uop_iw_state = io_in_uop_valid_0 ? io_in_uop_bits_iw_state_0 : slot_uop_iw_state; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_iw_p1_poisoned = ~io_in_uop_valid_0 & slot_uop_iw_p1_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_iw_p2_poisoned = ~io_in_uop_valid_0 & slot_uop_iw_p2_poisoned; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_br = io_in_uop_valid_0 ? io_in_uop_bits_is_br_0 : slot_uop_is_br; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_jalr = io_in_uop_valid_0 ? io_in_uop_bits_is_jalr_0 : slot_uop_is_jalr; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_jal = io_in_uop_valid_0 ? io_in_uop_bits_is_jal_0 : slot_uop_is_jal; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_sfb = io_in_uop_valid_0 ? io_in_uop_bits_is_sfb_0 : slot_uop_is_sfb; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [15:0] next_uop_br_mask = io_in_uop_valid_0 ? io_in_uop_bits_br_mask_0 : slot_uop_br_mask; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [3:0] next_uop_br_tag = io_in_uop_valid_0 ? io_in_uop_bits_br_tag_0 : slot_uop_br_tag; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [4:0] next_uop_ftq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ftq_idx_0 : slot_uop_ftq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_edge_inst = io_in_uop_valid_0 ? io_in_uop_bits_edge_inst_0 : slot_uop_edge_inst; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [5:0] next_uop_pc_lob = io_in_uop_valid_0 ? io_in_uop_bits_pc_lob_0 : slot_uop_pc_lob; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_taken = io_in_uop_valid_0 ? io_in_uop_bits_taken_0 : slot_uop_taken; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [19:0] next_uop_imm_packed = io_in_uop_valid_0 ? io_in_uop_bits_imm_packed_0 : slot_uop_imm_packed; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [11:0] next_uop_csr_addr = io_in_uop_valid_0 ? io_in_uop_bits_csr_addr_0 : slot_uop_csr_addr; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [6:0] next_uop_rob_idx = io_in_uop_valid_0 ? io_in_uop_bits_rob_idx_0 : slot_uop_rob_idx; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [4:0] next_uop_ldq_idx = io_in_uop_valid_0 ? io_in_uop_bits_ldq_idx_0 : slot_uop_ldq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [4:0] next_uop_stq_idx = io_in_uop_valid_0 ? io_in_uop_bits_stq_idx_0 : slot_uop_stq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [1:0] next_uop_rxq_idx = io_in_uop_valid_0 ? io_in_uop_bits_rxq_idx_0 : slot_uop_rxq_idx; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [6:0] next_uop_pdst = io_in_uop_valid_0 ? io_in_uop_bits_pdst_0 : slot_uop_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [6:0] next_uop_prs1 = io_in_uop_valid_0 ? io_in_uop_bits_prs1_0 : slot_uop_prs1; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [6:0] next_uop_prs2 = io_in_uop_valid_0 ? io_in_uop_bits_prs2_0 : slot_uop_prs2; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [6:0] next_uop_prs3 = io_in_uop_valid_0 ? io_in_uop_bits_prs3_0 : slot_uop_prs3; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [4:0] next_uop_ppred = io_in_uop_valid_0 ? io_in_uop_bits_ppred_0 : slot_uop_ppred; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_prs1_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs1_busy_0 : slot_uop_prs1_busy; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_prs2_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs2_busy_0 : slot_uop_prs2_busy; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_prs3_busy = io_in_uop_valid_0 ? io_in_uop_bits_prs3_busy_0 : slot_uop_prs3_busy; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_ppred_busy = io_in_uop_valid_0 ? io_in_uop_bits_ppred_busy_0 : slot_uop_ppred_busy; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [6:0] next_uop_stale_pdst = io_in_uop_valid_0 ? io_in_uop_bits_stale_pdst_0 : slot_uop_stale_pdst; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_exception = io_in_uop_valid_0 ? io_in_uop_bits_exception_0 : slot_uop_exception; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [63:0] next_uop_exc_cause = io_in_uop_valid_0 ? io_in_uop_bits_exc_cause_0 : slot_uop_exc_cause; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_bypassable = io_in_uop_valid_0 ? io_in_uop_bits_bypassable_0 : slot_uop_bypassable; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [4:0] next_uop_mem_cmd = io_in_uop_valid_0 ? io_in_uop_bits_mem_cmd_0 : slot_uop_mem_cmd; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [1:0] next_uop_mem_size = io_in_uop_valid_0 ? io_in_uop_bits_mem_size_0 : slot_uop_mem_size; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_mem_signed = io_in_uop_valid_0 ? io_in_uop_bits_mem_signed_0 : slot_uop_mem_signed; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_fence = io_in_uop_valid_0 ? io_in_uop_bits_is_fence_0 : slot_uop_is_fence; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_fencei = io_in_uop_valid_0 ? io_in_uop_bits_is_fencei_0 : slot_uop_is_fencei; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_amo = io_in_uop_valid_0 ? io_in_uop_bits_is_amo_0 : slot_uop_is_amo; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_uses_ldq = io_in_uop_valid_0 ? io_in_uop_bits_uses_ldq_0 : slot_uop_uses_ldq; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_uses_stq = io_in_uop_valid_0 ? io_in_uop_bits_uses_stq_0 : slot_uop_uses_stq; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_sys_pc2epc = io_in_uop_valid_0 ? io_in_uop_bits_is_sys_pc2epc_0 : slot_uop_is_sys_pc2epc; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_is_unique = io_in_uop_valid_0 ? io_in_uop_bits_is_unique_0 : slot_uop_is_unique; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_flush_on_commit = io_in_uop_valid_0 ? io_in_uop_bits_flush_on_commit_0 : slot_uop_flush_on_commit; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_ldst_is_rs1 = io_in_uop_valid_0 ? io_in_uop_bits_ldst_is_rs1_0 : slot_uop_ldst_is_rs1; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [5:0] next_uop_ldst = io_in_uop_valid_0 ? io_in_uop_bits_ldst_0 : slot_uop_ldst; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [5:0] next_uop_lrs1 = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_0 : slot_uop_lrs1; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [5:0] next_uop_lrs2 = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_0 : slot_uop_lrs2; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [5:0] next_uop_lrs3 = io_in_uop_valid_0 ? io_in_uop_bits_lrs3_0 : slot_uop_lrs3; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_ldst_val = io_in_uop_valid_0 ? io_in_uop_bits_ldst_val_0 : slot_uop_ldst_val; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [1:0] next_uop_dst_rtype = io_in_uop_valid_0 ? io_in_uop_bits_dst_rtype_0 : slot_uop_dst_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [1:0] next_uop_lrs1_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs1_rtype_0 : slot_uop_lrs1_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [1:0] next_uop_lrs2_rtype = io_in_uop_valid_0 ? io_in_uop_bits_lrs2_rtype_0 : slot_uop_lrs2_rtype; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_frs3_en = io_in_uop_valid_0 ? io_in_uop_bits_frs3_en_0 : slot_uop_frs3_en; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_fp_val = io_in_uop_valid_0 ? io_in_uop_bits_fp_val_0 : slot_uop_fp_val; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_fp_single = io_in_uop_valid_0 ? io_in_uop_bits_fp_single_0 : slot_uop_fp_single; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_xcpt_pf_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_pf_if_0 : slot_uop_xcpt_pf_if; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_xcpt_ae_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ae_if_0 : slot_uop_xcpt_ae_if; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_xcpt_ma_if = io_in_uop_valid_0 ? io_in_uop_bits_xcpt_ma_if_0 : slot_uop_xcpt_ma_if; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_bp_debug_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_debug_if_0 : slot_uop_bp_debug_if; // @[issue-slot.scala:69:7, :102:25, :103:21] wire next_uop_bp_xcpt_if = io_in_uop_valid_0 ? io_in_uop_bits_bp_xcpt_if_0 : slot_uop_bp_xcpt_if; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [1:0] next_uop_debug_fsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_fsrc_0 : slot_uop_debug_fsrc; // @[issue-slot.scala:69:7, :102:25, :103:21] wire [1:0] next_uop_debug_tsrc = io_in_uop_valid_0 ? io_in_uop_bits_debug_tsrc_0 : slot_uop_debug_tsrc; // @[issue-slot.scala:69:7, :102:25, :103:21] wire _T_11 = state == 2'h2; // @[issue-slot.scala:86:22, :134:25] wire _T_7 = io_grant_0 & state == 2'h1 | io_grant_0 & _T_11 & p1 & p2 & ppred; // @[issue-slot.scala:69:7, :86:22, :87:22, :88:22, :90:22, :133:{26,36,52}, :134:{15,25,40,46,52}] wire _T_12 = io_grant_0 & _T_11; // @[issue-slot.scala:69:7, :134:25, :139:25] wire _GEN = io_kill_0 | _T_7; // @[issue-slot.scala:69:7, :102:25, :131:18, :133:52, :134:63, :139:51] wire _GEN_0 = _GEN | ~(_T_12 & p1); // @[issue-slot.scala:87:22, :102:25, :131:18, :134:63, :139:{25,51}, :140:62, :142:17, :143:23] assign next_uopc = _GEN_0 ? slot_uop_uopc : 7'h3; // @[issue-slot.scala:82:29, :102:25, :131:18, :134:63, :139:51] assign next_lrs1_rtype = _GEN_0 ? slot_uop_lrs1_rtype : 2'h2; // @[issue-slot.scala:83:29, :102:25, :131:18, :134:63, :139:51] wire _GEN_1 = _GEN | ~_T_12 | p1; // @[issue-slot.scala:87:22, :102:25, :131:18, :134:63, :139:{25,51}, :140:62, :142:17] assign next_lrs2_rtype = _GEN_1 ? slot_uop_lrs2_rtype : 2'h2; // @[issue-slot.scala:84:29, :102:25, :131:18, :134:63, :139:51, :140:62, :142:17]
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_17( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire [26:0] _GEN = {23'h0, io_in_a_bits_size}; // @[package.scala:243:71] wire _a_first_T_1 = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35] reg [8:0] a_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [3:0] size; // @[Monitor.scala:389:22] reg [6:0] source; // @[Monitor.scala:390:22] reg [28:0] address; // @[Monitor.scala:391:22] reg [8:0] d_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [3:0] size_1; // @[Monitor.scala:540:22] reg [6:0] source_1; // @[Monitor.scala:541:22] reg sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [64:0] inflight; // @[Monitor.scala:614:27] reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [519:0] inflight_sizes; // @[Monitor.scala:618:33] reg [8:0] a_first_counter_1; // @[Edges.scala:229:27] wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] reg [8:0] d_first_counter_1; // @[Edges.scala:229:27] wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire [127:0] _GEN_0 = {121'h0, io_in_a_bits_source}; // @[OneHot.scala:58:35] wire _GEN_1 = _a_first_T_1 & a_first_1; // @[Decoupled.scala:51:35] wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46] wire _GEN_2 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74] wire [127:0] _GEN_3 = {121'h0, io_in_d_bits_source}; // @[OneHot.scala:58:35] reg [31:0] watchdog; // @[Monitor.scala:709:27] reg [64:0] inflight_1; // @[Monitor.scala:726:35] reg [519:0] inflight_sizes_1; // @[Monitor.scala:728:35] reg [8:0] d_first_counter_2; // @[Edges.scala:229:27] wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_TLBEntryData_90( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae_ptw, // @[package.scala:268:18] input io_x_ae_final, // @[package.scala:268:18] input io_x_ae_stage2, // @[package.scala:268:18] input io_x_pf, // @[package.scala:268:18] input io_x_gf, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_hw, // @[package.scala:268:18] input io_x_hx, // @[package.scala:268:18] input io_x_hr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_ppp, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_ae_ptw, // @[package.scala:268:18] output io_y_ae_final, // @[package.scala:268:18] output io_y_ae_stage2, // @[package.scala:268:18] output io_y_pf, // @[package.scala:268:18] output io_y_gf, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_hw, // @[package.scala:268:18] output io_y_hx, // @[package.scala:268:18] output io_y_hr, // @[package.scala:268:18] output io_y_pw, // @[package.scala:268:18] output io_y_px, // @[package.scala:268:18] output io_y_pr, // @[package.scala:268:18] output io_y_ppp, // @[package.scala:268:18] output io_y_pal, // @[package.scala:268:18] output io_y_paa, // @[package.scala:268:18] output io_y_eff, // @[package.scala:268:18] output io_y_c // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30] wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30] wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30] wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30] wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30] wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30] wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30] wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30] wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30] wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30] wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30] wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30] wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30] wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30] wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30] wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30] wire io_y_ppp_0 = io_x_ppp_0; // @[package.scala:267:30] wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30] wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30] assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30] assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30] assign io_y_pf = io_y_pf_0; // @[package.scala:267:30] assign io_y_gf = io_y_gf_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_hw = io_y_hw_0; // @[package.scala:267:30] assign io_y_hx = io_y_hx_0; // @[package.scala:267:30] assign io_y_hr = io_y_hr_0; // @[package.scala:267:30] assign io_y_pw = io_y_pw_0; // @[package.scala:267:30] assign io_y_px = io_y_px_0; // @[package.scala:267:30] assign io_y_pr = io_y_pr_0; // @[package.scala:267:30] assign io_y_ppp = io_y_ppp_0; // @[package.scala:267:30] assign io_y_pal = io_y_pal_0; // @[package.scala:267:30] assign io_y_paa = io_y_paa_0; // @[package.scala:267:30] assign io_y_eff = io_y_eff_0; // @[package.scala:267:30] assign io_y_c = io_y_c_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File IngressUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import constellation.channel._ class IngressUnit( ingressNodeId: Int, cParam: IngressChannelParams, outParams: Seq[ChannelParams], egressParams: Seq[EgressChannelParams], combineRCVA: Boolean, combineSAST: Boolean, ) (implicit p: Parameters) extends AbstractInputUnit(cParam, outParams, egressParams)(p) { class IngressUnitIO extends AbstractInputUnitIO(cParam, outParams, egressParams) { val in = Flipped(Decoupled(new IngressFlit(cParam.payloadBits))) } val io = IO(new IngressUnitIO) val route_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val route_q = Module(new Queue(new RouteComputerResp(outParams, egressParams), 2, flow=combineRCVA)) assert(!(io.in.valid && !cParam.possibleFlows.toSeq.map(_.egressId.U === io.in.bits.egress_id).orR)) route_buffer.io.enq.bits.head := io.in.bits.head route_buffer.io.enq.bits.tail := io.in.bits.tail val flows = cParam.possibleFlows.toSeq if (flows.size == 0) { route_buffer.io.enq.bits.flow := DontCare } else { route_buffer.io.enq.bits.flow.ingress_node := cParam.destId.U route_buffer.io.enq.bits.flow.ingress_node_id := ingressNodeId.U route_buffer.io.enq.bits.flow.vnet_id := cParam.vNetId.U route_buffer.io.enq.bits.flow.egress_node := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNode.U) ) route_buffer.io.enq.bits.flow.egress_node_id := Mux1H( flows.map(_.egressId.U === io.in.bits.egress_id), flows.map(_.egressNodeId.U) ) } route_buffer.io.enq.bits.payload := io.in.bits.payload route_buffer.io.enq.bits.virt_channel_id := DontCare io.router_req.bits.src_virt_id := 0.U io.router_req.bits.flow := route_buffer.io.enq.bits.flow val at_dest = route_buffer.io.enq.bits.flow.egress_node === nodeId.U route_buffer.io.enq.valid := io.in.valid && ( io.router_req.ready || !io.in.bits.head || at_dest) io.router_req.valid := io.in.valid && route_buffer.io.enq.ready && io.in.bits.head && !at_dest io.in.ready := route_buffer.io.enq.ready && ( io.router_req.ready || !io.in.bits.head || at_dest) route_q.io.enq.valid := io.router_req.fire route_q.io.enq.bits := io.router_resp when (io.in.fire && io.in.bits.head && at_dest) { route_q.io.enq.valid := true.B route_q.io.enq.bits.vc_sel.foreach(_.foreach(_ := false.B)) for (o <- 0 until nEgress) { when (egressParams(o).egressId.U === io.in.bits.egress_id) { route_q.io.enq.bits.vc_sel(o+nOutputs)(0) := true.B } } } assert(!(route_q.io.enq.valid && !route_q.io.enq.ready)) val vcalloc_buffer = Module(new Queue(new Flit(cParam.payloadBits), 2)) val vcalloc_q = Module(new Queue(new VCAllocResp(outParams, egressParams), 1, pipe=true)) vcalloc_buffer.io.enq.bits := route_buffer.io.deq.bits io.vcalloc_req.bits.vc_sel := route_q.io.deq.bits.vc_sel io.vcalloc_req.bits.flow := route_buffer.io.deq.bits.flow io.vcalloc_req.bits.in_vc := 0.U val head = route_buffer.io.deq.bits.head val tail = route_buffer.io.deq.bits.tail vcalloc_buffer.io.enq.valid := (route_buffer.io.deq.valid && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) ) io.vcalloc_req.valid := (route_buffer.io.deq.valid && route_q.io.deq.valid && head && vcalloc_buffer.io.enq.ready && vcalloc_q.io.enq.ready) route_buffer.io.deq.ready := (vcalloc_buffer.io.enq.ready && (route_q.io.deq.valid || !head) && (io.vcalloc_req.ready || !head) && (vcalloc_q.io.enq.ready || !head)) route_q.io.deq.ready := (route_buffer.io.deq.fire && tail) vcalloc_q.io.enq.valid := io.vcalloc_req.fire vcalloc_q.io.enq.bits := io.vcalloc_resp assert(!(vcalloc_q.io.enq.valid && !vcalloc_q.io.enq.ready)) io.salloc_req(0).bits.vc_sel := vcalloc_q.io.deq.bits.vc_sel io.salloc_req(0).bits.tail := vcalloc_buffer.io.deq.bits.tail val c = (vcalloc_q.io.deq.bits.vc_sel.asUInt & io.out_credit_available.asUInt) =/= 0.U val vcalloc_tail = vcalloc_buffer.io.deq.bits.tail io.salloc_req(0).valid := vcalloc_buffer.io.deq.valid && vcalloc_q.io.deq.valid && c && !io.block vcalloc_buffer.io.deq.ready := io.salloc_req(0).ready && vcalloc_q.io.deq.valid && c && !io.block vcalloc_q.io.deq.ready := vcalloc_tail && vcalloc_buffer.io.deq.fire val out_bundle = if (combineSAST) { Wire(Valid(new SwitchBundle(outParams, egressParams))) } else { Reg(Valid(new SwitchBundle(outParams, egressParams))) } io.out(0) := out_bundle out_bundle.valid := vcalloc_buffer.io.deq.fire out_bundle.bits.flit := vcalloc_buffer.io.deq.bits out_bundle.bits.flit.virt_channel_id := 0.U val out_channel_oh = vcalloc_q.io.deq.bits.vc_sel.map(_.reduce(_||_)).toSeq out_bundle.bits.out_virt_channel := Mux1H(out_channel_oh, vcalloc_q.io.deq.bits.vc_sel.map(v => OHToUInt(v)).toSeq) io.debug.va_stall := io.vcalloc_req.valid && !io.vcalloc_req.ready io.debug.sa_stall := io.salloc_req(0).valid && !io.salloc_req(0).ready // TODO: We should not generate input/ingress/output/egress units for untraversable channels if (!cParam.traversable) { io.in.ready := false.B io.router_req.valid := false.B io.router_req.bits := DontCare io.vcalloc_req.valid := false.B io.vcalloc_req.bits := DontCare io.salloc_req.foreach(_.valid := false.B) io.salloc_req.foreach(_.bits := DontCare) io.out.foreach(_.valid := false.B) io.out.foreach(_.bits := DontCare) } }
module IngressUnit_43( // @[IngressUnit.scala:11:7] input clock, // @[IngressUnit.scala:11:7] input reset, // @[IngressUnit.scala:11:7] output [3:0] io_router_req_bits_flow_egress_node, // @[IngressUnit.scala:24:14] output [1:0] io_router_req_bits_flow_egress_node_id, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_3_0, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_3_1, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_2_0, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_2_1, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_1_0, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_1_1, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_0_0, // @[IngressUnit.scala:24:14] input io_router_resp_vc_sel_0_1, // @[IngressUnit.scala:24:14] input io_vcalloc_req_ready, // @[IngressUnit.scala:24:14] output io_vcalloc_req_valid, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_4_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_3_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_3_1, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_2_1, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_1_1, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14] output io_vcalloc_req_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_4_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_3_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_3_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_2_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_2_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_1_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_1_1, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_0, // @[IngressUnit.scala:24:14] input io_vcalloc_resp_vc_sel_0_1, // @[IngressUnit.scala:24:14] input io_out_credit_available_4_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_3_1, // @[IngressUnit.scala:24:14] input io_out_credit_available_2_1, // @[IngressUnit.scala:24:14] input io_out_credit_available_1_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_1_1, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_0, // @[IngressUnit.scala:24:14] input io_out_credit_available_0_1, // @[IngressUnit.scala:24:14] input io_salloc_req_0_ready, // @[IngressUnit.scala:24:14] output io_salloc_req_0_valid, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_4_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_3_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_3_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_2_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_2_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_1_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_1_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_0, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_vc_sel_0_1, // @[IngressUnit.scala:24:14] output io_salloc_req_0_bits_tail, // @[IngressUnit.scala:24:14] output io_out_0_valid, // @[IngressUnit.scala:24:14] output io_out_0_bits_flit_head, // @[IngressUnit.scala:24:14] output io_out_0_bits_flit_tail, // @[IngressUnit.scala:24:14] output [36:0] io_out_0_bits_flit_payload, // @[IngressUnit.scala:24:14] output io_out_0_bits_flit_flow_vnet_id, // @[IngressUnit.scala:24:14] output [3:0] io_out_0_bits_flit_flow_ingress_node, // @[IngressUnit.scala:24:14] output [1:0] io_out_0_bits_flit_flow_ingress_node_id, // @[IngressUnit.scala:24:14] output [3:0] io_out_0_bits_flit_flow_egress_node, // @[IngressUnit.scala:24:14] output [1:0] io_out_0_bits_flit_flow_egress_node_id, // @[IngressUnit.scala:24:14] output io_out_0_bits_out_virt_channel, // @[IngressUnit.scala:24:14] output io_in_ready, // @[IngressUnit.scala:24:14] input io_in_valid, // @[IngressUnit.scala:24:14] input io_in_bits_head, // @[IngressUnit.scala:24:14] input io_in_bits_tail, // @[IngressUnit.scala:24:14] input [36:0] io_in_bits_payload, // @[IngressUnit.scala:24:14] input [3:0] io_in_bits_egress_id // @[IngressUnit.scala:24:14] ); wire _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_valid; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_4_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_3_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_3_1; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_2_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_2_1; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_1_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_1_1; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_0; // @[IngressUnit.scala:76:25] wire _vcalloc_q_io_deq_bits_vc_sel_0_1; // @[IngressUnit.scala:76:25] wire _vcalloc_buffer_io_enq_ready; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_valid; // @[IngressUnit.scala:75:30] wire _vcalloc_buffer_io_deq_bits_tail; // @[IngressUnit.scala:75:30] wire _route_q_io_enq_ready; // @[IngressUnit.scala:27:23] wire _route_q_io_deq_valid; // @[IngressUnit.scala:27:23] wire _route_buffer_io_enq_ready; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_valid; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_head; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_tail; // @[IngressUnit.scala:26:28] wire [36:0] _route_buffer_io_deq_bits_payload; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_flow_vnet_id; // @[IngressUnit.scala:26:28] wire [3:0] _route_buffer_io_deq_bits_flow_ingress_node; // @[IngressUnit.scala:26:28] wire [1:0] _route_buffer_io_deq_bits_flow_ingress_node_id; // @[IngressUnit.scala:26:28] wire [3:0] _route_buffer_io_deq_bits_flow_egress_node; // @[IngressUnit.scala:26:28] wire [1:0] _route_buffer_io_deq_bits_flow_egress_node_id; // @[IngressUnit.scala:26:28] wire _route_buffer_io_deq_bits_virt_channel_id; // @[IngressUnit.scala:26:28] wire _route_buffer_io_enq_bits_flow_egress_node_id_T = io_in_bits_egress_id == 4'h2; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_1 = io_in_bits_egress_id == 4'h3; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_2 = io_in_bits_egress_id == 4'h6; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_3 = io_in_bits_egress_id == 4'h5; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_4 = io_in_bits_egress_id == 4'h9; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_34 = io_in_bits_egress_id == 4'h1; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_6 = io_in_bits_egress_id == 4'hC; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_7 = io_in_bits_egress_id == 4'h4; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_8 = io_in_bits_egress_id == 4'hA; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_9 = io_in_bits_egress_id == 4'h7; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_10 = io_in_bits_egress_id == 4'h8; // @[IngressUnit.scala:30:72] wire _route_buffer_io_enq_bits_flow_egress_node_id_T_11 = io_in_bits_egress_id == 4'hB; // @[IngressUnit.scala:30:72] wire [3:0] _route_buffer_io_enq_bits_flow_egress_node_T_29 = {1'h0, {3{_route_buffer_io_enq_bits_flow_egress_node_id_T_2}} | {_route_buffer_io_enq_bits_flow_egress_node_id_T_3, _route_buffer_io_enq_bits_flow_egress_node_id_T_1, _route_buffer_io_enq_bits_flow_egress_node_id_T}} | (_route_buffer_io_enq_bits_flow_egress_node_id_T_4 ? 4'hC : 4'h0) | {4{_route_buffer_io_enq_bits_flow_egress_node_id_T_6}}; // @[Mux.scala:30:73] wire [3:0] _route_buffer_io_enq_bits_flow_egress_node_T_34 = (_route_buffer_io_enq_bits_flow_egress_node_id_T_8 ? 4'hD : 4'h0) | (_route_buffer_io_enq_bits_flow_egress_node_id_T_10 ? 4'hB : 4'h0) | (_route_buffer_io_enq_bits_flow_egress_node_id_T_11 ? 4'hE : 4'h0) | {_route_buffer_io_enq_bits_flow_egress_node_T_29[3] | _route_buffer_io_enq_bits_flow_egress_node_id_T_9, _route_buffer_io_enq_bits_flow_egress_node_T_29[2], _route_buffer_io_enq_bits_flow_egress_node_T_29[1:0] | {2{_route_buffer_io_enq_bits_flow_egress_node_id_T_7}}}; // @[Mux.scala:30:73] wire [1:0] route_buffer_io_enq_bits_flow_egress_node_id = {1'h0, _route_buffer_io_enq_bits_flow_egress_node_id_T_34}; // @[IngressUnit.scala:30:72, :45:50] wire _GEN = _route_buffer_io_enq_ready & io_in_valid & io_in_bits_head & _route_buffer_io_enq_bits_flow_egress_node_T_34 == 4'hA; // @[Mux.scala:30:73] wire route_q_io_enq_valid = _GEN | io_in_valid & _route_buffer_io_enq_ready & io_in_bits_head & _route_buffer_io_enq_bits_flow_egress_node_T_34 != 4'hA; // @[Mux.scala:30:73] wire io_vcalloc_req_valid_0 = _route_buffer_io_deq_valid & _route_q_io_deq_valid & _route_buffer_io_deq_bits_head & _vcalloc_buffer_io_enq_ready & _vcalloc_q_io_enq_ready; // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :91:{54,78}, :92:{10,41}] wire route_buffer_io_deq_ready = _vcalloc_buffer_io_enq_ready & (_route_q_io_deq_valid | ~_route_buffer_io_deq_bits_head) & (io_vcalloc_req_ready | ~_route_buffer_io_deq_bits_head) & (_vcalloc_q_io_enq_ready | ~_route_buffer_io_deq_bits_head); // @[IngressUnit.scala:26:28, :27:23, :75:30, :76:25, :88:30, :93:61, :94:{27,37}, :95:{27,37}, :96:29] wire vcalloc_q_io_enq_valid = io_vcalloc_req_ready & io_vcalloc_req_valid_0; // @[Decoupled.scala:51:35]
Generate the Verilog code corresponding to the following Chisel files. File FPU.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.tile import chisel3._ import chisel3.util._ import chisel3.{DontCare, WireInit, withClock, withReset} import chisel3.experimental.SourceInfo import chisel3.experimental.dataview._ import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.rocket._ import freechips.rocketchip.rocket.Instructions._ import freechips.rocketchip.util._ import freechips.rocketchip.util.property case class FPUParams( minFLen: Int = 32, fLen: Int = 64, divSqrt: Boolean = true, sfmaLatency: Int = 3, dfmaLatency: Int = 4, fpmuLatency: Int = 2, ifpuLatency: Int = 2 ) object FPConstants { val RM_SZ = 3 val FLAGS_SZ = 5 } trait HasFPUCtrlSigs { val ldst = Bool() val wen = Bool() val ren1 = Bool() val ren2 = Bool() val ren3 = Bool() val swap12 = Bool() val swap23 = Bool() val typeTagIn = UInt(2.W) val typeTagOut = UInt(2.W) val fromint = Bool() val toint = Bool() val fastpipe = Bool() val fma = Bool() val div = Bool() val sqrt = Bool() val wflags = Bool() val vec = Bool() } class FPUCtrlSigs extends Bundle with HasFPUCtrlSigs class FPUDecoder(implicit p: Parameters) extends FPUModule()(p) { val io = IO(new Bundle { val inst = Input(Bits(32.W)) val sigs = Output(new FPUCtrlSigs()) }) private val X2 = BitPat.dontCare(2) val default = List(X,X,X,X,X,X,X,X2,X2,X,X,X,X,X,X,X,N) val h: Array[(BitPat, List[BitPat])] = Array(FLH -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSH -> List(Y,N,N,Y,N,Y,X, I, H,N,Y,N,N,N,N,N,N), FMV_H_X -> List(N,Y,N,N,N,X,X, H, I,Y,N,N,N,N,N,N,N), FCVT_H_W -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_WU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_L -> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FCVT_H_LU-> List(N,Y,N,N,N,X,X, H, H,Y,N,N,N,N,N,Y,N), FMV_X_H -> List(N,N,Y,N,N,N,X, I, H,N,Y,N,N,N,N,N,N), FCLASS_H -> List(N,N,Y,N,N,N,X, H, H,N,Y,N,N,N,N,N,N), FCVT_W_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_L_H -> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_H-> List(N,N,Y,N,N,N,X, H,X2,N,Y,N,N,N,N,Y,N), FCVT_S_H -> List(N,Y,Y,N,N,N,X, H, S,N,N,Y,N,N,N,Y,N), FCVT_H_S -> List(N,Y,Y,N,N,N,X, S, H,N,N,Y,N,N,N,Y,N), FEQ_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FLT_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FLE_H -> List(N,N,Y,Y,N,N,N, H, H,N,Y,N,N,N,N,Y,N), FSGNJ_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FSGNJN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FSGNJX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,N,N), FMIN_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N), FMAX_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,Y,N,N,N,Y,N), FADD_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N), FSUB_H -> List(N,Y,Y,Y,N,N,Y, H, H,N,N,N,Y,N,N,Y,N), FMUL_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,Y,N,N,Y,N), FMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FNMADD_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FNMSUB_H -> List(N,Y,Y,Y,Y,N,N, H, H,N,N,N,Y,N,N,Y,N), FDIV_H -> List(N,Y,Y,Y,N,N,N, H, H,N,N,N,N,Y,N,Y,N), FSQRT_H -> List(N,Y,Y,N,N,N,X, H, H,N,N,N,N,N,Y,Y,N)) val f: Array[(BitPat, List[BitPat])] = Array(FLW -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSW -> List(Y,N,N,Y,N,Y,X, I, S,N,Y,N,N,N,N,N,N), FMV_W_X -> List(N,Y,N,N,N,X,X, S, I,Y,N,N,N,N,N,N,N), FCVT_S_W -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_WU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_L -> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FCVT_S_LU-> List(N,Y,N,N,N,X,X, S, S,Y,N,N,N,N,N,Y,N), FMV_X_W -> List(N,N,Y,N,N,N,X, I, S,N,Y,N,N,N,N,N,N), FCLASS_S -> List(N,N,Y,N,N,N,X, S, S,N,Y,N,N,N,N,N,N), FCVT_W_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_L_S -> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_S-> List(N,N,Y,N,N,N,X, S,X2,N,Y,N,N,N,N,Y,N), FEQ_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FLT_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FLE_S -> List(N,N,Y,Y,N,N,N, S, S,N,Y,N,N,N,N,Y,N), FSGNJ_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FSGNJN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FSGNJX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,N,N), FMIN_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N), FMAX_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,Y,N,N,N,Y,N), FADD_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N), FSUB_S -> List(N,Y,Y,Y,N,N,Y, S, S,N,N,N,Y,N,N,Y,N), FMUL_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,Y,N,N,Y,N), FMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FNMADD_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FNMSUB_S -> List(N,Y,Y,Y,Y,N,N, S, S,N,N,N,Y,N,N,Y,N), FDIV_S -> List(N,Y,Y,Y,N,N,N, S, S,N,N,N,N,Y,N,Y,N), FSQRT_S -> List(N,Y,Y,N,N,N,X, S, S,N,N,N,N,N,Y,Y,N)) val d: Array[(BitPat, List[BitPat])] = Array(FLD -> List(Y,Y,N,N,N,X,X,X2,X2,N,N,N,N,N,N,N,N), FSD -> List(Y,N,N,Y,N,Y,X, I, D,N,Y,N,N,N,N,N,N), FMV_D_X -> List(N,Y,N,N,N,X,X, D, I,Y,N,N,N,N,N,N,N), FCVT_D_W -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_WU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_L -> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FCVT_D_LU-> List(N,Y,N,N,N,X,X, D, D,Y,N,N,N,N,N,Y,N), FMV_X_D -> List(N,N,Y,N,N,N,X, I, D,N,Y,N,N,N,N,N,N), FCLASS_D -> List(N,N,Y,N,N,N,X, D, D,N,Y,N,N,N,N,N,N), FCVT_W_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_WU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_L_D -> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_LU_D-> List(N,N,Y,N,N,N,X, D,X2,N,Y,N,N,N,N,Y,N), FCVT_S_D -> List(N,Y,Y,N,N,N,X, D, S,N,N,Y,N,N,N,Y,N), FCVT_D_S -> List(N,Y,Y,N,N,N,X, S, D,N,N,Y,N,N,N,Y,N), FEQ_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FLT_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FLE_D -> List(N,N,Y,Y,N,N,N, D, D,N,Y,N,N,N,N,Y,N), FSGNJ_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FSGNJN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FSGNJX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,N,N), FMIN_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N), FMAX_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,Y,N,N,N,Y,N), FADD_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N), FSUB_D -> List(N,Y,Y,Y,N,N,Y, D, D,N,N,N,Y,N,N,Y,N), FMUL_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,Y,N,N,Y,N), FMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FNMADD_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FNMSUB_D -> List(N,Y,Y,Y,Y,N,N, D, D,N,N,N,Y,N,N,Y,N), FDIV_D -> List(N,Y,Y,Y,N,N,N, D, D,N,N,N,N,Y,N,Y,N), FSQRT_D -> List(N,Y,Y,N,N,N,X, D, D,N,N,N,N,N,Y,Y,N)) val fcvt_hd: Array[(BitPat, List[BitPat])] = Array(FCVT_H_D -> List(N,Y,Y,N,N,N,X, D, H,N,N,Y,N,N,N,Y,N), FCVT_D_H -> List(N,Y,Y,N,N,N,X, H, D,N,N,Y,N,N,N,Y,N)) val vfmv_f_s: Array[(BitPat, List[BitPat])] = Array(VFMV_F_S -> List(N,Y,N,N,N,N,X,X2,X2,N,N,N,N,N,N,N,Y)) val insns = ((minFLen, fLen) match { case (32, 32) => f case (16, 32) => h ++ f case (32, 64) => f ++ d case (16, 64) => h ++ f ++ d ++ fcvt_hd case other => throw new Exception(s"minFLen = ${minFLen} & fLen = ${fLen} is an unsupported configuration") }) ++ (if (usingVector) vfmv_f_s else Array[(BitPat, List[BitPat])]()) val decoder = DecodeLogic(io.inst, default, insns) val s = io.sigs val sigs = Seq(s.ldst, s.wen, s.ren1, s.ren2, s.ren3, s.swap12, s.swap23, s.typeTagIn, s.typeTagOut, s.fromint, s.toint, s.fastpipe, s.fma, s.div, s.sqrt, s.wflags, s.vec) sigs zip decoder map {case(s,d) => s := d} } class FPUCoreIO(implicit p: Parameters) extends CoreBundle()(p) { val hartid = Input(UInt(hartIdLen.W)) val time = Input(UInt(xLen.W)) val inst = Input(Bits(32.W)) val fromint_data = Input(Bits(xLen.W)) val fcsr_rm = Input(Bits(FPConstants.RM_SZ.W)) val fcsr_flags = Valid(Bits(FPConstants.FLAGS_SZ.W)) val v_sew = Input(UInt(3.W)) val store_data = Output(Bits(fLen.W)) val toint_data = Output(Bits(xLen.W)) val ll_resp_val = Input(Bool()) val ll_resp_type = Input(Bits(3.W)) val ll_resp_tag = Input(UInt(5.W)) val ll_resp_data = Input(Bits(fLen.W)) val valid = Input(Bool()) val fcsr_rdy = Output(Bool()) val nack_mem = Output(Bool()) val illegal_rm = Output(Bool()) val killx = Input(Bool()) val killm = Input(Bool()) val dec = Output(new FPUCtrlSigs()) val sboard_set = Output(Bool()) val sboard_clr = Output(Bool()) val sboard_clra = Output(UInt(5.W)) val keep_clock_enabled = Input(Bool()) } class FPUIO(implicit p: Parameters) extends FPUCoreIO ()(p) { val cp_req = Flipped(Decoupled(new FPInput())) //cp doesn't pay attn to kill sigs val cp_resp = Decoupled(new FPResult()) } class FPResult(implicit p: Parameters) extends CoreBundle()(p) { val data = Bits((fLen+1).W) val exc = Bits(FPConstants.FLAGS_SZ.W) } class IntToFPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs { val rm = Bits(FPConstants.RM_SZ.W) val typ = Bits(2.W) val in1 = Bits(xLen.W) } class FPInput(implicit p: Parameters) extends CoreBundle()(p) with HasFPUCtrlSigs { val rm = Bits(FPConstants.RM_SZ.W) val fmaCmd = Bits(2.W) val typ = Bits(2.W) val fmt = Bits(2.W) val in1 = Bits((fLen+1).W) val in2 = Bits((fLen+1).W) val in3 = Bits((fLen+1).W) } case class FType(exp: Int, sig: Int) { def ieeeWidth = exp + sig def recodedWidth = ieeeWidth + 1 def ieeeQNaN = ((BigInt(1) << (ieeeWidth - 1)) - (BigInt(1) << (sig - 2))).U(ieeeWidth.W) def qNaN = ((BigInt(7) << (exp + sig - 3)) + (BigInt(1) << (sig - 2))).U(recodedWidth.W) def isNaN(x: UInt) = x(sig + exp - 1, sig + exp - 3).andR def isSNaN(x: UInt) = isNaN(x) && !x(sig - 2) def classify(x: UInt) = { val sign = x(sig + exp) val code = x(exp + sig - 1, exp + sig - 3) val codeHi = code(2, 1) val isSpecial = codeHi === 3.U val isHighSubnormalIn = x(exp + sig - 3, sig - 1) < 2.U val isSubnormal = code === 1.U || codeHi === 1.U && isHighSubnormalIn val isNormal = codeHi === 1.U && !isHighSubnormalIn || codeHi === 2.U val isZero = code === 0.U val isInf = isSpecial && !code(0) val isNaN = code.andR val isSNaN = isNaN && !x(sig-2) val isQNaN = isNaN && x(sig-2) Cat(isQNaN, isSNaN, isInf && !sign, isNormal && !sign, isSubnormal && !sign, isZero && !sign, isZero && sign, isSubnormal && sign, isNormal && sign, isInf && sign) } // convert between formats, ignoring rounding, range, NaN def unsafeConvert(x: UInt, to: FType) = if (this == to) x else { val sign = x(sig + exp) val fractIn = x(sig - 2, 0) val expIn = x(sig + exp - 1, sig - 1) val fractOut = fractIn << to.sig >> sig val expOut = { val expCode = expIn(exp, exp - 2) val commonCase = (expIn + (1 << to.exp).U) - (1 << exp).U Mux(expCode === 0.U || expCode >= 6.U, Cat(expCode, commonCase(to.exp - 3, 0)), commonCase(to.exp, 0)) } Cat(sign, expOut, fractOut) } private def ieeeBundle = { val expWidth = exp class IEEEBundle extends Bundle { val sign = Bool() val exp = UInt(expWidth.W) val sig = UInt((ieeeWidth-expWidth-1).W) } new IEEEBundle } def unpackIEEE(x: UInt) = x.asTypeOf(ieeeBundle) def recode(x: UInt) = hardfloat.recFNFromFN(exp, sig, x) def ieee(x: UInt) = hardfloat.fNFromRecFN(exp, sig, x) } object FType { val H = new FType(5, 11) val S = new FType(8, 24) val D = new FType(11, 53) val all = List(H, S, D) } trait HasFPUParameters { require(fLen == 0 || FType.all.exists(_.ieeeWidth == fLen)) val minFLen: Int val fLen: Int def xLen: Int val minXLen = 32 val nIntTypes = log2Ceil(xLen/minXLen) + 1 def floatTypes = FType.all.filter(t => minFLen <= t.ieeeWidth && t.ieeeWidth <= fLen) def minType = floatTypes.head def maxType = floatTypes.last def prevType(t: FType) = floatTypes(typeTag(t) - 1) def maxExpWidth = maxType.exp def maxSigWidth = maxType.sig def typeTag(t: FType) = floatTypes.indexOf(t) def typeTagWbOffset = (FType.all.indexOf(minType) + 1).U def typeTagGroup(t: FType) = (if (floatTypes.contains(t)) typeTag(t) else typeTag(maxType)).U // typeTag def H = typeTagGroup(FType.H) def S = typeTagGroup(FType.S) def D = typeTagGroup(FType.D) def I = typeTag(maxType).U private def isBox(x: UInt, t: FType): Bool = x(t.sig + t.exp, t.sig + t.exp - 4).andR private def box(x: UInt, xt: FType, y: UInt, yt: FType): UInt = { require(xt.ieeeWidth == 2 * yt.ieeeWidth) val swizzledNaN = Cat( x(xt.sig + xt.exp, xt.sig + xt.exp - 3), x(xt.sig - 2, yt.recodedWidth - 1).andR, x(xt.sig + xt.exp - 5, xt.sig), y(yt.recodedWidth - 2), x(xt.sig - 2, yt.recodedWidth - 1), y(yt.recodedWidth - 1), y(yt.recodedWidth - 3, 0)) Mux(xt.isNaN(x), swizzledNaN, x) } // implement NaN unboxing for FU inputs def unbox(x: UInt, tag: UInt, exactType: Option[FType]): UInt = { val outType = exactType.getOrElse(maxType) def helper(x: UInt, t: FType): Seq[(Bool, UInt)] = { val prev = if (t == minType) { Seq() } else { val prevT = prevType(t) val unswizzled = Cat( x(prevT.sig + prevT.exp - 1), x(t.sig - 1), x(prevT.sig + prevT.exp - 2, 0)) val prev = helper(unswizzled, prevT) val isbox = isBox(x, t) prev.map(p => (isbox && p._1, p._2)) } prev :+ (true.B, t.unsafeConvert(x, outType)) } val (oks, floats) = helper(x, maxType).unzip if (exactType.isEmpty || floatTypes.size == 1) { Mux(oks(tag), floats(tag), maxType.qNaN) } else { val t = exactType.get floats(typeTag(t)) | Mux(oks(typeTag(t)), 0.U, t.qNaN) } } // make sure that the redundant bits in the NaN-boxed encoding are consistent def consistent(x: UInt): Bool = { def helper(x: UInt, t: FType): Bool = if (typeTag(t) == 0) true.B else { val prevT = prevType(t) val unswizzled = Cat( x(prevT.sig + prevT.exp - 1), x(t.sig - 1), x(prevT.sig + prevT.exp - 2, 0)) val prevOK = !isBox(x, t) || helper(unswizzled, prevT) val curOK = !t.isNaN(x) || x(t.sig + t.exp - 4) === x(t.sig - 2, prevT.recodedWidth - 1).andR prevOK && curOK } helper(x, maxType) } // generate a NaN box from an FU result def box(x: UInt, t: FType): UInt = { if (t == maxType) { x } else { val nt = floatTypes(typeTag(t) + 1) val bigger = box(((BigInt(1) << nt.recodedWidth)-1).U, nt, x, t) bigger | ((BigInt(1) << maxType.recodedWidth) - (BigInt(1) << nt.recodedWidth)).U } } // generate a NaN box from an FU result def box(x: UInt, tag: UInt): UInt = { val opts = floatTypes.map(t => box(x, t)) opts(tag) } // zap bits that hardfloat thinks are don't-cares, but we do care about def sanitizeNaN(x: UInt, t: FType): UInt = { if (typeTag(t) == 0) { x } else { val maskedNaN = x & ~((BigInt(1) << (t.sig-1)) | (BigInt(1) << (t.sig+t.exp-4))).U(t.recodedWidth.W) Mux(t.isNaN(x), maskedNaN, x) } } // implement NaN boxing and recoding for FL*/fmv.*.x def recode(x: UInt, tag: UInt): UInt = { def helper(x: UInt, t: FType): UInt = { if (typeTag(t) == 0) { t.recode(x) } else { val prevT = prevType(t) box(t.recode(x), t, helper(x, prevT), prevT) } } // fill MSBs of subword loads to emulate a wider load of a NaN-boxed value val boxes = floatTypes.map(t => ((BigInt(1) << maxType.ieeeWidth) - (BigInt(1) << t.ieeeWidth)).U) helper(boxes(tag) | x, maxType) } // implement NaN unboxing and un-recoding for FS*/fmv.x.* def ieee(x: UInt, t: FType = maxType): UInt = { if (typeTag(t) == 0) { t.ieee(x) } else { val unrecoded = t.ieee(x) val prevT = prevType(t) val prevRecoded = Cat( x(prevT.recodedWidth-2), x(t.sig-1), x(prevT.recodedWidth-3, 0)) val prevUnrecoded = ieee(prevRecoded, prevT) Cat(unrecoded >> prevT.ieeeWidth, Mux(t.isNaN(x), prevUnrecoded, unrecoded(prevT.ieeeWidth-1, 0))) } } } abstract class FPUModule(implicit val p: Parameters) extends Module with HasCoreParameters with HasFPUParameters class FPToInt(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { class Output extends Bundle { val in = new FPInput val lt = Bool() val store = Bits(fLen.W) val toint = Bits(xLen.W) val exc = Bits(FPConstants.FLAGS_SZ.W) } val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new Output) }) val in = RegEnable(io.in.bits, io.in.valid) val valid = RegNext(io.in.valid) val dcmp = Module(new hardfloat.CompareRecFN(maxExpWidth, maxSigWidth)) dcmp.io.a := in.in1 dcmp.io.b := in.in2 dcmp.io.signaling := !in.rm(1) val tag = in.typeTagOut val toint_ieee = (floatTypes.map(t => if (t == FType.H) Fill(maxType.ieeeWidth / minXLen, ieee(in.in1)(15, 0).sextTo(minXLen)) else Fill(maxType.ieeeWidth / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag) val toint = WireDefault(toint_ieee) val intType = WireDefault(in.fmt(0)) io.out.bits.store := (floatTypes.map(t => Fill(fLen / t.ieeeWidth, ieee(in.in1)(t.ieeeWidth - 1, 0))): Seq[UInt])(tag) io.out.bits.toint := ((0 until nIntTypes).map(i => toint((minXLen << i) - 1, 0).sextTo(xLen)): Seq[UInt])(intType) io.out.bits.exc := 0.U when (in.rm(0)) { val classify_out = (floatTypes.map(t => t.classify(maxType.unsafeConvert(in.in1, t))): Seq[UInt])(tag) toint := classify_out | (toint_ieee >> minXLen << minXLen) intType := false.B } when (in.wflags) { // feq/flt/fle, fcvt toint := (~in.rm & Cat(dcmp.io.lt, dcmp.io.eq)).orR | (toint_ieee >> minXLen << minXLen) io.out.bits.exc := dcmp.io.exceptionFlags intType := false.B when (!in.ren2) { // fcvt val cvtType = in.typ.extract(log2Ceil(nIntTypes), 1) intType := cvtType val conv = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, xLen)) conv.io.in := in.in1 conv.io.roundingMode := in.rm conv.io.signedOut := ~in.typ(0) toint := conv.io.out io.out.bits.exc := Cat(conv.io.intExceptionFlags(2, 1).orR, 0.U(3.W), conv.io.intExceptionFlags(0)) for (i <- 0 until nIntTypes-1) { val w = minXLen << i when (cvtType === i.U) { val narrow = Module(new hardfloat.RecFNToIN(maxExpWidth, maxSigWidth, w)) narrow.io.in := in.in1 narrow.io.roundingMode := in.rm narrow.io.signedOut := ~in.typ(0) val excSign = in.in1(maxExpWidth + maxSigWidth) && !maxType.isNaN(in.in1) val excOut = Cat(conv.io.signedOut === excSign, Fill(w-1, !excSign)) val invalid = conv.io.intExceptionFlags(2) || narrow.io.intExceptionFlags(1) when (invalid) { toint := Cat(conv.io.out >> w, excOut) } io.out.bits.exc := Cat(invalid, 0.U(3.W), !invalid && conv.io.intExceptionFlags(0)) } } } } io.out.valid := valid io.out.bits.lt := dcmp.io.lt || (dcmp.io.a.asSInt < 0.S && dcmp.io.b.asSInt >= 0.S) io.out.bits.in := in } class IntToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { val io = IO(new Bundle { val in = Flipped(Valid(new IntToFPInput)) val out = Valid(new FPResult) }) val in = Pipe(io.in) val tag = in.bits.typeTagIn val mux = Wire(new FPResult) mux.exc := 0.U mux.data := recode(in.bits.in1, tag) val intValue = { val res = WireDefault(in.bits.in1.asSInt) for (i <- 0 until nIntTypes-1) { val smallInt = in.bits.in1((minXLen << i) - 1, 0) when (in.bits.typ.extract(log2Ceil(nIntTypes), 1) === i.U) { res := Mux(in.bits.typ(0), smallInt.zext, smallInt.asSInt) } } res.asUInt } when (in.bits.wflags) { // fcvt // could be improved for RVD/RVQ with a single variable-position rounding // unit, rather than N fixed-position ones val i2fResults = for (t <- floatTypes) yield { val i2f = Module(new hardfloat.INToRecFN(xLen, t.exp, t.sig)) i2f.io.signedIn := ~in.bits.typ(0) i2f.io.in := intValue i2f.io.roundingMode := in.bits.rm i2f.io.detectTininess := hardfloat.consts.tininess_afterRounding (sanitizeNaN(i2f.io.out, t), i2f.io.exceptionFlags) } val (data, exc) = i2fResults.unzip val dataPadded = data.init.map(d => Cat(data.last >> d.getWidth, d)) :+ data.last mux.data := dataPadded(tag) mux.exc := exc(tag) } io.out <> Pipe(in.valid, mux, latency-1) } class FPToFP(val latency: Int)(implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new FPResult) val lt = Input(Bool()) // from FPToInt }) val in = Pipe(io.in) val signNum = Mux(in.bits.rm(1), in.bits.in1 ^ in.bits.in2, Mux(in.bits.rm(0), ~in.bits.in2, in.bits.in2)) val fsgnj = Cat(signNum(fLen), in.bits.in1(fLen-1, 0)) val fsgnjMux = Wire(new FPResult) fsgnjMux.exc := 0.U fsgnjMux.data := fsgnj when (in.bits.wflags) { // fmin/fmax val isnan1 = maxType.isNaN(in.bits.in1) val isnan2 = maxType.isNaN(in.bits.in2) val isInvalid = maxType.isSNaN(in.bits.in1) || maxType.isSNaN(in.bits.in2) val isNaNOut = isnan1 && isnan2 val isLHS = isnan2 || in.bits.rm(0) =/= io.lt && !isnan1 fsgnjMux.exc := isInvalid << 4 fsgnjMux.data := Mux(isNaNOut, maxType.qNaN, Mux(isLHS, in.bits.in1, in.bits.in2)) } val inTag = in.bits.typeTagIn val outTag = in.bits.typeTagOut val mux = WireDefault(fsgnjMux) for (t <- floatTypes.init) { when (outTag === typeTag(t).U) { mux.data := Cat(fsgnjMux.data >> t.recodedWidth, maxType.unsafeConvert(fsgnjMux.data, t)) } } when (in.bits.wflags && !in.bits.ren2) { // fcvt if (floatTypes.size > 1) { // widening conversions simply canonicalize NaN operands val widened = Mux(maxType.isNaN(in.bits.in1), maxType.qNaN, in.bits.in1) fsgnjMux.data := widened fsgnjMux.exc := maxType.isSNaN(in.bits.in1) << 4 // narrowing conversions require rounding (for RVQ, this could be // optimized to use a single variable-position rounding unit, rather // than two fixed-position ones) for (outType <- floatTypes.init) when (outTag === typeTag(outType).U && ((typeTag(outType) == 0).B || outTag < inTag)) { val narrower = Module(new hardfloat.RecFNToRecFN(maxType.exp, maxType.sig, outType.exp, outType.sig)) narrower.io.in := in.bits.in1 narrower.io.roundingMode := in.bits.rm narrower.io.detectTininess := hardfloat.consts.tininess_afterRounding val narrowed = sanitizeNaN(narrower.io.out, outType) mux.data := Cat(fsgnjMux.data >> narrowed.getWidth, narrowed) mux.exc := narrower.io.exceptionFlags } } } io.out <> Pipe(in.valid, mux, latency-1) } class MulAddRecFNPipe(latency: Int, expWidth: Int, sigWidth: Int) extends Module { override def desiredName = s"MulAddRecFNPipe_l${latency}_e${expWidth}_s${sigWidth}" require(latency<=2) val io = IO(new Bundle { val validin = Input(Bool()) val op = Input(Bits(2.W)) val a = Input(Bits((expWidth + sigWidth + 1).W)) val b = Input(Bits((expWidth + sigWidth + 1).W)) val c = Input(Bits((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) val validout = Output(Bool()) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val mulAddRecFNToRaw_preMul = Module(new hardfloat.MulAddRecFNToRaw_preMul(expWidth, sigWidth)) val mulAddRecFNToRaw_postMul = Module(new hardfloat.MulAddRecFNToRaw_postMul(expWidth, sigWidth)) mulAddRecFNToRaw_preMul.io.op := io.op mulAddRecFNToRaw_preMul.io.a := io.a mulAddRecFNToRaw_preMul.io.b := io.b mulAddRecFNToRaw_preMul.io.c := io.c val mulAddResult = (mulAddRecFNToRaw_preMul.io.mulAddA * mulAddRecFNToRaw_preMul.io.mulAddB) +& mulAddRecFNToRaw_preMul.io.mulAddC val valid_stage0 = Wire(Bool()) val roundingMode_stage0 = Wire(UInt(3.W)) val detectTininess_stage0 = Wire(UInt(1.W)) val postmul_regs = if(latency>0) 1 else 0 mulAddRecFNToRaw_postMul.io.fromPreMul := Pipe(io.validin, mulAddRecFNToRaw_preMul.io.toPostMul, postmul_regs).bits mulAddRecFNToRaw_postMul.io.mulAddResult := Pipe(io.validin, mulAddResult, postmul_regs).bits mulAddRecFNToRaw_postMul.io.roundingMode := Pipe(io.validin, io.roundingMode, postmul_regs).bits roundingMode_stage0 := Pipe(io.validin, io.roundingMode, postmul_regs).bits detectTininess_stage0 := Pipe(io.validin, io.detectTininess, postmul_regs).bits valid_stage0 := Pipe(io.validin, false.B, postmul_regs).valid //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundRawFNToRecFN = Module(new hardfloat.RoundRawFNToRecFN(expWidth, sigWidth, 0)) val round_regs = if(latency==2) 1 else 0 roundRawFNToRecFN.io.invalidExc := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.invalidExc, round_regs).bits roundRawFNToRecFN.io.in := Pipe(valid_stage0, mulAddRecFNToRaw_postMul.io.rawOut, round_regs).bits roundRawFNToRecFN.io.roundingMode := Pipe(valid_stage0, roundingMode_stage0, round_regs).bits roundRawFNToRecFN.io.detectTininess := Pipe(valid_stage0, detectTininess_stage0, round_regs).bits io.validout := Pipe(valid_stage0, false.B, round_regs).valid roundRawFNToRecFN.io.infiniteExc := false.B io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags } class FPUFMAPipe(val latency: Int, val t: FType) (implicit p: Parameters) extends FPUModule()(p) with ShouldBeRetimed { override def desiredName = s"FPUFMAPipe_l${latency}_f${t.ieeeWidth}" require(latency>0) val io = IO(new Bundle { val in = Flipped(Valid(new FPInput)) val out = Valid(new FPResult) }) val valid = RegNext(io.in.valid) val in = Reg(new FPInput) when (io.in.valid) { val one = 1.U << (t.sig + t.exp - 1) val zero = (io.in.bits.in1 ^ io.in.bits.in2) & (1.U << (t.sig + t.exp)) val cmd_fma = io.in.bits.ren3 val cmd_addsub = io.in.bits.swap23 in := io.in.bits when (cmd_addsub) { in.in2 := one } when (!(cmd_fma || cmd_addsub)) { in.in3 := zero } } val fma = Module(new MulAddRecFNPipe((latency-1) min 2, t.exp, t.sig)) fma.io.validin := valid fma.io.op := in.fmaCmd fma.io.roundingMode := in.rm fma.io.detectTininess := hardfloat.consts.tininess_afterRounding fma.io.a := in.in1 fma.io.b := in.in2 fma.io.c := in.in3 val res = Wire(new FPResult) res.data := sanitizeNaN(fma.io.out, t) res.exc := fma.io.exceptionFlags io.out := Pipe(fma.io.validout, res, (latency-3) max 0) } class FPU(cfg: FPUParams)(implicit p: Parameters) extends FPUModule()(p) { val io = IO(new FPUIO) val (useClockGating, useDebugROB) = coreParams match { case r: RocketCoreParams => val sz = if (r.debugROB.isDefined) r.debugROB.get.size else 1 (r.clockGate, sz < 1) case _ => (false, false) } val clock_en_reg = Reg(Bool()) val clock_en = clock_en_reg || io.cp_req.valid val gated_clock = if (!useClockGating) clock else ClockGate(clock, clock_en, "fpu_clock_gate") val fp_decoder = Module(new FPUDecoder) fp_decoder.io.inst := io.inst val id_ctrl = WireInit(fp_decoder.io.sigs) coreParams match { case r: RocketCoreParams => r.vector.map(v => { val v_decode = v.decoder(p) // Only need to get ren1 v_decode.io.inst := io.inst v_decode.io.vconfig := DontCare // core deals with this when (v_decode.io.legal && v_decode.io.read_frs1) { id_ctrl.ren1 := true.B id_ctrl.swap12 := false.B id_ctrl.toint := true.B id_ctrl.typeTagIn := I id_ctrl.typeTagOut := Mux(io.v_sew === 3.U, D, S) } when (v_decode.io.write_frd) { id_ctrl.wen := true.B } })} val ex_reg_valid = RegNext(io.valid, false.B) val ex_reg_inst = RegEnable(io.inst, io.valid) val ex_reg_ctrl = RegEnable(id_ctrl, io.valid) val ex_ra = List.fill(3)(Reg(UInt())) // load/vector response val load_wb = RegNext(io.ll_resp_val) val load_wb_typeTag = RegEnable(io.ll_resp_type(1,0) - typeTagWbOffset, io.ll_resp_val) val load_wb_data = RegEnable(io.ll_resp_data, io.ll_resp_val) val load_wb_tag = RegEnable(io.ll_resp_tag, io.ll_resp_val) class FPUImpl { // entering gated-clock domain val req_valid = ex_reg_valid || io.cp_req.valid val ex_cp_valid = io.cp_req.fire val mem_cp_valid = RegNext(ex_cp_valid, false.B) val wb_cp_valid = RegNext(mem_cp_valid, false.B) val mem_reg_valid = RegInit(false.B) val killm = (io.killm || io.nack_mem) && !mem_cp_valid // Kill X-stage instruction if M-stage is killed. This prevents it from // speculatively being sent to the div-sqrt unit, which can cause priority // inversion for two back-to-back divides, the first of which is killed. val killx = io.killx || mem_reg_valid && killm mem_reg_valid := ex_reg_valid && !killx || ex_cp_valid val mem_reg_inst = RegEnable(ex_reg_inst, ex_reg_valid) val wb_reg_valid = RegNext(mem_reg_valid && (!killm || mem_cp_valid), false.B) val cp_ctrl = Wire(new FPUCtrlSigs) cp_ctrl :<>= io.cp_req.bits.viewAsSupertype(new FPUCtrlSigs) io.cp_resp.valid := false.B io.cp_resp.bits.data := 0.U io.cp_resp.bits.exc := DontCare val ex_ctrl = Mux(ex_cp_valid, cp_ctrl, ex_reg_ctrl) val mem_ctrl = RegEnable(ex_ctrl, req_valid) val wb_ctrl = RegEnable(mem_ctrl, mem_reg_valid) // CoreMonitorBundle to monitor fp register file writes val frfWriteBundle = Seq.fill(2)(WireInit(new CoreMonitorBundle(xLen, fLen), DontCare)) frfWriteBundle.foreach { i => i.clock := clock i.reset := reset i.hartid := io.hartid i.timer := io.time(31,0) i.valid := false.B i.wrenx := false.B i.wrenf := false.B i.excpt := false.B } // regfile val regfile = Mem(32, Bits((fLen+1).W)) when (load_wb) { val wdata = recode(load_wb_data, load_wb_typeTag) regfile(load_wb_tag) := wdata assert(consistent(wdata)) if (enableCommitLog) printf("f%d p%d 0x%x\n", load_wb_tag, load_wb_tag + 32.U, ieee(wdata)) if (useDebugROB) DebugROB.pushWb(clock, reset, io.hartid, load_wb, load_wb_tag + 32.U, ieee(wdata)) frfWriteBundle(0).wrdst := load_wb_tag frfWriteBundle(0).wrenf := true.B frfWriteBundle(0).wrdata := ieee(wdata) } val ex_rs = ex_ra.map(a => regfile(a)) when (io.valid) { when (id_ctrl.ren1) { when (!id_ctrl.swap12) { ex_ra(0) := io.inst(19,15) } when (id_ctrl.swap12) { ex_ra(1) := io.inst(19,15) } } when (id_ctrl.ren2) { when (id_ctrl.swap12) { ex_ra(0) := io.inst(24,20) } when (id_ctrl.swap23) { ex_ra(2) := io.inst(24,20) } when (!id_ctrl.swap12 && !id_ctrl.swap23) { ex_ra(1) := io.inst(24,20) } } when (id_ctrl.ren3) { ex_ra(2) := io.inst(31,27) } } val ex_rm = Mux(ex_reg_inst(14,12) === 7.U, io.fcsr_rm, ex_reg_inst(14,12)) def fuInput(minT: Option[FType]): FPInput = { val req = Wire(new FPInput) val tag = ex_ctrl.typeTagIn req.viewAsSupertype(new Bundle with HasFPUCtrlSigs) :#= ex_ctrl.viewAsSupertype(new Bundle with HasFPUCtrlSigs) req.rm := ex_rm req.in1 := unbox(ex_rs(0), tag, minT) req.in2 := unbox(ex_rs(1), tag, minT) req.in3 := unbox(ex_rs(2), tag, minT) req.typ := ex_reg_inst(21,20) req.fmt := ex_reg_inst(26,25) req.fmaCmd := ex_reg_inst(3,2) | (!ex_ctrl.ren3 && ex_reg_inst(27)) when (ex_cp_valid) { req := io.cp_req.bits when (io.cp_req.bits.swap12) { req.in1 := io.cp_req.bits.in2 req.in2 := io.cp_req.bits.in1 } when (io.cp_req.bits.swap23) { req.in2 := io.cp_req.bits.in3 req.in3 := io.cp_req.bits.in2 } } req } val sfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.S)) sfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === S sfma.io.in.bits := fuInput(Some(sfma.t)) val fpiu = Module(new FPToInt) fpiu.io.in.valid := req_valid && (ex_ctrl.toint || ex_ctrl.div || ex_ctrl.sqrt || (ex_ctrl.fastpipe && ex_ctrl.wflags)) fpiu.io.in.bits := fuInput(None) io.store_data := fpiu.io.out.bits.store io.toint_data := fpiu.io.out.bits.toint when(fpiu.io.out.valid && mem_cp_valid && mem_ctrl.toint){ io.cp_resp.bits.data := fpiu.io.out.bits.toint io.cp_resp.valid := true.B } val ifpu = Module(new IntToFP(cfg.ifpuLatency)) ifpu.io.in.valid := req_valid && ex_ctrl.fromint ifpu.io.in.bits := fpiu.io.in.bits ifpu.io.in.bits.in1 := Mux(ex_cp_valid, io.cp_req.bits.in1, io.fromint_data) val fpmu = Module(new FPToFP(cfg.fpmuLatency)) fpmu.io.in.valid := req_valid && ex_ctrl.fastpipe fpmu.io.in.bits := fpiu.io.in.bits fpmu.io.lt := fpiu.io.out.bits.lt val divSqrt_wen = WireDefault(false.B) val divSqrt_inFlight = WireDefault(false.B) val divSqrt_waddr = Reg(UInt(5.W)) val divSqrt_cp = Reg(Bool()) val divSqrt_typeTag = Wire(UInt(log2Up(floatTypes.size).W)) val divSqrt_wdata = Wire(UInt((fLen+1).W)) val divSqrt_flags = Wire(UInt(FPConstants.FLAGS_SZ.W)) divSqrt_typeTag := DontCare divSqrt_wdata := DontCare divSqrt_flags := DontCare // writeback arbitration case class Pipe(p: Module, lat: Int, cond: (FPUCtrlSigs) => Bool, res: FPResult) val pipes = List( Pipe(fpmu, fpmu.latency, (c: FPUCtrlSigs) => c.fastpipe, fpmu.io.out.bits), Pipe(ifpu, ifpu.latency, (c: FPUCtrlSigs) => c.fromint, ifpu.io.out.bits), Pipe(sfma, sfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === S, sfma.io.out.bits)) ++ (fLen > 32).option({ val dfma = Module(new FPUFMAPipe(cfg.dfmaLatency, FType.D)) dfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === D dfma.io.in.bits := fuInput(Some(dfma.t)) Pipe(dfma, dfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === D, dfma.io.out.bits) }) ++ (minFLen == 16).option({ val hfma = Module(new FPUFMAPipe(cfg.sfmaLatency, FType.H)) hfma.io.in.valid := req_valid && ex_ctrl.fma && ex_ctrl.typeTagOut === H hfma.io.in.bits := fuInput(Some(hfma.t)) Pipe(hfma, hfma.latency, (c: FPUCtrlSigs) => c.fma && c.typeTagOut === H, hfma.io.out.bits) }) def latencyMask(c: FPUCtrlSigs, offset: Int) = { require(pipes.forall(_.lat >= offset)) pipes.map(p => Mux(p.cond(c), (1 << p.lat-offset).U, 0.U)).reduce(_|_) } def pipeid(c: FPUCtrlSigs) = pipes.zipWithIndex.map(p => Mux(p._1.cond(c), p._2.U, 0.U)).reduce(_|_) val maxLatency = pipes.map(_.lat).max val memLatencyMask = latencyMask(mem_ctrl, 2) class WBInfo extends Bundle { val rd = UInt(5.W) val typeTag = UInt(log2Up(floatTypes.size).W) val cp = Bool() val pipeid = UInt(log2Ceil(pipes.size).W) } val wen = RegInit(0.U((maxLatency-1).W)) val wbInfo = Reg(Vec(maxLatency-1, new WBInfo)) val mem_wen = mem_reg_valid && (mem_ctrl.fma || mem_ctrl.fastpipe || mem_ctrl.fromint) val write_port_busy = RegEnable(mem_wen && (memLatencyMask & latencyMask(ex_ctrl, 1)).orR || (wen & latencyMask(ex_ctrl, 0)).orR, req_valid) ccover(mem_reg_valid && write_port_busy, "WB_STRUCTURAL", "structural hazard on writeback") for (i <- 0 until maxLatency-2) { when (wen(i+1)) { wbInfo(i) := wbInfo(i+1) } } wen := wen >> 1 when (mem_wen) { when (!killm) { wen := wen >> 1 | memLatencyMask } for (i <- 0 until maxLatency-1) { when (!write_port_busy && memLatencyMask(i)) { wbInfo(i).cp := mem_cp_valid wbInfo(i).typeTag := mem_ctrl.typeTagOut wbInfo(i).pipeid := pipeid(mem_ctrl) wbInfo(i).rd := mem_reg_inst(11,7) } } } val waddr = Mux(divSqrt_wen, divSqrt_waddr, wbInfo(0).rd) val wb_cp = Mux(divSqrt_wen, divSqrt_cp, wbInfo(0).cp) val wtypeTag = Mux(divSqrt_wen, divSqrt_typeTag, wbInfo(0).typeTag) val wdata = box(Mux(divSqrt_wen, divSqrt_wdata, (pipes.map(_.res.data): Seq[UInt])(wbInfo(0).pipeid)), wtypeTag) val wexc = (pipes.map(_.res.exc): Seq[UInt])(wbInfo(0).pipeid) when ((!wbInfo(0).cp && wen(0)) || divSqrt_wen) { assert(consistent(wdata)) regfile(waddr) := wdata if (enableCommitLog) { printf("f%d p%d 0x%x\n", waddr, waddr + 32.U, ieee(wdata)) } frfWriteBundle(1).wrdst := waddr frfWriteBundle(1).wrenf := true.B frfWriteBundle(1).wrdata := ieee(wdata) } if (useDebugROB) { DebugROB.pushWb(clock, reset, io.hartid, (!wbInfo(0).cp && wen(0)) || divSqrt_wen, waddr + 32.U, ieee(wdata)) } when (wb_cp && (wen(0) || divSqrt_wen)) { io.cp_resp.bits.data := wdata io.cp_resp.valid := true.B } assert(!io.cp_req.valid || pipes.forall(_.lat == pipes.head.lat).B, s"FPU only supports coprocessor if FMA pipes have uniform latency ${pipes.map(_.lat)}") // Avoid structural hazards and nacking of external requests // toint responds in the MEM stage, so an incoming toint can induce a structural hazard against inflight FMAs io.cp_req.ready := !ex_reg_valid && !(cp_ctrl.toint && wen =/= 0.U) && !divSqrt_inFlight val wb_toint_valid = wb_reg_valid && wb_ctrl.toint val wb_toint_exc = RegEnable(fpiu.io.out.bits.exc, mem_ctrl.toint) io.fcsr_flags.valid := wb_toint_valid || divSqrt_wen || wen(0) io.fcsr_flags.bits := Mux(wb_toint_valid, wb_toint_exc, 0.U) | Mux(divSqrt_wen, divSqrt_flags, 0.U) | Mux(wen(0), wexc, 0.U) val divSqrt_write_port_busy = (mem_ctrl.div || mem_ctrl.sqrt) && wen.orR io.fcsr_rdy := !(ex_reg_valid && ex_ctrl.wflags || mem_reg_valid && mem_ctrl.wflags || wb_reg_valid && wb_ctrl.toint || wen.orR || divSqrt_inFlight) io.nack_mem := (write_port_busy || divSqrt_write_port_busy || divSqrt_inFlight) && !mem_cp_valid io.dec <> id_ctrl def useScoreboard(f: ((Pipe, Int)) => Bool) = pipes.zipWithIndex.filter(_._1.lat > 3).map(x => f(x)).fold(false.B)(_||_) io.sboard_set := wb_reg_valid && !wb_cp_valid && RegNext(useScoreboard(_._1.cond(mem_ctrl)) || mem_ctrl.div || mem_ctrl.sqrt || mem_ctrl.vec) io.sboard_clr := !wb_cp_valid && (divSqrt_wen || (wen(0) && useScoreboard(x => wbInfo(0).pipeid === x._2.U))) io.sboard_clra := waddr ccover(io.sboard_clr && load_wb, "DUAL_WRITEBACK", "load and FMA writeback on same cycle") // we don't currently support round-max-magnitude (rm=4) io.illegal_rm := io.inst(14,12).isOneOf(5.U, 6.U) || io.inst(14,12) === 7.U && io.fcsr_rm >= 5.U if (cfg.divSqrt) { val divSqrt_inValid = mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt) && !divSqrt_inFlight val divSqrt_killed = RegNext(divSqrt_inValid && killm, true.B) when (divSqrt_inValid) { divSqrt_waddr := mem_reg_inst(11,7) divSqrt_cp := mem_cp_valid } ccover(divSqrt_inFlight && divSqrt_killed, "DIV_KILLED", "divide killed after issued to divider") ccover(divSqrt_inFlight && mem_reg_valid && (mem_ctrl.div || mem_ctrl.sqrt), "DIV_BUSY", "divider structural hazard") ccover(mem_reg_valid && divSqrt_write_port_busy, "DIV_WB_STRUCTURAL", "structural hazard on division writeback") for (t <- floatTypes) { val tag = mem_ctrl.typeTagOut val divSqrt = withReset(divSqrt_killed) { Module(new hardfloat.DivSqrtRecFN_small(t.exp, t.sig, 0)) } divSqrt.io.inValid := divSqrt_inValid && tag === typeTag(t).U divSqrt.io.sqrtOp := mem_ctrl.sqrt divSqrt.io.a := maxType.unsafeConvert(fpiu.io.out.bits.in.in1, t) divSqrt.io.b := maxType.unsafeConvert(fpiu.io.out.bits.in.in2, t) divSqrt.io.roundingMode := fpiu.io.out.bits.in.rm divSqrt.io.detectTininess := hardfloat.consts.tininess_afterRounding when (!divSqrt.io.inReady) { divSqrt_inFlight := true.B } // only 1 in flight when (divSqrt.io.outValid_div || divSqrt.io.outValid_sqrt) { divSqrt_wen := !divSqrt_killed divSqrt_wdata := sanitizeNaN(divSqrt.io.out, t) divSqrt_flags := divSqrt.io.exceptionFlags divSqrt_typeTag := typeTag(t).U } } when (divSqrt_killed) { divSqrt_inFlight := false.B } } else { when (id_ctrl.div || id_ctrl.sqrt) { io.illegal_rm := true.B } } // gate the clock clock_en_reg := !useClockGating.B || io.keep_clock_enabled || // chicken bit io.valid || // ID stage req_valid || // EX stage mem_reg_valid || mem_cp_valid || // MEM stage wb_reg_valid || wb_cp_valid || // WB stage wen.orR || divSqrt_inFlight || // post-WB stage io.ll_resp_val // load writeback } // leaving gated-clock domain val fpuImpl = withClock (gated_clock) { new FPUImpl } def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = property.cover(cond, s"FPU_$label", "Core;;" + desc) }
module FPToFP_6( // @[FPU.scala:573:7] input clock, // @[FPU.scala:573:7] input reset, // @[FPU.scala:573:7] input io_in_valid, // @[FPU.scala:574:14] input io_in_bits_ldst, // @[FPU.scala:574:14] input io_in_bits_wen, // @[FPU.scala:574:14] input io_in_bits_ren1, // @[FPU.scala:574:14] input io_in_bits_ren2, // @[FPU.scala:574:14] input io_in_bits_ren3, // @[FPU.scala:574:14] input io_in_bits_swap12, // @[FPU.scala:574:14] input io_in_bits_swap23, // @[FPU.scala:574:14] input [1:0] io_in_bits_typeTagIn, // @[FPU.scala:574:14] input [1:0] io_in_bits_typeTagOut, // @[FPU.scala:574:14] input io_in_bits_fromint, // @[FPU.scala:574:14] input io_in_bits_toint, // @[FPU.scala:574:14] input io_in_bits_fastpipe, // @[FPU.scala:574:14] input io_in_bits_fma, // @[FPU.scala:574:14] input io_in_bits_div, // @[FPU.scala:574:14] input io_in_bits_sqrt, // @[FPU.scala:574:14] input io_in_bits_wflags, // @[FPU.scala:574:14] input io_in_bits_vec, // @[FPU.scala:574:14] input [2:0] io_in_bits_rm, // @[FPU.scala:574:14] input [1:0] io_in_bits_fmaCmd, // @[FPU.scala:574:14] input [1:0] io_in_bits_typ, // @[FPU.scala:574:14] input [1:0] io_in_bits_fmt, // @[FPU.scala:574:14] input [64:0] io_in_bits_in1, // @[FPU.scala:574:14] input [64:0] io_in_bits_in2, // @[FPU.scala:574:14] input [64:0] io_in_bits_in3, // @[FPU.scala:574:14] output [64:0] io_out_bits_data, // @[FPU.scala:574:14] output [4:0] io_out_bits_exc, // @[FPU.scala:574:14] input io_lt // @[FPU.scala:574:14] ); wire [32:0] _narrower_1_io_out; // @[FPU.scala:619:30] wire [4:0] _narrower_1_io_exceptionFlags; // @[FPU.scala:619:30] wire [16:0] _narrower_io_out; // @[FPU.scala:619:30] wire [4:0] _narrower_io_exceptionFlags; // @[FPU.scala:619:30] wire io_in_valid_0 = io_in_valid; // @[FPU.scala:573:7] wire io_in_bits_ldst_0 = io_in_bits_ldst; // @[FPU.scala:573:7] wire io_in_bits_wen_0 = io_in_bits_wen; // @[FPU.scala:573:7] wire io_in_bits_ren1_0 = io_in_bits_ren1; // @[FPU.scala:573:7] wire io_in_bits_ren2_0 = io_in_bits_ren2; // @[FPU.scala:573:7] wire io_in_bits_ren3_0 = io_in_bits_ren3; // @[FPU.scala:573:7] wire io_in_bits_swap12_0 = io_in_bits_swap12; // @[FPU.scala:573:7] wire io_in_bits_swap23_0 = io_in_bits_swap23; // @[FPU.scala:573:7] wire [1:0] io_in_bits_typeTagIn_0 = io_in_bits_typeTagIn; // @[FPU.scala:573:7] wire [1:0] io_in_bits_typeTagOut_0 = io_in_bits_typeTagOut; // @[FPU.scala:573:7] wire io_in_bits_fromint_0 = io_in_bits_fromint; // @[FPU.scala:573:7] wire io_in_bits_toint_0 = io_in_bits_toint; // @[FPU.scala:573:7] wire io_in_bits_fastpipe_0 = io_in_bits_fastpipe; // @[FPU.scala:573:7] wire io_in_bits_fma_0 = io_in_bits_fma; // @[FPU.scala:573:7] wire io_in_bits_div_0 = io_in_bits_div; // @[FPU.scala:573:7] wire io_in_bits_sqrt_0 = io_in_bits_sqrt; // @[FPU.scala:573:7] wire io_in_bits_wflags_0 = io_in_bits_wflags; // @[FPU.scala:573:7] wire io_in_bits_vec_0 = io_in_bits_vec; // @[FPU.scala:573:7] wire [2:0] io_in_bits_rm_0 = io_in_bits_rm; // @[FPU.scala:573:7] wire [1:0] io_in_bits_fmaCmd_0 = io_in_bits_fmaCmd; // @[FPU.scala:573:7] wire [1:0] io_in_bits_typ_0 = io_in_bits_typ; // @[FPU.scala:573:7] wire [1:0] io_in_bits_fmt_0 = io_in_bits_fmt; // @[FPU.scala:573:7] wire [64:0] io_in_bits_in1_0 = io_in_bits_in1; // @[FPU.scala:573:7] wire [64:0] io_in_bits_in2_0 = io_in_bits_in2; // @[FPU.scala:573:7] wire [64:0] io_in_bits_in3_0 = io_in_bits_in3; // @[FPU.scala:573:7] wire io_lt_0 = io_lt; // @[FPU.scala:573:7] wire [32:0] _narrowed_maskedNaN_T = 33'h1EF7FFFFF; // @[FPU.scala:413:27] wire io_out_pipe_out_valid; // @[Valid.scala:135:21] wire [64:0] io_out_pipe_out_bits_data; // @[Valid.scala:135:21] wire [4:0] io_out_pipe_out_bits_exc; // @[Valid.scala:135:21] wire [64:0] io_out_bits_data_0; // @[FPU.scala:573:7] wire [4:0] io_out_bits_exc_0; // @[FPU.scala:573:7] wire io_out_valid; // @[FPU.scala:573:7] reg in_pipe_v; // @[Valid.scala:141:24] wire in_valid = in_pipe_v; // @[Valid.scala:135:21, :141:24] reg in_pipe_b_ldst; // @[Valid.scala:142:26] wire in_bits_ldst = in_pipe_b_ldst; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_wen; // @[Valid.scala:142:26] wire in_bits_wen = in_pipe_b_wen; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_ren1; // @[Valid.scala:142:26] wire in_bits_ren1 = in_pipe_b_ren1; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_ren2; // @[Valid.scala:142:26] wire in_bits_ren2 = in_pipe_b_ren2; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_ren3; // @[Valid.scala:142:26] wire in_bits_ren3 = in_pipe_b_ren3; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_swap12; // @[Valid.scala:142:26] wire in_bits_swap12 = in_pipe_b_swap12; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_swap23; // @[Valid.scala:142:26] wire in_bits_swap23 = in_pipe_b_swap23; // @[Valid.scala:135:21, :142:26] reg [1:0] in_pipe_b_typeTagIn; // @[Valid.scala:142:26] wire [1:0] in_bits_typeTagIn = in_pipe_b_typeTagIn; // @[Valid.scala:135:21, :142:26] reg [1:0] in_pipe_b_typeTagOut; // @[Valid.scala:142:26] wire [1:0] in_bits_typeTagOut = in_pipe_b_typeTagOut; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_fromint; // @[Valid.scala:142:26] wire in_bits_fromint = in_pipe_b_fromint; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_toint; // @[Valid.scala:142:26] wire in_bits_toint = in_pipe_b_toint; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_fastpipe; // @[Valid.scala:142:26] wire in_bits_fastpipe = in_pipe_b_fastpipe; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_fma; // @[Valid.scala:142:26] wire in_bits_fma = in_pipe_b_fma; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_div; // @[Valid.scala:142:26] wire in_bits_div = in_pipe_b_div; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_sqrt; // @[Valid.scala:142:26] wire in_bits_sqrt = in_pipe_b_sqrt; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_wflags; // @[Valid.scala:142:26] wire in_bits_wflags = in_pipe_b_wflags; // @[Valid.scala:135:21, :142:26] reg in_pipe_b_vec; // @[Valid.scala:142:26] wire in_bits_vec = in_pipe_b_vec; // @[Valid.scala:135:21, :142:26] reg [2:0] in_pipe_b_rm; // @[Valid.scala:142:26] wire [2:0] in_bits_rm = in_pipe_b_rm; // @[Valid.scala:135:21, :142:26] reg [1:0] in_pipe_b_fmaCmd; // @[Valid.scala:142:26] wire [1:0] in_bits_fmaCmd = in_pipe_b_fmaCmd; // @[Valid.scala:135:21, :142:26] reg [1:0] in_pipe_b_typ; // @[Valid.scala:142:26] wire [1:0] in_bits_typ = in_pipe_b_typ; // @[Valid.scala:135:21, :142:26] reg [1:0] in_pipe_b_fmt; // @[Valid.scala:142:26] wire [1:0] in_bits_fmt = in_pipe_b_fmt; // @[Valid.scala:135:21, :142:26] reg [64:0] in_pipe_b_in1; // @[Valid.scala:142:26] wire [64:0] in_bits_in1 = in_pipe_b_in1; // @[Valid.scala:135:21, :142:26] reg [64:0] in_pipe_b_in2; // @[Valid.scala:142:26] wire [64:0] in_bits_in2 = in_pipe_b_in2; // @[Valid.scala:135:21, :142:26] reg [64:0] in_pipe_b_in3; // @[Valid.scala:142:26] wire [64:0] in_bits_in3 = in_pipe_b_in3; // @[Valid.scala:135:21, :142:26] wire _signNum_T = in_bits_rm[1]; // @[Valid.scala:135:21] wire [64:0] _signNum_T_1 = in_bits_in1 ^ in_bits_in2; // @[Valid.scala:135:21] wire _signNum_T_2 = in_bits_rm[0]; // @[Valid.scala:135:21] wire _isLHS_T = in_bits_rm[0]; // @[Valid.scala:135:21] wire [64:0] _signNum_T_3 = ~in_bits_in2; // @[Valid.scala:135:21] wire [64:0] _signNum_T_4 = _signNum_T_2 ? _signNum_T_3 : in_bits_in2; // @[Valid.scala:135:21] wire [64:0] signNum = _signNum_T ? _signNum_T_1 : _signNum_T_4; // @[FPU.scala:582:{20,31,48,66}] wire _fsgnj_T = signNum[64]; // @[FPU.scala:582:20, :583:26] wire [63:0] _fsgnj_T_1 = in_bits_in1[63:0]; // @[Valid.scala:135:21] wire [64:0] fsgnj = {_fsgnj_T, _fsgnj_T_1}; // @[FPU.scala:583:{18,26,45}] wire [64:0] fsgnjMux_data; // @[FPU.scala:585:22] wire [4:0] fsgnjMux_exc; // @[FPU.scala:585:22] wire [2:0] _isnan1_T = in_bits_in1[63:61]; // @[Valid.scala:135:21] wire [2:0] _isInvalid_T = in_bits_in1[63:61]; // @[Valid.scala:135:21] wire [2:0] _widened_T = in_bits_in1[63:61]; // @[Valid.scala:135:21] wire [2:0] _fsgnjMux_exc_T_1 = in_bits_in1[63:61]; // @[Valid.scala:135:21] wire isnan1 = &_isnan1_T; // @[FPU.scala:249:{25,56}] wire [2:0] _isnan2_T = in_bits_in2[63:61]; // @[Valid.scala:135:21] wire [2:0] _isInvalid_T_5 = in_bits_in2[63:61]; // @[Valid.scala:135:21] wire isnan2 = &_isnan2_T; // @[FPU.scala:249:{25,56}] wire _isInvalid_T_1 = &_isInvalid_T; // @[FPU.scala:249:{25,56}] wire _isInvalid_T_2 = in_bits_in1[51]; // @[Valid.scala:135:21] wire _fsgnjMux_exc_T_3 = in_bits_in1[51]; // @[Valid.scala:135:21] wire _isInvalid_T_3 = ~_isInvalid_T_2; // @[FPU.scala:250:{37,39}] wire _isInvalid_T_4 = _isInvalid_T_1 & _isInvalid_T_3; // @[FPU.scala:249:56, :250:{34,37}] wire _isInvalid_T_6 = &_isInvalid_T_5; // @[FPU.scala:249:{25,56}] wire _isInvalid_T_7 = in_bits_in2[51]; // @[Valid.scala:135:21] wire _isInvalid_T_8 = ~_isInvalid_T_7; // @[FPU.scala:250:{37,39}] wire _isInvalid_T_9 = _isInvalid_T_6 & _isInvalid_T_8; // @[FPU.scala:249:56, :250:{34,37}] wire isInvalid = _isInvalid_T_4 | _isInvalid_T_9; // @[FPU.scala:250:34, :592:49] wire isNaNOut = isnan1 & isnan2; // @[FPU.scala:249:56, :593:27] wire _isLHS_T_1 = _isLHS_T != io_lt_0; // @[FPU.scala:573:7, :594:{37,41}] wire _isLHS_T_2 = ~isnan1; // @[FPU.scala:249:56, :594:54] wire _isLHS_T_3 = _isLHS_T_1 & _isLHS_T_2; // @[FPU.scala:594:{41,51,54}] wire isLHS = isnan2 | _isLHS_T_3; // @[FPU.scala:249:56, :594:{24,51}] wire [4:0] _fsgnjMux_exc_T = {isInvalid, 4'h0}; // @[FPU.scala:592:49, :595:31] wire [64:0] _fsgnjMux_data_T = isLHS ? in_bits_in1 : in_bits_in2; // @[Valid.scala:135:21] wire [64:0] _fsgnjMux_data_T_1 = isNaNOut ? 65'hE008000000000000 : _fsgnjMux_data_T; // @[FPU.scala:593:27, :596:{25,53}] wire [64:0] mux_data; // @[FPU.scala:601:24] wire [4:0] mux_exc; // @[FPU.scala:601:24] wire _T_7 = in_bits_typeTagOut == 2'h0; // @[Valid.scala:135:21] wire [47:0] _mux_data_T = fsgnjMux_data[64:17]; // @[FPU.scala:585:22, :604:37] wire [47:0] _mux_data_T_6 = fsgnjMux_data[64:17]; // @[FPU.scala:585:22, :604:37, :624:39] wire mux_data_sign = fsgnjMux_data[64]; // @[FPU.scala:274:17, :585:22] wire mux_data_sign_1 = fsgnjMux_data[64]; // @[FPU.scala:274:17, :585:22] wire [51:0] mux_data_fractIn = fsgnjMux_data[51:0]; // @[FPU.scala:275:20, :585:22] wire [51:0] mux_data_fractIn_1 = fsgnjMux_data[51:0]; // @[FPU.scala:275:20, :585:22] wire [11:0] mux_data_expIn = fsgnjMux_data[63:52]; // @[FPU.scala:276:18, :585:22] wire [11:0] mux_data_expIn_1 = fsgnjMux_data[63:52]; // @[FPU.scala:276:18, :585:22] wire [62:0] _mux_data_fractOut_T = {mux_data_fractIn, 11'h0}; // @[FPU.scala:275:20, :277:28] wire [9:0] mux_data_fractOut = _mux_data_fractOut_T[62:53]; // @[FPU.scala:277:{28,38}] wire [2:0] mux_data_expOut_expCode = mux_data_expIn[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _mux_data_expOut_commonCase_T = {1'h0, mux_data_expIn} + 13'h20; // @[FPU.scala:276:18, :280:31] wire [11:0] _mux_data_expOut_commonCase_T_1 = _mux_data_expOut_commonCase_T[11:0]; // @[FPU.scala:280:31] wire [12:0] _mux_data_expOut_commonCase_T_2 = {1'h0, _mux_data_expOut_commonCase_T_1} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] mux_data_expOut_commonCase = _mux_data_expOut_commonCase_T_2[11:0]; // @[FPU.scala:280:50] wire _mux_data_expOut_T = mux_data_expOut_expCode == 3'h0; // @[FPU.scala:279:26, :281:19] wire _mux_data_expOut_T_1 = mux_data_expOut_expCode > 3'h5; // @[FPU.scala:279:26, :281:38] wire _mux_data_expOut_T_2 = _mux_data_expOut_T | _mux_data_expOut_T_1; // @[FPU.scala:281:{19,27,38}] wire [2:0] _mux_data_expOut_T_3 = mux_data_expOut_commonCase[2:0]; // @[FPU.scala:280:50, :281:69] wire [5:0] _mux_data_expOut_T_4 = {mux_data_expOut_expCode, _mux_data_expOut_T_3}; // @[FPU.scala:279:26, :281:{49,69}] wire [5:0] _mux_data_expOut_T_5 = mux_data_expOut_commonCase[5:0]; // @[FPU.scala:280:50, :281:97] wire [5:0] mux_data_expOut = _mux_data_expOut_T_2 ? _mux_data_expOut_T_4 : _mux_data_expOut_T_5; // @[FPU.scala:281:{10,27,49,97}] wire [6:0] mux_data_hi = {mux_data_sign, mux_data_expOut}; // @[FPU.scala:274:17, :281:10, :283:8] wire [16:0] _mux_data_T_1 = {mux_data_hi, mux_data_fractOut}; // @[FPU.scala:277:38, :283:8] wire [64:0] _mux_data_T_2 = {_mux_data_T, _mux_data_T_1}; // @[FPU.scala:283:8, :604:{22,37}] wire _T_8 = in_bits_typeTagOut == 2'h1; // @[Valid.scala:135:21] wire [31:0] _mux_data_T_3 = fsgnjMux_data[64:33]; // @[FPU.scala:585:22, :604:37] wire [31:0] _mux_data_T_8 = fsgnjMux_data[64:33]; // @[FPU.scala:585:22, :604:37, :624:39] wire [75:0] _mux_data_fractOut_T_1 = {mux_data_fractIn_1, 24'h0}; // @[FPU.scala:275:20, :277:28] wire [22:0] mux_data_fractOut_1 = _mux_data_fractOut_T_1[75:53]; // @[FPU.scala:277:{28,38}] wire [2:0] mux_data_expOut_expCode_1 = mux_data_expIn_1[11:9]; // @[FPU.scala:276:18, :279:26] wire [12:0] _mux_data_expOut_commonCase_T_3 = {1'h0, mux_data_expIn_1} + 13'h100; // @[FPU.scala:276:18, :280:31] wire [11:0] _mux_data_expOut_commonCase_T_4 = _mux_data_expOut_commonCase_T_3[11:0]; // @[FPU.scala:280:31] wire [12:0] _mux_data_expOut_commonCase_T_5 = {1'h0, _mux_data_expOut_commonCase_T_4} - 13'h800; // @[FPU.scala:280:{31,50}] wire [11:0] mux_data_expOut_commonCase_1 = _mux_data_expOut_commonCase_T_5[11:0]; // @[FPU.scala:280:50] wire _mux_data_expOut_T_6 = mux_data_expOut_expCode_1 == 3'h0; // @[FPU.scala:279:26, :281:19] wire _mux_data_expOut_T_7 = mux_data_expOut_expCode_1 > 3'h5; // @[FPU.scala:279:26, :281:38] wire _mux_data_expOut_T_8 = _mux_data_expOut_T_6 | _mux_data_expOut_T_7; // @[FPU.scala:281:{19,27,38}] wire [5:0] _mux_data_expOut_T_9 = mux_data_expOut_commonCase_1[5:0]; // @[FPU.scala:280:50, :281:69] wire [8:0] _mux_data_expOut_T_10 = {mux_data_expOut_expCode_1, _mux_data_expOut_T_9}; // @[FPU.scala:279:26, :281:{49,69}] wire [8:0] _mux_data_expOut_T_11 = mux_data_expOut_commonCase_1[8:0]; // @[FPU.scala:280:50, :281:97] wire [8:0] mux_data_expOut_1 = _mux_data_expOut_T_8 ? _mux_data_expOut_T_10 : _mux_data_expOut_T_11; // @[FPU.scala:281:{10,27,49,97}] wire [9:0] mux_data_hi_1 = {mux_data_sign_1, mux_data_expOut_1}; // @[FPU.scala:274:17, :281:10, :283:8] wire [32:0] _mux_data_T_4 = {mux_data_hi_1, mux_data_fractOut_1}; // @[FPU.scala:277:38, :283:8] wire [64:0] _mux_data_T_5 = {_mux_data_T_3, _mux_data_T_4}; // @[FPU.scala:283:8, :604:{22,37}] wire _T_3 = in_bits_wflags & ~in_bits_ren2; // @[Valid.scala:135:21] wire _widened_T_1 = &_widened_T; // @[FPU.scala:249:{25,56}] wire [64:0] widened = _widened_T_1 ? 65'hE008000000000000 : in_bits_in1; // @[Valid.scala:135:21] assign fsgnjMux_data = _T_3 ? widened : in_bits_wflags ? _fsgnjMux_data_T_1 : fsgnj; // @[Valid.scala:135:21] wire _fsgnjMux_exc_T_2 = &_fsgnjMux_exc_T_1; // @[FPU.scala:249:{25,56}] wire _fsgnjMux_exc_T_4 = ~_fsgnjMux_exc_T_3; // @[FPU.scala:250:{37,39}] wire _fsgnjMux_exc_T_5 = _fsgnjMux_exc_T_2 & _fsgnjMux_exc_T_4; // @[FPU.scala:249:56, :250:{34,37}] wire [4:0] _fsgnjMux_exc_T_6 = {_fsgnjMux_exc_T_5, 4'h0}; // @[FPU.scala:250:34, :595:31, :613:51] assign fsgnjMux_exc = _T_3 ? _fsgnjMux_exc_T_6 : in_bits_wflags ? _fsgnjMux_exc_T : 5'h0; // @[Valid.scala:135:21] wire [64:0] _mux_data_T_7 = {_mux_data_T_6, _narrower_io_out}; // @[FPU.scala:619:30, :624:{24,39}] wire _T_11 = _T_8 & in_bits_typeTagOut < in_bits_typeTagIn; // @[Valid.scala:135:21] wire [32:0] narrowed_maskedNaN = _narrower_1_io_out & 33'h1EF7FFFFF; // @[FPU.scala:413:25, :619:30] wire [2:0] _narrowed_T = _narrower_1_io_out[31:29]; // @[FPU.scala:249:25, :619:30] wire _narrowed_T_1 = &_narrowed_T; // @[FPU.scala:249:{25,56}] wire [32:0] narrowed = _narrowed_T_1 ? narrowed_maskedNaN : _narrower_1_io_out; // @[FPU.scala:249:56, :413:25, :414:10, :619:30] wire [64:0] _mux_data_T_9 = {_mux_data_T_8, narrowed}; // @[FPU.scala:414:10, :624:{24,39}] assign mux_data = _T_3 ? (_T_11 ? _mux_data_T_9 : _T_7 ? _mux_data_T_7 : _T_8 ? _mux_data_T_5 : fsgnjMux_data) : _T_8 ? _mux_data_T_5 : _T_7 ? _mux_data_T_2 : fsgnjMux_data; // @[FPU.scala:585:22, :601:24, :603:{18,36}, :604:{16,22}, :608:{24,42}, :618:{76,126}, :624:{18,24}] assign mux_exc = _T_3 ? (_T_11 ? _narrower_1_io_exceptionFlags : _T_7 ? _narrower_io_exceptionFlags : fsgnjMux_exc) : fsgnjMux_exc; // @[FPU.scala:585:22, :601:24, :603:18, :608:{24,42}, :618:{76,126}, :619:30, :625:17] reg io_out_pipe_v; // @[Valid.scala:141:24] assign io_out_pipe_out_valid = io_out_pipe_v; // @[Valid.scala:135:21, :141:24] reg [64:0] io_out_pipe_b_data; // @[Valid.scala:142:26] assign io_out_pipe_out_bits_data = io_out_pipe_b_data; // @[Valid.scala:135:21, :142:26] reg [4:0] io_out_pipe_b_exc; // @[Valid.scala:142:26] assign io_out_pipe_out_bits_exc = io_out_pipe_b_exc; // @[Valid.scala:135:21, :142:26] assign io_out_valid = io_out_pipe_out_valid; // @[Valid.scala:135:21] assign io_out_bits_data_0 = io_out_pipe_out_bits_data; // @[Valid.scala:135:21] assign io_out_bits_exc_0 = io_out_pipe_out_bits_exc; // @[Valid.scala:135:21] always @(posedge clock) begin // @[FPU.scala:573:7] if (reset) begin // @[FPU.scala:573:7] in_pipe_v <= 1'h0; // @[Valid.scala:141:24] io_out_pipe_v <= 1'h0; // @[Valid.scala:141:24] end else begin // @[FPU.scala:573:7] in_pipe_v <= io_in_valid_0; // @[Valid.scala:141:24] io_out_pipe_v <= in_valid; // @[Valid.scala:135:21, :141:24] end if (io_in_valid_0) begin // @[FPU.scala:573:7] in_pipe_b_ldst <= io_in_bits_ldst_0; // @[Valid.scala:142:26] in_pipe_b_wen <= io_in_bits_wen_0; // @[Valid.scala:142:26] in_pipe_b_ren1 <= io_in_bits_ren1_0; // @[Valid.scala:142:26] in_pipe_b_ren2 <= io_in_bits_ren2_0; // @[Valid.scala:142:26] in_pipe_b_ren3 <= io_in_bits_ren3_0; // @[Valid.scala:142:26] in_pipe_b_swap12 <= io_in_bits_swap12_0; // @[Valid.scala:142:26] in_pipe_b_swap23 <= io_in_bits_swap23_0; // @[Valid.scala:142:26] in_pipe_b_typeTagIn <= io_in_bits_typeTagIn_0; // @[Valid.scala:142:26] in_pipe_b_typeTagOut <= io_in_bits_typeTagOut_0; // @[Valid.scala:142:26] in_pipe_b_fromint <= io_in_bits_fromint_0; // @[Valid.scala:142:26] in_pipe_b_toint <= io_in_bits_toint_0; // @[Valid.scala:142:26] in_pipe_b_fastpipe <= io_in_bits_fastpipe_0; // @[Valid.scala:142:26] in_pipe_b_fma <= io_in_bits_fma_0; // @[Valid.scala:142:26] in_pipe_b_div <= io_in_bits_div_0; // @[Valid.scala:142:26] in_pipe_b_sqrt <= io_in_bits_sqrt_0; // @[Valid.scala:142:26] in_pipe_b_wflags <= io_in_bits_wflags_0; // @[Valid.scala:142:26] in_pipe_b_vec <= io_in_bits_vec_0; // @[Valid.scala:142:26] in_pipe_b_rm <= io_in_bits_rm_0; // @[Valid.scala:142:26] in_pipe_b_fmaCmd <= io_in_bits_fmaCmd_0; // @[Valid.scala:142:26] in_pipe_b_typ <= io_in_bits_typ_0; // @[Valid.scala:142:26] in_pipe_b_fmt <= io_in_bits_fmt_0; // @[Valid.scala:142:26] in_pipe_b_in1 <= io_in_bits_in1_0; // @[Valid.scala:142:26] in_pipe_b_in2 <= io_in_bits_in2_0; // @[Valid.scala:142:26] in_pipe_b_in3 <= io_in_bits_in3_0; // @[Valid.scala:142:26] end if (in_valid) begin // @[Valid.scala:135:21] io_out_pipe_b_data <= mux_data; // @[Valid.scala:142:26] io_out_pipe_b_exc <= mux_exc; // @[Valid.scala:142:26] end always @(posedge) RecFNToRecFN_12 narrower ( // @[FPU.scala:619:30] .io_in (in_bits_in1), // @[Valid.scala:135:21] .io_roundingMode (in_bits_rm), // @[Valid.scala:135:21] .io_out (_narrower_io_out), .io_exceptionFlags (_narrower_io_exceptionFlags) ); // @[FPU.scala:619:30] RecFNToRecFN_13 narrower_1 ( // @[FPU.scala:619:30] .io_in (in_bits_in1), // @[Valid.scala:135:21] .io_roundingMode (in_bits_rm), // @[Valid.scala:135:21] .io_out (_narrower_1_io_out), .io_exceptionFlags (_narrower_1_io_exceptionFlags) ); // @[FPU.scala:619:30] assign io_out_bits_data = io_out_bits_data_0; // @[FPU.scala:573:7] assign io_out_bits_exc = io_out_bits_exc_0; // @[FPU.scala:573:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File HellaCacheArbiter.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.rocket import chisel3._ import chisel3.util.{Cat,log2Up} import org.chipsalliance.cde.config.Parameters class HellaCacheArbiter(n: Int)(implicit p: Parameters) extends Module { val io = IO(new Bundle { val requestor = Flipped(Vec(n, new HellaCacheIO)) val mem = new HellaCacheIO }) if (n == 1) { io.mem <> io.requestor.head } else { val s1_id = Reg(UInt()) val s2_id = RegNext(s1_id) io.mem.keep_clock_enabled := io.requestor.map(_.keep_clock_enabled).reduce(_||_) io.mem.req.valid := io.requestor.map(_.req.valid).reduce(_||_) io.requestor(0).req.ready := io.mem.req.ready for (i <- 1 until n) io.requestor(i).req.ready := io.requestor(i-1).req.ready && !io.requestor(i-1).req.valid for (i <- n-1 to 0 by -1) { val req = io.requestor(i).req def connect_s0() = { io.mem.req.bits := req.bits io.mem.req.bits.tag := Cat(req.bits.tag, i.U(log2Up(n).W)) s1_id := i.U } def connect_s1() = { io.mem.s1_kill := io.requestor(i).s1_kill io.mem.s1_data := io.requestor(i).s1_data } def connect_s2() = { io.mem.s2_kill := io.requestor(i).s2_kill } if (i == n-1) { connect_s0() connect_s1() connect_s2() } else { when (req.valid) { connect_s0() } when (s1_id === i.U) { connect_s1() } when (s2_id === i.U) { connect_s2() } } } io.mem.uncached_resp.foreach(_.ready := false.B) for (i <- 0 until n) { val resp = io.requestor(i).resp val tag_hit = io.mem.resp.bits.tag(log2Up(n)-1,0) === i.U resp.valid := io.mem.resp.valid && tag_hit io.requestor(i).s2_xcpt := io.mem.s2_xcpt io.requestor(i).s2_gpa := io.mem.s2_gpa io.requestor(i).s2_gpa_is_pte := io.mem.s2_gpa_is_pte io.requestor(i).ordered := io.mem.ordered io.requestor(i).store_pending := io.mem.store_pending io.requestor(i).perf := io.mem.perf io.requestor(i).s2_nack := io.mem.s2_nack && s2_id === i.U io.requestor(i).s2_nack_cause_raw := io.mem.s2_nack_cause_raw io.requestor(i).s2_uncached := io.mem.s2_uncached io.requestor(i).s2_paddr := io.mem.s2_paddr io.requestor(i).clock_enabled := io.mem.clock_enabled resp.bits := io.mem.resp.bits resp.bits.tag := io.mem.resp.bits.tag >> log2Up(n) io.requestor(i).replay_next := io.mem.replay_next io.requestor(i).uncached_resp.map { uncached_resp => val uncached_tag_hit = io.mem.uncached_resp.get.bits.tag(log2Up(n)-1,0) === i.U uncached_resp.valid := io.mem.uncached_resp.get.valid && uncached_tag_hit when (uncached_resp.ready && uncached_tag_hit) { io.mem.uncached_resp.get.ready := true.B } uncached_resp.bits := io.mem.uncached_resp.get.bits uncached_resp.bits.tag := io.mem.uncached_resp.get.bits.tag >> log2Up(n) } } } }
module HellaCacheArbiter( // @[HellaCacheArbiter.scala:10:7] input clock, // @[HellaCacheArbiter.scala:10:7] input reset, // @[HellaCacheArbiter.scala:10:7] output io_requestor_0_req_ready, // @[HellaCacheArbiter.scala:12:14] input io_requestor_0_req_valid, // @[HellaCacheArbiter.scala:12:14] input [39:0] io_requestor_0_req_bits_addr, // @[HellaCacheArbiter.scala:12:14] input io_requestor_0_req_bits_dv, // @[HellaCacheArbiter.scala:12:14] input io_requestor_0_s1_kill, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_s2_nack, // @[HellaCacheArbiter.scala:12:14] output [31:0] io_requestor_0_s2_paddr, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_resp_valid, // @[HellaCacheArbiter.scala:12:14] output [39:0] io_requestor_0_resp_bits_addr, // @[HellaCacheArbiter.scala:12:14] output [6:0] io_requestor_0_resp_bits_tag, // @[HellaCacheArbiter.scala:12:14] output [4:0] io_requestor_0_resp_bits_cmd, // @[HellaCacheArbiter.scala:12:14] output [1:0] io_requestor_0_resp_bits_size, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_resp_bits_signed, // @[HellaCacheArbiter.scala:12:14] output [1:0] io_requestor_0_resp_bits_dprv, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_resp_bits_dv, // @[HellaCacheArbiter.scala:12:14] output [63:0] io_requestor_0_resp_bits_data, // @[HellaCacheArbiter.scala:12:14] output [7:0] io_requestor_0_resp_bits_mask, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_resp_bits_replay, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_resp_bits_has_data, // @[HellaCacheArbiter.scala:12:14] output [63:0] io_requestor_0_resp_bits_data_word_bypass, // @[HellaCacheArbiter.scala:12:14] output [63:0] io_requestor_0_resp_bits_data_raw, // @[HellaCacheArbiter.scala:12:14] output [63:0] io_requestor_0_resp_bits_store_data, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_replay_next, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_s2_xcpt_ma_ld, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_s2_xcpt_ma_st, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_s2_xcpt_pf_ld, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_s2_xcpt_pf_st, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_s2_xcpt_ae_ld, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_s2_xcpt_ae_st, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_ordered, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_store_pending, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_perf_acquire, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_perf_release, // @[HellaCacheArbiter.scala:12:14] output io_requestor_0_perf_tlbMiss, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_req_ready, // @[HellaCacheArbiter.scala:12:14] input io_requestor_1_req_valid, // @[HellaCacheArbiter.scala:12:14] input [39:0] io_requestor_1_req_bits_addr, // @[HellaCacheArbiter.scala:12:14] input [6:0] io_requestor_1_req_bits_tag, // @[HellaCacheArbiter.scala:12:14] input [4:0] io_requestor_1_req_bits_cmd, // @[HellaCacheArbiter.scala:12:14] input [1:0] io_requestor_1_req_bits_size, // @[HellaCacheArbiter.scala:12:14] input io_requestor_1_req_bits_signed, // @[HellaCacheArbiter.scala:12:14] input [1:0] io_requestor_1_req_bits_dprv, // @[HellaCacheArbiter.scala:12:14] input io_requestor_1_req_bits_dv, // @[HellaCacheArbiter.scala:12:14] input io_requestor_1_req_bits_no_resp, // @[HellaCacheArbiter.scala:12:14] input io_requestor_1_s1_kill, // @[HellaCacheArbiter.scala:12:14] input [63:0] io_requestor_1_s1_data_data, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_s2_nack, // @[HellaCacheArbiter.scala:12:14] output [31:0] io_requestor_1_s2_paddr, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_resp_valid, // @[HellaCacheArbiter.scala:12:14] output [39:0] io_requestor_1_resp_bits_addr, // @[HellaCacheArbiter.scala:12:14] output [6:0] io_requestor_1_resp_bits_tag, // @[HellaCacheArbiter.scala:12:14] output [4:0] io_requestor_1_resp_bits_cmd, // @[HellaCacheArbiter.scala:12:14] output [1:0] io_requestor_1_resp_bits_size, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_resp_bits_signed, // @[HellaCacheArbiter.scala:12:14] output [1:0] io_requestor_1_resp_bits_dprv, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_resp_bits_dv, // @[HellaCacheArbiter.scala:12:14] output [63:0] io_requestor_1_resp_bits_data, // @[HellaCacheArbiter.scala:12:14] output [7:0] io_requestor_1_resp_bits_mask, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_resp_bits_replay, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_resp_bits_has_data, // @[HellaCacheArbiter.scala:12:14] output [63:0] io_requestor_1_resp_bits_data_word_bypass, // @[HellaCacheArbiter.scala:12:14] output [63:0] io_requestor_1_resp_bits_data_raw, // @[HellaCacheArbiter.scala:12:14] output [63:0] io_requestor_1_resp_bits_store_data, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_replay_next, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_s2_xcpt_ma_ld, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_s2_xcpt_ma_st, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_s2_xcpt_pf_ld, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_s2_xcpt_pf_st, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_s2_xcpt_ae_ld, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_s2_xcpt_ae_st, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_ordered, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_store_pending, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_perf_acquire, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_perf_release, // @[HellaCacheArbiter.scala:12:14] output io_requestor_1_perf_tlbMiss, // @[HellaCacheArbiter.scala:12:14] input io_requestor_1_keep_clock_enabled, // @[HellaCacheArbiter.scala:12:14] input io_mem_req_ready, // @[HellaCacheArbiter.scala:12:14] output io_mem_req_valid, // @[HellaCacheArbiter.scala:12:14] output [39:0] io_mem_req_bits_addr, // @[HellaCacheArbiter.scala:12:14] output [6:0] io_mem_req_bits_tag, // @[HellaCacheArbiter.scala:12:14] output [4:0] io_mem_req_bits_cmd, // @[HellaCacheArbiter.scala:12:14] output [1:0] io_mem_req_bits_size, // @[HellaCacheArbiter.scala:12:14] output io_mem_req_bits_signed, // @[HellaCacheArbiter.scala:12:14] output [1:0] io_mem_req_bits_dprv, // @[HellaCacheArbiter.scala:12:14] output io_mem_req_bits_dv, // @[HellaCacheArbiter.scala:12:14] output io_mem_req_bits_phys, // @[HellaCacheArbiter.scala:12:14] output io_mem_req_bits_no_resp, // @[HellaCacheArbiter.scala:12:14] output io_mem_s1_kill, // @[HellaCacheArbiter.scala:12:14] output [63:0] io_mem_s1_data_data, // @[HellaCacheArbiter.scala:12:14] input io_mem_s2_nack, // @[HellaCacheArbiter.scala:12:14] input [31:0] io_mem_s2_paddr, // @[HellaCacheArbiter.scala:12:14] input io_mem_resp_valid, // @[HellaCacheArbiter.scala:12:14] input [39:0] io_mem_resp_bits_addr, // @[HellaCacheArbiter.scala:12:14] input [6:0] io_mem_resp_bits_tag, // @[HellaCacheArbiter.scala:12:14] input [4:0] io_mem_resp_bits_cmd, // @[HellaCacheArbiter.scala:12:14] input [1:0] io_mem_resp_bits_size, // @[HellaCacheArbiter.scala:12:14] input io_mem_resp_bits_signed, // @[HellaCacheArbiter.scala:12:14] input [1:0] io_mem_resp_bits_dprv, // @[HellaCacheArbiter.scala:12:14] input io_mem_resp_bits_dv, // @[HellaCacheArbiter.scala:12:14] input [63:0] io_mem_resp_bits_data, // @[HellaCacheArbiter.scala:12:14] input [7:0] io_mem_resp_bits_mask, // @[HellaCacheArbiter.scala:12:14] input io_mem_resp_bits_replay, // @[HellaCacheArbiter.scala:12:14] input io_mem_resp_bits_has_data, // @[HellaCacheArbiter.scala:12:14] input [63:0] io_mem_resp_bits_data_word_bypass, // @[HellaCacheArbiter.scala:12:14] input [63:0] io_mem_resp_bits_data_raw, // @[HellaCacheArbiter.scala:12:14] input [63:0] io_mem_resp_bits_store_data, // @[HellaCacheArbiter.scala:12:14] input io_mem_replay_next, // @[HellaCacheArbiter.scala:12:14] input io_mem_s2_xcpt_ma_ld, // @[HellaCacheArbiter.scala:12:14] input io_mem_s2_xcpt_ma_st, // @[HellaCacheArbiter.scala:12:14] input io_mem_s2_xcpt_pf_ld, // @[HellaCacheArbiter.scala:12:14] input io_mem_s2_xcpt_pf_st, // @[HellaCacheArbiter.scala:12:14] input io_mem_s2_xcpt_ae_ld, // @[HellaCacheArbiter.scala:12:14] input io_mem_s2_xcpt_ae_st, // @[HellaCacheArbiter.scala:12:14] input io_mem_ordered, // @[HellaCacheArbiter.scala:12:14] input io_mem_store_pending, // @[HellaCacheArbiter.scala:12:14] input io_mem_perf_acquire, // @[HellaCacheArbiter.scala:12:14] input io_mem_perf_release, // @[HellaCacheArbiter.scala:12:14] input io_mem_perf_tlbMiss, // @[HellaCacheArbiter.scala:12:14] output io_mem_keep_clock_enabled // @[HellaCacheArbiter.scala:12:14] ); wire io_requestor_0_req_valid_0 = io_requestor_0_req_valid; // @[HellaCacheArbiter.scala:10:7] wire [39:0] io_requestor_0_req_bits_addr_0 = io_requestor_0_req_bits_addr; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_req_bits_dv_0 = io_requestor_0_req_bits_dv; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s1_kill_0 = io_requestor_0_s1_kill; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_req_valid_0 = io_requestor_1_req_valid; // @[HellaCacheArbiter.scala:10:7] wire [39:0] io_requestor_1_req_bits_addr_0 = io_requestor_1_req_bits_addr; // @[HellaCacheArbiter.scala:10:7] wire [6:0] io_requestor_1_req_bits_tag_0 = io_requestor_1_req_bits_tag; // @[HellaCacheArbiter.scala:10:7] wire [4:0] io_requestor_1_req_bits_cmd_0 = io_requestor_1_req_bits_cmd; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_requestor_1_req_bits_size_0 = io_requestor_1_req_bits_size; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_req_bits_signed_0 = io_requestor_1_req_bits_signed; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_requestor_1_req_bits_dprv_0 = io_requestor_1_req_bits_dprv; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_req_bits_dv_0 = io_requestor_1_req_bits_dv; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_req_bits_no_resp_0 = io_requestor_1_req_bits_no_resp; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s1_kill_0 = io_requestor_1_s1_kill; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_requestor_1_s1_data_data_0 = io_requestor_1_s1_data_data; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_keep_clock_enabled_0 = io_requestor_1_keep_clock_enabled; // @[HellaCacheArbiter.scala:10:7] wire io_mem_req_ready_0 = io_mem_req_ready; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_nack_0 = io_mem_s2_nack; // @[HellaCacheArbiter.scala:10:7] wire [31:0] io_mem_s2_paddr_0 = io_mem_s2_paddr; // @[HellaCacheArbiter.scala:10:7] wire io_mem_resp_valid_0 = io_mem_resp_valid; // @[HellaCacheArbiter.scala:10:7] wire [39:0] io_mem_resp_bits_addr_0 = io_mem_resp_bits_addr; // @[HellaCacheArbiter.scala:10:7] wire [6:0] io_mem_resp_bits_tag_0 = io_mem_resp_bits_tag; // @[HellaCacheArbiter.scala:10:7] wire [4:0] io_mem_resp_bits_cmd_0 = io_mem_resp_bits_cmd; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_mem_resp_bits_size_0 = io_mem_resp_bits_size; // @[HellaCacheArbiter.scala:10:7] wire io_mem_resp_bits_signed_0 = io_mem_resp_bits_signed; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_mem_resp_bits_dprv_0 = io_mem_resp_bits_dprv; // @[HellaCacheArbiter.scala:10:7] wire io_mem_resp_bits_dv_0 = io_mem_resp_bits_dv; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_mem_resp_bits_data_0 = io_mem_resp_bits_data; // @[HellaCacheArbiter.scala:10:7] wire [7:0] io_mem_resp_bits_mask_0 = io_mem_resp_bits_mask; // @[HellaCacheArbiter.scala:10:7] wire io_mem_resp_bits_replay_0 = io_mem_resp_bits_replay; // @[HellaCacheArbiter.scala:10:7] wire io_mem_resp_bits_has_data_0 = io_mem_resp_bits_has_data; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_mem_resp_bits_data_word_bypass_0 = io_mem_resp_bits_data_word_bypass; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_mem_resp_bits_data_raw_0 = io_mem_resp_bits_data_raw; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_mem_resp_bits_store_data_0 = io_mem_resp_bits_store_data; // @[HellaCacheArbiter.scala:10:7] wire io_mem_replay_next_0 = io_mem_replay_next; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_xcpt_ma_ld_0 = io_mem_s2_xcpt_ma_ld; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_xcpt_ma_st_0 = io_mem_s2_xcpt_ma_st; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_xcpt_pf_ld_0 = io_mem_s2_xcpt_pf_ld; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_xcpt_pf_st_0 = io_mem_s2_xcpt_pf_st; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_xcpt_ae_ld_0 = io_mem_s2_xcpt_ae_ld; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_xcpt_ae_st_0 = io_mem_s2_xcpt_ae_st; // @[HellaCacheArbiter.scala:10:7] wire io_mem_ordered_0 = io_mem_ordered; // @[HellaCacheArbiter.scala:10:7] wire io_mem_store_pending_0 = io_mem_store_pending; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_acquire_0 = io_mem_perf_acquire; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_release_0 = io_mem_perf_release; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_tlbMiss_0 = io_mem_perf_tlbMiss; // @[HellaCacheArbiter.scala:10:7] wire [39:0] io_requestor_0_s2_gpa = 40'h0; // @[HellaCacheArbiter.scala:10:7, :12:14] wire [39:0] io_requestor_1_s2_gpa = 40'h0; // @[HellaCacheArbiter.scala:10:7, :12:14] wire [39:0] io_mem_s2_gpa = 40'h0; // @[HellaCacheArbiter.scala:10:7, :12:14] wire [7:0] io_requestor_0_req_bits_mask = 8'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :34:35, :39:24, :50:26, :51:30] wire [7:0] io_requestor_0_s1_data_mask = 8'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :34:35, :39:24, :50:26, :51:30] wire [7:0] io_requestor_1_req_bits_mask = 8'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :34:35, :39:24, :50:26, :51:30] wire [7:0] io_requestor_1_s1_data_mask = 8'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :34:35, :39:24, :50:26, :51:30] wire [7:0] io_mem_req_bits_mask = 8'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :34:35, :39:24, :50:26, :51:30] wire [7:0] io_mem_s1_data_mask = 8'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :34:35, :39:24, :50:26, :51:30] wire [7:0] _io_mem_req_bits_tag_T_1 = 8'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :34:35, :39:24, :50:26, :51:30] wire [63:0] io_requestor_0_req_bits_data = 64'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :50:26] wire [63:0] io_requestor_0_s1_data_data = 64'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :50:26] wire [63:0] io_requestor_1_req_bits_data = 64'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :50:26] wire [63:0] io_mem_req_bits_data = 64'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :50:26] wire io_requestor_0_req_bits_phys = 1'h1; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_clock_enabled = 1'h1; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_clock_enabled = 1'h1; // @[HellaCacheArbiter.scala:10:7] wire io_mem_clock_enabled = 1'h1; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_requestor_0_req_bits_dprv = 2'h1; // @[HellaCacheArbiter.scala:10:7, :12:14] wire [1:0] io_requestor_0_req_bits_size = 2'h3; // @[HellaCacheArbiter.scala:10:7, :12:14] wire [4:0] io_requestor_0_req_bits_cmd = 5'h0; // @[HellaCacheArbiter.scala:10:7, :12:14] wire [6:0] io_requestor_0_req_bits_tag = 7'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :34:29] wire io_requestor_0_req_bits_signed = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_req_bits_no_resp = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_req_bits_no_alloc = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_req_bits_no_xcpt = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_nack_cause_raw = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_kill = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_uncached = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_xcpt_gf_ld = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_xcpt_gf_st = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_gpa_is_pte = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_grant = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_blocked = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_canAcceptStoreThenLoad = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_canAcceptStoreThenRMW = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_canAcceptLoadThenLoad = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_storeBufferEmptyAfterLoad = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_storeBufferEmptyAfterStore = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_keep_clock_enabled = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_req_bits_phys = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_req_bits_no_alloc = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_req_bits_no_xcpt = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_nack_cause_raw = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_kill = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_uncached = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_xcpt_gf_ld = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_xcpt_gf_st = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_gpa_is_pte = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_grant = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_blocked = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_canAcceptStoreThenLoad = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_canAcceptStoreThenRMW = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_canAcceptLoadThenLoad = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_storeBufferEmptyAfterLoad = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_storeBufferEmptyAfterStore = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_req_bits_no_alloc = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_req_bits_no_xcpt = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_nack_cause_raw = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_kill = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_uncached = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_xcpt_gf_ld = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_xcpt_gf_st = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s2_gpa_is_pte = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_grant = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_blocked = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_canAcceptStoreThenLoad = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_canAcceptStoreThenRMW = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_canAcceptLoadThenLoad = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_storeBufferEmptyAfterLoad = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_perf_storeBufferEmptyAfterStore = 1'h0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_req_bits_phys_0 = io_requestor_0_req_valid_0; // @[HellaCacheArbiter.scala:10:7] wire _io_requestor_0_s2_nack_T_1; // @[HellaCacheArbiter.scala:68:49] wire _io_requestor_0_resp_valid_T; // @[HellaCacheArbiter.scala:61:39] wire _io_requestor_1_req_ready_T_1; // @[HellaCacheArbiter.scala:28:64] wire _io_requestor_1_s2_nack_T_1; // @[HellaCacheArbiter.scala:68:49] wire _io_requestor_1_resp_valid_T; // @[HellaCacheArbiter.scala:61:39] wire _io_mem_keep_clock_enabled_T = io_requestor_1_keep_clock_enabled_0; // @[HellaCacheArbiter.scala:10:7, :23:81] wire io_requestor_0_req_ready_0 = io_mem_req_ready_0; // @[HellaCacheArbiter.scala:10:7] wire _io_mem_req_valid_T; // @[HellaCacheArbiter.scala:25:63] wire [31:0] io_requestor_0_s2_paddr_0 = io_mem_s2_paddr_0; // @[HellaCacheArbiter.scala:10:7] wire [31:0] io_requestor_1_s2_paddr_0 = io_mem_s2_paddr_0; // @[HellaCacheArbiter.scala:10:7] wire [39:0] io_requestor_0_resp_bits_addr_0 = io_mem_resp_bits_addr_0; // @[HellaCacheArbiter.scala:10:7] wire [39:0] io_requestor_1_resp_bits_addr_0 = io_mem_resp_bits_addr_0; // @[HellaCacheArbiter.scala:10:7] wire [4:0] io_requestor_0_resp_bits_cmd_0 = io_mem_resp_bits_cmd_0; // @[HellaCacheArbiter.scala:10:7] wire [4:0] io_requestor_1_resp_bits_cmd_0 = io_mem_resp_bits_cmd_0; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_requestor_0_resp_bits_size_0 = io_mem_resp_bits_size_0; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_requestor_1_resp_bits_size_0 = io_mem_resp_bits_size_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_resp_bits_signed_0 = io_mem_resp_bits_signed_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_resp_bits_signed_0 = io_mem_resp_bits_signed_0; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_requestor_0_resp_bits_dprv_0 = io_mem_resp_bits_dprv_0; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_requestor_1_resp_bits_dprv_0 = io_mem_resp_bits_dprv_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_resp_bits_dv_0 = io_mem_resp_bits_dv_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_resp_bits_dv_0 = io_mem_resp_bits_dv_0; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_requestor_0_resp_bits_data_0 = io_mem_resp_bits_data_0; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_requestor_1_resp_bits_data_0 = io_mem_resp_bits_data_0; // @[HellaCacheArbiter.scala:10:7] wire [7:0] io_requestor_0_resp_bits_mask_0 = io_mem_resp_bits_mask_0; // @[HellaCacheArbiter.scala:10:7] wire [7:0] io_requestor_1_resp_bits_mask_0 = io_mem_resp_bits_mask_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_resp_bits_replay_0 = io_mem_resp_bits_replay_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_resp_bits_replay_0 = io_mem_resp_bits_replay_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_resp_bits_has_data_0 = io_mem_resp_bits_has_data_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_resp_bits_has_data_0 = io_mem_resp_bits_has_data_0; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_requestor_0_resp_bits_data_word_bypass_0 = io_mem_resp_bits_data_word_bypass_0; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_requestor_1_resp_bits_data_word_bypass_0 = io_mem_resp_bits_data_word_bypass_0; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_requestor_0_resp_bits_data_raw_0 = io_mem_resp_bits_data_raw_0; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_requestor_1_resp_bits_data_raw_0 = io_mem_resp_bits_data_raw_0; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_requestor_0_resp_bits_store_data_0 = io_mem_resp_bits_store_data_0; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_requestor_1_resp_bits_store_data_0 = io_mem_resp_bits_store_data_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_replay_next_0 = io_mem_replay_next_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_replay_next_0 = io_mem_replay_next_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_xcpt_ma_ld_0 = io_mem_s2_xcpt_ma_ld_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_xcpt_ma_ld_0 = io_mem_s2_xcpt_ma_ld_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_xcpt_ma_st_0 = io_mem_s2_xcpt_ma_st_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_xcpt_ma_st_0 = io_mem_s2_xcpt_ma_st_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_xcpt_pf_ld_0 = io_mem_s2_xcpt_pf_ld_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_xcpt_pf_ld_0 = io_mem_s2_xcpt_pf_ld_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_xcpt_pf_st_0 = io_mem_s2_xcpt_pf_st_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_xcpt_pf_st_0 = io_mem_s2_xcpt_pf_st_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_xcpt_ae_ld_0 = io_mem_s2_xcpt_ae_ld_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_xcpt_ae_ld_0 = io_mem_s2_xcpt_ae_ld_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_xcpt_ae_st_0 = io_mem_s2_xcpt_ae_st_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_xcpt_ae_st_0 = io_mem_s2_xcpt_ae_st_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_ordered_0 = io_mem_ordered_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_ordered_0 = io_mem_ordered_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_store_pending_0 = io_mem_store_pending_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_store_pending_0 = io_mem_store_pending_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_acquire_0 = io_mem_perf_acquire_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_acquire_0 = io_mem_perf_acquire_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_release_0 = io_mem_perf_release_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_release_0 = io_mem_perf_release_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_perf_tlbMiss_0 = io_mem_perf_tlbMiss_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_perf_tlbMiss_0 = io_mem_perf_tlbMiss_0; // @[HellaCacheArbiter.scala:10:7] wire [6:0] io_requestor_0_resp_bits_tag_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_resp_valid_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_0_s2_nack_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_req_ready_0; // @[HellaCacheArbiter.scala:10:7] wire [6:0] io_requestor_1_resp_bits_tag_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_resp_valid_0; // @[HellaCacheArbiter.scala:10:7] wire io_requestor_1_s2_nack_0; // @[HellaCacheArbiter.scala:10:7] wire [39:0] io_mem_req_bits_addr_0; // @[HellaCacheArbiter.scala:10:7] wire [6:0] io_mem_req_bits_tag_0; // @[HellaCacheArbiter.scala:10:7] wire [4:0] io_mem_req_bits_cmd_0; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_mem_req_bits_size_0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_req_bits_signed_0; // @[HellaCacheArbiter.scala:10:7] wire [1:0] io_mem_req_bits_dprv_0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_req_bits_dv_0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_req_bits_no_resp_0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_req_valid_0; // @[HellaCacheArbiter.scala:10:7] wire [63:0] io_mem_s1_data_data_0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_s1_kill_0; // @[HellaCacheArbiter.scala:10:7] wire io_mem_keep_clock_enabled_0; // @[HellaCacheArbiter.scala:10:7] reg s1_id; // @[HellaCacheArbiter.scala:20:20] reg s2_id; // @[HellaCacheArbiter.scala:21:24] wire _io_requestor_1_s2_nack_T = s2_id; // @[HellaCacheArbiter.scala:21:24, :68:58] assign io_mem_keep_clock_enabled_0 = _io_mem_keep_clock_enabled_T; // @[HellaCacheArbiter.scala:10:7, :23:81] assign _io_mem_req_valid_T = io_requestor_0_req_valid_0 | io_requestor_1_req_valid_0; // @[HellaCacheArbiter.scala:10:7, :25:63] assign io_mem_req_valid_0 = _io_mem_req_valid_T; // @[HellaCacheArbiter.scala:10:7, :25:63] wire _io_requestor_1_req_ready_T = ~io_requestor_0_req_valid_0; // @[HellaCacheArbiter.scala:10:7, :28:67] assign _io_requestor_1_req_ready_T_1 = io_requestor_0_req_ready_0 & _io_requestor_1_req_ready_T; // @[HellaCacheArbiter.scala:10:7, :28:{64,67}] assign io_requestor_1_req_ready_0 = _io_requestor_1_req_ready_T_1; // @[HellaCacheArbiter.scala:10:7, :28:64] wire [7:0] _io_mem_req_bits_tag_T = {io_requestor_1_req_bits_tag_0, 1'h1}; // @[HellaCacheArbiter.scala:10:7, :34:35] assign io_mem_req_bits_addr_0 = io_requestor_0_req_valid_0 ? io_requestor_0_req_bits_addr_0 : io_requestor_1_req_bits_addr_0; // @[HellaCacheArbiter.scala:10:7, :33:25, :50:26] assign io_mem_req_bits_cmd_0 = io_requestor_0_req_valid_0 ? 5'h0 : io_requestor_1_req_bits_cmd_0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :50:26] assign io_mem_req_bits_size_0 = io_requestor_0_req_valid_0 ? 2'h3 : io_requestor_1_req_bits_size_0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :50:26] assign io_mem_req_bits_signed_0 = ~io_requestor_0_req_valid_0 & io_requestor_1_req_bits_signed_0; // @[HellaCacheArbiter.scala:10:7, :33:25, :50:26] assign io_mem_req_bits_dprv_0 = io_requestor_0_req_valid_0 ? 2'h1 : io_requestor_1_req_bits_dprv_0; // @[HellaCacheArbiter.scala:10:7, :12:14, :33:25, :50:26] assign io_mem_req_bits_dv_0 = io_requestor_0_req_valid_0 ? io_requestor_0_req_bits_dv_0 : io_requestor_1_req_bits_dv_0; // @[HellaCacheArbiter.scala:10:7, :33:25, :50:26] assign io_mem_req_bits_no_resp_0 = ~io_requestor_0_req_valid_0 & io_requestor_1_req_bits_no_resp_0; // @[HellaCacheArbiter.scala:10:7, :33:25, :50:26] assign io_mem_req_bits_tag_0 = io_requestor_0_req_valid_0 ? 7'h0 : _io_mem_req_bits_tag_T[6:0]; // @[HellaCacheArbiter.scala:10:7, :12:14, :34:{29,35}, :50:26] assign io_mem_s1_kill_0 = s1_id ? io_requestor_1_s1_kill_0 : io_requestor_0_s1_kill_0; // @[HellaCacheArbiter.scala:10:7, :20:20, :38:24, :51:30] assign io_mem_s1_data_data_0 = s1_id ? io_requestor_1_s1_data_data_0 : 64'h0; // @[HellaCacheArbiter.scala:10:7, :12:14, :20:20, :33:25, :39:24, :50:26, :51:30] wire _io_requestor_0_s2_nack_T = ~s2_id; // @[HellaCacheArbiter.scala:21:24, :52:21, :68:58] wire _tag_hit_T = io_mem_resp_bits_tag_0[0]; // @[HellaCacheArbiter.scala:10:7, :60:41] wire _tag_hit_T_1 = io_mem_resp_bits_tag_0[0]; // @[HellaCacheArbiter.scala:10:7, :60:41] wire tag_hit = ~_tag_hit_T; // @[HellaCacheArbiter.scala:60:{41,57}] assign _io_requestor_0_resp_valid_T = io_mem_resp_valid_0 & tag_hit; // @[HellaCacheArbiter.scala:10:7, :60:57, :61:39] assign io_requestor_0_resp_valid_0 = _io_requestor_0_resp_valid_T; // @[HellaCacheArbiter.scala:10:7, :61:39] assign _io_requestor_0_s2_nack_T_1 = io_mem_s2_nack_0 & _io_requestor_0_s2_nack_T; // @[HellaCacheArbiter.scala:10:7, :68:{49,58}] assign io_requestor_0_s2_nack_0 = _io_requestor_0_s2_nack_T_1; // @[HellaCacheArbiter.scala:10:7, :68:49] wire [5:0] _io_requestor_0_resp_bits_tag_T = io_mem_resp_bits_tag_0[6:1]; // @[HellaCacheArbiter.scala:10:7, :74:45] wire [5:0] _io_requestor_1_resp_bits_tag_T = io_mem_resp_bits_tag_0[6:1]; // @[HellaCacheArbiter.scala:10:7, :74:45] assign io_requestor_0_resp_bits_tag_0 = {1'h0, _io_requestor_0_resp_bits_tag_T}; // @[HellaCacheArbiter.scala:10:7, :74:{21,45}] wire tag_hit_1 = _tag_hit_T_1; // @[HellaCacheArbiter.scala:60:{41,57}] assign _io_requestor_1_resp_valid_T = io_mem_resp_valid_0 & tag_hit_1; // @[HellaCacheArbiter.scala:10:7, :60:57, :61:39] assign io_requestor_1_resp_valid_0 = _io_requestor_1_resp_valid_T; // @[HellaCacheArbiter.scala:10:7, :61:39] assign _io_requestor_1_s2_nack_T_1 = io_mem_s2_nack_0 & _io_requestor_1_s2_nack_T; // @[HellaCacheArbiter.scala:10:7, :68:{49,58}] assign io_requestor_1_s2_nack_0 = _io_requestor_1_s2_nack_T_1; // @[HellaCacheArbiter.scala:10:7, :68:49] assign io_requestor_1_resp_bits_tag_0 = {1'h0, _io_requestor_1_resp_bits_tag_T}; // @[HellaCacheArbiter.scala:10:7, :74:{21,45}] always @(posedge clock) begin // @[HellaCacheArbiter.scala:10:7] s1_id <= ~io_requestor_0_req_valid_0; // @[HellaCacheArbiter.scala:10:7, :20:20, :28:67] s2_id <= s1_id; // @[HellaCacheArbiter.scala:20:20, :21:24] always @(posedge) assign io_requestor_0_req_ready = io_requestor_0_req_ready_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_s2_nack = io_requestor_0_s2_nack_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_s2_paddr = io_requestor_0_s2_paddr_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_valid = io_requestor_0_resp_valid_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_addr = io_requestor_0_resp_bits_addr_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_tag = io_requestor_0_resp_bits_tag_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_cmd = io_requestor_0_resp_bits_cmd_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_size = io_requestor_0_resp_bits_size_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_signed = io_requestor_0_resp_bits_signed_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_dprv = io_requestor_0_resp_bits_dprv_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_dv = io_requestor_0_resp_bits_dv_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_data = io_requestor_0_resp_bits_data_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_mask = io_requestor_0_resp_bits_mask_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_replay = io_requestor_0_resp_bits_replay_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_has_data = io_requestor_0_resp_bits_has_data_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_data_word_bypass = io_requestor_0_resp_bits_data_word_bypass_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_data_raw = io_requestor_0_resp_bits_data_raw_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_resp_bits_store_data = io_requestor_0_resp_bits_store_data_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_replay_next = io_requestor_0_replay_next_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_s2_xcpt_ma_ld = io_requestor_0_s2_xcpt_ma_ld_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_s2_xcpt_ma_st = io_requestor_0_s2_xcpt_ma_st_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_s2_xcpt_pf_ld = io_requestor_0_s2_xcpt_pf_ld_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_s2_xcpt_pf_st = io_requestor_0_s2_xcpt_pf_st_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_s2_xcpt_ae_ld = io_requestor_0_s2_xcpt_ae_ld_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_s2_xcpt_ae_st = io_requestor_0_s2_xcpt_ae_st_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_ordered = io_requestor_0_ordered_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_store_pending = io_requestor_0_store_pending_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_perf_acquire = io_requestor_0_perf_acquire_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_perf_release = io_requestor_0_perf_release_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_0_perf_tlbMiss = io_requestor_0_perf_tlbMiss_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_req_ready = io_requestor_1_req_ready_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_s2_nack = io_requestor_1_s2_nack_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_s2_paddr = io_requestor_1_s2_paddr_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_valid = io_requestor_1_resp_valid_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_addr = io_requestor_1_resp_bits_addr_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_tag = io_requestor_1_resp_bits_tag_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_cmd = io_requestor_1_resp_bits_cmd_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_size = io_requestor_1_resp_bits_size_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_signed = io_requestor_1_resp_bits_signed_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_dprv = io_requestor_1_resp_bits_dprv_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_dv = io_requestor_1_resp_bits_dv_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_data = io_requestor_1_resp_bits_data_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_mask = io_requestor_1_resp_bits_mask_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_replay = io_requestor_1_resp_bits_replay_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_has_data = io_requestor_1_resp_bits_has_data_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_data_word_bypass = io_requestor_1_resp_bits_data_word_bypass_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_data_raw = io_requestor_1_resp_bits_data_raw_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_resp_bits_store_data = io_requestor_1_resp_bits_store_data_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_replay_next = io_requestor_1_replay_next_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_s2_xcpt_ma_ld = io_requestor_1_s2_xcpt_ma_ld_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_s2_xcpt_ma_st = io_requestor_1_s2_xcpt_ma_st_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_s2_xcpt_pf_ld = io_requestor_1_s2_xcpt_pf_ld_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_s2_xcpt_pf_st = io_requestor_1_s2_xcpt_pf_st_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_s2_xcpt_ae_ld = io_requestor_1_s2_xcpt_ae_ld_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_s2_xcpt_ae_st = io_requestor_1_s2_xcpt_ae_st_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_ordered = io_requestor_1_ordered_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_store_pending = io_requestor_1_store_pending_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_perf_acquire = io_requestor_1_perf_acquire_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_perf_release = io_requestor_1_perf_release_0; // @[HellaCacheArbiter.scala:10:7] assign io_requestor_1_perf_tlbMiss = io_requestor_1_perf_tlbMiss_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_valid = io_mem_req_valid_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_bits_addr = io_mem_req_bits_addr_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_bits_tag = io_mem_req_bits_tag_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_bits_cmd = io_mem_req_bits_cmd_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_bits_size = io_mem_req_bits_size_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_bits_signed = io_mem_req_bits_signed_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_bits_dprv = io_mem_req_bits_dprv_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_bits_dv = io_mem_req_bits_dv_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_bits_phys = io_mem_req_bits_phys_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_req_bits_no_resp = io_mem_req_bits_no_resp_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_s1_kill = io_mem_s1_kill_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_s1_data_data = io_mem_s1_data_data_0; // @[HellaCacheArbiter.scala:10:7] assign io_mem_keep_clock_enabled = io_mem_keep_clock_enabled_0; // @[HellaCacheArbiter.scala:10:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File AsyncQueue.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ case class AsyncQueueParams( depth: Int = 8, sync: Int = 3, safe: Boolean = true, // If safe is true, then effort is made to resynchronize the crossing indices when either side is reset. // This makes it safe/possible to reset one side of the crossing (but not the other) when the queue is empty. narrow: Boolean = false) // If narrow is true then the read mux is moved to the source side of the crossing. // This reduces the number of level shifters in the case where the clock crossing is also a voltage crossing, // at the expense of a combinational path from the sink to the source and back to the sink. { require (depth > 0 && isPow2(depth)) require (sync >= 2) val bits = log2Ceil(depth) val wires = if (narrow) 1 else depth } object AsyncQueueParams { // When there is only one entry, we don't need narrow. def singleton(sync: Int = 3, safe: Boolean = true) = AsyncQueueParams(1, sync, safe, false) } class AsyncBundleSafety extends Bundle { val ridx_valid = Input (Bool()) val widx_valid = Output(Bool()) val source_reset_n = Output(Bool()) val sink_reset_n = Input (Bool()) } class AsyncBundle[T <: Data](private val gen: T, val params: AsyncQueueParams = AsyncQueueParams()) extends Bundle { // Data-path synchronization val mem = Output(Vec(params.wires, gen)) val ridx = Input (UInt((params.bits+1).W)) val widx = Output(UInt((params.bits+1).W)) val index = params.narrow.option(Input(UInt(params.bits.W))) // Signals used to self-stabilize a safe AsyncQueue val safe = params.safe.option(new AsyncBundleSafety) } object GrayCounter { def apply(bits: Int, increment: Bool = true.B, clear: Bool = false.B, name: String = "binary"): UInt = { val incremented = Wire(UInt(bits.W)) val binary = RegNext(next=incremented, init=0.U).suggestName(name) incremented := Mux(clear, 0.U, binary + increment.asUInt) incremented ^ (incremented >> 1) } } class AsyncValidSync(sync: Int, desc: String) extends RawModule { val io = IO(new Bundle { val in = Input(Bool()) val out = Output(Bool()) }) val clock = IO(Input(Clock())) val reset = IO(Input(AsyncReset())) withClockAndReset(clock, reset){ io.out := AsyncResetSynchronizerShiftReg(io.in, sync, Some(desc)) } } class AsyncQueueSource[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSource_${gen.typeName}" val io = IO(new Bundle { // These come from the source domain val enq = Flipped(Decoupled(gen)) // These cross to the sink clock domain val async = new AsyncBundle(gen, params) }) val bits = params.bits val sink_ready = WireInit(true.B) val mem = Reg(Vec(params.depth, gen)) // This does NOT need to be reset at all. val widx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.enq.fire, !sink_ready, "widx_bin")) val ridx = AsyncResetSynchronizerShiftReg(io.async.ridx, params.sync, Some("ridx_gray")) val ready = sink_ready && widx =/= (ridx ^ (params.depth | params.depth >> 1).U) val index = if (bits == 0) 0.U else io.async.widx(bits-1, 0) ^ (io.async.widx(bits, bits) << (bits-1)) when (io.enq.fire) { mem(index) := io.enq.bits } val ready_reg = withReset(reset.asAsyncReset)(RegNext(next=ready, init=false.B).suggestName("ready_reg")) io.enq.ready := ready_reg && sink_ready val widx_reg = withReset(reset.asAsyncReset)(RegNext(next=widx, init=0.U).suggestName("widx_gray")) io.async.widx := widx_reg io.async.index match { case Some(index) => io.async.mem(0) := mem(index) case None => io.async.mem := mem } io.async.safe.foreach { sio => val source_valid_0 = Module(new AsyncValidSync(params.sync, "source_valid_0")) val source_valid_1 = Module(new AsyncValidSync(params.sync, "source_valid_1")) val sink_extend = Module(new AsyncValidSync(params.sync, "sink_extend")) val sink_valid = Module(new AsyncValidSync(params.sync, "sink_valid")) source_valid_0.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset source_valid_1.reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_extend .reset := (reset.asBool || !sio.sink_reset_n).asAsyncReset sink_valid .reset := reset.asAsyncReset source_valid_0.clock := clock source_valid_1.clock := clock sink_extend .clock := clock sink_valid .clock := clock source_valid_0.io.in := true.B source_valid_1.io.in := source_valid_0.io.out sio.widx_valid := source_valid_1.io.out sink_extend.io.in := sio.ridx_valid sink_valid.io.in := sink_extend.io.out sink_ready := sink_valid.io.out sio.source_reset_n := !reset.asBool // Assert that if there is stuff in the queue, then reset cannot happen // Impossible to write because dequeue can occur on the receiving side, // then reset allowed to happen, but write side cannot know that dequeue // occurred. // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // assert (!(reset || !sio.sink_reset_n) || !io.enq.valid, "Enqueue while sink is reset and AsyncQueueSource is unprotected") // assert (!reset_rise || prev_idx_match.asBool, "Sink reset while AsyncQueueSource not empty") } } class AsyncQueueSink[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Module { override def desiredName = s"AsyncQueueSink_${gen.typeName}" val io = IO(new Bundle { // These come from the sink domain val deq = Decoupled(gen) // These cross to the source clock domain val async = Flipped(new AsyncBundle(gen, params)) }) val bits = params.bits val source_ready = WireInit(true.B) val ridx = withReset(reset.asAsyncReset)(GrayCounter(bits+1, io.deq.fire, !source_ready, "ridx_bin")) val widx = AsyncResetSynchronizerShiftReg(io.async.widx, params.sync, Some("widx_gray")) val valid = source_ready && ridx =/= widx // The mux is safe because timing analysis ensures ridx has reached the register // On an ASIC, changes to the unread location cannot affect the selected value // On an FPGA, only one input changes at a time => mem updates don't cause glitches // The register only latches when the selected valued is not being written val index = if (bits == 0) 0.U else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1)) io.async.index.foreach { _ := index } // This register does not NEED to be reset, as its contents will not // be considered unless the asynchronously reset deq valid register is set. // It is possible that bits latches when the source domain is reset / has power cut // This is safe, because isolation gates brought mem low before the zeroed widx reached us val deq_bits_nxt = io.async.mem(if (params.narrow) 0.U else index) io.deq.bits := ClockCrossingReg(deq_bits_nxt, en = valid, doInit = false, name = Some("deq_bits_reg")) val valid_reg = withReset(reset.asAsyncReset)(RegNext(next=valid, init=false.B).suggestName("valid_reg")) io.deq.valid := valid_reg && source_ready val ridx_reg = withReset(reset.asAsyncReset)(RegNext(next=ridx, init=0.U).suggestName("ridx_gray")) io.async.ridx := ridx_reg io.async.safe.foreach { sio => val sink_valid_0 = Module(new AsyncValidSync(params.sync, "sink_valid_0")) val sink_valid_1 = Module(new AsyncValidSync(params.sync, "sink_valid_1")) val source_extend = Module(new AsyncValidSync(params.sync, "source_extend")) val source_valid = Module(new AsyncValidSync(params.sync, "source_valid")) sink_valid_0 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset sink_valid_1 .reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_extend.reset := (reset.asBool || !sio.source_reset_n).asAsyncReset source_valid .reset := reset.asAsyncReset sink_valid_0 .clock := clock sink_valid_1 .clock := clock source_extend.clock := clock source_valid .clock := clock sink_valid_0.io.in := true.B sink_valid_1.io.in := sink_valid_0.io.out sio.ridx_valid := sink_valid_1.io.out source_extend.io.in := sio.widx_valid source_valid.io.in := source_extend.io.out source_ready := source_valid.io.out sio.sink_reset_n := !reset.asBool // TODO: write some sort of sanity check assertion for users // that denote don't reset when there is activity // // val reset_and_extend = !source_ready || !sio.source_reset_n || reset.asBool // val reset_and_extend_prev = RegNext(reset_and_extend, true.B) // val reset_rise = !reset_and_extend_prev && reset_and_extend // val prev_idx_match = AsyncResetReg(updateData=(io.async.widx===io.async.ridx), resetData=0) // assert (!reset_rise || prev_idx_match.asBool, "Source reset while AsyncQueueSink not empty") } } object FromAsyncBundle { // Sometimes it makes sense for the sink to have different sync than the source def apply[T <: Data](x: AsyncBundle[T]): DecoupledIO[T] = apply(x, x.params.sync) def apply[T <: Data](x: AsyncBundle[T], sync: Int): DecoupledIO[T] = { val sink = Module(new AsyncQueueSink(chiselTypeOf(x.mem(0)), x.params.copy(sync = sync))) sink.io.async <> x sink.io.deq } } object ToAsyncBundle { def apply[T <: Data](x: ReadyValidIO[T], params: AsyncQueueParams = AsyncQueueParams()): AsyncBundle[T] = { val source = Module(new AsyncQueueSource(chiselTypeOf(x.bits), params)) source.io.enq <> x source.io.async } } class AsyncQueue[T <: Data](gen: T, params: AsyncQueueParams = AsyncQueueParams()) extends Crossing[T] { val io = IO(new CrossingIO(gen)) val source = withClockAndReset(io.enq_clock, io.enq_reset) { Module(new AsyncQueueSource(gen, params)) } val sink = withClockAndReset(io.deq_clock, io.deq_reset) { Module(new AsyncQueueSink (gen, params)) } source.io.enq <> io.enq io.deq <> sink.io.deq sink.io.async <> source.io.async } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Debug.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.devices.debug import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.amba.apb.{APBFanout, APBToTL} import freechips.rocketchip.devices.debug.systembusaccess.{SBToTL, SystemBusAccessModule} import freechips.rocketchip.devices.tilelink.{DevNullParams, TLBusBypass, TLError} import freechips.rocketchip.diplomacy.{AddressSet, BufferParams} import freechips.rocketchip.resources.{Description, Device, Resource, ResourceBindings, ResourceString, SimpleDevice} import freechips.rocketchip.interrupts.{IntNexusNode, IntSinkParameters, IntSinkPortParameters, IntSourceParameters, IntSourcePortParameters, IntSyncCrossingSource, IntSyncIdentityNode} import freechips.rocketchip.regmapper.{RegField, RegFieldAccessType, RegFieldDesc, RegFieldGroup, RegFieldWrType, RegReadFn, RegWriteFn} import freechips.rocketchip.rocket.{CSRs, Instructions} import freechips.rocketchip.tile.MaxHartIdBits import freechips.rocketchip.tilelink.{TLAsyncCrossingSink, TLAsyncCrossingSource, TLBuffer, TLRegisterNode, TLXbar} import freechips.rocketchip.util.{Annotated, AsyncBundle, AsyncQueueParams, AsyncResetSynchronizerShiftReg, FromAsyncBundle, ParameterizedBundle, ResetSynchronizerShiftReg, ToAsyncBundle} import freechips.rocketchip.util.SeqBoolBitwiseOps import freechips.rocketchip.util.SeqToAugmentedSeq import freechips.rocketchip.util.BooleanToAugmentedBoolean object DsbBusConsts { def sbAddrWidth = 12 def sbIdWidth = 10 } object DsbRegAddrs{ // These are used by the ROM. def HALTED = 0x100 def GOING = 0x104 def RESUMING = 0x108 def EXCEPTION = 0x10C def WHERETO = 0x300 // This needs to be aligned for up to lq/sq // This shows up in HartInfo, and needs to be aligned // to enable up to LQ/SQ instructions. def DATA = 0x380 // We want DATA to immediately follow PROGBUF so that we can // use them interchangeably. Leave another slot if there is an // implicit ebreak. def PROGBUF(cfg:DebugModuleParams) = { val tmp = DATA - (cfg.nProgramBufferWords * 4) if (cfg.hasImplicitEbreak) (tmp - 4) else tmp } // This is unused if hasImpEbreak is false, and just points to the end of the PROGBUF. def IMPEBREAK(cfg: DebugModuleParams) = { DATA - 4 } // We want abstract to be immediately before PROGBUF // because we auto-generate 2 (or 5) instructions. def ABSTRACT(cfg:DebugModuleParams) = PROGBUF(cfg) - (cfg.nAbstractInstructions * 4) def FLAGS = 0x400 def ROMBASE = 0x800 } /** Enumerations used both in the hardware * and in the configuration specification. */ object DebugModuleAccessType extends scala.Enumeration { type DebugModuleAccessType = Value val Access8Bit, Access16Bit, Access32Bit, Access64Bit, Access128Bit = Value } object DebugAbstractCommandError extends scala.Enumeration { type DebugAbstractCommandError = Value val Success, ErrBusy, ErrNotSupported, ErrException, ErrHaltResume = Value } object DebugAbstractCommandType extends scala.Enumeration { type DebugAbstractCommandType = Value val AccessRegister, QuickAccess = Value } /** Parameters exposed to the top-level design, set based on * external requirements, etc. * * This object checks that the parameters conform to the * full specification. The implementation which receives this * object can perform more checks on what that implementation * actually supports. * @param nComponents Number of components to support debugging. * @param baseAddress Base offest for debugEntry and debugException * @param nDMIAddrSize Size of the Debug Bus Address * @param nAbstractDataWords Number of 32-bit words for Abstract Commands * @param nProgamBufferWords Number of 32-bit words for Program Buffer * @param hasBusMaster Whether or not a bus master should be included * @param clockGate Whether or not to use dmactive as the clockgate for debug module * @param maxSupportedSBAccess Maximum transaction size supported by System Bus Access logic. * @param supportQuickAccess Whether or not to support the quick access command. * @param supportHartArray Whether or not to implement the hart array register (if >1 hart). * @param nHaltGroups Number of halt groups * @param nExtTriggers Number of external triggers * @param hasHartResets Feature to reset all the currently selected harts * @param hasImplicitEbreak There is an additional RO program buffer word containing an ebreak * @param crossingHasSafeReset Include "safe" logic in Async Crossings so that only one side needs to be reset. */ case class DebugModuleParams ( baseAddress : BigInt = BigInt(0), nDMIAddrSize : Int = 7, nProgramBufferWords: Int = 16, nAbstractDataWords : Int = 4, nScratch : Int = 1, hasBusMaster : Boolean = false, clockGate : Boolean = true, maxSupportedSBAccess : Int = 32, supportQuickAccess : Boolean = false, supportHartArray : Boolean = true, nHaltGroups : Int = 1, nExtTriggers : Int = 0, hasHartResets : Boolean = false, hasImplicitEbreak : Boolean = false, hasAuthentication : Boolean = false, crossingHasSafeReset : Boolean = true ) { require ((nDMIAddrSize >= 7) && (nDMIAddrSize <= 32), s"Legal DMIAddrSize is 7-32, not ${nDMIAddrSize}") require ((nAbstractDataWords > 0) && (nAbstractDataWords <= 16), s"Legal nAbstractDataWords is 0-16, not ${nAbstractDataWords}") require ((nProgramBufferWords >= 0) && (nProgramBufferWords <= 16), s"Legal nProgramBufferWords is 0-16, not ${nProgramBufferWords}") require (nHaltGroups < 32, s"Legal nHaltGroups is 0-31, not ${nHaltGroups}") require (nExtTriggers <= 16, s"Legal nExtTriggers is 0-16, not ${nExtTriggers}") if (supportQuickAccess) { // TODO: Check that quick access requirements are met. } def address = AddressSet(baseAddress, 0xFFF) /** the base address of DM */ def atzero = (baseAddress == 0) /** The number of generated instructions * * When the base address is not zero, we need more instruction also, * more dscratch registers) to load/store memory mapped data register * because they may no longer be directly addressible with x0 + 12-bit imm */ def nAbstractInstructions = if (atzero) 2 else 5 def debugEntry: BigInt = baseAddress + 0x800 def debugException: BigInt = baseAddress + 0x808 def nDscratch: Int = if (atzero) 1 else 2 } object DefaultDebugModuleParams { def apply(xlen:Int /*TODO , val configStringAddr: Int*/): DebugModuleParams = { new DebugModuleParams().copy( nAbstractDataWords = (if (xlen == 32) 1 else if (xlen == 64) 2 else 4), maxSupportedSBAccess = xlen ) } } case object DebugModuleKey extends Field[Option[DebugModuleParams]](Some(DebugModuleParams())) /** Functional parameters exposed to the design configuration. * * hartIdToHartSel: For systems where hart ids are not 1:1 with hartsel, provide the mapping. * hartSelToHartId: Provide inverse mapping of the above */ case class DebugModuleHartSelFuncs ( hartIdToHartSel : (UInt) => UInt = (x:UInt) => x, hartSelToHartId : (UInt) => UInt = (x:UInt) => x ) case object DebugModuleHartSelKey extends Field(DebugModuleHartSelFuncs()) class DebugExtTriggerOut (val nExtTriggers: Int) extends Bundle { val req = Output(UInt(nExtTriggers.W)) val ack = Input(UInt(nExtTriggers.W)) } class DebugExtTriggerIn (val nExtTriggers: Int) extends Bundle { val req = Input(UInt(nExtTriggers.W)) val ack = Output(UInt(nExtTriggers.W)) } class DebugExtTriggerIO () (implicit val p: Parameters) extends ParameterizedBundle()(p) { val out = new DebugExtTriggerOut(p(DebugModuleKey).get.nExtTriggers) val in = new DebugExtTriggerIn (p(DebugModuleKey).get.nExtTriggers) } class DebugAuthenticationIO () (implicit val p: Parameters) extends ParameterizedBundle()(p) { val dmactive = Output(Bool()) val dmAuthWrite = Output(Bool()) val dmAuthRead = Output(Bool()) val dmAuthWdata = Output(UInt(32.W)) val dmAuthBusy = Input(Bool()) val dmAuthRdata = Input(UInt(32.W)) val dmAuthenticated = Input(Bool()) } // ***************************************** // Module Interfaces // // ***************************************** /** Control signals for Inner, generated in Outer * {{{ * run control: resumreq, ackhavereset, halt-on-reset mask * hart select: hasel, hartsel and the hart array mask * }}} */ class DebugInternalBundle (val nComponents: Int)(implicit val p: Parameters) extends ParameterizedBundle()(p) { /** resume request */ val resumereq = Bool() /** hart select */ val hartsel = UInt(10.W) /** reset acknowledge */ val ackhavereset = Bool() /** hart array enable */ val hasel = Bool() /** hart array mask */ val hamask = Vec(nComponents, Bool()) /** halt-on-reset mask */ val hrmask = Vec(nComponents, Bool()) } /** structure for top-level Debug Module signals which aren't the bus interfaces. */ class DebugCtrlBundle (nComponents: Int)(implicit val p: Parameters) extends ParameterizedBundle()(p) { /** debug availability status for all harts */ val debugUnavail = Input(Vec(nComponents, Bool())) /** reset signal * * for every part of the hardware platform, * including every hart, except for the DM and any * logic required to access the DM */ val ndreset = Output(Bool()) /** reset signal for the DM itself */ val dmactive = Output(Bool()) /** dmactive acknowlege */ val dmactiveAck = Input(Bool()) } // ***************************************** // Debug Module // // ***************************************** /** Parameterized version of the Debug Module defined in the * RISC-V Debug Specification * * DebugModule is a slave to two asynchronous masters: * The Debug Bus (DMI) -- This is driven by an external debugger * * The System Bus -- This services requests from the cores. Generally * this interface should only be active at the request * of the debugger, but the Debug Module may also * provide the default MTVEC since it is mapped * to address 0x0. * * DebugModule is responsible for control registers and RAM, and * Debug ROM. It runs partially off of the dmiClk (e.g. TCK) and * the TL clock. Therefore, it is divided into "Outer" portion (running * off dmiClock and dmiReset) and "Inner" (running off tl_clock and tl_reset). * This allows DMCONTROL.haltreq, hartsel, hasel, hawindowsel, hawindow, dmactive, * and ndreset to be modified even while the Core is in reset or not being clocked. * Not all reads from the Debugger to the Debug Module will actually complete * in these scenarios either, they will just block until tl_clock and tl_reset * allow them to complete. This is not strictly necessary for * proper debugger functionality. */ // Local reg mapper function : Notify when written, but give the value as well. object WNotifyWire { def apply(n: Int, value: UInt, set: Bool, name: String, desc: String) : RegField = { RegField(n, 0.U, RegWriteFn((valid, data) => { set := valid value := data true.B }), Some(RegFieldDesc(name = name, desc = desc, access = RegFieldAccessType.W))) } } // Local reg mapper function : Notify when accessed either as read or write. object RWNotify { def apply (n: Int, rVal: UInt, wVal: UInt, rNotify: Bool, wNotify: Bool, desc: Option[RegFieldDesc] = None): RegField = { RegField(n, RegReadFn ((ready) => {rNotify := ready ; (true.B, rVal)}), RegWriteFn((valid, data) => { wNotify := valid when (valid) {wVal := data} true.B } ), desc) } } // Local reg mapper function : Notify with value when written, take read input as presented. // This allows checking or correcting the write value before storing it in the register field. object WNotifyVal { def apply(n: Int, rVal: UInt, wVal: UInt, wNotify: Bool, desc: RegFieldDesc): RegField = { RegField(n, rVal, RegWriteFn((valid, data) => { wNotify := valid wVal := data true.B } ), desc) } } class TLDebugModuleOuter(device: Device)(implicit p: Parameters) extends LazyModule { // For Shorter Register Names import DMI_RegAddrs._ val cfg = p(DebugModuleKey).get val intnode = IntNexusNode( sourceFn = { _ => IntSourcePortParameters(Seq(IntSourceParameters(1, Seq(Resource(device, "int"))))) }, sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) }, outputRequiresInput = false) val dmiNode = TLRegisterNode ( address = AddressSet.misaligned(DMI_DMCONTROL << 2, 4) ++ AddressSet.misaligned(DMI_HARTINFO << 2, 4) ++ AddressSet.misaligned(DMI_HAWINDOWSEL << 2, 4) ++ AddressSet.misaligned(DMI_HAWINDOW << 2, 4), device = device, beatBytes = 4, executable = false ) lazy val module = new Impl class Impl extends LazyModuleImp(this) { require (intnode.edges.in.size == 0, "Debug Module does not accept interrupts") val nComponents = intnode.out.size def getNComponents = () => nComponents val supportHartArray = cfg.supportHartArray && (nComponents > 1) // no hart array if only one hart val io = IO(new Bundle { /** structure for top-level Debug Module signals which aren't the bus interfaces. */ val ctrl = (new DebugCtrlBundle(nComponents)) /** control signals for Inner, generated in Outer */ val innerCtrl = new DecoupledIO(new DebugInternalBundle(nComponents)) /** debug interruption from Inner to Outer * * contains 2 type of debug interruption causes: * - halt group * - halt-on-reset */ val hgDebugInt = Input(Vec(nComponents, Bool())) /** hart reset request to core */ val hartResetReq = cfg.hasHartResets.option(Output(Vec(nComponents, Bool()))) /** authentication support */ val dmAuthenticated = cfg.hasAuthentication.option(Input(Bool())) }) val omRegMap = withReset(reset.asAsyncReset) { // FIXME: Instead of casting reset to ensure it is Async, assert/require reset.Type == AsyncReset (when this feature is available) val dmAuthenticated = io.dmAuthenticated.map( dma => ResetSynchronizerShiftReg(in=dma, sync=3, name=Some("dmAuthenticated_sync"))).getOrElse(true.B) //----DMCONTROL (The whole point of 'Outer' is to maintain this register on dmiClock (e.g. TCK) domain, so that it // can be written even if 'Inner' is not being clocked or is in reset. This allows halting // harts while the rest of the system is in reset. It doesn't really allow any other // register accesses, which will keep returning 'busy' to the debugger interface. val DMCONTROLReset = WireInit(0.U.asTypeOf(new DMCONTROLFields())) val DMCONTROLNxt = WireInit(0.U.asTypeOf(new DMCONTROLFields())) val DMCONTROLReg = RegNext(next=DMCONTROLNxt, init=0.U.asTypeOf(DMCONTROLNxt)).suggestName("DMCONTROLReg") val hartsel_mask = if (nComponents > 1) ((1 << p(MaxHartIdBits)) - 1).U else 0.U val DMCONTROLWrData = WireInit(0.U.asTypeOf(new DMCONTROLFields())) val dmactiveWrEn = WireInit(false.B) val ndmresetWrEn = WireInit(false.B) val clrresethaltreqWrEn = WireInit(false.B) val setresethaltreqWrEn = WireInit(false.B) val hartselloWrEn = WireInit(false.B) val haselWrEn = WireInit(false.B) val ackhaveresetWrEn = WireInit(false.B) val hartresetWrEn = WireInit(false.B) val resumereqWrEn = WireInit(false.B) val haltreqWrEn = WireInit(false.B) val dmactive = DMCONTROLReg.dmactive DMCONTROLNxt := DMCONTROLReg when (~dmactive) { DMCONTROLNxt := DMCONTROLReset } .otherwise { when (dmAuthenticated && ndmresetWrEn) { DMCONTROLNxt.ndmreset := DMCONTROLWrData.ndmreset } when (dmAuthenticated && hartselloWrEn) { DMCONTROLNxt.hartsello := DMCONTROLWrData.hartsello & hartsel_mask} when (dmAuthenticated && haselWrEn) { DMCONTROLNxt.hasel := DMCONTROLWrData.hasel } when (dmAuthenticated && hartresetWrEn) { DMCONTROLNxt.hartreset := DMCONTROLWrData.hartreset } when (dmAuthenticated && haltreqWrEn) { DMCONTROLNxt.haltreq := DMCONTROLWrData.haltreq } } // Put this last to override its own effects. when (dmactiveWrEn) { DMCONTROLNxt.dmactive := DMCONTROLWrData.dmactive } //----HARTINFO // DATA registers are mapped to memory. The dataaddr field of HARTINFO has only // 12 bits and assumes the DM base is 0. If not at 0, then HARTINFO reads as 0 // (implying nonexistence according to the Debug Spec). val HARTINFORdData = WireInit(0.U.asTypeOf(new HARTINFOFields())) if (cfg.atzero) when (dmAuthenticated) { HARTINFORdData.dataaccess := true.B HARTINFORdData.datasize := cfg.nAbstractDataWords.U HARTINFORdData.dataaddr := DsbRegAddrs.DATA.U HARTINFORdData.nscratch := cfg.nScratch.U } //-------------------------------------------------------------- // Hart array mask and window // hamask is hart array mask(1 bit per component), which doesn't include the hart selected by dmcontrol.hartsello // HAWINDOWSEL selects a 32-bit slice of HAMASK to be visible for read/write in HAWINDOW //-------------------------------------------------------------- val hamask = WireInit(VecInit(Seq.fill(nComponents) {false.B} )) def haWindowSize = 32 // The following need to be declared even if supportHartArray is false due to reference // at compile time by dmiNode.regmap val HAWINDOWSELWrData = WireInit(0.U.asTypeOf(new HAWINDOWSELFields())) val HAWINDOWSELWrEn = WireInit(false.B) val HAWINDOWRdData = WireInit(0.U.asTypeOf(new HAWINDOWFields())) val HAWINDOWWrData = WireInit(0.U.asTypeOf(new HAWINDOWFields())) val HAWINDOWWrEn = WireInit(false.B) /** whether the hart is selected */ def hartSelected(hart: Int): Bool = { ((io.innerCtrl.bits.hartsel === hart.U) || (if (supportHartArray) io.innerCtrl.bits.hasel && io.innerCtrl.bits.hamask(hart) else false.B)) } val HAWINDOWSELNxt = WireInit(0.U.asTypeOf(new HAWINDOWSELFields())) val HAWINDOWSELReg = RegNext(next=HAWINDOWSELNxt, init=0.U.asTypeOf(HAWINDOWSELNxt)) if (supportHartArray) { val HAWINDOWSELReset = WireInit(0.U.asTypeOf(new HAWINDOWSELFields())) HAWINDOWSELNxt := HAWINDOWSELReg when (~dmactive || ~dmAuthenticated) { HAWINDOWSELNxt := HAWINDOWSELReset } .otherwise { when (HAWINDOWSELWrEn) { // Unneeded upper bits of HAWINDOWSEL are tied to 0. Entire register is 0 if all harts fit in one window if (nComponents > haWindowSize) { HAWINDOWSELNxt.hawindowsel := HAWINDOWSELWrData.hawindowsel & ((1 << (log2Up(nComponents) - 5)) - 1).U } else { HAWINDOWSELNxt.hawindowsel := 0.U } } } val numHAMASKSlices = ((nComponents - 1)/haWindowSize)+1 HAWINDOWRdData.maskdata := 0.U // default, overridden below // for each slice,use a hamaskReg to store the selection info for (ii <- 0 until numHAMASKSlices) { val sliceMask = if (nComponents > ((ii*haWindowSize) + haWindowSize-1)) (BigInt(1) << haWindowSize) - 1 // All harts in this slice exist else (BigInt(1)<<(nComponents - (ii*haWindowSize))) - 1 // Partial last slice val HAMASKRst = WireInit(0.U.asTypeOf(new HAWINDOWFields())) val HAMASKNxt = WireInit(0.U.asTypeOf(new HAWINDOWFields())) val HAMASKReg = RegNext(next=HAMASKNxt, init=0.U.asTypeOf(HAMASKNxt)) when (ii.U === HAWINDOWSELReg.hawindowsel) { HAWINDOWRdData.maskdata := HAMASKReg.asUInt & sliceMask.U } HAMASKNxt.maskdata := HAMASKReg.asUInt when (~dmactive || ~dmAuthenticated) { HAMASKNxt := HAMASKRst }.otherwise { when (HAWINDOWWrEn && (ii.U === HAWINDOWSELReg.hawindowsel)) { HAMASKNxt.maskdata := HAWINDOWWrData.maskdata } } // drive each slice of hamask with stored HAMASKReg or with new value being written for (jj <- 0 until haWindowSize) { if (((ii*haWindowSize) + jj) < nComponents) { val tempWrData = HAWINDOWWrData.maskdata.asBools val tempMaskReg = HAMASKReg.asUInt.asBools when (HAWINDOWWrEn && (ii.U === HAWINDOWSELReg.hawindowsel)) { hamask(ii*haWindowSize + jj) := tempWrData(jj) }.otherwise { hamask(ii*haWindowSize + jj) := tempMaskReg(jj) } } } } } //-------------------------------------------------------------- // Halt-on-reset // hrmaskReg is current set of harts that should halt-on-reset // Reset state (dmactive=0) is all zeroes // Bits are set by writing 1 to DMCONTROL.setresethaltreq // Bits are cleared by writing 1 to DMCONTROL.clrresethaltreq // Spec says if both are 1, then clrresethaltreq is executed // hrmask is the halt-on-reset mask which will be sent to inner //-------------------------------------------------------------- val hrmask = Wire(Vec(nComponents, Bool())) val hrmaskNxt = Wire(Vec(nComponents, Bool())) val hrmaskReg = RegNext(next=hrmaskNxt, init=0.U.asTypeOf(hrmaskNxt)).suggestName("hrmaskReg") hrmaskNxt := hrmaskReg for (component <- 0 until nComponents) { when (~dmactive || ~dmAuthenticated) { hrmaskNxt(component) := false.B }.elsewhen (clrresethaltreqWrEn && DMCONTROLWrData.clrresethaltreq && hartSelected(component)) { hrmaskNxt(component) := false.B }.elsewhen (setresethaltreqWrEn && DMCONTROLWrData.setresethaltreq && hartSelected(component)) { hrmaskNxt(component) := true.B } } hrmask := hrmaskNxt val dmControlRegFields = RegFieldGroup("dmcontrol", Some("debug module control register"), Seq( WNotifyVal(1, DMCONTROLReg.dmactive & io.ctrl.dmactiveAck, DMCONTROLWrData.dmactive, dmactiveWrEn, RegFieldDesc("dmactive", "debug module active", reset=Some(0))), WNotifyVal(1, DMCONTROLReg.ndmreset, DMCONTROLWrData.ndmreset, ndmresetWrEn, RegFieldDesc("ndmreset", "debug module reset output", reset=Some(0))), WNotifyVal(1, 0.U, DMCONTROLWrData.clrresethaltreq, clrresethaltreqWrEn, RegFieldDesc("clrresethaltreq", "clear reset halt request", reset=Some(0), access=RegFieldAccessType.W)), WNotifyVal(1, 0.U, DMCONTROLWrData.setresethaltreq, setresethaltreqWrEn, RegFieldDesc("setresethaltreq", "set reset halt request", reset=Some(0), access=RegFieldAccessType.W)), RegField(12), if (nComponents > 1) WNotifyVal(p(MaxHartIdBits), DMCONTROLReg.hartsello, DMCONTROLWrData.hartsello, hartselloWrEn, RegFieldDesc("hartsello", "hart select low", reset=Some(0))) else RegField(1), if (nComponents > 1) RegField(10-p(MaxHartIdBits)) else RegField(9), if (supportHartArray) WNotifyVal(1, DMCONTROLReg.hasel, DMCONTROLWrData.hasel, haselWrEn, RegFieldDesc("hasel", "hart array select", reset=Some(0))) else RegField(1), RegField(1), WNotifyVal(1, 0.U, DMCONTROLWrData.ackhavereset, ackhaveresetWrEn, RegFieldDesc("ackhavereset", "acknowledge reset", reset=Some(0), access=RegFieldAccessType.W)), if (cfg.hasHartResets) WNotifyVal(1, DMCONTROLReg.hartreset, DMCONTROLWrData.hartreset, hartresetWrEn, RegFieldDesc("hartreset", "hart reset request", reset=Some(0))) else RegField(1), WNotifyVal(1, 0.U, DMCONTROLWrData.resumereq, resumereqWrEn, RegFieldDesc("resumereq", "resume request", reset=Some(0), access=RegFieldAccessType.W)), WNotifyVal(1, DMCONTROLReg.haltreq, DMCONTROLWrData.haltreq, haltreqWrEn, // Spec says W, but maintaining previous behavior RegFieldDesc("haltreq", "halt request", reset=Some(0))) )) val hartinfoRegFields = RegFieldGroup("dmi_hartinfo", Some("hart information"), Seq( RegField.r(12, HARTINFORdData.dataaddr, RegFieldDesc("dataaddr", "data address", reset=Some(if (cfg.atzero) DsbRegAddrs.DATA else 0))), RegField.r(4, HARTINFORdData.datasize, RegFieldDesc("datasize", "number of DATA registers", reset=Some(if (cfg.atzero) cfg.nAbstractDataWords else 0))), RegField.r(1, HARTINFORdData.dataaccess, RegFieldDesc("dataaccess", "data access type", reset=Some(if (cfg.atzero) 1 else 0))), RegField(3), RegField.r(4, HARTINFORdData.nscratch, RegFieldDesc("nscratch", "number of scratch registers", reset=Some(if (cfg.atzero) cfg.nScratch else 0))) )) //-------------------------------------------------------------- // DMI register decoder for Outer //-------------------------------------------------------------- // regmap addresses are byte offsets from lowest address def DMI_DMCONTROL_OFFSET = 0 def DMI_HARTINFO_OFFSET = ((DMI_HARTINFO - DMI_DMCONTROL) << 2) def DMI_HAWINDOWSEL_OFFSET = ((DMI_HAWINDOWSEL - DMI_DMCONTROL) << 2) def DMI_HAWINDOW_OFFSET = ((DMI_HAWINDOW - DMI_DMCONTROL) << 2) val omRegMap = dmiNode.regmap( DMI_DMCONTROL_OFFSET -> dmControlRegFields, DMI_HARTINFO_OFFSET -> hartinfoRegFields, DMI_HAWINDOWSEL_OFFSET -> (if (supportHartArray && (nComponents > 32)) Seq( WNotifyVal(log2Up(nComponents)-5, HAWINDOWSELReg.hawindowsel, HAWINDOWSELWrData.hawindowsel, HAWINDOWSELWrEn, RegFieldDesc("hawindowsel", "hart array window select", reset=Some(0)))) else Nil), DMI_HAWINDOW_OFFSET -> (if (supportHartArray) Seq( WNotifyVal(if (nComponents > 31) 32 else nComponents, HAWINDOWRdData.maskdata, HAWINDOWWrData.maskdata, HAWINDOWWrEn, RegFieldDesc("hawindow", "hart array window", reset=Some(0), volatile=(nComponents > 32)))) else Nil) ) //-------------------------------------------------------------- // Interrupt Registers //-------------------------------------------------------------- val debugIntNxt = WireInit(VecInit(Seq.fill(nComponents) {false.B} )) val debugIntRegs = RegNext(next=debugIntNxt, init=0.U.asTypeOf(debugIntNxt)).suggestName("debugIntRegs") debugIntNxt := debugIntRegs val (intnode_out, _) = intnode.out.unzip for (component <- 0 until nComponents) { intnode_out(component)(0) := debugIntRegs(component) | io.hgDebugInt(component) } // sends debug interruption to Core when dmcs.haltreq is set, for (component <- 0 until nComponents) { when (~dmactive || ~dmAuthenticated) { debugIntNxt(component) := false.B }. otherwise { when (haltreqWrEn && ((DMCONTROLWrData.hartsello === component.U) || (if (supportHartArray) DMCONTROLWrData.hasel && hamask(component) else false.B))) { debugIntNxt(component) := DMCONTROLWrData.haltreq } } } // Halt request registers are set & cleared by writes to DMCONTROL.haltreq // resumereq also causes the core to execute a 'dret', // so resumereq is passed through to Inner. // hartsel/hasel/hamask must also be used by the DebugModule state machine, // so it is passed to Inner. // These registers ensure that requests to dmInner are not lost if inner clock isn't running or requests occur too close together. // If the innerCtrl async queue is not ready, the notification will be posted and held until ready is received. // Additional notifications that occur while one is already waiting update the pending data so that the last value written is sent. // Volatile events resumereq and ackhavereset are registered when they occur and remain pending until ready is received. val innerCtrlValid = Wire(Bool()) val innerCtrlValidReg = RegInit(false.B).suggestName("innerCtrlValidReg") val innerCtrlResumeReqReg = RegInit(false.B).suggestName("innerCtrlResumeReqReg") val innerCtrlAckHaveResetReg = RegInit(false.B).suggestName("innerCtrlAckHaveResetReg") innerCtrlValid := hartselloWrEn | resumereqWrEn | ackhaveresetWrEn | setresethaltreqWrEn | clrresethaltreqWrEn | haselWrEn | (HAWINDOWWrEn & supportHartArray.B) innerCtrlValidReg := io.innerCtrl.valid & ~io.innerCtrl.ready // Hold innerctrl request until the async queue accepts it innerCtrlResumeReqReg := io.innerCtrl.bits.resumereq & ~io.innerCtrl.ready // Hold resumereq until accepted innerCtrlAckHaveResetReg := io.innerCtrl.bits.ackhavereset & ~io.innerCtrl.ready // Hold ackhavereset until accepted io.innerCtrl.valid := innerCtrlValid | innerCtrlValidReg io.innerCtrl.bits.hartsel := Mux(hartselloWrEn, DMCONTROLWrData.hartsello, DMCONTROLReg.hartsello) io.innerCtrl.bits.resumereq := (resumereqWrEn & DMCONTROLWrData.resumereq) | innerCtrlResumeReqReg io.innerCtrl.bits.ackhavereset := (ackhaveresetWrEn & DMCONTROLWrData.ackhavereset) | innerCtrlAckHaveResetReg io.innerCtrl.bits.hrmask := hrmask if (supportHartArray) { io.innerCtrl.bits.hasel := Mux(haselWrEn, DMCONTROLWrData.hasel, DMCONTROLReg.hasel) io.innerCtrl.bits.hamask := hamask } else { io.innerCtrl.bits.hasel := DontCare io.innerCtrl.bits.hamask := DontCare } io.ctrl.ndreset := DMCONTROLReg.ndmreset io.ctrl.dmactive := DMCONTROLReg.dmactive // hart reset mechanism implementation if (cfg.hasHartResets) { val hartResetNxt = Wire(Vec(nComponents, Bool())) val hartResetReg = RegNext(next=hartResetNxt, init=0.U.asTypeOf(hartResetNxt)) for (component <- 0 until nComponents) { hartResetNxt(component) := DMCONTROLReg.hartreset & hartSelected(component) io.hartResetReq.get(component) := hartResetReg(component) } } omRegMap // FIXME: Remove this when withReset is removed }} } // wrap a Outer with a DMIToTL, derived by dmi clock & reset class TLDebugModuleOuterAsync(device: Device)(implicit p: Parameters) extends LazyModule { val cfg = p(DebugModuleKey).get val dmiXbar = LazyModule (new TLXbar(nameSuffix = Some("dmixbar"))) val dmi2tlOpt = (!p(ExportDebug).apb).option({ val dmi2tl = LazyModule(new DMIToTL()) dmiXbar.node := dmi2tl.node dmi2tl }) val apbNodeOpt = p(ExportDebug).apb.option({ val apb2tl = LazyModule(new APBToTL()) val apb2tlBuffer = LazyModule(new TLBuffer(BufferParams.pipe)) val dmTopAddr = (1 << cfg.nDMIAddrSize) << 2 val tlErrorParams = DevNullParams(AddressSet.misaligned(dmTopAddr, APBDebugConsts.apbDebugRegBase-dmTopAddr), maxAtomic=0, maxTransfer=4) val tlError = LazyModule(new TLError(tlErrorParams, buffer=false)) val apbXbar = LazyModule(new APBFanout()) val apbRegs = LazyModule(new APBDebugRegisters()) apbRegs.node := apbXbar.node apb2tl.node := apbXbar.node apb2tlBuffer.node := apb2tl.node dmiXbar.node := apb2tlBuffer.node tlError.node := dmiXbar.node apbXbar.node }) val dmOuter = LazyModule( new TLDebugModuleOuter(device)) val intnode = IntSyncIdentityNode() intnode :*= IntSyncCrossingSource(alreadyRegistered = true) :*= dmOuter.intnode val dmiBypass = LazyModule(new TLBusBypass(beatBytes=4, bufferError=false, maxAtomic=0, maxTransfer=4)) val dmiInnerNode = TLAsyncCrossingSource() := dmiBypass.node := dmiXbar.node dmOuter.dmiNode := dmiXbar.node lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { val nComponents = dmOuter.intnode.edges.out.size val io = IO(new Bundle { val dmi_clock = Input(Clock()) val dmi_reset = Input(Reset()) /** Debug Module Interface bewteen DM and DTM * * The DTM provides access to one or more Debug Modules (DMs) using DMI */ val dmi = (!p(ExportDebug).apb).option(Flipped(new DMIIO()(p))) // Optional APB Interface is fully diplomatic so is not listed here. val ctrl = new DebugCtrlBundle(nComponents) /** conrol signals for Inner, generated in Outer */ val innerCtrl = new AsyncBundle(new DebugInternalBundle(nComponents), AsyncQueueParams.singleton(safe=cfg.crossingHasSafeReset)) /** debug interruption generated in Inner */ val hgDebugInt = Input(Vec(nComponents, Bool())) /** hart reset request to core */ val hartResetReq = p(DebugModuleKey).get.hasHartResets.option(Output(Vec(nComponents, Bool()))) /** Authentication signal from core */ val dmAuthenticated = p(DebugModuleKey).get.hasAuthentication.option(Input(Bool())) }) val rf_reset = IO(Input(Reset())) // RF transform childClock := io.dmi_clock childReset := io.dmi_reset override def provideImplicitClockToLazyChildren = true withClockAndReset(childClock, childReset) { dmi2tlOpt.foreach { _.module.io.dmi <> io.dmi.get } val dmactiveAck = AsyncResetSynchronizerShiftReg(in=io.ctrl.dmactiveAck, sync=3, name=Some("dmactiveAckSync")) dmiBypass.module.io.bypass := ~io.ctrl.dmactive | ~dmactiveAck io.ctrl <> dmOuter.module.io.ctrl dmOuter.module.io.ctrl.dmactiveAck := dmactiveAck // send synced version down to dmOuter io.innerCtrl <> ToAsyncBundle(dmOuter.module.io.innerCtrl, AsyncQueueParams.singleton(safe=cfg.crossingHasSafeReset)) dmOuter.module.io.hgDebugInt := io.hgDebugInt io.hartResetReq.foreach { x => dmOuter.module.io.hartResetReq.foreach {y => x := y}} io.dmAuthenticated.foreach { x => dmOuter.module.io.dmAuthenticated.foreach { y => y := x}} } } } class TLDebugModuleInner(device: Device, getNComponents: () => Int, beatBytes: Int)(implicit p: Parameters) extends LazyModule { // For Shorter Register Names import DMI_RegAddrs._ val cfg = p(DebugModuleKey).get def getCfg = () => cfg val dmTopAddr = (1 << cfg.nDMIAddrSize) << 2 /** dmiNode address set */ val dmiNode = TLRegisterNode( // Address is range 0 to 0x1FF except DMCONTROL, HARTINFO, HAWINDOWSEL, HAWINDOW which are handled by Outer address = AddressSet.misaligned(0, DMI_DMCONTROL << 2) ++ AddressSet.misaligned((DMI_DMCONTROL + 1) << 2, ((DMI_HARTINFO << 2) - ((DMI_DMCONTROL + 1) << 2))) ++ AddressSet.misaligned((DMI_HARTINFO + 1) << 2, ((DMI_HAWINDOWSEL << 2) - ((DMI_HARTINFO + 1) << 2))) ++ AddressSet.misaligned((DMI_HAWINDOW + 1) << 2, (dmTopAddr - ((DMI_HAWINDOW + 1) << 2))), device = device, beatBytes = 4, executable = false ) val tlNode = TLRegisterNode( address=Seq(cfg.address), device=device, beatBytes=beatBytes, executable=true ) val sb2tlOpt = cfg.hasBusMaster.option(LazyModule(new SBToTL())) // If we want to support custom registers read through Abstract Commands, // provide a place to bring them into the debug module. What this connects // to is up to the implementation. val customNode = new DebugCustomSink() lazy val module = new Impl class Impl extends LazyModuleImp(this){ val nComponents = getNComponents() Annotated.params(this, cfg) val supportHartArray = cfg.supportHartArray & (nComponents > 1) val nExtTriggers = cfg.nExtTriggers val nHaltGroups = if ((nComponents > 1) | (nExtTriggers > 0)) cfg.nHaltGroups else 0 // no halt groups possible if single hart with no external triggers val hartSelFuncs = if (getNComponents() > 1) p(DebugModuleHartSelKey) else DebugModuleHartSelFuncs( hartIdToHartSel = (x) => 0.U, hartSelToHartId = (x) => x ) val io = IO(new Bundle { /** dm reset signal passed in from Outer */ val dmactive = Input(Bool()) /** conrol signals for Inner * * it's generated by Outer and comes in */ val innerCtrl = Flipped(new DecoupledIO(new DebugInternalBundle(nComponents))) /** debug unavail signal passed in from Outer*/ val debugUnavail = Input(Vec(nComponents, Bool())) /** debug interruption from Inner to Outer * * contain 2 type of debug interruption causes: * - halt group * - halt-on-reset */ val hgDebugInt = Output(Vec(nComponents, Bool())) /** interface for trigger */ val extTrigger = (nExtTriggers > 0).option(new DebugExtTriggerIO()) /** vector to indicate which hart is in reset * * dm receives it from core and sends it to Inner */ val hartIsInReset = Input(Vec(nComponents, Bool())) val tl_clock = Input(Clock()) val tl_reset = Input(Reset()) /** Debug Authentication signals from core */ val auth = cfg.hasAuthentication.option(new DebugAuthenticationIO()) }) sb2tlOpt.map { sb => sb.module.clock := io.tl_clock sb.module.reset := io.tl_reset sb.module.rf_reset := io.tl_reset } //-------------------------------------------------------------- // Import constants for shorter variable names //-------------------------------------------------------------- import DMI_RegAddrs._ import DsbRegAddrs._ import DsbBusConsts._ //-------------------------------------------------------------- // Sanity Check Configuration For this implementation. //-------------------------------------------------------------- require (cfg.supportQuickAccess == false, "No Quick Access support yet") require ((nHaltGroups > 0) || (nExtTriggers == 0), "External triggers require at least 1 halt group") //-------------------------------------------------------------- // Register & Wire Declarations (which need to be pre-declared) //-------------------------------------------------------------- // run control regs: tracking all the harts // implements: see implementation-specific bits part /** all harts halted status */ val haltedBitRegs = Reg(UInt(nComponents.W)) /** all harts resume request status */ val resumeReqRegs = Reg(UInt(nComponents.W)) /** all harts have reset status */ val haveResetBitRegs = Reg(UInt(nComponents.W)) // default is 1,after resume, resumeAcks get 0 /** all harts resume ack status */ val resumeAcks = Wire(UInt(nComponents.W)) // --- regmapper outputs // hart state Id and En // in Hart Bus Access ROM val hartHaltedWrEn = Wire(Bool()) val hartHaltedId = Wire(UInt(sbIdWidth.W)) val hartGoingWrEn = Wire(Bool()) val hartGoingId = Wire(UInt(sbIdWidth.W)) val hartResumingWrEn = Wire(Bool()) val hartResumingId = Wire(UInt(sbIdWidth.W)) val hartExceptionWrEn = Wire(Bool()) val hartExceptionId = Wire(UInt(sbIdWidth.W)) // progbuf and abstract data: byte-addressable control logic // AccessLegal is set only when state = waiting // RdEn and WrEnMaybe : contrl signal drived by DMI bus val dmiProgramBufferRdEn = WireInit(VecInit(Seq.fill(cfg.nProgramBufferWords * 4) {false.B} )) val dmiProgramBufferAccessLegal = WireInit(false.B) val dmiProgramBufferWrEnMaybe = WireInit(VecInit(Seq.fill(cfg.nProgramBufferWords * 4) {false.B} )) val dmiAbstractDataRdEn = WireInit(VecInit(Seq.fill(cfg.nAbstractDataWords * 4) {false.B} )) val dmiAbstractDataAccessLegal = WireInit(false.B) val dmiAbstractDataWrEnMaybe = WireInit(VecInit(Seq.fill(cfg.nAbstractDataWords * 4) {false.B} )) //-------------------------------------------------------------- // Registers coming from 'CONTROL' in Outer //-------------------------------------------------------------- val dmAuthenticated = io.auth.map(a => a.dmAuthenticated).getOrElse(true.B) val selectedHartReg = Reg(UInt(p(MaxHartIdBits).W)) // hamaskFull is a vector of all selected harts including hartsel, whether or not supportHartArray is true val hamaskFull = WireInit(VecInit(Seq.fill(nComponents) {false.B} )) if (nComponents > 1) { when (~io.dmactive) { selectedHartReg := 0.U }.elsewhen (io.innerCtrl.fire){ selectedHartReg := io.innerCtrl.bits.hartsel } } if (supportHartArray) { val hamaskZero = WireInit(VecInit(Seq.fill(nComponents) {false.B} )) val hamaskReg = Reg(Vec(nComponents, Bool())) when (~io.dmactive || ~dmAuthenticated) { hamaskReg := hamaskZero }.elsewhen (io.innerCtrl.fire){ hamaskReg := Mux(io.innerCtrl.bits.hasel, io.innerCtrl.bits.hamask, hamaskZero) } hamaskFull := hamaskReg } // Outer.hamask doesn't consider the hart selected by dmcontrol.hartsello, // so append it here when (selectedHartReg < nComponents.U) { hamaskFull(if (nComponents == 1) 0.U(0.W) else selectedHartReg) := true.B } io.innerCtrl.ready := true.B // Construct a Vec from io.innerCtrl fields indicating whether each hart is being selected in this write // A hart may be selected by hartsel field or by hart array val hamaskWrSel = WireInit(VecInit(Seq.fill(nComponents) {false.B} )) for (component <- 0 until nComponents ) { hamaskWrSel(component) := ((io.innerCtrl.bits.hartsel === component.U) || (if (supportHartArray) io.innerCtrl.bits.hasel && io.innerCtrl.bits.hamask(component) else false.B)) } //------------------------------------- // Halt-on-reset logic // hrmask is set in dmOuter and passed in // Debug interrupt is generated when a reset occurs whose corresponding hrmask bit is set // Debug interrupt is maintained until the hart enters halted state //------------------------------------- val hrReset = WireInit(VecInit(Seq.fill(nComponents) { false.B } )) val hrDebugInt = Wire(Vec(nComponents, Bool())) val hrmaskReg = RegInit(hrReset) val hartIsInResetSync = Wire(Vec(nComponents, Bool())) for (component <- 0 until nComponents) { hartIsInResetSync(component) := AsyncResetSynchronizerShiftReg(io.hartIsInReset(component), 3, Some(s"debug_hartReset_$component")) } when (~io.dmactive || ~dmAuthenticated) { hrmaskReg := hrReset }.elsewhen (io.innerCtrl.fire){ hrmaskReg := io.innerCtrl.bits.hrmask } withReset(reset.asAsyncReset) { // ensure interrupt requests are negated at first clock edge val hrDebugIntReg = RegInit(VecInit(Seq.fill(nComponents) { false.B } )) when (~io.dmactive || ~dmAuthenticated) { hrDebugIntReg := hrReset }.otherwise { hrDebugIntReg := hrmaskReg & (hartIsInResetSync | // set debugInt during reset (hrDebugIntReg & ~(haltedBitRegs.asBools))) // maintain until core halts } hrDebugInt := hrDebugIntReg } //-------------------------------------------------------------- // DMI Registers //-------------------------------------------------------------- //----DMSTATUS val DMSTATUSRdData = WireInit(0.U.asTypeOf(new DMSTATUSFields())) DMSTATUSRdData.authenticated := dmAuthenticated DMSTATUSRdData.version := 2.U // Version 0.13 io.auth.map(a => DMSTATUSRdData.authbusy := a.dmAuthBusy) val resumereq = io.innerCtrl.fire && io.innerCtrl.bits.resumereq when (dmAuthenticated) { DMSTATUSRdData.hasresethaltreq := true.B DMSTATUSRdData.anynonexistent := (selectedHartReg >= nComponents.U) // only hartsel can be nonexistent // all harts nonexistent if hartsel is out of range and there are no harts selected in the hart array DMSTATUSRdData.allnonexistent := (selectedHartReg >= nComponents.U) & (~hamaskFull.reduce(_ | _)) when (~DMSTATUSRdData.allnonexistent) { // if no existent harts selected, all other status is false DMSTATUSRdData.anyunavail := (io.debugUnavail & hamaskFull).reduce(_ | _) DMSTATUSRdData.anyhalted := ((~io.debugUnavail & (haltedBitRegs.asBools)) & hamaskFull).reduce(_ | _) DMSTATUSRdData.anyrunning := ((~io.debugUnavail & ~(haltedBitRegs.asBools)) & hamaskFull).reduce(_ | _) DMSTATUSRdData.anyhavereset := (haveResetBitRegs.asBools & hamaskFull).reduce(_ | _) DMSTATUSRdData.anyresumeack := (resumeAcks.asBools & hamaskFull).reduce(_ | _) when (~DMSTATUSRdData.anynonexistent) { // if one hart is nonexistent, no 'all' status is set DMSTATUSRdData.allunavail := (io.debugUnavail | ~hamaskFull).reduce(_ & _) DMSTATUSRdData.allhalted := ((~io.debugUnavail & (haltedBitRegs.asBools)) | ~hamaskFull).reduce(_ & _) DMSTATUSRdData.allrunning := ((~io.debugUnavail & ~(haltedBitRegs.asBools)) | ~hamaskFull).reduce(_ & _) DMSTATUSRdData.allhavereset := (haveResetBitRegs.asBools | ~hamaskFull).reduce(_ & _) DMSTATUSRdData.allresumeack := (resumeAcks.asBools | ~hamaskFull).reduce(_ & _) } } //TODO DMSTATUSRdData.confstrptrvalid := false.B DMSTATUSRdData.impebreak := (cfg.hasImplicitEbreak).B } when(~io.dmactive || ~dmAuthenticated) { haveResetBitRegs := 0.U }.otherwise { when (io.innerCtrl.fire && io.innerCtrl.bits.ackhavereset) { haveResetBitRegs := (haveResetBitRegs & (~(hamaskWrSel.asUInt))) | hartIsInResetSync.asUInt }.otherwise { haveResetBitRegs := haveResetBitRegs | hartIsInResetSync.asUInt } } //----DMCS2 (Halt Groups) val DMCS2RdData = WireInit(0.U.asTypeOf(new DMCS2Fields())) val DMCS2WrData = WireInit(0.U.asTypeOf(new DMCS2Fields())) val hgselectWrEn = WireInit(false.B) val hgwriteWrEn = WireInit(false.B) val haltgroupWrEn = WireInit(false.B) val exttriggerWrEn = WireInit(false.B) val hgDebugInt = WireInit(VecInit(Seq.fill(nComponents) {false.B} )) if (nHaltGroups > 0) withReset (reset.asAsyncReset) { // async reset ensures triggers don't falsely fire during startup val hgBits = log2Up(nHaltGroups) // hgParticipate: Each entry indicates which hg that entity belongs to (1 to nHartGroups). 0 means no hg assigned. val hgParticipateHart = RegInit(VecInit(Seq.fill(nComponents)(0.U(hgBits.W)))) val hgParticipateTrig = if (nExtTriggers > 0) RegInit(VecInit(Seq.fill(nExtTriggers)(0.U(hgBits.W)))) else Nil // assign group index to current seledcted harts for (component <- 0 until nComponents) { when (~io.dmactive || ~dmAuthenticated) { hgParticipateHart(component) := 0.U }.otherwise { when (haltgroupWrEn & DMCS2WrData.hgwrite & ~DMCS2WrData.hgselect & hamaskFull(component) & (DMCS2WrData.haltgroup <= nHaltGroups.U)) { hgParticipateHart(component) := DMCS2WrData.haltgroup } } } DMCS2RdData.haltgroup := hgParticipateHart(if (nComponents == 1) 0.U(0.W) else selectedHartReg) if (nExtTriggers > 0) { val hgSelect = Reg(Bool()) when (~io.dmactive || ~dmAuthenticated) { hgSelect := false.B }.otherwise { when (hgselectWrEn) { hgSelect := DMCS2WrData.hgselect } } // assign group index to trigger for (trigger <- 0 until nExtTriggers) { when (~io.dmactive || ~dmAuthenticated) { hgParticipateTrig(trigger) := 0.U }.otherwise { when (haltgroupWrEn & DMCS2WrData.hgwrite & DMCS2WrData.hgselect & (DMCS2WrData.exttrigger === trigger.U) & (DMCS2WrData.haltgroup <= nHaltGroups.U)) { hgParticipateTrig(trigger) := DMCS2WrData.haltgroup } } } DMCS2RdData.hgselect := hgSelect when (hgSelect) { DMCS2RdData.haltgroup := hgParticipateTrig(0) } // If there is only 1 ext trigger, then the exttrigger field is fixed at 0 // Otherwise, instantiate a register with only the number of bits required if (nExtTriggers > 1) { val trigBits = log2Up(nExtTriggers-1) val hgExtTrigger = Reg(UInt(trigBits.W)) when (~io.dmactive || ~dmAuthenticated) { hgExtTrigger := 0.U }.otherwise { when (exttriggerWrEn & (DMCS2WrData.exttrigger < nExtTriggers.U)) { hgExtTrigger := DMCS2WrData.exttrigger } } DMCS2RdData.exttrigger := hgExtTrigger when (hgSelect) { DMCS2RdData.haltgroup := hgParticipateTrig(hgExtTrigger) } } } // Halt group state machine // IDLE: Go to FIRED when any hart in this hg writes to HALTED while its HaltedBitRegs=0 // or when any trigin assigned to this hg occurs // FIRED: Back to IDLE when all harts in this hg have set their haltedBitRegs // and all trig out in this hg have been acknowledged val hgFired = RegInit (VecInit(Seq.fill(nHaltGroups+1) {false.B} )) val hgHartFiring = WireInit(VecInit(Seq.fill(nHaltGroups+1) {false.B} )) // which hg's are firing due to hart halting val hgTrigFiring = WireInit(VecInit(Seq.fill(nHaltGroups+1) {false.B} )) // which hg's are firing due to trig in val hgHartsAllHalted = WireInit(VecInit(Seq.fill(nHaltGroups+1) {false.B} )) // in which hg's have all harts halted val hgTrigsAllAcked = WireInit(VecInit(Seq.fill(nHaltGroups+1) { true.B} )) // in which hg's have all trigouts been acked io.extTrigger.foreach {extTrigger => val extTriggerInReq = Wire(Vec(nExtTriggers, Bool())) val extTriggerOutAck = Wire(Vec(nExtTriggers, Bool())) extTriggerInReq := extTrigger.in.req.asBools extTriggerOutAck := extTrigger.out.ack.asBools val trigInReq = ResetSynchronizerShiftReg(in=extTriggerInReq, sync=3, name=Some("dm_extTriggerInReqSync")) val trigOutAck = ResetSynchronizerShiftReg(in=extTriggerOutAck, sync=3, name=Some("dm_extTriggerOutAckSync")) for (hg <- 1 to nHaltGroups) { hgTrigFiring(hg) := (trigInReq & ~RegNext(trigInReq) & hgParticipateTrig.map(_ === hg.U)).reduce(_ | _) hgTrigsAllAcked(hg) := (trigOutAck | hgParticipateTrig.map(_ =/= hg.U)).reduce(_ & _) } extTrigger.in.ack := trigInReq.asUInt } for (hg <- 1 to nHaltGroups) { hgHartFiring(hg) := hartHaltedWrEn & ~haltedBitRegs(hartHaltedId) & (hgParticipateHart(hartSelFuncs.hartIdToHartSel(hartHaltedId)) === hg.U) hgHartsAllHalted(hg) := (haltedBitRegs.asBools | hgParticipateHart.map(_ =/= hg.U)).reduce(_ & _) when (~io.dmactive || ~dmAuthenticated) { hgFired(hg) := false.B }.elsewhen (~hgFired(hg) & (hgHartFiring(hg) | hgTrigFiring(hg))) { hgFired(hg) := true.B }.elsewhen ( hgFired(hg) & hgHartsAllHalted(hg) & hgTrigsAllAcked(hg)) { hgFired(hg) := false.B } } // For each hg that has fired, assert debug interrupt to each hart in that hg for (component <- 0 until nComponents) { hgDebugInt(component) := hgFired(hgParticipateHart(component)) } // For each hg that has fired, assert trigger out for all external triggers in that hg io.extTrigger.foreach {extTrigger => val extTriggerOutReq = RegInit(VecInit(Seq.fill(cfg.nExtTriggers) {false.B} )) for (trig <- 0 until nExtTriggers) { extTriggerOutReq(trig) := hgFired(hgParticipateTrig(trig)) } extTrigger.out.req := extTriggerOutReq.asUInt } } io.hgDebugInt := hgDebugInt | hrDebugInt //----HALTSUM* val numHaltedStatus = ((nComponents - 1) / 32) + 1 val haltedStatus = Wire(Vec(numHaltedStatus, Bits(32.W))) for (ii <- 0 until numHaltedStatus) { when (dmAuthenticated) { haltedStatus(ii) := haltedBitRegs >> (ii*32) }.otherwise { haltedStatus(ii) := 0.U } } val haltedSummary = Cat(haltedStatus.map(_.orR).reverse) val HALTSUM1RdData = haltedSummary.asTypeOf(new HALTSUM1Fields()) val selectedHaltedStatus = Mux((selectedHartReg >> 5) > numHaltedStatus.U, 0.U, haltedStatus(selectedHartReg >> 5)) val HALTSUM0RdData = selectedHaltedStatus.asTypeOf(new HALTSUM0Fields()) // Since we only support 1024 harts, we don't implement HALTSUM2 or HALTSUM3 //----ABSTRACTCS val ABSTRACTCSReset = WireInit(0.U.asTypeOf(new ABSTRACTCSFields())) ABSTRACTCSReset.datacount := cfg.nAbstractDataWords.U ABSTRACTCSReset.progbufsize := cfg.nProgramBufferWords.U val ABSTRACTCSReg = Reg(new ABSTRACTCSFields()) val ABSTRACTCSWrData = WireInit(0.U.asTypeOf(new ABSTRACTCSFields())) val ABSTRACTCSRdData = WireInit(ABSTRACTCSReg) val ABSTRACTCSRdEn = WireInit(false.B) val ABSTRACTCSWrEnMaybe = WireInit(false.B) val ABSTRACTCSWrEnLegal = WireInit(false.B) val ABSTRACTCSWrEn = ABSTRACTCSWrEnMaybe && ABSTRACTCSWrEnLegal // multiple error types // find implement in the state machine part val errorBusy = WireInit(false.B) val errorException = WireInit(false.B) val errorUnsupported = WireInit(false.B) val errorHaltResume = WireInit(false.B) when (~io.dmactive || ~dmAuthenticated) { ABSTRACTCSReg := ABSTRACTCSReset }.otherwise { when (errorBusy){ ABSTRACTCSReg.cmderr := DebugAbstractCommandError.ErrBusy.id.U }.elsewhen (errorException) { ABSTRACTCSReg.cmderr := DebugAbstractCommandError.ErrException.id.U }.elsewhen (errorUnsupported) { ABSTRACTCSReg.cmderr := DebugAbstractCommandError.ErrNotSupported.id.U }.elsewhen (errorHaltResume) { ABSTRACTCSReg.cmderr := DebugAbstractCommandError.ErrHaltResume.id.U }.otherwise { //W1C when (ABSTRACTCSWrEn){ ABSTRACTCSReg.cmderr := ABSTRACTCSReg.cmderr & ~(ABSTRACTCSWrData.cmderr); } } } // For busy, see below state machine. val abstractCommandBusy = WireInit(true.B) ABSTRACTCSRdData.busy := abstractCommandBusy when (~dmAuthenticated) { // read value must be 0 when not authenticated ABSTRACTCSRdData.datacount := 0.U ABSTRACTCSRdData.progbufsize := 0.U } //---- ABSTRACTAUTO // It is a mask indicating whether datai/probufi have the autoexcution permisson // this part aims to produce 3 wires : autoexecData,autoexecProg,autoexec // first two specify which reg supports autoexec // autoexec is a control signal, meaning there is at least one enabled autoexec reg // when autoexec is set, generate instructions using COMMAND register val ABSTRACTAUTOReset = WireInit(0.U.asTypeOf(new ABSTRACTAUTOFields())) val ABSTRACTAUTOReg = Reg(new ABSTRACTAUTOFields()) val ABSTRACTAUTOWrData = WireInit(0.U.asTypeOf(new ABSTRACTAUTOFields())) val ABSTRACTAUTORdData = WireInit(ABSTRACTAUTOReg) val ABSTRACTAUTORdEn = WireInit(false.B) val autoexecdataWrEnMaybe = WireInit(false.B) val autoexecprogbufWrEnMaybe = WireInit(false.B) val ABSTRACTAUTOWrEnLegal = WireInit(false.B) when (~io.dmactive || ~dmAuthenticated) { ABSTRACTAUTOReg := ABSTRACTAUTOReset }.otherwise { when (autoexecprogbufWrEnMaybe && ABSTRACTAUTOWrEnLegal) { ABSTRACTAUTOReg.autoexecprogbuf := ABSTRACTAUTOWrData.autoexecprogbuf & ( (1 << cfg.nProgramBufferWords) - 1).U } when (autoexecdataWrEnMaybe && ABSTRACTAUTOWrEnLegal) { ABSTRACTAUTOReg.autoexecdata := ABSTRACTAUTOWrData.autoexecdata & ( (1 << cfg.nAbstractDataWords) - 1).U } } // Abstract Data access vector(byte-addressable) val dmiAbstractDataAccessVec = WireInit(VecInit(Seq.fill(cfg.nAbstractDataWords * 4) {false.B} )) dmiAbstractDataAccessVec := (dmiAbstractDataWrEnMaybe zip dmiAbstractDataRdEn).map{ case (r,w) => r | w} // Program Buffer access vector(byte-addressable) val dmiProgramBufferAccessVec = WireInit(VecInit(Seq.fill(cfg.nProgramBufferWords * 4) {false.B} )) dmiProgramBufferAccessVec := (dmiProgramBufferWrEnMaybe zip dmiProgramBufferRdEn).map{ case (r,w) => r | w} // at least one word access val dmiAbstractDataAccess = dmiAbstractDataAccessVec.reduce(_ || _ ) val dmiProgramBufferAccess = dmiProgramBufferAccessVec.reduce(_ || _) // This will take the shorter of the lists, which is what we want. val autoexecData = WireInit(VecInit(Seq.fill(cfg.nAbstractDataWords) {false.B} )) val autoexecProg = WireInit(VecInit(Seq.fill(cfg.nProgramBufferWords) {false.B} )) (autoexecData zip ABSTRACTAUTOReg.autoexecdata.asBools).zipWithIndex.foreach {case (t, i) => t._1 := dmiAbstractDataAccessVec(i * 4) && t._2 } (autoexecProg zip ABSTRACTAUTOReg.autoexecprogbuf.asBools).zipWithIndex.foreach {case (t, i) => t._1 := dmiProgramBufferAccessVec(i * 4) && t._2} val autoexec = autoexecData.reduce(_ || _) || autoexecProg.reduce(_ || _) //---- COMMAND val COMMANDReset = WireInit(0.U.asTypeOf(new COMMANDFields())) val COMMANDReg = Reg(new COMMANDFields()) val COMMANDWrDataVal = WireInit(0.U(32.W)) val COMMANDWrData = WireInit(COMMANDWrDataVal.asTypeOf(new COMMANDFields())) val COMMANDWrEnMaybe = WireInit(false.B) val COMMANDWrEnLegal = WireInit(false.B) val COMMANDRdEn = WireInit(false.B) val COMMANDWrEn = COMMANDWrEnMaybe && COMMANDWrEnLegal val COMMANDRdData = COMMANDReg when (~io.dmactive || ~dmAuthenticated) { COMMANDReg := COMMANDReset }.otherwise { when (COMMANDWrEn) { COMMANDReg := COMMANDWrData } } // --- Abstract Data // These are byte addressible, s.t. the Processor can use // byte-addressible instructions to store to them. val abstractDataMem = Reg(Vec(cfg.nAbstractDataWords*4, UInt(8.W))) val abstractDataNxt = WireInit(abstractDataMem) // --- Program Buffer // byte-addressible mem val programBufferMem = Reg(Vec(cfg.nProgramBufferWords*4, UInt(8.W))) val programBufferNxt = WireInit(programBufferMem) //-------------------------------------------------------------- // These bits are implementation-specific bits set // by harts executing code. //-------------------------------------------------------------- // Run control logic when (~io.dmactive || ~dmAuthenticated) { haltedBitRegs := 0.U resumeReqRegs := 0.U }.otherwise { //remove those harts in reset resumeReqRegs := resumeReqRegs & ~(hartIsInResetSync.asUInt) val hartHaltedIdIndex = UIntToOH(hartSelFuncs.hartIdToHartSel(hartHaltedId)) val hartResumingIdIndex = UIntToOH(hartSelFuncs.hartIdToHartSel(hartResumingId)) val hartselIndex = UIntToOH(io.innerCtrl.bits.hartsel) when (hartHaltedWrEn) { // add those harts halting and remove those in reset haltedBitRegs := (haltedBitRegs | hartHaltedIdIndex) & ~(hartIsInResetSync.asUInt) }.elsewhen (hartResumingWrEn) { // remove those harts in reset and those in resume haltedBitRegs := (haltedBitRegs & ~(hartResumingIdIndex)) & ~(hartIsInResetSync.asUInt) }.otherwise { // remove those harts in reset haltedBitRegs := haltedBitRegs & ~(hartIsInResetSync.asUInt) } when (hartResumingWrEn) { // remove those harts in resume and those in reset resumeReqRegs := (resumeReqRegs & ~(hartResumingIdIndex)) & ~(hartIsInResetSync.asUInt) } when (resumereq) { // set all sleceted harts to resumeReq, remove those in reset resumeReqRegs := (resumeReqRegs | hamaskWrSel.asUInt) & ~(hartIsInResetSync.asUInt) } } when (resumereq) { // next cycle resumeAcls will be the negation of next cycle resumeReqRegs resumeAcks := (~resumeReqRegs & ~(hamaskWrSel.asUInt)) }.otherwise { resumeAcks := ~resumeReqRegs } //---- AUTHDATA val authRdEnMaybe = WireInit(false.B) val authWrEnMaybe = WireInit(false.B) io.auth.map { a => a.dmactive := io.dmactive a.dmAuthRead := authRdEnMaybe & ~a.dmAuthBusy a.dmAuthWrite := authWrEnMaybe & ~a.dmAuthBusy } val dmstatusRegFields = RegFieldGroup("dmi_dmstatus", Some("debug module status register"), Seq( RegField.r(4, DMSTATUSRdData.version, RegFieldDesc("version", "version", reset=Some(2))), RegField.r(1, DMSTATUSRdData.confstrptrvalid, RegFieldDesc("confstrptrvalid", "confstrptrvalid", reset=Some(0))), RegField.r(1, DMSTATUSRdData.hasresethaltreq, RegFieldDesc("hasresethaltreq", "hasresethaltreq", reset=Some(1))), RegField.r(1, DMSTATUSRdData.authbusy, RegFieldDesc("authbusy", "authbusy", reset=Some(0))), RegField.r(1, DMSTATUSRdData.authenticated, RegFieldDesc("authenticated", "authenticated", reset=Some(1))), RegField.r(1, DMSTATUSRdData.anyhalted, RegFieldDesc("anyhalted", "anyhalted", reset=Some(0))), RegField.r(1, DMSTATUSRdData.allhalted, RegFieldDesc("allhalted", "allhalted", reset=Some(0))), RegField.r(1, DMSTATUSRdData.anyrunning, RegFieldDesc("anyrunning", "anyrunning", reset=Some(1))), RegField.r(1, DMSTATUSRdData.allrunning, RegFieldDesc("allrunning", "allrunning", reset=Some(1))), RegField.r(1, DMSTATUSRdData.anyunavail, RegFieldDesc("anyunavail", "anyunavail", reset=Some(0))), RegField.r(1, DMSTATUSRdData.allunavail, RegFieldDesc("allunavail", "allunavail", reset=Some(0))), RegField.r(1, DMSTATUSRdData.anynonexistent, RegFieldDesc("anynonexistent", "anynonexistent", reset=Some(0))), RegField.r(1, DMSTATUSRdData.allnonexistent, RegFieldDesc("allnonexistent", "allnonexistent", reset=Some(0))), RegField.r(1, DMSTATUSRdData.anyresumeack, RegFieldDesc("anyresumeack", "anyresumeack", reset=Some(1))), RegField.r(1, DMSTATUSRdData.allresumeack, RegFieldDesc("allresumeack", "allresumeack", reset=Some(1))), RegField.r(1, DMSTATUSRdData.anyhavereset, RegFieldDesc("anyhavereset", "anyhavereset", reset=Some(0))), RegField.r(1, DMSTATUSRdData.allhavereset, RegFieldDesc("allhavereset", "allhavereset", reset=Some(0))), RegField(2), RegField.r(1, DMSTATUSRdData.impebreak, RegFieldDesc("impebreak", "impebreak", reset=Some(if (cfg.hasImplicitEbreak) 1 else 0))) )) val dmcs2RegFields = RegFieldGroup("dmi_dmcs2", Some("debug module control/status register 2"), Seq( WNotifyVal(1, DMCS2RdData.hgselect, DMCS2WrData.hgselect, hgselectWrEn, RegFieldDesc("hgselect", "select halt groups or external triggers", reset=Some(0), volatile=true)), WNotifyVal(1, 0.U, DMCS2WrData.hgwrite, hgwriteWrEn, RegFieldDesc("hgwrite", "write 1 to change halt groups", reset=None, access=RegFieldAccessType.W)), WNotifyVal(5, DMCS2RdData.haltgroup, DMCS2WrData.haltgroup, haltgroupWrEn, RegFieldDesc("haltgroup", "halt group", reset=Some(0), volatile=true)), if (nExtTriggers > 1) WNotifyVal(4, DMCS2RdData.exttrigger, DMCS2WrData.exttrigger, exttriggerWrEn, RegFieldDesc("exttrigger", "external trigger select", reset=Some(0), volatile=true)) else RegField(4) )) val abstractcsRegFields = RegFieldGroup("dmi_abstractcs", Some("abstract command control/status"), Seq( RegField.r(4, ABSTRACTCSRdData.datacount, RegFieldDesc("datacount", "number of DATA registers", reset=Some(cfg.nAbstractDataWords))), RegField(4), WNotifyVal(3, ABSTRACTCSRdData.cmderr, ABSTRACTCSWrData.cmderr, ABSTRACTCSWrEnMaybe, RegFieldDesc("cmderr", "command error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))), RegField(1), RegField.r(1, ABSTRACTCSRdData.busy, RegFieldDesc("busy", "busy", reset=Some(0))), RegField(11), RegField.r(5, ABSTRACTCSRdData.progbufsize, RegFieldDesc("progbufsize", "number of PROGBUF registers", reset=Some(cfg.nProgramBufferWords))) )) val (sbcsFields, sbAddrFields, sbDataFields): (Seq[RegField], Seq[Seq[RegField]], Seq[Seq[RegField]]) = sb2tlOpt.map{ sb2tl => SystemBusAccessModule(sb2tl, io.dmactive, dmAuthenticated)(p) }.getOrElse((Seq.empty[RegField], Seq.fill[Seq[RegField]](4)(Seq.empty[RegField]), Seq.fill[Seq[RegField]](4)(Seq.empty[RegField]))) //-------------------------------------------------------------- // Program Buffer Access (DMI ... System Bus can override) //-------------------------------------------------------------- val omRegMap = dmiNode.regmap( (DMI_DMSTATUS << 2) -> dmstatusRegFields, //TODO (DMI_CFGSTRADDR0 << 2) -> cfgStrAddrFields, (DMI_DMCS2 << 2) -> (if (nHaltGroups > 0) dmcs2RegFields else Nil), (DMI_HALTSUM0 << 2) -> RegFieldGroup("dmi_haltsum0", Some("Halt Summary 0"), Seq(RegField.r(32, HALTSUM0RdData.asUInt, RegFieldDesc("dmi_haltsum0", "halt summary 0")))), (DMI_HALTSUM1 << 2) -> RegFieldGroup("dmi_haltsum1", Some("Halt Summary 1"), Seq(RegField.r(32, HALTSUM1RdData.asUInt, RegFieldDesc("dmi_haltsum1", "halt summary 1")))), (DMI_ABSTRACTCS << 2) -> abstractcsRegFields, (DMI_ABSTRACTAUTO<< 2) -> RegFieldGroup("dmi_abstractauto", Some("abstract command autoexec"), Seq( WNotifyVal(cfg.nAbstractDataWords, ABSTRACTAUTORdData.autoexecdata, ABSTRACTAUTOWrData.autoexecdata, autoexecdataWrEnMaybe, RegFieldDesc("autoexecdata", "abstract command data autoexec", reset=Some(0))), RegField(16-cfg.nAbstractDataWords), WNotifyVal(cfg.nProgramBufferWords, ABSTRACTAUTORdData.autoexecprogbuf, ABSTRACTAUTOWrData.autoexecprogbuf, autoexecprogbufWrEnMaybe, RegFieldDesc("autoexecprogbuf", "abstract command progbuf autoexec", reset=Some(0))))), (DMI_COMMAND << 2) -> RegFieldGroup("dmi_command", Some("Abstract Command Register"), Seq(RWNotify(32, COMMANDRdData.asUInt, COMMANDWrDataVal, COMMANDRdEn, COMMANDWrEnMaybe, Some(RegFieldDesc("dmi_command", "abstract command register", reset=Some(0), volatile=true))))), (DMI_DATA0 << 2) -> RegFieldGroup("dmi_data", Some("abstract command data registers"), abstractDataMem.zipWithIndex.map{case (x, i) => RWNotify(8, Mux(dmAuthenticated, x, 0.U), abstractDataNxt(i), dmiAbstractDataRdEn(i), dmiAbstractDataWrEnMaybe(i), Some(RegFieldDesc(s"dmi_data_$i", s"abstract command data register $i", reset = Some(0), volatile=true)))}, false), (DMI_PROGBUF0 << 2) -> RegFieldGroup("dmi_progbuf", Some("abstract command progbuf registers"), programBufferMem.zipWithIndex.map{case (x, i) => RWNotify(8, Mux(dmAuthenticated, x, 0.U), programBufferNxt(i), dmiProgramBufferRdEn(i), dmiProgramBufferWrEnMaybe(i), Some(RegFieldDesc(s"dmi_progbuf_$i", s"abstract command progbuf register $i", reset = Some(0))))}, false), (DMI_AUTHDATA << 2) -> (if (cfg.hasAuthentication) RegFieldGroup("dmi_authdata", Some("authentication data exchange register"), Seq(RWNotify(32, io.auth.get.dmAuthRdata, io.auth.get.dmAuthWdata, authRdEnMaybe, authWrEnMaybe, Some(RegFieldDesc("authdata", "authentication data exchange", volatile=true))))) else Nil), (DMI_SBCS << 2) -> sbcsFields, (DMI_SBDATA0 << 2) -> sbDataFields(0), (DMI_SBDATA1 << 2) -> sbDataFields(1), (DMI_SBDATA2 << 2) -> sbDataFields(2), (DMI_SBDATA3 << 2) -> sbDataFields(3), (DMI_SBADDRESS0 << 2) -> sbAddrFields(0), (DMI_SBADDRESS1 << 2) -> sbAddrFields(1), (DMI_SBADDRESS2 << 2) -> sbAddrFields(2), (DMI_SBADDRESS3 << 2) -> sbAddrFields(3) ) // Abstract data mem is written by both the tile link interface and DMI... abstractDataMem.zipWithIndex.foreach { case (x, i) => when (dmAuthenticated && dmiAbstractDataWrEnMaybe(i) && dmiAbstractDataAccessLegal) { x := abstractDataNxt(i) } } // ... and also by custom register read (if implemented) val (customs, customParams) = customNode.in.unzip val needCustom = (customs.size > 0) && (customParams.head.addrs.size > 0) def getNeedCustom = () => needCustom if (needCustom) { val (custom, customP) = customNode.in.head require(customP.width % 8 == 0, s"Debug Custom width must be divisible by 8, not ${customP.width}") val custom_data = custom.data.asBools val custom_bytes = Seq.tabulate(customP.width/8){i => custom_data.slice(i*8, (i+1)*8).asUInt} when (custom.ready && custom.valid) { (abstractDataMem zip custom_bytes).zipWithIndex.foreach {case ((a, b), i) => a := b } } } programBufferMem.zipWithIndex.foreach { case (x, i) => when (dmAuthenticated && dmiProgramBufferWrEnMaybe(i) && dmiProgramBufferAccessLegal) { x := programBufferNxt(i) } } //-------------------------------------------------------------- // "Variable" ROM Generation //-------------------------------------------------------------- val goReg = Reg(Bool()) val goAbstract = WireInit(false.B) val goCustom = WireInit(false.B) val jalAbstract = WireInit(Instructions.JAL.value.U.asTypeOf(new GeneratedUJ())) jalAbstract.setImm(ABSTRACT(cfg) - WHERETO) when (~io.dmactive){ goReg := false.B }.otherwise { when (goAbstract) { goReg := true.B }.elsewhen (hartGoingWrEn){ assert(hartGoingId === 0.U, "Unexpected 'GOING' hart.")//Chisel3 #540 %x, expected %x", hartGoingId, 0.U) goReg := false.B } } class flagBundle extends Bundle { val reserved = UInt(6.W) val resume = Bool() val go = Bool() } val flags = WireInit(VecInit(Seq.fill(1 << selectedHartReg.getWidth) {0.U.asTypeOf(new flagBundle())} )) assert ((hartSelFuncs.hartSelToHartId(selectedHartReg) < flags.size.U), s"HartSel to HartId Mapping is illegal for this Debug Implementation, because HartID must be < ${flags.size} for it to work.") flags(hartSelFuncs.hartSelToHartId(selectedHartReg)).go := goReg for (component <- 0 until nComponents) { val componentSel = WireInit(component.U) flags(hartSelFuncs.hartSelToHartId(componentSel)).resume := resumeReqRegs(component) } //---------------------------- // Abstract Command Decoding & Generation //---------------------------- val accessRegisterCommandWr = WireInit(COMMANDWrData.asUInt.asTypeOf(new ACCESS_REGISTERFields())) /** real COMMAND*/ val accessRegisterCommandReg = WireInit(COMMANDReg.asUInt.asTypeOf(new ACCESS_REGISTERFields())) // TODO: Quick Access class GeneratedI extends Bundle { val imm = UInt(12.W) val rs1 = UInt(5.W) val funct3 = UInt(3.W) val rd = UInt(5.W) val opcode = UInt(7.W) } class GeneratedS extends Bundle { val immhi = UInt(7.W) val rs2 = UInt(5.W) val rs1 = UInt(5.W) val funct3 = UInt(3.W) val immlo = UInt(5.W) val opcode = UInt(7.W) } class GeneratedCSR extends Bundle { val imm = UInt(12.W) val rs1 = UInt(5.W) val funct3 = UInt(3.W) val rd = UInt(5.W) val opcode = UInt(7.W) } class GeneratedUJ extends Bundle { val imm3 = UInt(1.W) val imm0 = UInt(10.W) val imm1 = UInt(1.W) val imm2 = UInt(8.W) val rd = UInt(5.W) val opcode = UInt(7.W) def setImm(imm: Int) : Unit = { // TODO: Check bounds of imm. require(imm % 2 == 0, "Immediate must be even for UJ encoding.") val immWire = WireInit(imm.S(21.W)) val immBits = WireInit(VecInit(immWire.asBools)) imm0 := immBits.slice(1, 1 + 10).asUInt imm1 := immBits.slice(11, 11 + 11).asUInt imm2 := immBits.slice(12, 12 + 8).asUInt imm3 := immBits.slice(20, 20 + 1).asUInt } } require((cfg.atzero && cfg.nAbstractInstructions == 2) || (!cfg.atzero && cfg.nAbstractInstructions == 5), "Mismatch between DebugModuleParams atzero and nAbstractInstructions") val abstractGeneratedMem = Reg(Vec(cfg.nAbstractInstructions, (UInt(32.W)))) def abstractGeneratedI(cfg: DebugModuleParams): UInt = { val inst = Wire(new GeneratedI()) val offset = if (cfg.atzero) DATA else (DATA-0x800) & 0xFFF val base = if (cfg.atzero) 0.U else Mux(accessRegisterCommandReg.regno(0), 8.U, 9.U) inst.opcode := (Instructions.LW.value.U.asTypeOf(new GeneratedI())).opcode inst.rd := (accessRegisterCommandReg.regno & 0x1F.U) inst.funct3 := accessRegisterCommandReg.size inst.rs1 := base inst.imm := offset.U inst.asUInt } def abstractGeneratedS(cfg: DebugModuleParams): UInt = { val inst = Wire(new GeneratedS()) val offset = if (cfg.atzero) DATA else (DATA-0x800) & 0xFFF val base = if (cfg.atzero) 0.U else Mux(accessRegisterCommandReg.regno(0), 8.U, 9.U) inst.opcode := (Instructions.SW.value.U.asTypeOf(new GeneratedS())).opcode inst.immlo := (offset & 0x1F).U inst.funct3 := accessRegisterCommandReg.size inst.rs1 := base inst.rs2 := (accessRegisterCommandReg.regno & 0x1F.U) inst.immhi := (offset >> 5).U inst.asUInt } def abstractGeneratedCSR: UInt = { val inst = Wire(new GeneratedCSR()) val base = Mux(accessRegisterCommandReg.regno(0), 8.U, 9.U) // use s0 as base for odd regs, s1 as base for even regs inst := (Instructions.CSRRW.value.U.asTypeOf(new GeneratedCSR())) inst.imm := CSRs.dscratch1.U inst.rs1 := base inst.rd := base inst.asUInt } val nop = Wire(new GeneratedI()) nop := Instructions.ADDI.value.U.asTypeOf(new GeneratedI()) nop.rd := 0.U nop.rs1 := 0.U nop.imm := 0.U val isa = Wire(new GeneratedI()) isa := Instructions.ADDIW.value.U.asTypeOf(new GeneratedI()) isa.rd := 0.U isa.rs1 := 0.U isa.imm := 0.U when (goAbstract) { if (cfg.nAbstractInstructions == 2) { // ABSTRACT(0): Transfer: LW or SW, else NOP // ABSTRACT(1): Postexec: NOP else EBREAK abstractGeneratedMem(0) := Mux(accessRegisterCommandReg.transfer, Mux(accessRegisterCommandReg.write, abstractGeneratedI(cfg), abstractGeneratedS(cfg)), nop.asUInt ) abstractGeneratedMem(1) := Mux(accessRegisterCommandReg.postexec, nop.asUInt, Instructions.EBREAK.value.U) } else { // Entry: All regs in GPRs, dscratch1=offset 0x800 in DM // ABSTRACT(0): CheckISA: ADDW or NOP (exception here if size=3 and not RV64) // ABSTRACT(1): CSRRW s1,dscratch1,s1 or CSRRW s0,dscratch1,s0 // ABSTRACT(2): Transfer: LW, SW, LD, SD else NOP // ABSTRACT(3): CSRRW s1,dscratch1,s1 or CSRRW s0,dscratch1,s0 // ABSTRACT(4): Postexec: NOP else EBREAK abstractGeneratedMem(0) := Mux(accessRegisterCommandReg.transfer && accessRegisterCommandReg.size =/= 2.U, isa.asUInt, nop.asUInt) abstractGeneratedMem(1) := abstractGeneratedCSR abstractGeneratedMem(2) := Mux(accessRegisterCommandReg.transfer, Mux(accessRegisterCommandReg.write, abstractGeneratedI(cfg), abstractGeneratedS(cfg)), nop.asUInt ) abstractGeneratedMem(3) := abstractGeneratedCSR abstractGeneratedMem(4) := Mux(accessRegisterCommandReg.postexec, nop.asUInt, Instructions.EBREAK.value.U) } } //-------------------------------------------------------------- // Drive Custom Access //-------------------------------------------------------------- if (needCustom) { val (custom, customP) = customNode.in.head custom.addr := accessRegisterCommandReg.regno custom.valid := goCustom } //-------------------------------------------------------------- // Hart Bus Access //-------------------------------------------------------------- tlNode.regmap( // This memory is writable. HALTED -> Seq(WNotifyWire(sbIdWidth, hartHaltedId, hartHaltedWrEn, "debug_hart_halted", "Debug ROM Causes hart to write its hartID here when it is in Debug Mode.")), GOING -> Seq(WNotifyWire(sbIdWidth, hartGoingId, hartGoingWrEn, "debug_hart_going", "Debug ROM causes hart to write 0 here when it begins executing Debug Mode instructions.")), RESUMING -> Seq(WNotifyWire(sbIdWidth, hartResumingId, hartResumingWrEn, "debug_hart_resuming", "Debug ROM causes hart to write its hartID here when it leaves Debug Mode.")), EXCEPTION -> Seq(WNotifyWire(sbIdWidth, hartExceptionId, hartExceptionWrEn, "debug_hart_exception", "Debug ROM causes hart to write 0 here if it gets an exception in Debug Mode.")), DATA -> RegFieldGroup("debug_data", Some("Data used to communicate with Debug Module"), abstractDataMem.zipWithIndex.map {case (x, i) => RegField(8, x, RegFieldDesc(s"debug_data_$i", ""))}), PROGBUF(cfg)-> RegFieldGroup("debug_progbuf", Some("Program buffer used to communicate with Debug Module"), programBufferMem.zipWithIndex.map {case (x, i) => RegField(8, x, RegFieldDesc(s"debug_progbuf_$i", ""))}), // These sections are read-only. IMPEBREAK(cfg)-> {if (cfg.hasImplicitEbreak) Seq(RegField.r(32, Instructions.EBREAK.value.U, RegFieldDesc("debug_impebreak", "Debug Implicit EBREAK", reset=Some(Instructions.EBREAK.value)))) else Nil}, WHERETO -> Seq(RegField.r(32, jalAbstract.asUInt, RegFieldDesc("debug_whereto", "Instruction filled in by Debug Module to control hart in Debug Mode", volatile = true))), ABSTRACT(cfg) -> RegFieldGroup("debug_abstract", Some("Instructions generated by Debug Module"), abstractGeneratedMem.zipWithIndex.map{ case (x,i) => RegField.r(32, x, RegFieldDesc(s"debug_abstract_$i", "", volatile=true))}), FLAGS -> RegFieldGroup("debug_flags", Some("Memory region used to control hart going/resuming in Debug Mode"), if (nComponents == 1) { Seq.tabulate(1024) { i => RegField.r(8, flags(0).asUInt, RegFieldDesc(s"debug_flags_$i", "", volatile=true)) } } else { flags.zipWithIndex.map{case(x, i) => RegField.r(8, x.asUInt, RegFieldDesc(s"debug_flags_$i", "", volatile=true))} }), ROMBASE -> RegFieldGroup("debug_rom", Some("Debug ROM"), (if (cfg.atzero) DebugRomContents() else DebugRomNonzeroContents()).zipWithIndex.map{case (x, i) => RegField.r(8, (x & 0xFF).U(8.W), RegFieldDesc(s"debug_rom_$i", "", reset=Some(x)))}) ) // Override System Bus accesses with dmactive reset. when (~io.dmactive){ abstractDataMem.foreach {x => x := 0.U} programBufferMem.foreach {x => x := 0.U} } //-------------------------------------------------------------- // Abstract Command State Machine //-------------------------------------------------------------- object CtrlState extends scala.Enumeration { type CtrlState = Value val Waiting, CheckGenerate, Exec, Custom = Value def apply( t : Value) : UInt = { t.id.U(log2Up(values.size).W) } } import CtrlState._ // This is not an initialization! val ctrlStateReg = Reg(chiselTypeOf(CtrlState(Waiting))) val hartHalted = haltedBitRegs(if (nComponents == 1) 0.U(0.W) else selectedHartReg) val ctrlStateNxt = WireInit(ctrlStateReg) //------------------------ // DMI Register Control and Status abstractCommandBusy := (ctrlStateReg =/= CtrlState(Waiting)) ABSTRACTCSWrEnLegal := (ctrlStateReg === CtrlState(Waiting)) COMMANDWrEnLegal := (ctrlStateReg === CtrlState(Waiting)) ABSTRACTAUTOWrEnLegal := (ctrlStateReg === CtrlState(Waiting)) dmiAbstractDataAccessLegal := (ctrlStateReg === CtrlState(Waiting)) dmiProgramBufferAccessLegal := (ctrlStateReg === CtrlState(Waiting)) errorBusy := (ABSTRACTCSWrEnMaybe && ~ABSTRACTCSWrEnLegal) || (autoexecdataWrEnMaybe && ~ABSTRACTAUTOWrEnLegal) || (autoexecprogbufWrEnMaybe && ~ABSTRACTAUTOWrEnLegal) || (COMMANDWrEnMaybe && ~COMMANDWrEnLegal) || (dmiAbstractDataAccess && ~dmiAbstractDataAccessLegal) || (dmiProgramBufferAccess && ~dmiProgramBufferAccessLegal) // TODO: Maybe Quick Access val commandWrIsAccessRegister = (COMMANDWrData.cmdtype === DebugAbstractCommandType.AccessRegister.id.U) val commandRegIsAccessRegister = (COMMANDReg.cmdtype === DebugAbstractCommandType.AccessRegister.id.U) val commandWrIsUnsupported = COMMANDWrEn && !commandWrIsAccessRegister val commandRegIsUnsupported = WireInit(true.B) val commandRegBadHaltResume = WireInit(false.B) // We only support abstract commands for GPRs and any custom registers, if specified. val accessRegIsLegalSize = (accessRegisterCommandReg.size === 2.U) || (accessRegisterCommandReg.size === 3.U) val accessRegIsGPR = (accessRegisterCommandReg.regno >= 0x1000.U && accessRegisterCommandReg.regno <= 0x101F.U) && accessRegIsLegalSize val accessRegIsCustom = if (needCustom) { val (custom, customP) = customNode.in.head customP.addrs.foldLeft(false.B){ (result, current) => result || (current.U === accessRegisterCommandReg.regno)} } else false.B when (commandRegIsAccessRegister) { when (accessRegIsCustom && accessRegisterCommandReg.transfer && accessRegisterCommandReg.write === false.B) { commandRegIsUnsupported := false.B }.elsewhen (!accessRegisterCommandReg.transfer || accessRegIsGPR) { commandRegIsUnsupported := false.B commandRegBadHaltResume := ~hartHalted } } val wrAccessRegisterCommand = COMMANDWrEn && commandWrIsAccessRegister && (ABSTRACTCSReg.cmderr === 0.U) val regAccessRegisterCommand = autoexec && commandRegIsAccessRegister && (ABSTRACTCSReg.cmderr === 0.U) //------------------------ // Variable ROM STATE MACHINE // ----------------------- when (ctrlStateReg === CtrlState(Waiting)){ when (wrAccessRegisterCommand || regAccessRegisterCommand) { ctrlStateNxt := CtrlState(CheckGenerate) }.elsewhen (commandWrIsUnsupported) { // These checks are really on the command type. errorUnsupported := true.B }.elsewhen (autoexec && commandRegIsUnsupported) { errorUnsupported := true.B } }.elsewhen (ctrlStateReg === CtrlState(CheckGenerate)){ // We use this state to ensure that the COMMAND has been // registered by the time that we need to use it, to avoid // generating it directly from the COMMANDWrData. // This 'commandRegIsUnsupported' is really just checking the // AccessRegisterCommand parameters (regno) when (commandRegIsUnsupported) { errorUnsupported := true.B ctrlStateNxt := CtrlState(Waiting) }.elsewhen (commandRegBadHaltResume){ errorHaltResume := true.B ctrlStateNxt := CtrlState(Waiting) }.otherwise { when(accessRegIsCustom) { ctrlStateNxt := CtrlState(Custom) }.otherwise { ctrlStateNxt := CtrlState(Exec) goAbstract := true.B } } }.elsewhen (ctrlStateReg === CtrlState(Exec)) { // We can't just look at 'hartHalted' here, because // hartHaltedWrEn is overloaded to mean 'got an ebreak' // which may have happened when we were already halted. when(goReg === false.B && hartHaltedWrEn && (hartSelFuncs.hartIdToHartSel(hartHaltedId) === selectedHartReg)){ ctrlStateNxt := CtrlState(Waiting) } when(hartExceptionWrEn) { assert(hartExceptionId === 0.U, "Unexpected 'EXCEPTION' hart")//Chisel3 #540, %x, expected %x", hartExceptionId, 0.U) ctrlStateNxt := CtrlState(Waiting) errorException := true.B } }.elsewhen (ctrlStateReg === CtrlState(Custom)) { assert(needCustom.B, "Should not be in custom state unless we need it.") goCustom := true.B val (custom, customP) = customNode.in.head when (custom.ready && custom.valid) { ctrlStateNxt := CtrlState(Waiting) } } when (~io.dmactive || ~dmAuthenticated) { ctrlStateReg := CtrlState(Waiting) }.otherwise { ctrlStateReg := ctrlStateNxt } assert ((!io.dmactive || !hartExceptionWrEn || ctrlStateReg === CtrlState(Exec)), "Unexpected EXCEPTION write: should only get it in Debug Module EXEC state") } } // Wrapper around TL Debug Module Inner and an Async DMI Sink interface. // Handles the synchronization of dmactive, which is used as a synchronous reset // inside the Inner block. // Also is the Sink side of hartsel & resumereq fields of DMCONTROL. class TLDebugModuleInnerAsync(device: Device, getNComponents: () => Int, beatBytes: Int)(implicit p: Parameters) extends LazyModule{ val cfg = p(DebugModuleKey).get val dmInner = LazyModule(new TLDebugModuleInner(device, getNComponents, beatBytes)) val dmiXing = LazyModule(new TLAsyncCrossingSink(AsyncQueueParams.singleton(safe=cfg.crossingHasSafeReset))) val dmiNode = dmiXing.node val tlNode = dmInner.tlNode dmInner.dmiNode := dmiXing.node // Require that there are no registers in TL interface, so that spurious // processor accesses to the DM don't need to enable the clock. We don't // require this property of the SBA, because the debugger is responsible for // raising dmactive (hence enabling the clock) during these transactions. require(dmInner.tlNode.concurrency == 0) lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { // Clock/reset domains: // debug_clock / debug_reset = Debug inner domain // tl_clock / tl_reset = tilelink domain (External: clock / reset) // val io = IO(new Bundle { val debug_clock = Input(Clock()) val debug_reset = Input(Reset()) val tl_clock = Input(Clock()) val tl_reset = Input(Reset()) // These are all asynchronous and come from Outer /** reset signal for DM */ val dmactive = Input(Bool()) /** conrol signals for Inner * * generated in Outer */ val innerCtrl = Flipped(new AsyncBundle(new DebugInternalBundle(getNComponents()), AsyncQueueParams.singleton(safe=cfg.crossingHasSafeReset))) // This comes from tlClk domain. /** debug available status */ val debugUnavail = Input(Vec(getNComponents(), Bool())) /** debug interruption*/ val hgDebugInt = Output(Vec(getNComponents(), Bool())) val extTrigger = (p(DebugModuleKey).get.nExtTriggers > 0).option(new DebugExtTriggerIO()) /** vector to indicate which hart is in reset * * dm receives it from core and sends it to Inner */ val hartIsInReset = Input(Vec(getNComponents(), Bool())) /** Debug Authentication signals from core */ val auth = p(DebugModuleKey).get.hasAuthentication.option(new DebugAuthenticationIO()) }) val rf_reset = IO(Input(Reset())) // RF transform childClock := io.debug_clock childReset := io.debug_reset override def provideImplicitClockToLazyChildren = true val dmactive_synced = withClockAndReset(childClock, childReset) { val dmactive_synced = AsyncResetSynchronizerShiftReg(in=io.dmactive, sync=3, name=Some("dmactiveSync")) dmInner.module.clock := io.debug_clock dmInner.module.reset := io.debug_reset dmInner.module.io.tl_clock := io.tl_clock dmInner.module.io.tl_reset := io.tl_reset dmInner.module.io.dmactive := dmactive_synced dmInner.module.io.innerCtrl <> FromAsyncBundle(io.innerCtrl) dmInner.module.io.debugUnavail := io.debugUnavail io.hgDebugInt := dmInner.module.io.hgDebugInt io.extTrigger.foreach { x => dmInner.module.io.extTrigger.foreach {y => x <> y}} dmInner.module.io.hartIsInReset := io.hartIsInReset io.auth.foreach { x => dmInner.module.io.auth.foreach {y => x <> y}} dmactive_synced } } } /** Create a version of the TLDebugModule which includes a synchronization interface * internally for the DMI. This is no longer optional outside of this module * because the Clock must run when tl_clock isn't running or tl_reset is asserted. */ class TLDebugModule(beatBytes: Int)(implicit p: Parameters) extends LazyModule { val device = new SimpleDevice("debug-controller", Seq("sifive,debug-013","riscv,debug-013")){ override val alwaysExtended = true override def describe(resources: ResourceBindings): Description = { val Description(name, mapping) = super.describe(resources) val attach = Map( "debug-attach" -> ( (if (p(ExportDebug).apb) Seq(ResourceString("apb")) else Seq()) ++ (if (p(ExportDebug).jtag) Seq(ResourceString("jtag")) else Seq()) ++ (if (p(ExportDebug).cjtag) Seq(ResourceString("cjtag")) else Seq()) ++ (if (p(ExportDebug).dmi) Seq(ResourceString("dmi")) else Seq()))) Description(name, mapping ++ attach) } } val dmOuter : TLDebugModuleOuterAsync = LazyModule(new TLDebugModuleOuterAsync(device)(p)) val dmInner : TLDebugModuleInnerAsync = LazyModule(new TLDebugModuleInnerAsync(device, () => {dmOuter.dmOuter.intnode.edges.out.size}, beatBytes)(p)) val node = dmInner.tlNode val intnode = dmOuter.intnode val apbNodeOpt = dmOuter.apbNodeOpt dmInner.dmiNode := dmOuter.dmiInnerNode lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { val nComponents = dmOuter.dmOuter.intnode.edges.out.size // Clock/reset domains: // tl_clock / tl_reset = tilelink domain // debug_clock / debug_reset = Inner debug (synchronous to tl_clock) // apb_clock / apb_reset = Outer debug with APB // dmiClock / dmiReset = Outer debug without APB // val io = IO(new Bundle { val debug_clock = Input(Clock()) val debug_reset = Input(Reset()) val tl_clock = Input(Clock()) val tl_reset = Input(Reset()) /** Debug control signals generated in Outer */ val ctrl = new DebugCtrlBundle(nComponents) /** Debug Module Interface bewteen DM and DTM * * The DTM provides access to one or more Debug Modules (DMs) using DMI */ val dmi = (!p(ExportDebug).apb).option(Flipped(new ClockedDMIIO())) val apb_clock = p(ExportDebug).apb.option(Input(Clock())) val apb_reset = p(ExportDebug).apb.option(Input(Reset())) val extTrigger = (p(DebugModuleKey).get.nExtTriggers > 0).option(new DebugExtTriggerIO()) /** vector to indicate which hart is in reset * * dm receives it from core and sends it to Inner */ val hartIsInReset = Input(Vec(nComponents, Bool())) /** hart reset request generated by hartreset-logic in Outer */ val hartResetReq = p(DebugModuleKey).get.hasHartResets.option(Output(Vec(nComponents, Bool()))) /** Debug Authentication signals from core */ val auth = p(DebugModuleKey).get.hasAuthentication.option(new DebugAuthenticationIO()) }) childClock := io.tl_clock childReset := io.tl_reset override def provideImplicitClockToLazyChildren = true dmOuter.module.io.dmi.foreach { dmOuterDMI => dmOuterDMI <> io.dmi.get.dmi dmOuter.module.io.dmi_reset := io.dmi.get.dmiReset dmOuter.module.io.dmi_clock := io.dmi.get.dmiClock dmOuter.module.rf_reset := io.dmi.get.dmiReset } (io.apb_clock zip io.apb_reset) foreach { case (c, r) => dmOuter.module.io.dmi_reset := r dmOuter.module.io.dmi_clock := c dmOuter.module.rf_reset := r } dmInner.module.rf_reset := io.debug_reset dmInner.module.io.debug_clock := io.debug_clock dmInner.module.io.debug_reset := io.debug_reset dmInner.module.io.tl_clock := io.tl_clock dmInner.module.io.tl_reset := io.tl_reset dmInner.module.io.innerCtrl <> dmOuter.module.io.innerCtrl dmInner.module.io.dmactive := dmOuter.module.io.ctrl.dmactive dmInner.module.io.debugUnavail := io.ctrl.debugUnavail dmOuter.module.io.hgDebugInt := dmInner.module.io.hgDebugInt io.ctrl <> dmOuter.module.io.ctrl io.extTrigger.foreach { x => dmInner.module.io.extTrigger.foreach {y => x <> y}} dmInner.module.io.hartIsInReset := io.hartIsInReset io.hartResetReq.foreach { x => dmOuter.module.io.hartResetReq.foreach {y => x := y}} io.auth.foreach { x => dmOuter.module.io.dmAuthenticated.get := x.dmAuthenticated } io.auth.foreach { x => dmInner.module.io.auth.foreach {y => x <> y}} } }
module TLDebugModuleInnerAsync( // @[Debug.scala:1871:9] input [2:0] auto_dmiXing_in_a_mem_0_opcode, // @[LazyModuleImp.scala:107:25] input [8:0] auto_dmiXing_in_a_mem_0_address, // @[LazyModuleImp.scala:107:25] input [31:0] auto_dmiXing_in_a_mem_0_data, // @[LazyModuleImp.scala:107:25] output auto_dmiXing_in_a_ridx, // @[LazyModuleImp.scala:107:25] input auto_dmiXing_in_a_widx, // @[LazyModuleImp.scala:107:25] output auto_dmiXing_in_a_safe_ridx_valid, // @[LazyModuleImp.scala:107:25] input auto_dmiXing_in_a_safe_widx_valid, // @[LazyModuleImp.scala:107:25] input auto_dmiXing_in_a_safe_source_reset_n, // @[LazyModuleImp.scala:107:25] output auto_dmiXing_in_a_safe_sink_reset_n, // @[LazyModuleImp.scala:107:25] output [2:0] auto_dmiXing_in_d_mem_0_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_dmiXing_in_d_mem_0_size, // @[LazyModuleImp.scala:107:25] output auto_dmiXing_in_d_mem_0_source, // @[LazyModuleImp.scala:107:25] output [31:0] auto_dmiXing_in_d_mem_0_data, // @[LazyModuleImp.scala:107:25] input auto_dmiXing_in_d_ridx, // @[LazyModuleImp.scala:107:25] output auto_dmiXing_in_d_widx, // @[LazyModuleImp.scala:107:25] input auto_dmiXing_in_d_safe_ridx_valid, // @[LazyModuleImp.scala:107:25] output auto_dmiXing_in_d_safe_widx_valid, // @[LazyModuleImp.scala:107:25] output auto_dmiXing_in_d_safe_source_reset_n, // @[LazyModuleImp.scala:107:25] input auto_dmiXing_in_d_safe_sink_reset_n, // @[LazyModuleImp.scala:107:25] input auto_dmInner_sb2tlOpt_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_dmInner_sb2tlOpt_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_dmInner_sb2tlOpt_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [3:0] auto_dmInner_sb2tlOpt_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [31:0] auto_dmInner_sb2tlOpt_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_dmInner_sb2tlOpt_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_dmInner_sb2tlOpt_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_dmInner_sb2tlOpt_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_dmInner_sb2tlOpt_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_dmInner_sb2tlOpt_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_dmInner_sb2tlOpt_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [2:0] auto_dmInner_sb2tlOpt_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_dmInner_sb2tlOpt_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [7:0] auto_dmInner_sb2tlOpt_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_dmInner_sb2tlOpt_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_dmInner_tl_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_dmInner_tl_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_dmInner_tl_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_dmInner_tl_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [1:0] auto_dmInner_tl_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [12:0] auto_dmInner_tl_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [11:0] auto_dmInner_tl_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_dmInner_tl_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_dmInner_tl_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_dmInner_tl_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_dmInner_tl_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_dmInner_tl_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_dmInner_tl_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_dmInner_tl_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [12:0] auto_dmInner_tl_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [63:0] auto_dmInner_tl_in_d_bits_data, // @[LazyModuleImp.scala:107:25] input io_debug_clock, // @[Debug.scala:1877:16] input io_debug_reset, // @[Debug.scala:1877:16] input io_tl_clock, // @[Debug.scala:1877:16] input io_tl_reset, // @[Debug.scala:1877:16] input io_dmactive, // @[Debug.scala:1877:16] input io_innerCtrl_mem_0_resumereq, // @[Debug.scala:1877:16] input [9:0] io_innerCtrl_mem_0_hartsel, // @[Debug.scala:1877:16] input io_innerCtrl_mem_0_ackhavereset, // @[Debug.scala:1877:16] input io_innerCtrl_mem_0_hrmask_0, // @[Debug.scala:1877:16] output io_innerCtrl_ridx, // @[Debug.scala:1877:16] input io_innerCtrl_widx, // @[Debug.scala:1877:16] output io_innerCtrl_safe_ridx_valid, // @[Debug.scala:1877:16] input io_innerCtrl_safe_widx_valid, // @[Debug.scala:1877:16] input io_innerCtrl_safe_source_reset_n, // @[Debug.scala:1877:16] output io_innerCtrl_safe_sink_reset_n, // @[Debug.scala:1877:16] output io_hgDebugInt_0, // @[Debug.scala:1877:16] input io_hartIsInReset_0, // @[Debug.scala:1877:16] input rf_reset // @[Debug.scala:1904:22] ); wire _dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_valid; // @[AsyncQueue.scala:211:22] wire _dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_resumereq; // @[AsyncQueue.scala:211:22] wire [9:0] _dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hartsel; // @[AsyncQueue.scala:211:22] wire _dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_ackhavereset; // @[AsyncQueue.scala:211:22] wire _dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hasel; // @[AsyncQueue.scala:211:22] wire _dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hamask_0; // @[AsyncQueue.scala:211:22] wire _dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hrmask_0; // @[AsyncQueue.scala:211:22] wire _dmiXing_auto_out_a_valid; // @[Debug.scala:1858:27] wire [2:0] _dmiXing_auto_out_a_bits_opcode; // @[Debug.scala:1858:27] wire [2:0] _dmiXing_auto_out_a_bits_param; // @[Debug.scala:1858:27] wire [1:0] _dmiXing_auto_out_a_bits_size; // @[Debug.scala:1858:27] wire _dmiXing_auto_out_a_bits_source; // @[Debug.scala:1858:27] wire [8:0] _dmiXing_auto_out_a_bits_address; // @[Debug.scala:1858:27] wire [3:0] _dmiXing_auto_out_a_bits_mask; // @[Debug.scala:1858:27] wire [31:0] _dmiXing_auto_out_a_bits_data; // @[Debug.scala:1858:27] wire _dmiXing_auto_out_a_bits_corrupt; // @[Debug.scala:1858:27] wire _dmiXing_auto_out_d_ready; // @[Debug.scala:1858:27] wire _dmInner_auto_dmi_in_a_ready; // @[Debug.scala:1857:27] wire _dmInner_auto_dmi_in_d_valid; // @[Debug.scala:1857:27] wire [2:0] _dmInner_auto_dmi_in_d_bits_opcode; // @[Debug.scala:1857:27] wire [1:0] _dmInner_auto_dmi_in_d_bits_size; // @[Debug.scala:1857:27] wire _dmInner_auto_dmi_in_d_bits_source; // @[Debug.scala:1857:27] wire [31:0] _dmInner_auto_dmi_in_d_bits_data; // @[Debug.scala:1857:27] wire [2:0] auto_dmiXing_in_a_mem_0_opcode_0 = auto_dmiXing_in_a_mem_0_opcode; // @[Debug.scala:1871:9] wire [8:0] auto_dmiXing_in_a_mem_0_address_0 = auto_dmiXing_in_a_mem_0_address; // @[Debug.scala:1871:9] wire [31:0] auto_dmiXing_in_a_mem_0_data_0 = auto_dmiXing_in_a_mem_0_data; // @[Debug.scala:1871:9] wire auto_dmiXing_in_a_widx_0 = auto_dmiXing_in_a_widx; // @[Debug.scala:1871:9] wire auto_dmiXing_in_a_safe_widx_valid_0 = auto_dmiXing_in_a_safe_widx_valid; // @[Debug.scala:1871:9] wire auto_dmiXing_in_a_safe_source_reset_n_0 = auto_dmiXing_in_a_safe_source_reset_n; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_ridx_0 = auto_dmiXing_in_d_ridx; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_safe_ridx_valid_0 = auto_dmiXing_in_d_safe_ridx_valid; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_safe_sink_reset_n_0 = auto_dmiXing_in_d_safe_sink_reset_n; // @[Debug.scala:1871:9] wire auto_dmInner_sb2tlOpt_out_a_ready_0 = auto_dmInner_sb2tlOpt_out_a_ready; // @[Debug.scala:1871:9] wire auto_dmInner_sb2tlOpt_out_d_valid_0 = auto_dmInner_sb2tlOpt_out_d_valid; // @[Debug.scala:1871:9] wire [2:0] auto_dmInner_sb2tlOpt_out_d_bits_opcode_0 = auto_dmInner_sb2tlOpt_out_d_bits_opcode; // @[Debug.scala:1871:9] wire [1:0] auto_dmInner_sb2tlOpt_out_d_bits_param_0 = auto_dmInner_sb2tlOpt_out_d_bits_param; // @[Debug.scala:1871:9] wire [3:0] auto_dmInner_sb2tlOpt_out_d_bits_size_0 = auto_dmInner_sb2tlOpt_out_d_bits_size; // @[Debug.scala:1871:9] wire [2:0] auto_dmInner_sb2tlOpt_out_d_bits_sink_0 = auto_dmInner_sb2tlOpt_out_d_bits_sink; // @[Debug.scala:1871:9] wire auto_dmInner_sb2tlOpt_out_d_bits_denied_0 = auto_dmInner_sb2tlOpt_out_d_bits_denied; // @[Debug.scala:1871:9] wire [7:0] auto_dmInner_sb2tlOpt_out_d_bits_data_0 = auto_dmInner_sb2tlOpt_out_d_bits_data; // @[Debug.scala:1871:9] wire auto_dmInner_sb2tlOpt_out_d_bits_corrupt_0 = auto_dmInner_sb2tlOpt_out_d_bits_corrupt; // @[Debug.scala:1871:9] wire auto_dmInner_tl_in_a_valid_0 = auto_dmInner_tl_in_a_valid; // @[Debug.scala:1871:9] wire [2:0] auto_dmInner_tl_in_a_bits_opcode_0 = auto_dmInner_tl_in_a_bits_opcode; // @[Debug.scala:1871:9] wire [2:0] auto_dmInner_tl_in_a_bits_param_0 = auto_dmInner_tl_in_a_bits_param; // @[Debug.scala:1871:9] wire [1:0] auto_dmInner_tl_in_a_bits_size_0 = auto_dmInner_tl_in_a_bits_size; // @[Debug.scala:1871:9] wire [12:0] auto_dmInner_tl_in_a_bits_source_0 = auto_dmInner_tl_in_a_bits_source; // @[Debug.scala:1871:9] wire [11:0] auto_dmInner_tl_in_a_bits_address_0 = auto_dmInner_tl_in_a_bits_address; // @[Debug.scala:1871:9] wire [7:0] auto_dmInner_tl_in_a_bits_mask_0 = auto_dmInner_tl_in_a_bits_mask; // @[Debug.scala:1871:9] wire [63:0] auto_dmInner_tl_in_a_bits_data_0 = auto_dmInner_tl_in_a_bits_data; // @[Debug.scala:1871:9] wire auto_dmInner_tl_in_a_bits_corrupt_0 = auto_dmInner_tl_in_a_bits_corrupt; // @[Debug.scala:1871:9] wire auto_dmInner_tl_in_d_ready_0 = auto_dmInner_tl_in_d_ready; // @[Debug.scala:1871:9] wire io_debug_clock_0 = io_debug_clock; // @[Debug.scala:1871:9] wire io_debug_reset_0 = io_debug_reset; // @[Debug.scala:1871:9] wire io_tl_clock_0 = io_tl_clock; // @[Debug.scala:1871:9] wire io_tl_reset_0 = io_tl_reset; // @[Debug.scala:1871:9] wire io_dmactive_0 = io_dmactive; // @[Debug.scala:1871:9] wire io_innerCtrl_mem_0_resumereq_0 = io_innerCtrl_mem_0_resumereq; // @[Debug.scala:1871:9] wire [9:0] io_innerCtrl_mem_0_hartsel_0 = io_innerCtrl_mem_0_hartsel; // @[Debug.scala:1871:9] wire io_innerCtrl_mem_0_ackhavereset_0 = io_innerCtrl_mem_0_ackhavereset; // @[Debug.scala:1871:9] wire io_innerCtrl_mem_0_hrmask_0_0 = io_innerCtrl_mem_0_hrmask_0; // @[Debug.scala:1871:9] wire io_innerCtrl_widx_0 = io_innerCtrl_widx; // @[Debug.scala:1871:9] wire io_innerCtrl_safe_widx_valid_0 = io_innerCtrl_safe_widx_valid; // @[Debug.scala:1871:9] wire io_innerCtrl_safe_source_reset_n_0 = io_innerCtrl_safe_source_reset_n; // @[Debug.scala:1871:9] wire io_hartIsInReset_0_0 = io_hartIsInReset_0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_a_mem_0_source = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_a_mem_0_corrupt = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_b_mem_0_source = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_b_mem_0_corrupt = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_b_ridx = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_b_widx = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_b_safe_ridx_valid = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_b_safe_widx_valid = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_b_safe_source_reset_n = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_b_safe_sink_reset_n = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_c_mem_0_source = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_c_mem_0_corrupt = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_c_ridx = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_c_widx = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_c_safe_ridx_valid = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_c_safe_widx_valid = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_c_safe_source_reset_n = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_c_safe_sink_reset_n = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_mem_0_sink = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_mem_0_denied = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_mem_0_corrupt = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_e_mem_0_sink = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_e_ridx = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_e_widx = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_e_safe_ridx_valid = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_e_safe_widx_valid = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_e_safe_source_reset_n = 1'h0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_e_safe_sink_reset_n = 1'h0; // @[Debug.scala:1871:9] wire auto_dmInner_sb2tlOpt_out_a_bits_source = 1'h0; // @[Debug.scala:1871:9] wire auto_dmInner_sb2tlOpt_out_a_bits_corrupt = 1'h0; // @[Debug.scala:1871:9] wire auto_dmInner_sb2tlOpt_out_d_bits_source = 1'h0; // @[Debug.scala:1871:9] wire auto_dmInner_custom_in_addr = 1'h0; // @[Debug.scala:1871:9] wire auto_dmInner_custom_in_ready = 1'h0; // @[Debug.scala:1871:9] wire auto_dmInner_custom_in_valid = 1'h0; // @[Debug.scala:1871:9] wire auto_dmInner_tl_in_d_bits_sink = 1'h0; // @[Debug.scala:1871:9] wire auto_dmInner_tl_in_d_bits_denied = 1'h0; // @[Debug.scala:1871:9] wire auto_dmInner_tl_in_d_bits_corrupt = 1'h0; // @[Debug.scala:1871:9] wire io_innerCtrl_mem_0_hasel = 1'h0; // @[Debug.scala:1871:9] wire io_innerCtrl_mem_0_hamask_0 = 1'h0; // @[Debug.scala:1871:9] wire io_debugUnavail_0 = 1'h0; // @[Debug.scala:1871:9] wire _childClock_T = 1'h0; // @[LazyModuleImp.scala:160:25] wire auto_dmInner_sb2tlOpt_out_a_bits_mask = 1'h1; // @[AsyncQueue.scala:211:22] wire [31:0] auto_dmiXing_in_b_mem_0_data = 32'h0; // @[Debug.scala:1858:27, :1871:9] wire [31:0] auto_dmiXing_in_c_mem_0_data = 32'h0; // @[Debug.scala:1858:27, :1871:9] wire [3:0] auto_dmiXing_in_b_mem_0_mask = 4'h0; // @[Debug.scala:1858:27, :1871:9] wire [8:0] auto_dmiXing_in_b_mem_0_address = 9'h0; // @[Debug.scala:1858:27, :1871:9] wire [8:0] auto_dmiXing_in_c_mem_0_address = 9'h0; // @[Debug.scala:1858:27, :1871:9] wire [1:0] auto_dmiXing_in_b_mem_0_param = 2'h0; // @[Debug.scala:1871:9] wire [1:0] auto_dmiXing_in_b_mem_0_size = 2'h0; // @[Debug.scala:1871:9] wire [1:0] auto_dmiXing_in_c_mem_0_size = 2'h0; // @[Debug.scala:1871:9] wire [1:0] auto_dmiXing_in_d_mem_0_param = 2'h0; // @[Debug.scala:1871:9] wire [1:0] auto_dmInner_tl_in_d_bits_param = 2'h0; // @[Debug.scala:1871:9] wire [3:0] auto_dmiXing_in_a_mem_0_mask = 4'hF; // @[Debug.scala:1858:27, :1871:9] wire [1:0] auto_dmiXing_in_a_mem_0_size = 2'h2; // @[Debug.scala:1858:27, :1871:9] wire [2:0] auto_dmiXing_in_a_mem_0_param = 3'h0; // @[Debug.scala:1871:9] wire [2:0] auto_dmiXing_in_b_mem_0_opcode = 3'h0; // @[Debug.scala:1871:9] wire [2:0] auto_dmiXing_in_c_mem_0_opcode = 3'h0; // @[Debug.scala:1871:9] wire [2:0] auto_dmiXing_in_c_mem_0_param = 3'h0; // @[Debug.scala:1871:9] wire [2:0] auto_dmInner_sb2tlOpt_out_a_bits_param = 3'h0; // @[Debug.scala:1871:9] wire childClock = io_debug_clock_0; // @[Debug.scala:1871:9] wire childReset = io_debug_reset_0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_a_safe_ridx_valid_0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_a_safe_sink_reset_n_0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_a_ridx_0; // @[Debug.scala:1871:9] wire [2:0] auto_dmiXing_in_d_mem_0_opcode_0; // @[Debug.scala:1871:9] wire [1:0] auto_dmiXing_in_d_mem_0_size_0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_mem_0_source_0; // @[Debug.scala:1871:9] wire [31:0] auto_dmiXing_in_d_mem_0_data_0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_safe_widx_valid_0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_safe_source_reset_n_0; // @[Debug.scala:1871:9] wire auto_dmiXing_in_d_widx_0; // @[Debug.scala:1871:9] wire [2:0] auto_dmInner_sb2tlOpt_out_a_bits_opcode_0; // @[Debug.scala:1871:9] wire [3:0] auto_dmInner_sb2tlOpt_out_a_bits_size_0; // @[Debug.scala:1871:9] wire [31:0] auto_dmInner_sb2tlOpt_out_a_bits_address_0; // @[Debug.scala:1871:9] wire [7:0] auto_dmInner_sb2tlOpt_out_a_bits_data_0; // @[Debug.scala:1871:9] wire auto_dmInner_sb2tlOpt_out_a_valid_0; // @[Debug.scala:1871:9] wire auto_dmInner_sb2tlOpt_out_d_ready_0; // @[Debug.scala:1871:9] wire auto_dmInner_tl_in_a_ready_0; // @[Debug.scala:1871:9] wire [2:0] auto_dmInner_tl_in_d_bits_opcode_0; // @[Debug.scala:1871:9] wire [1:0] auto_dmInner_tl_in_d_bits_size_0; // @[Debug.scala:1871:9] wire [12:0] auto_dmInner_tl_in_d_bits_source_0; // @[Debug.scala:1871:9] wire [63:0] auto_dmInner_tl_in_d_bits_data_0; // @[Debug.scala:1871:9] wire auto_dmInner_tl_in_d_valid_0; // @[Debug.scala:1871:9] wire io_innerCtrl_safe_ridx_valid_0; // @[Debug.scala:1871:9] wire io_innerCtrl_safe_sink_reset_n_0; // @[Debug.scala:1871:9] wire io_innerCtrl_ridx_0; // @[Debug.scala:1871:9] wire io_hgDebugInt_0_0; // @[Debug.scala:1871:9] wire dmactive_synced; // @[ShiftReg.scala:48:24] TLDebugModuleInner dmInner ( // @[Debug.scala:1857:27] .clock (io_debug_clock_0), // @[Debug.scala:1871:9] .reset (io_debug_reset_0), // @[Debug.scala:1871:9] .auto_sb2tlOpt_out_a_ready (auto_dmInner_sb2tlOpt_out_a_ready_0), // @[Debug.scala:1871:9] .auto_sb2tlOpt_out_a_valid (auto_dmInner_sb2tlOpt_out_a_valid_0), .auto_sb2tlOpt_out_a_bits_opcode (auto_dmInner_sb2tlOpt_out_a_bits_opcode_0), .auto_sb2tlOpt_out_a_bits_size (auto_dmInner_sb2tlOpt_out_a_bits_size_0), .auto_sb2tlOpt_out_a_bits_address (auto_dmInner_sb2tlOpt_out_a_bits_address_0), .auto_sb2tlOpt_out_a_bits_data (auto_dmInner_sb2tlOpt_out_a_bits_data_0), .auto_sb2tlOpt_out_d_ready (auto_dmInner_sb2tlOpt_out_d_ready_0), .auto_sb2tlOpt_out_d_valid (auto_dmInner_sb2tlOpt_out_d_valid_0), // @[Debug.scala:1871:9] .auto_sb2tlOpt_out_d_bits_opcode (auto_dmInner_sb2tlOpt_out_d_bits_opcode_0), // @[Debug.scala:1871:9] .auto_sb2tlOpt_out_d_bits_param (auto_dmInner_sb2tlOpt_out_d_bits_param_0), // @[Debug.scala:1871:9] .auto_sb2tlOpt_out_d_bits_size (auto_dmInner_sb2tlOpt_out_d_bits_size_0), // @[Debug.scala:1871:9] .auto_sb2tlOpt_out_d_bits_sink (auto_dmInner_sb2tlOpt_out_d_bits_sink_0), // @[Debug.scala:1871:9] .auto_sb2tlOpt_out_d_bits_denied (auto_dmInner_sb2tlOpt_out_d_bits_denied_0), // @[Debug.scala:1871:9] .auto_sb2tlOpt_out_d_bits_data (auto_dmInner_sb2tlOpt_out_d_bits_data_0), // @[Debug.scala:1871:9] .auto_sb2tlOpt_out_d_bits_corrupt (auto_dmInner_sb2tlOpt_out_d_bits_corrupt_0), // @[Debug.scala:1871:9] .auto_tl_in_a_ready (auto_dmInner_tl_in_a_ready_0), .auto_tl_in_a_valid (auto_dmInner_tl_in_a_valid_0), // @[Debug.scala:1871:9] .auto_tl_in_a_bits_opcode (auto_dmInner_tl_in_a_bits_opcode_0), // @[Debug.scala:1871:9] .auto_tl_in_a_bits_param (auto_dmInner_tl_in_a_bits_param_0), // @[Debug.scala:1871:9] .auto_tl_in_a_bits_size (auto_dmInner_tl_in_a_bits_size_0), // @[Debug.scala:1871:9] .auto_tl_in_a_bits_source (auto_dmInner_tl_in_a_bits_source_0), // @[Debug.scala:1871:9] .auto_tl_in_a_bits_address (auto_dmInner_tl_in_a_bits_address_0), // @[Debug.scala:1871:9] .auto_tl_in_a_bits_mask (auto_dmInner_tl_in_a_bits_mask_0), // @[Debug.scala:1871:9] .auto_tl_in_a_bits_data (auto_dmInner_tl_in_a_bits_data_0), // @[Debug.scala:1871:9] .auto_tl_in_a_bits_corrupt (auto_dmInner_tl_in_a_bits_corrupt_0), // @[Debug.scala:1871:9] .auto_tl_in_d_ready (auto_dmInner_tl_in_d_ready_0), // @[Debug.scala:1871:9] .auto_tl_in_d_valid (auto_dmInner_tl_in_d_valid_0), .auto_tl_in_d_bits_opcode (auto_dmInner_tl_in_d_bits_opcode_0), .auto_tl_in_d_bits_size (auto_dmInner_tl_in_d_bits_size_0), .auto_tl_in_d_bits_source (auto_dmInner_tl_in_d_bits_source_0), .auto_tl_in_d_bits_data (auto_dmInner_tl_in_d_bits_data_0), .auto_dmi_in_a_ready (_dmInner_auto_dmi_in_a_ready), .auto_dmi_in_a_valid (_dmiXing_auto_out_a_valid), // @[Debug.scala:1858:27] .auto_dmi_in_a_bits_opcode (_dmiXing_auto_out_a_bits_opcode), // @[Debug.scala:1858:27] .auto_dmi_in_a_bits_param (_dmiXing_auto_out_a_bits_param), // @[Debug.scala:1858:27] .auto_dmi_in_a_bits_size (_dmiXing_auto_out_a_bits_size), // @[Debug.scala:1858:27] .auto_dmi_in_a_bits_source (_dmiXing_auto_out_a_bits_source), // @[Debug.scala:1858:27] .auto_dmi_in_a_bits_address (_dmiXing_auto_out_a_bits_address), // @[Debug.scala:1858:27] .auto_dmi_in_a_bits_mask (_dmiXing_auto_out_a_bits_mask), // @[Debug.scala:1858:27] .auto_dmi_in_a_bits_data (_dmiXing_auto_out_a_bits_data), // @[Debug.scala:1858:27] .auto_dmi_in_a_bits_corrupt (_dmiXing_auto_out_a_bits_corrupt), // @[Debug.scala:1858:27] .auto_dmi_in_d_ready (_dmiXing_auto_out_d_ready), // @[Debug.scala:1858:27] .auto_dmi_in_d_valid (_dmInner_auto_dmi_in_d_valid), .auto_dmi_in_d_bits_opcode (_dmInner_auto_dmi_in_d_bits_opcode), .auto_dmi_in_d_bits_size (_dmInner_auto_dmi_in_d_bits_size), .auto_dmi_in_d_bits_source (_dmInner_auto_dmi_in_d_bits_source), .auto_dmi_in_d_bits_data (_dmInner_auto_dmi_in_d_bits_data), .io_dmactive (dmactive_synced), // @[ShiftReg.scala:48:24] .io_innerCtrl_valid (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_valid), // @[AsyncQueue.scala:211:22] .io_innerCtrl_bits_resumereq (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_resumereq), // @[AsyncQueue.scala:211:22] .io_innerCtrl_bits_hartsel (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hartsel), // @[AsyncQueue.scala:211:22] .io_innerCtrl_bits_ackhavereset (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_ackhavereset), // @[AsyncQueue.scala:211:22] .io_innerCtrl_bits_hasel (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hasel), // @[AsyncQueue.scala:211:22] .io_innerCtrl_bits_hamask_0 (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hamask_0), // @[AsyncQueue.scala:211:22] .io_innerCtrl_bits_hrmask_0 (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hrmask_0), // @[AsyncQueue.scala:211:22] .io_hgDebugInt_0 (io_hgDebugInt_0_0), .io_hartIsInReset_0 (io_hartIsInReset_0_0), // @[Debug.scala:1871:9] .io_tl_clock (io_tl_clock_0), // @[Debug.scala:1871:9] .io_tl_reset (io_tl_reset_0) // @[Debug.scala:1871:9] ); // @[Debug.scala:1857:27] TLAsyncCrossingSink_a9d32s1k1z2u dmiXing ( // @[Debug.scala:1858:27] .clock (childClock), // @[LazyModuleImp.scala:155:31] .reset (childReset), // @[LazyModuleImp.scala:158:31] .auto_in_a_mem_0_opcode (auto_dmiXing_in_a_mem_0_opcode_0), // @[Debug.scala:1871:9] .auto_in_a_mem_0_address (auto_dmiXing_in_a_mem_0_address_0), // @[Debug.scala:1871:9] .auto_in_a_mem_0_data (auto_dmiXing_in_a_mem_0_data_0), // @[Debug.scala:1871:9] .auto_in_a_ridx (auto_dmiXing_in_a_ridx_0), .auto_in_a_widx (auto_dmiXing_in_a_widx_0), // @[Debug.scala:1871:9] .auto_in_a_safe_ridx_valid (auto_dmiXing_in_a_safe_ridx_valid_0), .auto_in_a_safe_widx_valid (auto_dmiXing_in_a_safe_widx_valid_0), // @[Debug.scala:1871:9] .auto_in_a_safe_source_reset_n (auto_dmiXing_in_a_safe_source_reset_n_0), // @[Debug.scala:1871:9] .auto_in_a_safe_sink_reset_n (auto_dmiXing_in_a_safe_sink_reset_n_0), .auto_in_d_mem_0_opcode (auto_dmiXing_in_d_mem_0_opcode_0), .auto_in_d_mem_0_size (auto_dmiXing_in_d_mem_0_size_0), .auto_in_d_mem_0_source (auto_dmiXing_in_d_mem_0_source_0), .auto_in_d_mem_0_data (auto_dmiXing_in_d_mem_0_data_0), .auto_in_d_ridx (auto_dmiXing_in_d_ridx_0), // @[Debug.scala:1871:9] .auto_in_d_widx (auto_dmiXing_in_d_widx_0), .auto_in_d_safe_ridx_valid (auto_dmiXing_in_d_safe_ridx_valid_0), // @[Debug.scala:1871:9] .auto_in_d_safe_widx_valid (auto_dmiXing_in_d_safe_widx_valid_0), .auto_in_d_safe_source_reset_n (auto_dmiXing_in_d_safe_source_reset_n_0), .auto_in_d_safe_sink_reset_n (auto_dmiXing_in_d_safe_sink_reset_n_0), // @[Debug.scala:1871:9] .auto_out_a_ready (_dmInner_auto_dmi_in_a_ready), // @[Debug.scala:1857:27] .auto_out_a_valid (_dmiXing_auto_out_a_valid), .auto_out_a_bits_opcode (_dmiXing_auto_out_a_bits_opcode), .auto_out_a_bits_param (_dmiXing_auto_out_a_bits_param), .auto_out_a_bits_size (_dmiXing_auto_out_a_bits_size), .auto_out_a_bits_source (_dmiXing_auto_out_a_bits_source), .auto_out_a_bits_address (_dmiXing_auto_out_a_bits_address), .auto_out_a_bits_mask (_dmiXing_auto_out_a_bits_mask), .auto_out_a_bits_data (_dmiXing_auto_out_a_bits_data), .auto_out_a_bits_corrupt (_dmiXing_auto_out_a_bits_corrupt), .auto_out_d_ready (_dmiXing_auto_out_d_ready), .auto_out_d_valid (_dmInner_auto_dmi_in_d_valid), // @[Debug.scala:1857:27] .auto_out_d_bits_opcode (_dmInner_auto_dmi_in_d_bits_opcode), // @[Debug.scala:1857:27] .auto_out_d_bits_size (_dmInner_auto_dmi_in_d_bits_size), // @[Debug.scala:1857:27] .auto_out_d_bits_source (_dmInner_auto_dmi_in_d_bits_source), // @[Debug.scala:1857:27] .auto_out_d_bits_data (_dmInner_auto_dmi_in_d_bits_data) // @[Debug.scala:1857:27] ); // @[Debug.scala:1858:27] AsyncResetSynchronizerShiftReg_w1_d3_i0_27 dmactive_synced_dmactive_synced_dmactiveSync ( // @[ShiftReg.scala:45:23] .clock (childClock), // @[LazyModuleImp.scala:155:31] .reset (childReset), // @[LazyModuleImp.scala:158:31] .io_d (io_dmactive_0), // @[Debug.scala:1871:9] .io_q (dmactive_synced) ); // @[ShiftReg.scala:45:23] AsyncQueueSink_DebugInternalBundle dmactive_synced_dmInner_io_innerCtrl_sink ( // @[AsyncQueue.scala:211:22] .clock (childClock), // @[LazyModuleImp.scala:155:31] .reset (childReset), // @[LazyModuleImp.scala:158:31] .io_deq_valid (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_valid), .io_deq_bits_resumereq (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_resumereq), .io_deq_bits_hartsel (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hartsel), .io_deq_bits_ackhavereset (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_ackhavereset), .io_deq_bits_hasel (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hasel), .io_deq_bits_hamask_0 (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hamask_0), .io_deq_bits_hrmask_0 (_dmactive_synced_dmInner_io_innerCtrl_sink_io_deq_bits_hrmask_0), .io_async_mem_0_resumereq (io_innerCtrl_mem_0_resumereq_0), // @[Debug.scala:1871:9] .io_async_mem_0_hartsel (io_innerCtrl_mem_0_hartsel_0), // @[Debug.scala:1871:9] .io_async_mem_0_ackhavereset (io_innerCtrl_mem_0_ackhavereset_0), // @[Debug.scala:1871:9] .io_async_mem_0_hrmask_0 (io_innerCtrl_mem_0_hrmask_0_0), // @[Debug.scala:1871:9] .io_async_ridx (io_innerCtrl_ridx_0), .io_async_widx (io_innerCtrl_widx_0), // @[Debug.scala:1871:9] .io_async_safe_ridx_valid (io_innerCtrl_safe_ridx_valid_0), .io_async_safe_widx_valid (io_innerCtrl_safe_widx_valid_0), // @[Debug.scala:1871:9] .io_async_safe_source_reset_n (io_innerCtrl_safe_source_reset_n_0), // @[Debug.scala:1871:9] .io_async_safe_sink_reset_n (io_innerCtrl_safe_sink_reset_n_0) ); // @[AsyncQueue.scala:211:22] assign auto_dmiXing_in_a_ridx = auto_dmiXing_in_a_ridx_0; // @[Debug.scala:1871:9] assign auto_dmiXing_in_a_safe_ridx_valid = auto_dmiXing_in_a_safe_ridx_valid_0; // @[Debug.scala:1871:9] assign auto_dmiXing_in_a_safe_sink_reset_n = auto_dmiXing_in_a_safe_sink_reset_n_0; // @[Debug.scala:1871:9] assign auto_dmiXing_in_d_mem_0_opcode = auto_dmiXing_in_d_mem_0_opcode_0; // @[Debug.scala:1871:9] assign auto_dmiXing_in_d_mem_0_size = auto_dmiXing_in_d_mem_0_size_0; // @[Debug.scala:1871:9] assign auto_dmiXing_in_d_mem_0_source = auto_dmiXing_in_d_mem_0_source_0; // @[Debug.scala:1871:9] assign auto_dmiXing_in_d_mem_0_data = auto_dmiXing_in_d_mem_0_data_0; // @[Debug.scala:1871:9] assign auto_dmiXing_in_d_widx = auto_dmiXing_in_d_widx_0; // @[Debug.scala:1871:9] assign auto_dmiXing_in_d_safe_widx_valid = auto_dmiXing_in_d_safe_widx_valid_0; // @[Debug.scala:1871:9] assign auto_dmiXing_in_d_safe_source_reset_n = auto_dmiXing_in_d_safe_source_reset_n_0; // @[Debug.scala:1871:9] assign auto_dmInner_sb2tlOpt_out_a_valid = auto_dmInner_sb2tlOpt_out_a_valid_0; // @[Debug.scala:1871:9] assign auto_dmInner_sb2tlOpt_out_a_bits_opcode = auto_dmInner_sb2tlOpt_out_a_bits_opcode_0; // @[Debug.scala:1871:9] assign auto_dmInner_sb2tlOpt_out_a_bits_size = auto_dmInner_sb2tlOpt_out_a_bits_size_0; // @[Debug.scala:1871:9] assign auto_dmInner_sb2tlOpt_out_a_bits_address = auto_dmInner_sb2tlOpt_out_a_bits_address_0; // @[Debug.scala:1871:9] assign auto_dmInner_sb2tlOpt_out_a_bits_data = auto_dmInner_sb2tlOpt_out_a_bits_data_0; // @[Debug.scala:1871:9] assign auto_dmInner_sb2tlOpt_out_d_ready = auto_dmInner_sb2tlOpt_out_d_ready_0; // @[Debug.scala:1871:9] assign auto_dmInner_tl_in_a_ready = auto_dmInner_tl_in_a_ready_0; // @[Debug.scala:1871:9] assign auto_dmInner_tl_in_d_valid = auto_dmInner_tl_in_d_valid_0; // @[Debug.scala:1871:9] assign auto_dmInner_tl_in_d_bits_opcode = auto_dmInner_tl_in_d_bits_opcode_0; // @[Debug.scala:1871:9] assign auto_dmInner_tl_in_d_bits_size = auto_dmInner_tl_in_d_bits_size_0; // @[Debug.scala:1871:9] assign auto_dmInner_tl_in_d_bits_source = auto_dmInner_tl_in_d_bits_source_0; // @[Debug.scala:1871:9] assign auto_dmInner_tl_in_d_bits_data = auto_dmInner_tl_in_d_bits_data_0; // @[Debug.scala:1871:9] assign io_innerCtrl_ridx = io_innerCtrl_ridx_0; // @[Debug.scala:1871:9] assign io_innerCtrl_safe_ridx_valid = io_innerCtrl_safe_ridx_valid_0; // @[Debug.scala:1871:9] assign io_innerCtrl_safe_sink_reset_n = io_innerCtrl_safe_sink_reset_n_0; // @[Debug.scala:1871:9] assign io_hgDebugInt_0 = io_hgDebugInt_0_0; // @[Debug.scala:1871:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_66( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [1:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [14:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [28:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [14:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); reg a_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [1:0] size; // @[Monitor.scala:389:22] reg [14:0] source; // @[Monitor.scala:390:22] reg [28:0] address; // @[Monitor.scala:391:22] reg d_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [1:0] size_1; // @[Monitor.scala:540:22] reg [14:0] source_1; // @[Monitor.scala:541:22] reg sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22]
Generate the Verilog code corresponding to the following Chisel files. File Tilelink.scala: package constellation.protocol import chisel3._ import chisel3.util._ import constellation.channel._ import constellation.noc._ import constellation.soc.{CanAttachToGlobalNoC} import org.chipsalliance.cde.config._ import freechips.rocketchip.diplomacy._ import freechips.rocketchip.util._ import freechips.rocketchip.tilelink._ import scala.collection.immutable.{ListMap} trait TLFieldHelper { def getBodyFields(b: TLChannel): Seq[Data] = b match { case b: TLBundleA => Seq(b.mask, b.data, b.corrupt) case b: TLBundleB => Seq(b.mask, b.data, b.corrupt) case b: TLBundleC => Seq( b.data, b.corrupt) case b: TLBundleD => Seq( b.data, b.corrupt) case b: TLBundleE => Seq() } def getConstFields(b: TLChannel): Seq[Data] = b match { case b: TLBundleA => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo ) case b: TLBundleB => Seq(b.opcode, b.param, b.size, b.source, b.address ) case b: TLBundleC => Seq(b.opcode, b.param, b.size, b.source, b.address, b.user, b.echo ) case b: TLBundleD => Seq(b.opcode, b.param, b.size, b.source, b.user, b.echo, b.sink, b.denied) case b: TLBundleE => Seq( b.sink ) } def minTLPayloadWidth(b: TLChannel): Int = Seq(getBodyFields(b), getConstFields(b)).map(_.map(_.getWidth).sum).max def minTLPayloadWidth(bs: Seq[TLChannel]): Int = bs.map(b => minTLPayloadWidth(b)).max def minTLPayloadWidth(b: TLBundle): Int = minTLPayloadWidth(Seq(b.a, b.b, b.c, b.d, b.e).map(_.bits)) } class TLMasterToNoC( edgeIn: TLEdge, edgesOut: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, slaveToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = Flipped(new TLBundle(wideBundle)) val flits = new Bundle { val a = Decoupled(new IngressFlit(flitWidth)) val b = Flipped(Decoupled(new EgressFlit(flitWidth))) val c = Decoupled(new IngressFlit(flitWidth)) val d = Flipped(Decoupled(new EgressFlit(flitWidth))) val e = Decoupled(new IngressFlit(flitWidth)) } }) val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart)) val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize)) val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart)) val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize)) val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 2)) a.io.protocol <> io.tilelink.a io.tilelink.b <> b.io.protocol c.io.protocol <> io.tilelink.c io.tilelink.d <> d.io.protocol e.io.protocol <> io.tilelink.e io.flits.a <> a.io.flit b.io.flit <> io.flits.b io.flits.c <> c.io.flit d.io.flit <> io.flits.d io.flits.e <> e.io.flit } class TLMasterACDToNoC( edgeIn: TLEdge, edgesOut: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, slaveToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = Flipped(new TLBundle(wideBundle)) val flits = new Bundle { val a = Decoupled(new IngressFlit(flitWidth)) val c = Decoupled(new IngressFlit(flitWidth)) val d = Flipped(Decoupled(new EgressFlit(flitWidth))) } }) io.tilelink := DontCare val a = Module(new TLAToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0, sourceStart)) val c = Module(new TLCToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 1, sourceStart)) val d = Module(new TLDFromNoC(edgeIn, wideBundle, sourceSize)) a.io.protocol <> io.tilelink.a c.io.protocol <> io.tilelink.c io.tilelink.d <> d.io.protocol io.flits.a <> a.io.flit io.flits.c <> c.io.flit d.io.flit <> io.flits.d } class TLMasterBEToNoC( edgeIn: TLEdge, edgesOut: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, slaveToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = Flipped(new TLBundle(wideBundle)) val flits = new Bundle { val b = Flipped(Decoupled(new EgressFlit(flitWidth))) val e = Decoupled(new IngressFlit(flitWidth)) } }) io.tilelink := DontCare val b = Module(new TLBFromNoC(edgeIn, wideBundle, sourceSize)) val e = Module(new TLEToNoC(edgeIn, edgesOut, wideBundle, (i) => slaveToEgressOffset(i) + 0)) io.tilelink.b <> b.io.protocol e.io.protocol <> io.tilelink.e b.io.flit <> io.flits.b io.flits.e <> e.io.flit } class TLSlaveToNoC( edgeOut: TLEdge, edgesIn: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, masterToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = new TLBundle(wideBundle) val flits = new Bundle { val a = Flipped(Decoupled(new EgressFlit(flitWidth))) val b = Decoupled(new IngressFlit(flitWidth)) val c = Flipped(Decoupled(new EgressFlit(flitWidth))) val d = Decoupled(new IngressFlit(flitWidth)) val e = Flipped(Decoupled(new EgressFlit(flitWidth))) } }) val a = Module(new TLAFromNoC(edgeOut, wideBundle)) val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0)) val c = Module(new TLCFromNoC(edgeOut, wideBundle)) val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 1, sourceStart)) val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize)) io.tilelink.a <> a.io.protocol b.io.protocol <> io.tilelink.b io.tilelink.c <> c.io.protocol d.io.protocol <> io.tilelink.d io.tilelink.e <> e.io.protocol a.io.flit <> io.flits.a io.flits.b <> b.io.flit c.io.flit <> io.flits.c io.flits.d <> d.io.flit e.io.flit <> io.flits.e } class TLSlaveACDToNoC( edgeOut: TLEdge, edgesIn: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, masterToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = new TLBundle(wideBundle) val flits = new Bundle { val a = Flipped(Decoupled(new EgressFlit(flitWidth))) val c = Flipped(Decoupled(new EgressFlit(flitWidth))) val d = Decoupled(new IngressFlit(flitWidth)) } }) io.tilelink := DontCare val a = Module(new TLAFromNoC(edgeOut, wideBundle)) val c = Module(new TLCFromNoC(edgeOut, wideBundle)) val d = Module(new TLDToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0, sourceStart)) io.tilelink.a <> a.io.protocol io.tilelink.c <> c.io.protocol d.io.protocol <> io.tilelink.d a.io.flit <> io.flits.a c.io.flit <> io.flits.c io.flits.d <> d.io.flit } class TLSlaveBEToNoC( edgeOut: TLEdge, edgesIn: Seq[TLEdge], sourceStart: Int, sourceSize: Int, wideBundle: TLBundleParameters, masterToEgressOffset: Int => Int, flitWidth: Int )(implicit p: Parameters) extends Module { val io = IO(new Bundle { val tilelink = new TLBundle(wideBundle) val flits = new Bundle { val b = Decoupled(new IngressFlit(flitWidth)) val e = Flipped(Decoupled(new EgressFlit(flitWidth))) } }) io.tilelink := DontCare val b = Module(new TLBToNoC(edgeOut, edgesIn, wideBundle, (i) => masterToEgressOffset(i) + 0)) val e = Module(new TLEFromNoC(edgeOut, wideBundle, sourceSize)) b.io.protocol <> io.tilelink.b io.tilelink.e <> e.io.protocol io.flits.b <> b.io.flit e.io.flit <> io.flits.e } class TileLinkInterconnectInterface(edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge])(implicit val p: Parameters) extends Bundle { val in = MixedVec(edgesIn.map { e => Flipped(new TLBundle(e.bundle)) }) val out = MixedVec(edgesOut.map { e => new TLBundle(e.bundle) }) } trait TileLinkProtocolParams extends ProtocolParams with TLFieldHelper { def edgesIn: Seq[TLEdge] def edgesOut: Seq[TLEdge] def edgeInNodes: Seq[Int] def edgeOutNodes: Seq[Int] require(edgesIn.size == edgeInNodes.size && edgesOut.size == edgeOutNodes.size) def wideBundle = TLBundleParameters.union(edgesIn.map(_.bundle) ++ edgesOut.map(_.bundle)) def genBundle = new TLBundle(wideBundle) def inputIdRanges = TLXbar.mapInputIds(edgesIn.map(_.client)) def outputIdRanges = TLXbar.mapOutputIds(edgesOut.map(_.manager)) val vNetBlocking = (blocker: Int, blockee: Int) => blocker < blockee def genIO()(implicit p: Parameters): Data = new TileLinkInterconnectInterface(edgesIn, edgesOut) } object TLConnect { def apply[T <: TLBundleBase](l: DecoupledIO[T], r: DecoupledIO[T]) = { l.valid := r.valid r.ready := l.ready l.bits.squeezeAll.waiveAll :<>= r.bits.squeezeAll.waiveAll } } // BEGIN: TileLinkProtocolParams case class TileLinkABCDEProtocolParams( edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge], edgeInNodes: Seq[Int], edgeOutNodes: Seq[Int] ) extends TileLinkProtocolParams { // END: TileLinkProtocolParams val minPayloadWidth = minTLPayloadWidth(new TLBundle(wideBundle)) val ingressNodes = (edgeInNodes.map(u => Seq.fill(3) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten val egressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (3) {u})).flatten val nVirtualNetworks = 5 val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) => val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m => c.visibility.exists { ca => m.address.exists { ma => ca.overlaps(ma) }} }} val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED) val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB ( (if (reachable) Some(FlowParams(ii * 3 + 0 , oi * 3 + 0 + edgesIn.size * 2, 4)) else None) ++ // A (if (probe ) Some(FlowParams(oi * 2 + 0 + edgesIn.size * 3, ii * 2 + 0 , 3)) else None) ++ // B (if (release ) Some(FlowParams(ii * 3 + 1 , oi * 3 + 1 + edgesIn.size * 2, 2)) else None) ++ // C (if (reachable) Some(FlowParams(oi * 2 + 1 + edgesIn.size * 3, ii * 2 + 1 , 1)) else None) ++ // D (if (release ) Some(FlowParams(ii * 3 + 2 , oi * 3 + 2 + edgesIn.size * 2, 0)) else None)) // E }}.flatten.flatten def interface(terminals: NoCTerminalIO, ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = { val ingresses = terminals.ingress val egresses = terminals.egress protocol match { case protocol: TileLinkInterconnectInterface => { edgesIn.zipWithIndex.map { case (e,i) => val nif_master = Module(new TLMasterToNoC( e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size, wideBundle, (s) => s * 3 + edgesIn.size * 2 + egressOffset, minPayloadWidth )) nif_master.io.tilelink := DontCare nif_master.io.tilelink.a.valid := false.B nif_master.io.tilelink.c.valid := false.B nif_master.io.tilelink.e.valid := false.B TLConnect(nif_master.io.tilelink.a, protocol.in(i).a) TLConnect(protocol.in(i).d, nif_master.io.tilelink.d) if (protocol.in(i).params.hasBCE) { TLConnect(protocol.in(i).b, nif_master.io.tilelink.b) TLConnect(nif_master.io.tilelink.c, protocol.in(i).c) TLConnect(nif_master.io.tilelink.e, protocol.in(i).e) } ingresses(i * 3 + 0).flit <> nif_master.io.flits.a ingresses(i * 3 + 1).flit <> nif_master.io.flits.c ingresses(i * 3 + 2).flit <> nif_master.io.flits.e nif_master.io.flits.b <> egresses(i * 2 + 0).flit nif_master.io.flits.d <> egresses(i * 2 + 1).flit } edgesOut.zipWithIndex.map { case (e,i) => val nif_slave = Module(new TLSlaveToNoC( e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size, wideBundle, (s) => s * 2 + egressOffset, minPayloadWidth )) nif_slave.io.tilelink := DontCare nif_slave.io.tilelink.b.valid := false.B nif_slave.io.tilelink.d.valid := false.B TLConnect(protocol.out(i).a, nif_slave.io.tilelink.a) TLConnect(nif_slave.io.tilelink.d, protocol.out(i).d) if (protocol.out(i).params.hasBCE) { TLConnect(nif_slave.io.tilelink.b, protocol.out(i).b) TLConnect(protocol.out(i).c, nif_slave.io.tilelink.c) TLConnect(protocol.out(i).e, nif_slave.io.tilelink.e) } ingresses(i * 2 + 0 + edgesIn.size * 3).flit <> nif_slave.io.flits.b ingresses(i * 2 + 1 + edgesIn.size * 3).flit <> nif_slave.io.flits.d nif_slave.io.flits.a <> egresses(i * 3 + 0 + edgesIn.size * 2).flit nif_slave.io.flits.c <> egresses(i * 3 + 1 + edgesIn.size * 2).flit nif_slave.io.flits.e <> egresses(i * 3 + 2 + edgesIn.size * 2).flit } } } } } case class TileLinkACDProtocolParams( edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge], edgeInNodes: Seq[Int], edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams { val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.a, genBundle.c, genBundle.d).map(_.bits)) val ingressNodes = (edgeInNodes.map(u => Seq.fill(2) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (2) {u})).flatten val nVirtualNetworks = 3 val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) => val reachable = edgeIn.client.clients.exists { c => edgeOut.manager.managers.exists { m => c.visibility.exists { ca => m.address.exists { ma => ca.overlaps(ma) }} }} val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB ( (if (reachable) Some(FlowParams(ii * 2 + 0 , oi * 2 + 0 + edgesIn.size * 1, 2)) else None) ++ // A (if (release ) Some(FlowParams(ii * 2 + 1 , oi * 2 + 1 + edgesIn.size * 1, 1)) else None) ++ // C (if (reachable) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 2, ii * 1 + 0 , 0)) else None)) // D }}.flatten.flatten def interface(terminals: NoCTerminalIO, ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = { val ingresses = terminals.ingress val egresses = terminals.egress protocol match { case protocol: TileLinkInterconnectInterface => { protocol := DontCare edgesIn.zipWithIndex.map { case (e,i) => val nif_master_acd = Module(new TLMasterACDToNoC( e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size, wideBundle, (s) => s * 2 + edgesIn.size * 1 + egressOffset, minPayloadWidth )) nif_master_acd.io.tilelink := DontCare nif_master_acd.io.tilelink.a.valid := false.B nif_master_acd.io.tilelink.c.valid := false.B nif_master_acd.io.tilelink.e.valid := false.B TLConnect(nif_master_acd.io.tilelink.a, protocol.in(i).a) TLConnect(protocol.in(i).d, nif_master_acd.io.tilelink.d) if (protocol.in(i).params.hasBCE) { TLConnect(nif_master_acd.io.tilelink.c, protocol.in(i).c) } ingresses(i * 2 + 0).flit <> nif_master_acd.io.flits.a ingresses(i * 2 + 1).flit <> nif_master_acd.io.flits.c nif_master_acd.io.flits.d <> egresses(i * 1 + 0).flit } edgesOut.zipWithIndex.map { case (e,i) => val nif_slave_acd = Module(new TLSlaveACDToNoC( e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size, wideBundle, (s) => s * 1 + egressOffset, minPayloadWidth )) nif_slave_acd.io.tilelink := DontCare nif_slave_acd.io.tilelink.b.valid := false.B nif_slave_acd.io.tilelink.d.valid := false.B TLConnect(protocol.out(i).a, nif_slave_acd.io.tilelink.a) TLConnect(nif_slave_acd.io.tilelink.d, protocol.out(i).d) if (protocol.out(i).params.hasBCE) { TLConnect(protocol.out(i).c, nif_slave_acd.io.tilelink.c) } ingresses(i * 1 + 0 + edgesIn.size * 2).flit <> nif_slave_acd.io.flits.d nif_slave_acd.io.flits.a <> egresses(i * 2 + 0 + edgesIn.size * 1).flit nif_slave_acd.io.flits.c <> egresses(i * 2 + 1 + edgesIn.size * 1).flit } }} } } case class TileLinkBEProtocolParams( edgesIn: Seq[TLEdge], edgesOut: Seq[TLEdge], edgeInNodes: Seq[Int], edgeOutNodes: Seq[Int]) extends TileLinkProtocolParams { val minPayloadWidth = minTLPayloadWidth(Seq(genBundle.b, genBundle.e).map(_.bits)) val ingressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten val egressNodes = (edgeInNodes.map(u => Seq.fill(1) (u)) ++ edgeOutNodes.map(u => Seq.fill (1) {u})).flatten val nVirtualNetworks = 2 val flows = edgesIn.zipWithIndex.map { case (edgeIn, ii) => edgesOut.zipWithIndex.map { case (edgeOut, oi) => val probe = edgeIn.client.anySupportProbe && edgeOut.manager.managers.exists(_.regionType >= RegionType.TRACKED) val release = edgeIn.client.anySupportProbe && edgeOut.manager.anySupportAcquireB ( (if (probe ) Some(FlowParams(oi * 1 + 0 + edgesIn.size * 1, ii * 1 + 0 , 1)) else None) ++ // B (if (release ) Some(FlowParams(ii * 1 + 0 , oi * 1 + 0 + edgesIn.size * 1, 0)) else None)) // E }}.flatten.flatten def interface(terminals: NoCTerminalIO, ingressOffset: Int, egressOffset: Int, protocol: Data)(implicit p: Parameters) = { val ingresses = terminals.ingress val egresses = terminals.egress protocol match { case protocol: TileLinkInterconnectInterface => { protocol := DontCare edgesIn.zipWithIndex.map { case (e,i) => val nif_master_be = Module(new TLMasterBEToNoC( e, edgesOut, inputIdRanges(i).start, inputIdRanges(i).size, wideBundle, (s) => s * 1 + edgesIn.size * 1 + egressOffset, minPayloadWidth )) nif_master_be.io.tilelink := DontCare nif_master_be.io.tilelink.a.valid := false.B nif_master_be.io.tilelink.c.valid := false.B nif_master_be.io.tilelink.e.valid := false.B if (protocol.in(i).params.hasBCE) { TLConnect(protocol.in(i).b, nif_master_be.io.tilelink.b) TLConnect(nif_master_be.io.tilelink.e, protocol.in(i).e) } ingresses(i * 1 + 0).flit <> nif_master_be.io.flits.e nif_master_be.io.flits.b <> egresses(i * 1 + 0).flit } edgesOut.zipWithIndex.map { case (e,i) => val nif_slave_be = Module(new TLSlaveBEToNoC( e, edgesIn, outputIdRanges(i).start, outputIdRanges(i).size, wideBundle, (s) => s * 1 + egressOffset, minPayloadWidth )) nif_slave_be.io.tilelink := DontCare nif_slave_be.io.tilelink.b.valid := false.B nif_slave_be.io.tilelink.d.valid := false.B if (protocol.out(i).params.hasBCE) { TLConnect(protocol.out(i).e, nif_slave_be.io.tilelink.e) TLConnect(nif_slave_be.io.tilelink.b, protocol.out(i).b) } ingresses(i * 1 + 0 + edgesIn.size * 1).flit <> nif_slave_be.io.flits.b nif_slave_be.io.flits.e <> egresses(i * 1 + 0 + edgesIn.size * 1).flit } }} } } abstract class TLNoCLike(implicit p: Parameters) extends LazyModule { val node = new TLNexusNode( clientFn = { seq => seq(0).v1copy( echoFields = BundleField.union(seq.flatMap(_.echoFields)), requestFields = BundleField.union(seq.flatMap(_.requestFields)), responseKeys = seq.flatMap(_.responseKeys).distinct, minLatency = seq.map(_.minLatency).min, clients = (TLXbar.mapInputIds(seq) zip seq) flatMap { case (range, port) => port.clients map { client => client.v1copy( sourceId = client.sourceId.shift(range.start) )} } ) }, managerFn = { seq => val fifoIdFactory = TLXbar.relabeler() seq(0).v1copy( responseFields = BundleField.union(seq.flatMap(_.responseFields)), requestKeys = seq.flatMap(_.requestKeys).distinct, minLatency = seq.map(_.minLatency).min, endSinkId = TLXbar.mapOutputIds(seq).map(_.end).max, managers = seq.flatMap { port => require (port.beatBytes == seq(0).beatBytes, s"TLNoC (data widths don't match: ${port.managers.map(_.name)} has ${port.beatBytes}B vs ${seq(0).managers.map(_.name)} has ${seq(0).beatBytes}B") // TileLink NoC does not preserve FIFO-ness, masters to this NoC should instantiate FIFOFixers port.managers map { manager => manager.v1copy(fifoId = None) } } ) } ) } abstract class TLNoCModuleImp(outer: LazyModule) extends LazyModuleImp(outer) { val edgesIn: Seq[TLEdge] val edgesOut: Seq[TLEdge] val nodeMapping: DiplomaticNetworkNodeMapping val nocName: String lazy val inNames = nodeMapping.genUniqueName(edgesIn.map(_.master.masters.map(_.name))) lazy val outNames = nodeMapping.genUniqueName(edgesOut.map(_.slave.slaves.map(_.name))) lazy val edgeInNodes = nodeMapping.getNodesIn(inNames) lazy val edgeOutNodes = nodeMapping.getNodesOut(outNames) def printNodeMappings() { println(s"Constellation: TLNoC $nocName inwards mapping:") for ((n, i) <- inNames zip edgeInNodes) { val node = i.map(_.toString).getOrElse("X") println(s" $node <- $n") } println(s"Constellation: TLNoC $nocName outwards mapping:") for ((n, i) <- outNames zip edgeOutNodes) { val node = i.map(_.toString).getOrElse("X") println(s" $node <- $n") } } } trait TLNoCParams // Instantiates a private TLNoC. Replaces the TLXbar // BEGIN: TLNoCParams case class SimpleTLNoCParams( nodeMappings: DiplomaticNetworkNodeMapping, nocParams: NoCParams = NoCParams(), ) extends TLNoCParams class TLNoC(params: SimpleTLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike { // END: TLNoCParams override def shouldBeInlined = inlineNoC lazy val module = new TLNoCModuleImp(this) { val (io_in, edgesIn) = node.in.unzip val (io_out, edgesOut) = node.out.unzip val nodeMapping = params.nodeMappings val nocName = name printNodeMappings() val protocolParams = TileLinkABCDEProtocolParams( edgesIn = edgesIn, edgesOut = edgesOut, edgeInNodes = edgeInNodes.flatten, edgeOutNodes = edgeOutNodes.flatten ) val noc = Module(new ProtocolNoC(ProtocolNoCParams( params.nocParams.copy(hasCtrl = false, nocName=name, inlineNoC = inlineNoC), Seq(protocolParams), inlineNoC = inlineNoC ))) noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => { (protocol.in zip io_in).foreach { case (l,r) => l <> r } (io_out zip protocol.out).foreach { case (l,r) => l <> r } } } } } case class SplitACDxBETLNoCParams( nodeMappings: DiplomaticNetworkNodeMapping, acdNoCParams: NoCParams = NoCParams(), beNoCParams: NoCParams = NoCParams(), beDivision: Int = 2 ) extends TLNoCParams class TLSplitACDxBENoC(params: SplitACDxBETLNoCParams, name: String = "test", inlineNoC: Boolean = false)(implicit p: Parameters) extends TLNoCLike { override def shouldBeInlined = inlineNoC lazy val module = new TLNoCModuleImp(this) { val (io_in, edgesIn) = node.in.unzip val (io_out, edgesOut) = node.out.unzip val nodeMapping = params.nodeMappings val nocName = name printNodeMappings() val acdProtocolParams = TileLinkACDProtocolParams( edgesIn = edgesIn, edgesOut = edgesOut, edgeInNodes = edgeInNodes.flatten, edgeOutNodes = edgeOutNodes.flatten ) val beProtocolParams = TileLinkBEProtocolParams( edgesIn = edgesIn, edgesOut = edgesOut, edgeInNodes = edgeInNodes.flatten, edgeOutNodes = edgeOutNodes.flatten ) val acd_noc = Module(new ProtocolNoC(ProtocolNoCParams( params.acdNoCParams.copy(hasCtrl = false, nocName=s"${name}_acd", inlineNoC = inlineNoC), Seq(acdProtocolParams), inlineNoC = inlineNoC ))) val be_noc = Module(new ProtocolNoC(ProtocolNoCParams( params.beNoCParams.copy(hasCtrl = false, nocName=s"${name}_be", inlineNoC = inlineNoC), Seq(beProtocolParams), widthDivision = params.beDivision, inlineNoC = inlineNoC ))) acd_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => { (protocol.in zip io_in).foreach { case (l,r) => l := DontCare l.a <> r.a l.c <> r.c l.d <> r.d } (io_out zip protocol.out).foreach { case (l,r) => r := DontCare l.a <> r.a l.c <> r.c l.d <> r.d } }} be_noc.io.protocol(0) match { case protocol: TileLinkInterconnectInterface => { (protocol.in zip io_in).foreach { case (l,r) => l := DontCare l.b <> r.b l.e <> r.e } (io_out zip protocol.out).foreach { case (l,r) => r := DontCare l.b <> r.b l.e <> r.e } }} } } case class GlobalTLNoCParams( nodeMappings: DiplomaticNetworkNodeMapping ) extends TLNoCParams // Maps this interconnect onto a global NoC class TLGlobalNoC(params: GlobalTLNoCParams, name: String = "test")(implicit p: Parameters) extends TLNoCLike { lazy val module = new TLNoCModuleImp(this) with CanAttachToGlobalNoC { val (io_in, edgesIn) = node.in.unzip val (io_out, edgesOut) = node.out.unzip val nodeMapping = params.nodeMappings val nocName = name val protocolParams = TileLinkABCDEProtocolParams( edgesIn = edgesIn, edgesOut = edgesOut, edgeInNodes = edgeInNodes.flatten, edgeOutNodes = edgeOutNodes.flatten ) printNodeMappings() val io_global = IO(Flipped(protocolParams.genIO())) io_global match { case protocol: TileLinkInterconnectInterface => { (protocol.in zip io_in).foreach { case (l,r) => l <> r } (io_out zip protocol.out).foreach { case (l,r) => l <> r } } } } }
module TLMasterACDToNoC_12( // @[Tilelink.scala:72:7] input clock, // @[Tilelink.scala:72:7] input reset, // @[Tilelink.scala:72:7] output io_tilelink_a_ready, // @[Tilelink.scala:79:14] input io_tilelink_a_valid, // @[Tilelink.scala:79:14] input [2:0] io_tilelink_a_bits_opcode, // @[Tilelink.scala:79:14] input [2:0] io_tilelink_a_bits_param, // @[Tilelink.scala:79:14] input [3:0] io_tilelink_a_bits_size, // @[Tilelink.scala:79:14] input [6:0] io_tilelink_a_bits_source, // @[Tilelink.scala:79:14] input [31:0] io_tilelink_a_bits_address, // @[Tilelink.scala:79:14] input [15:0] io_tilelink_a_bits_mask, // @[Tilelink.scala:79:14] input [127:0] io_tilelink_a_bits_data, // @[Tilelink.scala:79:14] input io_tilelink_a_bits_corrupt, // @[Tilelink.scala:79:14] output io_tilelink_c_ready, // @[Tilelink.scala:79:14] input io_tilelink_c_valid, // @[Tilelink.scala:79:14] input [2:0] io_tilelink_c_bits_opcode, // @[Tilelink.scala:79:14] input [2:0] io_tilelink_c_bits_param, // @[Tilelink.scala:79:14] input [3:0] io_tilelink_c_bits_size, // @[Tilelink.scala:79:14] input [6:0] io_tilelink_c_bits_source, // @[Tilelink.scala:79:14] input [31:0] io_tilelink_c_bits_address, // @[Tilelink.scala:79:14] input [127:0] io_tilelink_c_bits_data, // @[Tilelink.scala:79:14] input io_tilelink_c_bits_corrupt, // @[Tilelink.scala:79:14] input io_tilelink_d_ready, // @[Tilelink.scala:79:14] output io_tilelink_d_valid, // @[Tilelink.scala:79:14] output [2:0] io_tilelink_d_bits_opcode, // @[Tilelink.scala:79:14] output [1:0] io_tilelink_d_bits_param, // @[Tilelink.scala:79:14] output [3:0] io_tilelink_d_bits_size, // @[Tilelink.scala:79:14] output [6:0] io_tilelink_d_bits_source, // @[Tilelink.scala:79:14] output [5:0] io_tilelink_d_bits_sink, // @[Tilelink.scala:79:14] output io_tilelink_d_bits_denied, // @[Tilelink.scala:79:14] output [127:0] io_tilelink_d_bits_data, // @[Tilelink.scala:79:14] output io_tilelink_d_bits_corrupt, // @[Tilelink.scala:79:14] input io_flits_a_ready, // @[Tilelink.scala:79:14] output io_flits_a_valid, // @[Tilelink.scala:79:14] output io_flits_a_bits_head, // @[Tilelink.scala:79:14] output io_flits_a_bits_tail, // @[Tilelink.scala:79:14] output [144:0] io_flits_a_bits_payload, // @[Tilelink.scala:79:14] output [4:0] io_flits_a_bits_egress_id, // @[Tilelink.scala:79:14] input io_flits_c_ready, // @[Tilelink.scala:79:14] output io_flits_c_valid, // @[Tilelink.scala:79:14] output io_flits_c_bits_head, // @[Tilelink.scala:79:14] output io_flits_c_bits_tail, // @[Tilelink.scala:79:14] output [144:0] io_flits_c_bits_payload, // @[Tilelink.scala:79:14] output [4:0] io_flits_c_bits_egress_id, // @[Tilelink.scala:79:14] output io_flits_d_ready, // @[Tilelink.scala:79:14] input io_flits_d_valid, // @[Tilelink.scala:79:14] input io_flits_d_bits_head, // @[Tilelink.scala:79:14] input io_flits_d_bits_tail, // @[Tilelink.scala:79:14] input [144:0] io_flits_d_bits_payload // @[Tilelink.scala:79:14] ); wire [128:0] _c_io_flit_bits_payload; // @[Tilelink.scala:89:17] TLAToNoC_12 a ( // @[Tilelink.scala:88:17] .clock (clock), .reset (reset), .io_protocol_ready (io_tilelink_a_ready), .io_protocol_valid (io_tilelink_a_valid), .io_protocol_bits_opcode (io_tilelink_a_bits_opcode), .io_protocol_bits_param (io_tilelink_a_bits_param), .io_protocol_bits_size (io_tilelink_a_bits_size), .io_protocol_bits_source (io_tilelink_a_bits_source), .io_protocol_bits_address (io_tilelink_a_bits_address), .io_protocol_bits_mask (io_tilelink_a_bits_mask), .io_protocol_bits_data (io_tilelink_a_bits_data), .io_protocol_bits_corrupt (io_tilelink_a_bits_corrupt), .io_flit_ready (io_flits_a_ready), .io_flit_valid (io_flits_a_valid), .io_flit_bits_head (io_flits_a_bits_head), .io_flit_bits_tail (io_flits_a_bits_tail), .io_flit_bits_payload (io_flits_a_bits_payload), .io_flit_bits_egress_id (io_flits_a_bits_egress_id) ); // @[Tilelink.scala:88:17] TLCToNoC_12 c ( // @[Tilelink.scala:89:17] .clock (clock), .reset (reset), .io_protocol_ready (io_tilelink_c_ready), .io_protocol_valid (io_tilelink_c_valid), .io_protocol_bits_opcode (io_tilelink_c_bits_opcode), .io_protocol_bits_param (io_tilelink_c_bits_param), .io_protocol_bits_size (io_tilelink_c_bits_size), .io_protocol_bits_source (io_tilelink_c_bits_source), .io_protocol_bits_address (io_tilelink_c_bits_address), .io_protocol_bits_data (io_tilelink_c_bits_data), .io_protocol_bits_corrupt (io_tilelink_c_bits_corrupt), .io_flit_ready (io_flits_c_ready), .io_flit_valid (io_flits_c_valid), .io_flit_bits_head (io_flits_c_bits_head), .io_flit_bits_tail (io_flits_c_bits_tail), .io_flit_bits_payload (_c_io_flit_bits_payload), .io_flit_bits_egress_id (io_flits_c_bits_egress_id) ); // @[Tilelink.scala:89:17] TLDFromNoC_1 d ( // @[Tilelink.scala:90:17] .clock (clock), .reset (reset), .io_protocol_ready (io_tilelink_d_ready), .io_protocol_valid (io_tilelink_d_valid), .io_protocol_bits_opcode (io_tilelink_d_bits_opcode), .io_protocol_bits_param (io_tilelink_d_bits_param), .io_protocol_bits_size (io_tilelink_d_bits_size), .io_protocol_bits_source (io_tilelink_d_bits_source), .io_protocol_bits_sink (io_tilelink_d_bits_sink), .io_protocol_bits_denied (io_tilelink_d_bits_denied), .io_protocol_bits_data (io_tilelink_d_bits_data), .io_protocol_bits_corrupt (io_tilelink_d_bits_corrupt), .io_flit_ready (io_flits_d_ready), .io_flit_valid (io_flits_d_valid), .io_flit_bits_head (io_flits_d_bits_head), .io_flit_bits_tail (io_flits_d_bits_tail), .io_flit_bits_payload (io_flits_d_bits_payload[128:0]) // @[Tilelink.scala:97:14] ); // @[Tilelink.scala:90:17] assign io_flits_c_bits_payload = {16'h0, _c_io_flit_bits_payload}; // @[Tilelink.scala:72:7, :89:17, :96:14] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } } File SBA.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.devices.debug.systembusaccess import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.amba.{AMBAProt, AMBAProtField} import freechips.rocketchip.devices.debug.{DebugModuleKey, RWNotify, SBCSFields, WNotifyVal} import freechips.rocketchip.diplomacy.TransferSizes import freechips.rocketchip.regmapper.{RegField, RegFieldDesc, RegFieldGroup, RegFieldWrType} import freechips.rocketchip.tilelink.{TLClientNode, TLMasterParameters, TLMasterPortParameters} import freechips.rocketchip.util.property object SystemBusAccessState extends scala.Enumeration { type SystemBusAccessState = Value val Idle, SBReadRequest, SBWriteRequest, SBReadResponse, SBWriteResponse = Value } object SBErrorCode extends scala.Enumeration { type SBErrorCode = Value val NoError = Value(0) val Timeout = Value(1) val BadAddr = Value(2) val AlgnError = Value(3) val BadAccess = Value(4) val OtherError = Value(7) } object SystemBusAccessModule { def apply(sb2tl: SBToTL, dmactive: Bool, dmAuthenticated: Bool)(implicit p: Parameters): (Seq[RegField], Seq[Seq[RegField]], Seq[Seq[RegField]]) = { import SBErrorCode._ val cfg = p(DebugModuleKey).get val anyAddressWrEn = WireInit(false.B).suggestName("anyAddressWrEn") val anyDataRdEn = WireInit(false.B).suggestName("anyDataRdEn") val anyDataWrEn = WireInit(false.B).suggestName("anyDataWrEn") // --- SBCS Status Register --- val SBCSFieldsReg = Reg(new SBCSFields()).suggestName("SBCSFieldsReg") val SBCSFieldsRegReset = WireInit(0.U.asTypeOf(new SBCSFields())) SBCSFieldsRegReset.sbversion := 1.U(1.W) // This code implements a version of the spec after January 1, 2018 SBCSFieldsRegReset.sbbusy := (sb2tl.module.io.sbStateOut =/= SystemBusAccessState.Idle.id.U) SBCSFieldsRegReset.sbaccess := 2.U SBCSFieldsRegReset.sbasize := sb2tl.module.edge.bundle.addressBits.U SBCSFieldsRegReset.sbaccess128 := (cfg.maxSupportedSBAccess == 128).B SBCSFieldsRegReset.sbaccess64 := (cfg.maxSupportedSBAccess >= 64).B SBCSFieldsRegReset.sbaccess32 := (cfg.maxSupportedSBAccess >= 32).B SBCSFieldsRegReset.sbaccess16 := (cfg.maxSupportedSBAccess >= 16).B SBCSFieldsRegReset.sbaccess8 := (cfg.maxSupportedSBAccess >= 8).B val SBCSRdData = WireInit(0.U.asTypeOf(new SBCSFields())).suggestName("SBCSRdData") val SBCSWrDataVal = WireInit(0.U(32.W)) val SBCSWrData = WireInit(SBCSWrDataVal.asTypeOf(new SBCSFields())) val sberrorWrEn = WireInit(false.B) val sbreadondataWrEn = WireInit(false.B) val sbautoincrementWrEn= WireInit(false.B) val sbaccessWrEn = WireInit(false.B) val sbreadonaddrWrEn = WireInit(false.B) val sbbusyerrorWrEn = WireInit(false.B) val sbcsfields = RegFieldGroup("sbcs", Some("system bus access control and status"), Seq( RegField.r(1, SBCSRdData.sbaccess8, RegFieldDesc("sbaccess8", "8-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 8) 1 else 0))), RegField.r(1, SBCSRdData.sbaccess16, RegFieldDesc("sbaccess16", "16-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 16) 1 else 0))), RegField.r(1, SBCSRdData.sbaccess32, RegFieldDesc("sbaccess32", "32-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 32) 1 else 0))), RegField.r(1, SBCSRdData.sbaccess64, RegFieldDesc("sbaccess64", "64-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess >= 64) 1 else 0))), RegField.r(1, SBCSRdData.sbaccess128, RegFieldDesc("sbaccess128", "128-bit accesses supported", reset=Some(if (cfg.maxSupportedSBAccess == 128) 1 else 0))), RegField.r(7, SBCSRdData.sbasize, RegFieldDesc("sbasize", "bits in address", reset=Some(sb2tl.module.edge.bundle.addressBits))), WNotifyVal(3, SBCSRdData.sberror, SBCSWrData.sberror, sberrorWrEn, RegFieldDesc("sberror", "system bus error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))), WNotifyVal(1, SBCSRdData.sbreadondata, SBCSWrData.sbreadondata, sbreadondataWrEn, RegFieldDesc("sbreadondata", "system bus read on data", reset=Some(0))), WNotifyVal(1, SBCSRdData.sbautoincrement, SBCSWrData.sbautoincrement, sbautoincrementWrEn, RegFieldDesc("sbautoincrement", "system bus auto-increment address", reset=Some(0))), WNotifyVal(3, SBCSRdData.sbaccess, SBCSWrData.sbaccess, sbaccessWrEn, RegFieldDesc("sbaccess", "system bus access size", reset=Some(2))), WNotifyVal(1, SBCSRdData.sbreadonaddr, SBCSWrData.sbreadonaddr, sbreadonaddrWrEn, RegFieldDesc("sbreadonaddr", "system bus read on data", reset=Some(0))), RegField.r(1, SBCSRdData.sbbusy, RegFieldDesc("sbbusy", "system bus access is busy", reset=Some(0))), WNotifyVal(1, SBCSRdData.sbbusyerror, SBCSWrData.sbbusyerror, sbbusyerrorWrEn, RegFieldDesc("sbbusyerror", "system bus busy error", reset=Some(0), wrType=Some(RegFieldWrType.ONE_TO_CLEAR))), RegField(6), RegField.r(3, SBCSRdData.sbversion, RegFieldDesc("sbversion", "system bus access version", reset=Some(1))), )) // --- System Bus Address Registers --- // ADDR0 Register is required // Instantiate ADDR1-3 registers as needed depending on system bus address width val hasSBAddr1 = (sb2tl.module.edge.bundle.addressBits >= 33) val hasSBAddr2 = (sb2tl.module.edge.bundle.addressBits >= 65) val hasSBAddr3 = (sb2tl.module.edge.bundle.addressBits >= 97) val hasAddr = Seq(true, hasSBAddr1, hasSBAddr2, hasSBAddr3) val SBADDRESSFieldsReg = Reg(Vec(4, UInt(32.W))) SBADDRESSFieldsReg.zipWithIndex.foreach { case(a,i) => a.suggestName("SBADDRESS"+i+"FieldsReg")} val SBADDRESSWrData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} )) val SBADDRESSRdEn = WireInit(VecInit(Seq.fill(4) {false.B} )) val SBADDRESSWrEn = WireInit(VecInit(Seq.fill(4) {false.B} )) val autoIncrementedAddr = WireInit(0.U(128.W)) autoIncrementedAddr := Cat(SBADDRESSFieldsReg.reverse) + (1.U << SBCSFieldsReg.sbaccess) autoIncrementedAddr.suggestName("autoIncrementedAddr") val sbaddrfields: Seq[Seq[RegField]] = SBADDRESSFieldsReg.zipWithIndex.map { case(a,i) => if(hasAddr(i)) { when (~dmactive || ~dmAuthenticated) { a := 0.U(32.W) }.otherwise { a := Mux(SBADDRESSWrEn(i) && !SBCSRdData.sberror && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror, SBADDRESSWrData(i), Mux((sb2tl.module.io.rdDone || sb2tl.module.io.wrDone) && SBCSFieldsReg.sbautoincrement, autoIncrementedAddr(32*i+31,32*i), a)) } RegFieldGroup("dmi_sbaddr"+i, Some("SBA Address Register"), Seq(RWNotify(32, a, SBADDRESSWrData(i), SBADDRESSRdEn(i), SBADDRESSWrEn(i), Some(RegFieldDesc("dmi_sbaddr"+i, "SBA address register", reset=Some(0), volatile=true))))) } else { a := DontCare Seq.empty[RegField] } } sb2tl.module.io.addrIn := Mux(SBADDRESSWrEn(0), Cat(Cat(SBADDRESSFieldsReg.drop(1).reverse), SBADDRESSWrData(0)), Cat(SBADDRESSFieldsReg.reverse)) anyAddressWrEn := SBADDRESSWrEn.reduce(_ || _) // --- System Bus Data Registers --- // DATA0 Register is required // DATA1-3 Registers may not be needed depending on implementation val hasSBData1 = (cfg.maxSupportedSBAccess > 32) val hasSBData2And3 = (cfg.maxSupportedSBAccess == 128) val hasData = Seq(true, hasSBData1, hasSBData2And3, hasSBData2And3) val SBDATAFieldsReg = Reg(Vec(4, Vec(4, UInt(8.W)))) SBDATAFieldsReg.zipWithIndex.foreach { case(d,i) => d.zipWithIndex.foreach { case(d,j) => d.suggestName("SBDATA"+i+"BYTE"+j) }} val SBDATARdData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} )) SBDATARdData.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATARdData"+i) } val SBDATAWrData = WireInit(VecInit(Seq.fill(4) {0.U(32.W)} )) SBDATAWrData.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATAWrData"+i) } val SBDATARdEn = WireInit(VecInit(Seq.fill(4) {false.B} )) val SBDATAWrEn = WireInit(VecInit(Seq.fill(4) {false.B} )) SBDATAWrEn.zipWithIndex.foreach { case(d,i) => d.suggestName("SBDATAWrEn"+i) } val sbdatafields: Seq[Seq[RegField]] = SBDATAFieldsReg.zipWithIndex.map { case(d,i) => if(hasData(i)) { // For data registers, load enable per-byte for (j <- 0 to 3) { when (~dmactive || ~dmAuthenticated) { d(j) := 0.U(8.W) }.otherwise { d(j) := Mux(SBDATAWrEn(i) && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror, SBDATAWrData(i)(8*j+7,8*j), Mux(sb2tl.module.io.rdLoad(4*i+j), sb2tl.module.io.dataOut, d(j))) } } SBDATARdData(i) := Cat(d.reverse) RegFieldGroup("dmi_sbdata"+i, Some("SBA Data Register"), Seq(RWNotify(32, SBDATARdData(i), SBDATAWrData(i), SBDATARdEn(i), SBDATAWrEn(i), Some(RegFieldDesc("dmi_sbdata"+i, "SBA data register", reset=Some(0), volatile=true))))) } else { for (j <- 0 to 3) { d(j) := DontCare } Seq.empty[RegField] } } sb2tl.module.io.dataIn := Mux(sb2tl.module.io.wrEn,Cat(SBDATAWrData.reverse),Cat(SBDATAFieldsReg.flatten.reverse)) anyDataRdEn := SBDATARdEn.reduce(_ || _) anyDataWrEn := SBDATAWrEn.reduce(_ || _) val tryWrEn = SBDATAWrEn(0) val tryRdEn = (SBADDRESSWrEn(0) && SBCSFieldsReg.sbreadonaddr) || (SBDATARdEn(0) && SBCSFieldsReg.sbreadondata) val sbAccessError = (SBCSFieldsReg.sbaccess === 0.U) && (SBCSFieldsReg.sbaccess8 =/= 1.U) || (SBCSFieldsReg.sbaccess === 1.U) && (SBCSFieldsReg.sbaccess16 =/= 1.U) || (SBCSFieldsReg.sbaccess === 2.U) && (SBCSFieldsReg.sbaccess32 =/= 1.U) || (SBCSFieldsReg.sbaccess === 3.U) && (SBCSFieldsReg.sbaccess64 =/= 1.U) || (SBCSFieldsReg.sbaccess === 4.U) && (SBCSFieldsReg.sbaccess128 =/= 1.U) || (SBCSFieldsReg.sbaccess > 4.U) val compareAddr = Wire(UInt(32.W)) // Need use written or latched address to detect error case depending on how transaction is initiated compareAddr := Mux(SBADDRESSWrEn(0),SBADDRESSWrData(0),SBADDRESSFieldsReg(0)) val sbAlignmentError = (SBCSFieldsReg.sbaccess === 1.U) && (compareAddr(0) =/= 0.U) || (SBCSFieldsReg.sbaccess === 2.U) && (compareAddr(1,0) =/= 0.U) || (SBCSFieldsReg.sbaccess === 3.U) && (compareAddr(2,0) =/= 0.U) || (SBCSFieldsReg.sbaccess === 4.U) && (compareAddr(3,0) =/= 0.U) sbAccessError.suggestName("sbAccessError") sbAlignmentError.suggestName("sbAlignmentError") sb2tl.module.io.wrEn := dmAuthenticated && tryWrEn && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror && !sbAccessError && !sbAlignmentError sb2tl.module.io.rdEn := dmAuthenticated && tryRdEn && !SBCSFieldsReg.sbbusy && !SBCSFieldsReg.sbbusyerror && !SBCSRdData.sberror && !sbAccessError && !sbAlignmentError sb2tl.module.io.sizeIn := SBCSFieldsReg.sbaccess val sbBusy = (sb2tl.module.io.sbStateOut =/= SystemBusAccessState.Idle.id.U) when (~dmactive || ~dmAuthenticated) { SBCSFieldsReg := SBCSFieldsRegReset }.otherwise { SBCSFieldsReg.sbbusyerror := Mux(sbbusyerrorWrEn && SBCSWrData.sbbusyerror, false.B, // W1C Mux(anyAddressWrEn && sbBusy, true.B, // Set if a write to SBADDRESS occurs while busy Mux((anyDataRdEn || anyDataWrEn) && sbBusy, true.B, SBCSFieldsReg.sbbusyerror))) // Set if any access to SBDATA occurs while busy SBCSFieldsReg.sbreadonaddr := Mux(sbreadonaddrWrEn, SBCSWrData.sbreadonaddr , SBCSFieldsReg.sbreadonaddr) SBCSFieldsReg.sbautoincrement := Mux(sbautoincrementWrEn, SBCSWrData.sbautoincrement, SBCSFieldsReg.sbautoincrement) SBCSFieldsReg.sbreadondata := Mux(sbreadondataWrEn, SBCSWrData.sbreadondata , SBCSFieldsReg.sbreadondata) SBCSFieldsReg.sbaccess := Mux(sbaccessWrEn, SBCSWrData.sbaccess, SBCSFieldsReg.sbaccess) SBCSFieldsReg.sbversion := 1.U(1.W) // This code implements a version of the spec after January 1, 2018 } // sbErrorReg has a per-bit load enable since each bit can be individually cleared by writing a 1 to it val sbErrorReg = Reg(Vec(4, UInt(1.W))) when(~dmactive || ~dmAuthenticated) { for (i <- 0 until 3) sbErrorReg(i) := 0.U }.otherwise { for (i <- 0 until 3) sbErrorReg(i) := Mux(sberrorWrEn && SBCSWrData.sberror(i) === 1.U, NoError.id.U.extract(i), // W1C Mux((sb2tl.module.io.wrEn && !sb2tl.module.io.wrLegal) || (sb2tl.module.io.rdEn && !sb2tl.module.io.rdLegal), BadAddr.id.U.extract(i), // Bad address accessed Mux((tryWrEn || tryRdEn) && sbAlignmentError, AlgnError.id.U.extract(i), // Address alignment error Mux((tryWrEn || tryRdEn) && sbAccessError, BadAccess.id.U.extract(i), // Access size error Mux((sb2tl.module.io.rdDone || sb2tl.module.io.wrDone) && sb2tl.module.io.respError, OtherError.id.U.extract(i), sbErrorReg(i)))))) // Response error from TL } SBCSRdData := SBCSFieldsReg SBCSRdData.sbasize := sb2tl.module.edge.bundle.addressBits.U SBCSRdData.sbaccess128 := (cfg.maxSupportedSBAccess == 128).B SBCSRdData.sbaccess64 := (cfg.maxSupportedSBAccess >= 64).B SBCSRdData.sbaccess32 := (cfg.maxSupportedSBAccess >= 32).B SBCSRdData.sbaccess16 := (cfg.maxSupportedSBAccess >= 16).B SBCSRdData.sbaccess8 := (cfg.maxSupportedSBAccess >= 8).B SBCSRdData.sbbusy := sbBusy SBCSRdData.sberror := sbErrorReg.asUInt when (~dmAuthenticated) { // Read value must be 0 if not authenticated SBCSRdData := 0.U.asTypeOf(new SBCSFields()) } property.cover(SBCSFieldsReg.sbbusyerror, "SBCS Cover", "sberror set") property.cover(SBCSFieldsReg.sbbusy === 3.U, "SBCS Cover", "sbbusyerror alignment error") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 0.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "8-bit access") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 1.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "16-bit access") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 2.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "32-bit access") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 3.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "64-bit access") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess === 4.U && !sbAccessError && !sbAlignmentError, "SBCS Cover", "128-bit access") property.cover(SBCSFieldsReg.sbautoincrement && SBCSFieldsReg.sbbusy, "SBCS Cover", "Access with autoincrement set") property.cover(!SBCSFieldsReg.sbautoincrement && SBCSFieldsReg.sbbusy, "SBCS Cover", "Access without autoincrement set") property.cover((sb2tl.module.io.wrEn || sb2tl.module.io.rdEn) && SBCSFieldsReg.sbaccess > 4.U, "SBCS Cover", "Invalid sbaccess value") (sbcsfields, sbaddrfields, sbdatafields) } } class SBToTL(implicit p: Parameters) extends LazyModule { val cfg = p(DebugModuleKey).get val node = TLClientNode(Seq(TLMasterPortParameters.v1( clients = Seq(TLMasterParameters.v1("debug")), requestFields = Seq(AMBAProtField())))) lazy val module = new Impl class Impl extends LazyModuleImp(this) { val io = IO(new Bundle { val rdEn = Input(Bool()) val wrEn = Input(Bool()) val addrIn = Input(UInt(128.W)) // TODO: Parameterize these widths val dataIn = Input(UInt(128.W)) val sizeIn = Input(UInt(3.W)) val rdLegal = Output(Bool()) val wrLegal = Output(Bool()) val rdDone = Output(Bool()) val wrDone = Output(Bool()) val respError = Output(Bool()) val dataOut = Output(UInt(8.W)) val rdLoad = Output(Vec(cfg.maxSupportedSBAccess/8, Bool())) val sbStateOut = Output(UInt(log2Ceil(SystemBusAccessState.maxId).W)) }) val rf_reset = IO(Input(Reset())) import SystemBusAccessState._ val (tl, edge) = node.out(0) val sbState = RegInit(0.U) // --- Drive payloads on bus to TileLink --- val d = Queue(tl.d, 2) // Add a small buffer since response could arrive on same cycle as request d.ready := (sbState === SBReadResponse.id.U) || (sbState === SBWriteResponse.id.U) val muxedData = WireInit(0.U(8.W)) val requestValid = tl.a.valid val requestReady = tl.a.ready val responseValid = d.valid val responseReady = d.ready val counter = RegInit(0.U((log2Ceil(cfg.maxSupportedSBAccess/8)+1).W)) val vecData = Wire(Vec(cfg.maxSupportedSBAccess/8, UInt(8.W))) vecData.zipWithIndex.map { case (vd, i) => vd := io.dataIn(8*i+7,8*i) } muxedData := vecData(counter(log2Ceil(vecData.size)-1,0)) // Need an additional check to determine if address is safe for Get/Put val rdLegal_addr = edge.manager.supportsGetSafe(io.addrIn, io.sizeIn, Some(TransferSizes(1,cfg.maxSupportedSBAccess/8))) val wrLegal_addr = edge.manager.supportsPutFullSafe(io.addrIn, io.sizeIn, Some(TransferSizes(1,cfg.maxSupportedSBAccess/8))) val (_, gbits) = edge.Get(0.U, io.addrIn, io.sizeIn) val (_, pfbits) = edge.Put(0.U, io.addrIn, io.sizeIn, muxedData) io.rdLegal := rdLegal_addr io.wrLegal := wrLegal_addr io.sbStateOut := sbState when(sbState === SBReadRequest.id.U) { tl.a.bits := gbits } .otherwise { tl.a.bits := pfbits } tl.a.bits.user.lift(AMBAProt).foreach { x => x.bufferable := false.B x.modifiable := false.B x.readalloc := false.B x.writealloc := false.B x.privileged := true.B x.secure := true.B x.fetch := false.B } val respError = d.bits.denied || d.bits.corrupt io.respError := respError val wrTxValid = sbState === SBWriteRequest.id.U && requestValid && requestReady val rdTxValid = sbState === SBReadResponse.id.U && responseValid && responseReady val txLast = counter === ((1.U << io.sizeIn) - 1.U) counter := Mux((wrTxValid || rdTxValid) && txLast, 0.U, Mux((wrTxValid || rdTxValid) , counter+1.U, counter)) for (i <- 0 until (cfg.maxSupportedSBAccess/8)) { io.rdLoad(i) := rdTxValid && (counter === i.U) } // --- State Machine to interface with TileLink --- when (sbState === Idle.id.U){ sbState := Mux(io.rdEn && io.rdLegal, SBReadRequest.id.U, Mux(io.wrEn && io.wrLegal, SBWriteRequest.id.U, sbState)) }.elsewhen (sbState === SBReadRequest.id.U){ sbState := Mux(requestValid && requestReady, SBReadResponse.id.U, sbState) }.elsewhen (sbState === SBWriteRequest.id.U){ sbState := Mux(wrTxValid && txLast, SBWriteResponse.id.U, sbState) }.elsewhen (sbState === SBReadResponse.id.U){ sbState := Mux(rdTxValid && txLast, Idle.id.U, sbState) }.elsewhen (sbState === SBWriteResponse.id.U){ sbState := Mux(responseValid && responseReady, Idle.id.U, sbState) } io.rdDone := rdTxValid && txLast io.wrDone := (sbState === SBWriteResponse.id.U) && responseValid && responseReady io.dataOut := d.bits.data tl.a.valid := (sbState === SBReadRequest.id.U) || (sbState === SBWriteRequest.id.U) // Tie off unused channels tl.b.ready := false.B tl.c.valid := false.B tl.e.valid := false.B assert (sbState === Idle.id.U || sbState === SBReadRequest.id.U || sbState === SBWriteRequest.id.U || sbState === SBReadResponse.id.U || sbState === SBWriteResponse.id.U, "SBA state machine in undefined state") property.cover (sbState === Idle.id.U, "SBA State Cover", "SBA Access Idle") property.cover (sbState === SBReadRequest.id.U, "SBA State Cover", "SBA Access Read Req") property.cover (sbState === SBWriteRequest.id.U, "SBA State Cover", "SBA Access Write Req") property.cover (sbState === SBReadResponse.id.U, "SBA State Cover", "SBA Access Read Resp") property.cover (sbState === SBWriteResponse.id.U, "SBA State Cover", "SBA Access Write Resp") property.cover (io.rdEn && !io.rdLegal, "SB Legality Cover", "SBA Rd Address Illegal") property.cover (io.wrEn && !io.wrLegal, "SB Legality Cover", "SBA Wr Address Illegal") } } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module SBToTL( // @[SBA.scala:273:9] input clock, // @[SBA.scala:273:9] input reset, // @[SBA.scala:273:9] input auto_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [3:0] auto_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [31:0] auto_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [2:0] auto_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [7:0] auto_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_out_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input io_rdEn, // @[SBA.scala:274:16] input io_wrEn, // @[SBA.scala:274:16] input [127:0] io_addrIn, // @[SBA.scala:274:16] input [127:0] io_dataIn, // @[SBA.scala:274:16] input [2:0] io_sizeIn, // @[SBA.scala:274:16] output io_rdLegal, // @[SBA.scala:274:16] output io_wrLegal, // @[SBA.scala:274:16] output io_rdDone, // @[SBA.scala:274:16] output io_wrDone, // @[SBA.scala:274:16] output io_respError, // @[SBA.scala:274:16] output [7:0] io_dataOut, // @[SBA.scala:274:16] output io_rdLoad_0, // @[SBA.scala:274:16] output io_rdLoad_1, // @[SBA.scala:274:16] output io_rdLoad_2, // @[SBA.scala:274:16] output io_rdLoad_3, // @[SBA.scala:274:16] output io_rdLoad_4, // @[SBA.scala:274:16] output io_rdLoad_5, // @[SBA.scala:274:16] output io_rdLoad_6, // @[SBA.scala:274:16] output io_rdLoad_7, // @[SBA.scala:274:16] output [2:0] io_sbStateOut, // @[SBA.scala:274:16] input rf_reset // @[SBA.scala:289:28] ); wire _d_q_io_deq_valid; // @[Decoupled.scala:362:21] wire _d_q_io_deq_bits_denied; // @[Decoupled.scala:362:21] wire _d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21] wire auto_out_a_ready_0 = auto_out_a_ready; // @[SBA.scala:273:9] wire auto_out_d_valid_0 = auto_out_d_valid; // @[SBA.scala:273:9] wire [2:0] auto_out_d_bits_opcode_0 = auto_out_d_bits_opcode; // @[SBA.scala:273:9] wire [1:0] auto_out_d_bits_param_0 = auto_out_d_bits_param; // @[SBA.scala:273:9] wire [3:0] auto_out_d_bits_size_0 = auto_out_d_bits_size; // @[SBA.scala:273:9] wire [2:0] auto_out_d_bits_sink_0 = auto_out_d_bits_sink; // @[SBA.scala:273:9] wire auto_out_d_bits_denied_0 = auto_out_d_bits_denied; // @[SBA.scala:273:9] wire [7:0] auto_out_d_bits_data_0 = auto_out_d_bits_data; // @[SBA.scala:273:9] wire auto_out_d_bits_corrupt_0 = auto_out_d_bits_corrupt; // @[SBA.scala:273:9] wire io_rdEn_0 = io_rdEn; // @[SBA.scala:273:9] wire io_wrEn_0 = io_wrEn; // @[SBA.scala:273:9] wire [127:0] io_addrIn_0 = io_addrIn; // @[SBA.scala:273:9] wire [127:0] io_dataIn_0 = io_dataIn; // @[SBA.scala:273:9] wire [2:0] io_sizeIn_0 = io_sizeIn; // @[SBA.scala:273:9] wire auto_out_a_bits_source = 1'h0; // @[SBA.scala:273:9] wire auto_out_a_bits_corrupt = 1'h0; // @[SBA.scala:273:9] wire auto_out_d_bits_source = 1'h0; // @[SBA.scala:273:9] wire nodeOut_a_bits_source = 1'h0; // @[MixedNode.scala:542:17] wire nodeOut_a_bits_corrupt = 1'h0; // @[MixedNode.scala:542:17] wire nodeOut_d_bits_source = 1'h0; // @[MixedNode.scala:542:17] wire _wrLegal_addr_T_70 = 1'h0; // @[Parameters.scala:684:29] wire _wrLegal_addr_T_76 = 1'h0; // @[Parameters.scala:684:54] wire gbits_source = 1'h0; // @[Edges.scala:460:17] wire gbits_corrupt = 1'h0; // @[Edges.scala:460:17] wire _pfbits_legal_T_62 = 1'h0; // @[Parameters.scala:684:29] wire _pfbits_legal_T_68 = 1'h0; // @[Parameters.scala:684:54] wire pfbits_source = 1'h0; // @[Edges.scala:480:17] wire pfbits_corrupt = 1'h0; // @[Edges.scala:480:17] wire [2:0] auto_out_a_bits_param = 3'h0; // @[SBA.scala:273:9] wire [2:0] nodeOut_a_bits_param = 3'h0; // @[MixedNode.scala:542:17] wire [2:0] gbits_param = 3'h0; // @[Edges.scala:460:17] wire [2:0] pfbits_opcode = 3'h0; // @[Edges.scala:480:17] wire [2:0] pfbits_param = 3'h0; // @[Edges.scala:480:17] wire auto_out_a_bits_mask = 1'h1; // @[SBA.scala:273:9] wire nodeOut_a_bits_mask = 1'h1; // @[MixedNode.scala:542:17] wire _rdLegal_addr_T = 1'h1; // @[Parameters.scala:92:28] wire _rdLegal_addr_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _wrLegal_addr_T = 1'h1; // @[Parameters.scala:92:28] wire _wrLegal_addr_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _gbits_legal_T = 1'h1; // @[Parameters.scala:92:28] wire _gbits_legal_T_1 = 1'h1; // @[Parameters.scala:92:38] wire _gbits_legal_T_2 = 1'h1; // @[Parameters.scala:92:33] wire _gbits_legal_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _gbits_legal_T_10 = 1'h1; // @[Parameters.scala:92:28] wire _gbits_legal_T_62 = 1'h1; // @[Parameters.scala:92:28] wire gbits_mask = 1'h1; // @[Edges.scala:460:17] wire gbits_a_mask_sizeOH = 1'h1; // @[Misc.scala:202:81] wire _pfbits_legal_T = 1'h1; // @[Parameters.scala:92:28] wire _pfbits_legal_T_1 = 1'h1; // @[Parameters.scala:92:38] wire _pfbits_legal_T_2 = 1'h1; // @[Parameters.scala:92:33] wire _pfbits_legal_T_3 = 1'h1; // @[Parameters.scala:684:29] wire _pfbits_legal_T_10 = 1'h1; // @[Parameters.scala:92:28] wire _pfbits_legal_T_69 = 1'h1; // @[Parameters.scala:92:28] wire pfbits_mask = 1'h1; // @[Edges.scala:480:17] wire pfbits_a_mask_sizeOH = 1'h1; // @[Misc.scala:202:81] wire [7:0] gbits_data = 8'h0; // @[Edges.scala:460:17] wire [2:0] gbits_opcode = 3'h4; // @[Edges.scala:460:17] wire nodeOut_a_ready = auto_out_a_ready_0; // @[SBA.scala:273:9] wire nodeOut_a_valid; // @[MixedNode.scala:542:17] wire [2:0] nodeOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [3:0] nodeOut_a_bits_size; // @[MixedNode.scala:542:17] wire [31:0] nodeOut_a_bits_address; // @[MixedNode.scala:542:17] wire [7:0] nodeOut_a_bits_data; // @[MixedNode.scala:542:17] wire nodeOut_d_ready; // @[MixedNode.scala:542:17] wire nodeOut_d_valid = auto_out_d_valid_0; // @[SBA.scala:273:9] wire [2:0] nodeOut_d_bits_opcode = auto_out_d_bits_opcode_0; // @[SBA.scala:273:9] wire [1:0] nodeOut_d_bits_param = auto_out_d_bits_param_0; // @[SBA.scala:273:9] wire [3:0] nodeOut_d_bits_size = auto_out_d_bits_size_0; // @[SBA.scala:273:9] wire [2:0] nodeOut_d_bits_sink = auto_out_d_bits_sink_0; // @[SBA.scala:273:9] wire nodeOut_d_bits_denied = auto_out_d_bits_denied_0; // @[SBA.scala:273:9] wire [7:0] nodeOut_d_bits_data = auto_out_d_bits_data_0; // @[SBA.scala:273:9] wire nodeOut_d_bits_corrupt = auto_out_d_bits_corrupt_0; // @[SBA.scala:273:9] wire [127:0] _rdLegal_addr_T_4 = io_addrIn_0; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_4 = io_addrIn_0; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_14 = io_addrIn_0; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_14 = io_addrIn_0; // @[Parameters.scala:137:31] wire rdLegal_addr; // @[Parameters.scala:686:26] wire [2:0] _gbits_a_mask_sizeOH_T = io_sizeIn_0; // @[Misc.scala:202:34] wire [2:0] _pfbits_a_mask_sizeOH_T = io_sizeIn_0; // @[Misc.scala:202:34] wire wrLegal_addr; // @[Parameters.scala:686:26] wire _io_rdDone_T; // @[SBA.scala:362:29] wire _io_wrDone_T_2; // @[SBA.scala:363:71] wire respError; // @[SBA.scala:335:35] wire _io_rdLoad_0_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_1_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_2_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_3_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_4_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_5_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_6_T_1; // @[SBA.scala:345:33] wire _io_rdLoad_7_T_1; // @[SBA.scala:345:33] wire [2:0] auto_out_a_bits_opcode_0; // @[SBA.scala:273:9] wire [3:0] auto_out_a_bits_size_0; // @[SBA.scala:273:9] wire [31:0] auto_out_a_bits_address_0; // @[SBA.scala:273:9] wire [7:0] auto_out_a_bits_data_0; // @[SBA.scala:273:9] wire auto_out_a_valid_0; // @[SBA.scala:273:9] wire auto_out_d_ready_0; // @[SBA.scala:273:9] wire io_rdLoad_0_0; // @[SBA.scala:273:9] wire io_rdLoad_1_0; // @[SBA.scala:273:9] wire io_rdLoad_2_0; // @[SBA.scala:273:9] wire io_rdLoad_3_0; // @[SBA.scala:273:9] wire io_rdLoad_4_0; // @[SBA.scala:273:9] wire io_rdLoad_5_0; // @[SBA.scala:273:9] wire io_rdLoad_6_0; // @[SBA.scala:273:9] wire io_rdLoad_7_0; // @[SBA.scala:273:9] wire io_rdLegal_0; // @[SBA.scala:273:9] wire io_wrLegal_0; // @[SBA.scala:273:9] wire io_rdDone_0; // @[SBA.scala:273:9] wire io_wrDone_0; // @[SBA.scala:273:9] wire io_respError_0; // @[SBA.scala:273:9] wire [7:0] io_dataOut_0; // @[SBA.scala:273:9] wire [2:0] io_sbStateOut_0; // @[SBA.scala:273:9] wire _nodeOut_a_valid_T_2; // @[SBA.scala:366:52] assign auto_out_a_valid_0 = nodeOut_a_valid; // @[SBA.scala:273:9] assign auto_out_a_bits_opcode_0 = nodeOut_a_bits_opcode; // @[SBA.scala:273:9] assign auto_out_a_bits_size_0 = nodeOut_a_bits_size; // @[SBA.scala:273:9] assign auto_out_a_bits_address_0 = nodeOut_a_bits_address; // @[SBA.scala:273:9] assign auto_out_a_bits_data_0 = nodeOut_a_bits_data; // @[SBA.scala:273:9] assign auto_out_d_ready_0 = nodeOut_d_ready; // @[SBA.scala:273:9] reg [2:0] sbState; // @[SBA.scala:295:26] assign io_sbStateOut_0 = sbState; // @[SBA.scala:273:9, :295:26] wire _T_21 = sbState == 3'h3; // @[SBA.scala:295:26, :299:25] wire _q_io_deq_ready_T; // @[SBA.scala:299:25] assign _q_io_deq_ready_T = _T_21; // @[SBA.scala:299:25] wire _rdTxValid_T; // @[SBA.scala:339:29] assign _rdTxValid_T = _T_21; // @[SBA.scala:299:25, :339:29] wire _T_22 = sbState == 3'h4; // @[SBA.scala:295:26, :299:62] wire _q_io_deq_ready_T_1; // @[SBA.scala:299:62] assign _q_io_deq_ready_T_1 = _T_22; // @[SBA.scala:299:62] wire _io_wrDone_T; // @[SBA.scala:363:28] assign _io_wrDone_T = _T_22; // @[SBA.scala:299:62, :363:28] wire _q_io_deq_ready_T_2 = _q_io_deq_ready_T | _q_io_deq_ready_T_1; // @[SBA.scala:299:{25,50,62}] wire [7:0] muxedData; // @[SBA.scala:301:29] wire [7:0] pfbits_data = muxedData; // @[Edges.scala:480:17] reg [3:0] counter; // @[SBA.scala:307:26] wire [7:0] _vecData_0_T; // @[SBA.scala:309:63] wire [7:0] _vecData_1_T; // @[SBA.scala:309:63] wire [7:0] _vecData_2_T; // @[SBA.scala:309:63] wire [7:0] _vecData_3_T; // @[SBA.scala:309:63] wire [7:0] _vecData_4_T; // @[SBA.scala:309:63] wire [7:0] _vecData_5_T; // @[SBA.scala:309:63] wire [7:0] _vecData_6_T; // @[SBA.scala:309:63] wire [7:0] _vecData_7_T; // @[SBA.scala:309:63] wire [7:0] vecData_0; // @[SBA.scala:308:25] wire [7:0] vecData_1; // @[SBA.scala:308:25] wire [7:0] vecData_2; // @[SBA.scala:308:25] wire [7:0] vecData_3; // @[SBA.scala:308:25] wire [7:0] vecData_4; // @[SBA.scala:308:25] wire [7:0] vecData_5; // @[SBA.scala:308:25] wire [7:0] vecData_6; // @[SBA.scala:308:25] wire [7:0] vecData_7; // @[SBA.scala:308:25] assign _vecData_0_T = io_dataIn_0[7:0]; // @[SBA.scala:273:9, :309:63] assign vecData_0 = _vecData_0_T; // @[SBA.scala:308:25, :309:63] assign _vecData_1_T = io_dataIn_0[15:8]; // @[SBA.scala:273:9, :309:63] assign vecData_1 = _vecData_1_T; // @[SBA.scala:308:25, :309:63] assign _vecData_2_T = io_dataIn_0[23:16]; // @[SBA.scala:273:9, :309:63] assign vecData_2 = _vecData_2_T; // @[SBA.scala:308:25, :309:63] assign _vecData_3_T = io_dataIn_0[31:24]; // @[SBA.scala:273:9, :309:63] assign vecData_3 = _vecData_3_T; // @[SBA.scala:308:25, :309:63] assign _vecData_4_T = io_dataIn_0[39:32]; // @[SBA.scala:273:9, :309:63] assign vecData_4 = _vecData_4_T; // @[SBA.scala:308:25, :309:63] assign _vecData_5_T = io_dataIn_0[47:40]; // @[SBA.scala:273:9, :309:63] assign vecData_5 = _vecData_5_T; // @[SBA.scala:308:25, :309:63] assign _vecData_6_T = io_dataIn_0[55:48]; // @[SBA.scala:273:9, :309:63] assign vecData_6 = _vecData_6_T; // @[SBA.scala:308:25, :309:63] assign _vecData_7_T = io_dataIn_0[63:56]; // @[SBA.scala:273:9, :309:63] assign vecData_7 = _vecData_7_T; // @[SBA.scala:308:25, :309:63] wire [2:0] _muxedData_T = counter[2:0]; // @[SBA.scala:307:26, :310:33] wire [7:0][7:0] _GEN = {{vecData_7}, {vecData_6}, {vecData_5}, {vecData_4}, {vecData_3}, {vecData_2}, {vecData_1}, {vecData_0}}; // @[SBA.scala:308:25, :310:15] assign muxedData = _GEN[_muxedData_T]; // @[SBA.scala:301:29, :310:{15,33}] wire _rdLegal_addr_T_1 = ~(io_sizeIn_0[2]); // @[Parameters.scala:92:38] wire _rdLegal_addr_T_2 = _rdLegal_addr_T_1; // @[Parameters.scala:92:{33,38}] wire [128:0] _rdLegal_addr_T_5 = {1'h0, _rdLegal_addr_T_4}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_6 = _rdLegal_addr_T_5 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFE000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_7 = _rdLegal_addr_T_6; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_8 = _rdLegal_addr_T_7 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_0 = {io_addrIn_0[127:14], io_addrIn_0[13:0] ^ 14'h3000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_9; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_9 = _GEN_0; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_9; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_9 = _GEN_0; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_4; // @[Parameters.scala:137:31] assign _gbits_legal_T_4 = _GEN_0; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_4; // @[Parameters.scala:137:31] assign _pfbits_legal_T_4 = _GEN_0; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_10 = {1'h0, _rdLegal_addr_T_9}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_11 = _rdLegal_addr_T_10 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_12 = _rdLegal_addr_T_11; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_13 = _rdLegal_addr_T_12 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_1 = {io_addrIn_0[127:17], io_addrIn_0[16:0] ^ 17'h10000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_14; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_14 = _GEN_1; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_71; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_71 = _GEN_1; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_19; // @[Parameters.scala:137:31] assign _gbits_legal_T_19 = _GEN_1; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_24; // @[Parameters.scala:137:31] assign _gbits_legal_T_24 = _GEN_1; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_63; // @[Parameters.scala:137:31] assign _pfbits_legal_T_63 = _GEN_1; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_15 = {1'h0, _rdLegal_addr_T_14}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_16 = _rdLegal_addr_T_15 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_17 = _rdLegal_addr_T_16; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_18 = _rdLegal_addr_T_17 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_2 = {io_addrIn_0[127:18], io_addrIn_0[17:0] ^ 18'h20000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_19; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_19 = _GEN_2; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_14; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_14 = _GEN_2; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_66; // @[Parameters.scala:137:31] assign _gbits_legal_T_66 = _GEN_2; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_73; // @[Parameters.scala:137:31] assign _pfbits_legal_T_73 = _GEN_2; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_20 = {1'h0, _rdLegal_addr_T_19}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_21 = _rdLegal_addr_T_20 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFC000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_22 = _rdLegal_addr_T_21; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_23 = _rdLegal_addr_T_22 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_3 = {io_addrIn_0[127:18], io_addrIn_0[17:0] ^ 18'h24000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_24; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_24 = _GEN_3; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_19; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_19 = _GEN_3; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_25 = {1'h0, _rdLegal_addr_T_24}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_26 = _rdLegal_addr_T_25 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_27 = _rdLegal_addr_T_26; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_28 = _rdLegal_addr_T_27 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_4 = {io_addrIn_0[127:21], io_addrIn_0[20:0] ^ 21'h100000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_29; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_29 = _GEN_4; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_24; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_24 = _GEN_4; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_19; // @[Parameters.scala:137:31] assign _pfbits_legal_T_19 = _GEN_4; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_30 = {1'h0, _rdLegal_addr_T_29}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_31 = _rdLegal_addr_T_30 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFEF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_32 = _rdLegal_addr_T_31; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_33 = _rdLegal_addr_T_32 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_5 = {io_addrIn_0[127:26], io_addrIn_0[25:0] ^ 26'h2000000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_34; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_34 = _GEN_5; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_29; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_29 = _GEN_5; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_29; // @[Parameters.scala:137:31] assign _gbits_legal_T_29 = _GEN_5; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_24; // @[Parameters.scala:137:31] assign _pfbits_legal_T_24 = _GEN_5; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_35 = {1'h0, _rdLegal_addr_T_34}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_36 = _rdLegal_addr_T_35 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_37 = _rdLegal_addr_T_36; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_38 = _rdLegal_addr_T_37 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_6 = {io_addrIn_0[127:26], io_addrIn_0[25:0] ^ 26'h2010000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_39; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_39 = _GEN_6; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_34; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_34 = _GEN_6; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_29; // @[Parameters.scala:137:31] assign _pfbits_legal_T_29 = _GEN_6; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_40 = {1'h0, _rdLegal_addr_T_39}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_41 = _rdLegal_addr_T_40 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_42 = _rdLegal_addr_T_41; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_43 = _rdLegal_addr_T_42 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_7 = {io_addrIn_0[127:28], io_addrIn_0[27:0] ^ 28'h8000000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_44; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_44 = _GEN_7; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_39; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_39 = _GEN_7; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_34; // @[Parameters.scala:137:31] assign _gbits_legal_T_34 = _GEN_7; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_34; // @[Parameters.scala:137:31] assign _pfbits_legal_T_34 = _GEN_7; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_45 = {1'h0, _rdLegal_addr_T_44}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_46 = _rdLegal_addr_T_45 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_47 = _rdLegal_addr_T_46; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_48 = _rdLegal_addr_T_47 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_8 = {io_addrIn_0[127:28], io_addrIn_0[27:0] ^ 28'hC000000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_49; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_49 = _GEN_8; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_44; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_44 = _GEN_8; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_39; // @[Parameters.scala:137:31] assign _gbits_legal_T_39 = _GEN_8; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_39; // @[Parameters.scala:137:31] assign _pfbits_legal_T_39 = _GEN_8; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_50 = {1'h0, _rdLegal_addr_T_49}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_51 = _rdLegal_addr_T_50 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFC000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_52 = _rdLegal_addr_T_51; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_53 = _rdLegal_addr_T_52 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [127:0] _GEN_9 = {io_addrIn_0[127:29], io_addrIn_0[28:0] ^ 29'h10020000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_54; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_54 = _GEN_9; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_49; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_49 = _GEN_9; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_44; // @[Parameters.scala:137:31] assign _gbits_legal_T_44 = _GEN_9; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_44; // @[Parameters.scala:137:31] assign _pfbits_legal_T_44 = _GEN_9; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_55 = {1'h0, _rdLegal_addr_T_54}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_56 = _rdLegal_addr_T_55 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_57 = _rdLegal_addr_T_56; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_58 = _rdLegal_addr_T_57 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [31:0] gbits_address = io_addrIn_0[31:0]; // @[Edges.scala:460:17] wire [31:0] pfbits_address = io_addrIn_0[31:0]; // @[Edges.scala:480:17] wire [127:0] _GEN_10 = {io_addrIn_0[127:32], io_addrIn_0[31:0] ^ 32'h80000000}; // @[Parameters.scala:137:31] wire [127:0] _rdLegal_addr_T_59; // @[Parameters.scala:137:31] assign _rdLegal_addr_T_59 = _GEN_10; // @[Parameters.scala:137:31] wire [127:0] _wrLegal_addr_T_54; // @[Parameters.scala:137:31] assign _wrLegal_addr_T_54 = _GEN_10; // @[Parameters.scala:137:31] wire [127:0] _gbits_legal_T_49; // @[Parameters.scala:137:31] assign _gbits_legal_T_49 = _GEN_10; // @[Parameters.scala:137:31] wire [127:0] _pfbits_legal_T_49; // @[Parameters.scala:137:31] assign _pfbits_legal_T_49 = _GEN_10; // @[Parameters.scala:137:31] wire [128:0] _rdLegal_addr_T_60 = {1'h0, _rdLegal_addr_T_59}; // @[Parameters.scala:137:{31,41}] wire [128:0] _rdLegal_addr_T_61 = _rdLegal_addr_T_60 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFF0000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _rdLegal_addr_T_62 = _rdLegal_addr_T_61; // @[Parameters.scala:137:46] wire _rdLegal_addr_T_63 = _rdLegal_addr_T_62 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _rdLegal_addr_T_64 = _rdLegal_addr_T_8 | _rdLegal_addr_T_13; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_65 = _rdLegal_addr_T_64 | _rdLegal_addr_T_18; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_66 = _rdLegal_addr_T_65 | _rdLegal_addr_T_23; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_67 = _rdLegal_addr_T_66 | _rdLegal_addr_T_28; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_68 = _rdLegal_addr_T_67 | _rdLegal_addr_T_33; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_69 = _rdLegal_addr_T_68 | _rdLegal_addr_T_38; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_70 = _rdLegal_addr_T_69 | _rdLegal_addr_T_43; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_71 = _rdLegal_addr_T_70 | _rdLegal_addr_T_48; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_72 = _rdLegal_addr_T_71 | _rdLegal_addr_T_53; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_73 = _rdLegal_addr_T_72 | _rdLegal_addr_T_58; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_74 = _rdLegal_addr_T_73 | _rdLegal_addr_T_63; // @[Parameters.scala:685:42] wire _rdLegal_addr_T_75 = _rdLegal_addr_T_74; // @[Parameters.scala:684:54, :685:42] assign rdLegal_addr = _rdLegal_addr_T_75; // @[Parameters.scala:684:54, :686:26] assign io_rdLegal_0 = rdLegal_addr; // @[Parameters.scala:686:26] wire _wrLegal_addr_T_1 = ~(io_sizeIn_0[2]); // @[Parameters.scala:92:38] wire _wrLegal_addr_T_2 = _wrLegal_addr_T_1; // @[Parameters.scala:92:{33,38}] wire [128:0] _wrLegal_addr_T_5 = {1'h0, _wrLegal_addr_T_4}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_6 = _wrLegal_addr_T_5 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFE000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_7 = _wrLegal_addr_T_6; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_8 = _wrLegal_addr_T_7 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_10 = {1'h0, _wrLegal_addr_T_9}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_11 = _wrLegal_addr_T_10 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_12 = _wrLegal_addr_T_11; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_13 = _wrLegal_addr_T_12 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_15 = {1'h0, _wrLegal_addr_T_14}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_16 = _wrLegal_addr_T_15 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFC000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_17 = _wrLegal_addr_T_16; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_18 = _wrLegal_addr_T_17 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_20 = {1'h0, _wrLegal_addr_T_19}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_21 = _wrLegal_addr_T_20 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_22 = _wrLegal_addr_T_21; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_23 = _wrLegal_addr_T_22 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_25 = {1'h0, _wrLegal_addr_T_24}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_26 = _wrLegal_addr_T_25 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFEF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_27 = _wrLegal_addr_T_26; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_28 = _wrLegal_addr_T_27 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_30 = {1'h0, _wrLegal_addr_T_29}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_31 = _wrLegal_addr_T_30 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_32 = _wrLegal_addr_T_31; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_33 = _wrLegal_addr_T_32 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_35 = {1'h0, _wrLegal_addr_T_34}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_36 = _wrLegal_addr_T_35 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_37 = _wrLegal_addr_T_36; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_38 = _wrLegal_addr_T_37 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_40 = {1'h0, _wrLegal_addr_T_39}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_41 = _wrLegal_addr_T_40 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_42 = _wrLegal_addr_T_41; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_43 = _wrLegal_addr_T_42 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_45 = {1'h0, _wrLegal_addr_T_44}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_46 = _wrLegal_addr_T_45 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFC000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_47 = _wrLegal_addr_T_46; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_48 = _wrLegal_addr_T_47 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_50 = {1'h0, _wrLegal_addr_T_49}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_51 = _wrLegal_addr_T_50 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_52 = _wrLegal_addr_T_51; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_53 = _wrLegal_addr_T_52 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _wrLegal_addr_T_55 = {1'h0, _wrLegal_addr_T_54}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_56 = _wrLegal_addr_T_55 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFF0000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_57 = _wrLegal_addr_T_56; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_58 = _wrLegal_addr_T_57 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _wrLegal_addr_T_59 = _wrLegal_addr_T_8 | _wrLegal_addr_T_13; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_60 = _wrLegal_addr_T_59 | _wrLegal_addr_T_18; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_61 = _wrLegal_addr_T_60 | _wrLegal_addr_T_23; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_62 = _wrLegal_addr_T_61 | _wrLegal_addr_T_28; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_63 = _wrLegal_addr_T_62 | _wrLegal_addr_T_33; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_64 = _wrLegal_addr_T_63 | _wrLegal_addr_T_38; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_65 = _wrLegal_addr_T_64 | _wrLegal_addr_T_43; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_66 = _wrLegal_addr_T_65 | _wrLegal_addr_T_48; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_67 = _wrLegal_addr_T_66 | _wrLegal_addr_T_53; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_68 = _wrLegal_addr_T_67 | _wrLegal_addr_T_58; // @[Parameters.scala:685:42] wire _wrLegal_addr_T_69 = _wrLegal_addr_T_68; // @[Parameters.scala:684:54, :685:42] wire _wrLegal_addr_T_77 = _wrLegal_addr_T_69; // @[Parameters.scala:684:54, :686:26] wire [128:0] _wrLegal_addr_T_72 = {1'h0, _wrLegal_addr_T_71}; // @[Parameters.scala:137:{31,41}] wire [128:0] _wrLegal_addr_T_73 = _wrLegal_addr_T_72 & 129'h1FFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _wrLegal_addr_T_74 = _wrLegal_addr_T_73; // @[Parameters.scala:137:46] wire _wrLegal_addr_T_75 = _wrLegal_addr_T_74 == 129'h0; // @[Parameters.scala:137:{46,59}] assign wrLegal_addr = _wrLegal_addr_T_77; // @[Parameters.scala:686:26] assign io_wrLegal_0 = wrLegal_addr; // @[Parameters.scala:686:26] wire [128:0] _gbits_legal_T_5 = {1'h0, _gbits_legal_T_4}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_6 = _gbits_legal_T_5 & 129'hFFEFB000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_7 = _gbits_legal_T_6; // @[Parameters.scala:137:46] wire _gbits_legal_T_8 = _gbits_legal_T_7 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _gbits_legal_T_9 = _gbits_legal_T_8; // @[Parameters.scala:684:54] wire _gbits_legal_T_72 = _gbits_legal_T_9; // @[Parameters.scala:684:54, :686:26] wire _GEN_11 = io_sizeIn_0 != 3'h7; // @[Parameters.scala:92:38] wire _gbits_legal_T_11; // @[Parameters.scala:92:38] assign _gbits_legal_T_11 = _GEN_11; // @[Parameters.scala:92:38] wire _pfbits_legal_T_11; // @[Parameters.scala:92:38] assign _pfbits_legal_T_11 = _GEN_11; // @[Parameters.scala:92:38] wire _gbits_legal_T_12 = _gbits_legal_T_11; // @[Parameters.scala:92:{33,38}] wire _gbits_legal_T_13 = _gbits_legal_T_12; // @[Parameters.scala:684:29] wire [128:0] _gbits_legal_T_15 = {1'h0, _gbits_legal_T_14}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_16 = _gbits_legal_T_15 & 129'hFFEFA000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_17 = _gbits_legal_T_16; // @[Parameters.scala:137:46] wire _gbits_legal_T_18 = _gbits_legal_T_17 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_20 = {1'h0, _gbits_legal_T_19}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_21 = _gbits_legal_T_20 & 129'hFDEFB000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_22 = _gbits_legal_T_21; // @[Parameters.scala:137:46] wire _gbits_legal_T_23 = _gbits_legal_T_22 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_25 = {1'h0, _gbits_legal_T_24}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_26 = _gbits_legal_T_25 & 129'hFFEF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_27 = _gbits_legal_T_26; // @[Parameters.scala:137:46] wire _gbits_legal_T_28 = _gbits_legal_T_27 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_30 = {1'h0, _gbits_legal_T_29}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_31 = _gbits_legal_T_30 & 129'hFFEF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_32 = _gbits_legal_T_31; // @[Parameters.scala:137:46] wire _gbits_legal_T_33 = _gbits_legal_T_32 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_35 = {1'h0, _gbits_legal_T_34}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_36 = _gbits_legal_T_35 & 129'hFFEF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_37 = _gbits_legal_T_36; // @[Parameters.scala:137:46] wire _gbits_legal_T_38 = _gbits_legal_T_37 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_40 = {1'h0, _gbits_legal_T_39}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_41 = _gbits_legal_T_40 & 129'hFC000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_42 = _gbits_legal_T_41; // @[Parameters.scala:137:46] wire _gbits_legal_T_43 = _gbits_legal_T_42 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_45 = {1'h0, _gbits_legal_T_44}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_46 = _gbits_legal_T_45 & 129'hFFEFB000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_47 = _gbits_legal_T_46; // @[Parameters.scala:137:46] wire _gbits_legal_T_48 = _gbits_legal_T_47 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _gbits_legal_T_50 = {1'h0, _gbits_legal_T_49}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_51 = _gbits_legal_T_50 & 129'hF0000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_52 = _gbits_legal_T_51; // @[Parameters.scala:137:46] wire _gbits_legal_T_53 = _gbits_legal_T_52 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _gbits_legal_T_54 = _gbits_legal_T_18 | _gbits_legal_T_23; // @[Parameters.scala:685:42] wire _gbits_legal_T_55 = _gbits_legal_T_54 | _gbits_legal_T_28; // @[Parameters.scala:685:42] wire _gbits_legal_T_56 = _gbits_legal_T_55 | _gbits_legal_T_33; // @[Parameters.scala:685:42] wire _gbits_legal_T_57 = _gbits_legal_T_56 | _gbits_legal_T_38; // @[Parameters.scala:685:42] wire _gbits_legal_T_58 = _gbits_legal_T_57 | _gbits_legal_T_43; // @[Parameters.scala:685:42] wire _gbits_legal_T_59 = _gbits_legal_T_58 | _gbits_legal_T_48; // @[Parameters.scala:685:42] wire _gbits_legal_T_60 = _gbits_legal_T_59 | _gbits_legal_T_53; // @[Parameters.scala:685:42] wire _gbits_legal_T_61 = _gbits_legal_T_13 & _gbits_legal_T_60; // @[Parameters.scala:684:{29,54}, :685:42] wire _gbits_legal_T_63 = ~(io_sizeIn_0[2]); // @[Parameters.scala:92:38] wire _gbits_legal_T_64 = _gbits_legal_T_63; // @[Parameters.scala:92:{33,38}] wire _gbits_legal_T_65 = _gbits_legal_T_64; // @[Parameters.scala:684:29] wire [128:0] _gbits_legal_T_67 = {1'h0, _gbits_legal_T_66}; // @[Parameters.scala:137:{31,41}] wire [128:0] _gbits_legal_T_68 = _gbits_legal_T_67 & 129'hFFEF8000; // @[Parameters.scala:137:{41,46}] wire [128:0] _gbits_legal_T_69 = _gbits_legal_T_68; // @[Parameters.scala:137:46] wire _gbits_legal_T_70 = _gbits_legal_T_69 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _gbits_legal_T_71 = _gbits_legal_T_65 & _gbits_legal_T_70; // @[Parameters.scala:684:{29,54}] wire _gbits_legal_T_73 = _gbits_legal_T_72 | _gbits_legal_T_61; // @[Parameters.scala:684:54, :686:26] wire gbits_legal = _gbits_legal_T_73 | _gbits_legal_T_71; // @[Parameters.scala:684:54, :686:26] wire [3:0] gbits_size; // @[Edges.scala:460:17] wire [3:0] _GEN_12 = {1'h0, io_sizeIn_0}; // @[Edges.scala:463:15] assign gbits_size = _GEN_12; // @[Edges.scala:460:17, :463:15] wire [3:0] pfbits_size; // @[Edges.scala:480:17] assign pfbits_size = _GEN_12; // @[Edges.scala:463:15, :480:17] wire [128:0] _pfbits_legal_T_5 = {1'h0, _pfbits_legal_T_4}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_6 = _pfbits_legal_T_5 & 129'hFFFFB000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_7 = _pfbits_legal_T_6; // @[Parameters.scala:137:46] wire _pfbits_legal_T_8 = _pfbits_legal_T_7 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _pfbits_legal_T_9 = _pfbits_legal_T_8; // @[Parameters.scala:684:54] wire _pfbits_legal_T_79 = _pfbits_legal_T_9; // @[Parameters.scala:684:54, :686:26] wire _pfbits_legal_T_12 = _pfbits_legal_T_11; // @[Parameters.scala:92:{33,38}] wire _pfbits_legal_T_13 = _pfbits_legal_T_12; // @[Parameters.scala:684:29] wire [128:0] _pfbits_legal_T_15 = {1'h0, _pfbits_legal_T_14}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_16 = _pfbits_legal_T_15 & 129'hFFFFA000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_17 = _pfbits_legal_T_16; // @[Parameters.scala:137:46] wire _pfbits_legal_T_18 = _pfbits_legal_T_17 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_20 = {1'h0, _pfbits_legal_T_19}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_21 = _pfbits_legal_T_20 & 129'hFFFEB000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_22 = _pfbits_legal_T_21; // @[Parameters.scala:137:46] wire _pfbits_legal_T_23 = _pfbits_legal_T_22 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_25 = {1'h0, _pfbits_legal_T_24}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_26 = _pfbits_legal_T_25 & 129'hFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_27 = _pfbits_legal_T_26; // @[Parameters.scala:137:46] wire _pfbits_legal_T_28 = _pfbits_legal_T_27 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_30 = {1'h0, _pfbits_legal_T_29}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_31 = _pfbits_legal_T_30 & 129'hFFFFB000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_32 = _pfbits_legal_T_31; // @[Parameters.scala:137:46] wire _pfbits_legal_T_33 = _pfbits_legal_T_32 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_35 = {1'h0, _pfbits_legal_T_34}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_36 = _pfbits_legal_T_35 & 129'hFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_37 = _pfbits_legal_T_36; // @[Parameters.scala:137:46] wire _pfbits_legal_T_38 = _pfbits_legal_T_37 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_40 = {1'h0, _pfbits_legal_T_39}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_41 = _pfbits_legal_T_40 & 129'hFC000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_42 = _pfbits_legal_T_41; // @[Parameters.scala:137:46] wire _pfbits_legal_T_43 = _pfbits_legal_T_42 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_45 = {1'h0, _pfbits_legal_T_44}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_46 = _pfbits_legal_T_45 & 129'hFFFFB000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_47 = _pfbits_legal_T_46; // @[Parameters.scala:137:46] wire _pfbits_legal_T_48 = _pfbits_legal_T_47 == 129'h0; // @[Parameters.scala:137:{46,59}] wire [128:0] _pfbits_legal_T_50 = {1'h0, _pfbits_legal_T_49}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_51 = _pfbits_legal_T_50 & 129'hF0000000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_52 = _pfbits_legal_T_51; // @[Parameters.scala:137:46] wire _pfbits_legal_T_53 = _pfbits_legal_T_52 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _pfbits_legal_T_54 = _pfbits_legal_T_18 | _pfbits_legal_T_23; // @[Parameters.scala:685:42] wire _pfbits_legal_T_55 = _pfbits_legal_T_54 | _pfbits_legal_T_28; // @[Parameters.scala:685:42] wire _pfbits_legal_T_56 = _pfbits_legal_T_55 | _pfbits_legal_T_33; // @[Parameters.scala:685:42] wire _pfbits_legal_T_57 = _pfbits_legal_T_56 | _pfbits_legal_T_38; // @[Parameters.scala:685:42] wire _pfbits_legal_T_58 = _pfbits_legal_T_57 | _pfbits_legal_T_43; // @[Parameters.scala:685:42] wire _pfbits_legal_T_59 = _pfbits_legal_T_58 | _pfbits_legal_T_48; // @[Parameters.scala:685:42] wire _pfbits_legal_T_60 = _pfbits_legal_T_59 | _pfbits_legal_T_53; // @[Parameters.scala:685:42] wire _pfbits_legal_T_61 = _pfbits_legal_T_13 & _pfbits_legal_T_60; // @[Parameters.scala:684:{29,54}, :685:42] wire [128:0] _pfbits_legal_T_64 = {1'h0, _pfbits_legal_T_63}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_65 = _pfbits_legal_T_64 & 129'hFFFF0000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_66 = _pfbits_legal_T_65; // @[Parameters.scala:137:46] wire _pfbits_legal_T_67 = _pfbits_legal_T_66 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _pfbits_legal_T_70 = ~(io_sizeIn_0[2]); // @[Parameters.scala:92:38] wire _pfbits_legal_T_71 = _pfbits_legal_T_70; // @[Parameters.scala:92:{33,38}] wire _pfbits_legal_T_72 = _pfbits_legal_T_71; // @[Parameters.scala:684:29] wire [128:0] _pfbits_legal_T_74 = {1'h0, _pfbits_legal_T_73}; // @[Parameters.scala:137:{31,41}] wire [128:0] _pfbits_legal_T_75 = _pfbits_legal_T_74 & 129'hFFFF8000; // @[Parameters.scala:137:{41,46}] wire [128:0] _pfbits_legal_T_76 = _pfbits_legal_T_75; // @[Parameters.scala:137:46] wire _pfbits_legal_T_77 = _pfbits_legal_T_76 == 129'h0; // @[Parameters.scala:137:{46,59}] wire _pfbits_legal_T_78 = _pfbits_legal_T_72 & _pfbits_legal_T_77; // @[Parameters.scala:684:{29,54}] wire _pfbits_legal_T_80 = _pfbits_legal_T_79 | _pfbits_legal_T_61; // @[Parameters.scala:684:54, :686:26] wire _pfbits_legal_T_81 = _pfbits_legal_T_80; // @[Parameters.scala:686:26] wire pfbits_legal = _pfbits_legal_T_81 | _pfbits_legal_T_78; // @[Parameters.scala:684:54, :686:26] wire _nodeOut_a_valid_T = sbState == 3'h1; // @[SBA.scala:295:26, :322:18, :366:28] assign nodeOut_a_bits_opcode = {_nodeOut_a_valid_T, 2'h0}; // @[SBA.scala:322:{42,54}, :323:54, :366:28] assign nodeOut_a_bits_size = _nodeOut_a_valid_T ? gbits_size : pfbits_size; // @[Edges.scala:460:17, :480:17] assign nodeOut_a_bits_address = _nodeOut_a_valid_T ? gbits_address : pfbits_address; // @[Edges.scala:460:17, :480:17] assign nodeOut_a_bits_data = _nodeOut_a_valid_T ? 8'h0 : pfbits_data; // @[Edges.scala:480:17] assign respError = _d_q_io_deq_bits_denied | _d_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21] assign io_respError_0 = respError; // @[SBA.scala:273:9, :335:35] wire _T_20 = sbState == 3'h2; // @[SBA.scala:295:26, :338:29] wire _wrTxValid_T; // @[SBA.scala:338:29] assign _wrTxValid_T = _T_20; // @[SBA.scala:338:29] wire _nodeOut_a_valid_T_1; // @[SBA.scala:366:64] assign _nodeOut_a_valid_T_1 = _T_20; // @[SBA.scala:338:29, :366:64] wire _wrTxValid_T_1 = _wrTxValid_T & nodeOut_a_valid; // @[SBA.scala:338:{29,53}] wire wrTxValid = _wrTxValid_T_1 & nodeOut_a_ready; // @[SBA.scala:338:{53,69}] wire _rdTxValid_T_1 = _rdTxValid_T & _d_q_io_deq_valid; // @[Decoupled.scala:362:21] wire rdTxValid = _rdTxValid_T_1 & _q_io_deq_ready_T_2; // @[SBA.scala:299:50, :339:{53,70}] wire [7:0] _txLast_T = 8'h1 << io_sizeIn_0; // @[SBA.scala:273:9, :340:39] wire [8:0] _txLast_T_1 = {1'h0, _txLast_T} - 9'h1; // @[SBA.scala:340:{39,53}] wire [7:0] _txLast_T_2 = _txLast_T_1[7:0]; // @[SBA.scala:340:53] wire txLast = {4'h0, counter} == _txLast_T_2; // @[SBA.scala:307:26, :340:{29,53}] wire _GEN_13 = wrTxValid | rdTxValid; // @[SBA.scala:338:69, :339:70, :341:31] wire _counter_T; // @[SBA.scala:341:31] assign _counter_T = _GEN_13; // @[SBA.scala:341:31] wire _counter_T_2; // @[SBA.scala:342:31] assign _counter_T_2 = _GEN_13; // @[SBA.scala:341:31, :342:31] wire _counter_T_1 = _counter_T & txLast; // @[SBA.scala:340:29, :341:{31,45}] wire [4:0] _counter_T_3 = {1'h0, counter} + 5'h1; // @[SBA.scala:307:26, :342:63] wire [3:0] _counter_T_4 = _counter_T_3[3:0]; // @[SBA.scala:342:63] wire [3:0] _counter_T_5 = _counter_T_2 ? _counter_T_4 : counter; // @[SBA.scala:307:26, :342:{19,31,63}] wire [3:0] _counter_T_6 = _counter_T_1 ? 4'h0 : _counter_T_5; // @[SBA.scala:341:{19,45}, :342:19] wire _io_rdLoad_0_T = counter == 4'h0; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_0_T_1 = rdTxValid & _io_rdLoad_0_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_0_0 = _io_rdLoad_0_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_1_T = counter == 4'h1; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_1_T_1 = rdTxValid & _io_rdLoad_1_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_1_0 = _io_rdLoad_1_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_2_T = counter == 4'h2; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_2_T_1 = rdTxValid & _io_rdLoad_2_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_2_0 = _io_rdLoad_2_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_3_T = counter == 4'h3; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_3_T_1 = rdTxValid & _io_rdLoad_3_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_3_0 = _io_rdLoad_3_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_4_T = counter == 4'h4; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_4_T_1 = rdTxValid & _io_rdLoad_4_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_4_0 = _io_rdLoad_4_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_5_T = counter == 4'h5; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_5_T_1 = rdTxValid & _io_rdLoad_5_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_5_0 = _io_rdLoad_5_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_6_T = counter == 4'h6; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_6_T_1 = rdTxValid & _io_rdLoad_6_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_6_0 = _io_rdLoad_6_T_1; // @[SBA.scala:273:9, :345:33] wire _io_rdLoad_7_T = counter == 4'h7; // @[SBA.scala:307:26, :345:45] assign _io_rdLoad_7_T_1 = rdTxValid & _io_rdLoad_7_T; // @[SBA.scala:339:70, :345:{33,45}] assign io_rdLoad_7_0 = _io_rdLoad_7_T_1; // @[SBA.scala:273:9, :345:33] wire _sbState_T = io_rdEn_0 & io_rdLegal_0; // @[SBA.scala:273:9, :350:30] wire _sbState_T_1 = io_wrEn_0 & io_wrLegal_0; // @[SBA.scala:273:9, :351:30] wire [2:0] _sbState_T_2 = _sbState_T_1 ? 3'h2 : sbState; // @[SBA.scala:295:26, :351:{21,30}] wire [2:0] _sbState_T_3 = _sbState_T ? 3'h1 : _sbState_T_2; // @[SBA.scala:350:{21,30}, :351:21] wire _sbState_T_4 = nodeOut_a_valid & nodeOut_a_ready; // @[SBA.scala:353:35] wire [2:0] _sbState_T_5 = _sbState_T_4 ? 3'h3 : sbState; // @[SBA.scala:295:26, :353:{21,35}] wire _sbState_T_6 = wrTxValid & txLast; // @[SBA.scala:338:69, :340:29, :355:32] wire [2:0] _sbState_T_7 = _sbState_T_6 ? 3'h4 : sbState; // @[SBA.scala:295:26, :355:{21,32}] wire _GEN_14 = rdTxValid & txLast; // @[SBA.scala:339:70, :340:29, :357:32] wire _sbState_T_8; // @[SBA.scala:357:32] assign _sbState_T_8 = _GEN_14; // @[SBA.scala:357:32] assign _io_rdDone_T = _GEN_14; // @[SBA.scala:357:32, :362:29] wire [2:0] _sbState_T_9 = _sbState_T_8 ? 3'h0 : sbState; // @[SBA.scala:295:26, :357:{21,32}] wire _sbState_T_10 = _d_q_io_deq_valid & _q_io_deq_ready_T_2; // @[Decoupled.scala:362:21] wire [2:0] _sbState_T_11 = _sbState_T_10 ? 3'h0 : sbState; // @[SBA.scala:295:26, :359:{21,36}] assign io_rdDone_0 = _io_rdDone_T; // @[SBA.scala:273:9, :362:29] wire _io_wrDone_T_1 = _io_wrDone_T & _d_q_io_deq_valid; // @[Decoupled.scala:362:21] assign _io_wrDone_T_2 = _io_wrDone_T_1 & _q_io_deq_ready_T_2; // @[SBA.scala:299:50, :363:{54,71}] assign io_wrDone_0 = _io_wrDone_T_2; // @[SBA.scala:273:9, :363:71] assign _nodeOut_a_valid_T_2 = _nodeOut_a_valid_T | _nodeOut_a_valid_T_1; // @[SBA.scala:366:{28,52,64}] assign nodeOut_a_valid = _nodeOut_a_valid_T_2; // @[SBA.scala:366:52]
Generate the Verilog code corresponding to the following Chisel files. File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag }
module OptimizationBarrier_TLBEntryData_235( // @[package.scala:267:30] input clock, // @[package.scala:267:30] input reset, // @[package.scala:267:30] input [19:0] io_x_ppn, // @[package.scala:268:18] input io_x_u, // @[package.scala:268:18] input io_x_g, // @[package.scala:268:18] input io_x_ae_ptw, // @[package.scala:268:18] input io_x_ae_final, // @[package.scala:268:18] input io_x_ae_stage2, // @[package.scala:268:18] input io_x_pf, // @[package.scala:268:18] input io_x_gf, // @[package.scala:268:18] input io_x_sw, // @[package.scala:268:18] input io_x_sx, // @[package.scala:268:18] input io_x_sr, // @[package.scala:268:18] input io_x_hw, // @[package.scala:268:18] input io_x_hx, // @[package.scala:268:18] input io_x_hr, // @[package.scala:268:18] input io_x_pw, // @[package.scala:268:18] input io_x_px, // @[package.scala:268:18] input io_x_pr, // @[package.scala:268:18] input io_x_ppp, // @[package.scala:268:18] input io_x_pal, // @[package.scala:268:18] input io_x_paa, // @[package.scala:268:18] input io_x_eff, // @[package.scala:268:18] input io_x_c, // @[package.scala:268:18] input io_x_fragmented_superpage, // @[package.scala:268:18] output [19:0] io_y_ppn, // @[package.scala:268:18] output io_y_u, // @[package.scala:268:18] output io_y_ae_ptw, // @[package.scala:268:18] output io_y_ae_final, // @[package.scala:268:18] output io_y_ae_stage2, // @[package.scala:268:18] output io_y_pf, // @[package.scala:268:18] output io_y_gf, // @[package.scala:268:18] output io_y_sw, // @[package.scala:268:18] output io_y_sx, // @[package.scala:268:18] output io_y_sr, // @[package.scala:268:18] output io_y_hw, // @[package.scala:268:18] output io_y_hx, // @[package.scala:268:18] output io_y_hr, // @[package.scala:268:18] output io_y_pw, // @[package.scala:268:18] output io_y_px, // @[package.scala:268:18] output io_y_pr, // @[package.scala:268:18] output io_y_ppp, // @[package.scala:268:18] output io_y_pal, // @[package.scala:268:18] output io_y_paa, // @[package.scala:268:18] output io_y_eff, // @[package.scala:268:18] output io_y_c // @[package.scala:268:18] ); wire [19:0] io_x_ppn_0 = io_x_ppn; // @[package.scala:267:30] wire io_x_u_0 = io_x_u; // @[package.scala:267:30] wire io_x_g_0 = io_x_g; // @[package.scala:267:30] wire io_x_ae_ptw_0 = io_x_ae_ptw; // @[package.scala:267:30] wire io_x_ae_final_0 = io_x_ae_final; // @[package.scala:267:30] wire io_x_ae_stage2_0 = io_x_ae_stage2; // @[package.scala:267:30] wire io_x_pf_0 = io_x_pf; // @[package.scala:267:30] wire io_x_gf_0 = io_x_gf; // @[package.scala:267:30] wire io_x_sw_0 = io_x_sw; // @[package.scala:267:30] wire io_x_sx_0 = io_x_sx; // @[package.scala:267:30] wire io_x_sr_0 = io_x_sr; // @[package.scala:267:30] wire io_x_hw_0 = io_x_hw; // @[package.scala:267:30] wire io_x_hx_0 = io_x_hx; // @[package.scala:267:30] wire io_x_hr_0 = io_x_hr; // @[package.scala:267:30] wire io_x_pw_0 = io_x_pw; // @[package.scala:267:30] wire io_x_px_0 = io_x_px; // @[package.scala:267:30] wire io_x_pr_0 = io_x_pr; // @[package.scala:267:30] wire io_x_ppp_0 = io_x_ppp; // @[package.scala:267:30] wire io_x_pal_0 = io_x_pal; // @[package.scala:267:30] wire io_x_paa_0 = io_x_paa; // @[package.scala:267:30] wire io_x_eff_0 = io_x_eff; // @[package.scala:267:30] wire io_x_c_0 = io_x_c; // @[package.scala:267:30] wire io_x_fragmented_superpage_0 = io_x_fragmented_superpage; // @[package.scala:267:30] wire [19:0] io_y_ppn_0 = io_x_ppn_0; // @[package.scala:267:30] wire io_y_u_0 = io_x_u_0; // @[package.scala:267:30] wire io_y_g = io_x_g_0; // @[package.scala:267:30] wire io_y_ae_ptw_0 = io_x_ae_ptw_0; // @[package.scala:267:30] wire io_y_ae_final_0 = io_x_ae_final_0; // @[package.scala:267:30] wire io_y_ae_stage2_0 = io_x_ae_stage2_0; // @[package.scala:267:30] wire io_y_pf_0 = io_x_pf_0; // @[package.scala:267:30] wire io_y_gf_0 = io_x_gf_0; // @[package.scala:267:30] wire io_y_sw_0 = io_x_sw_0; // @[package.scala:267:30] wire io_y_sx_0 = io_x_sx_0; // @[package.scala:267:30] wire io_y_sr_0 = io_x_sr_0; // @[package.scala:267:30] wire io_y_hw_0 = io_x_hw_0; // @[package.scala:267:30] wire io_y_hx_0 = io_x_hx_0; // @[package.scala:267:30] wire io_y_hr_0 = io_x_hr_0; // @[package.scala:267:30] wire io_y_pw_0 = io_x_pw_0; // @[package.scala:267:30] wire io_y_px_0 = io_x_px_0; // @[package.scala:267:30] wire io_y_pr_0 = io_x_pr_0; // @[package.scala:267:30] wire io_y_ppp_0 = io_x_ppp_0; // @[package.scala:267:30] wire io_y_pal_0 = io_x_pal_0; // @[package.scala:267:30] wire io_y_paa_0 = io_x_paa_0; // @[package.scala:267:30] wire io_y_eff_0 = io_x_eff_0; // @[package.scala:267:30] wire io_y_c_0 = io_x_c_0; // @[package.scala:267:30] wire io_y_fragmented_superpage = io_x_fragmented_superpage_0; // @[package.scala:267:30] assign io_y_ppn = io_y_ppn_0; // @[package.scala:267:30] assign io_y_u = io_y_u_0; // @[package.scala:267:30] assign io_y_ae_ptw = io_y_ae_ptw_0; // @[package.scala:267:30] assign io_y_ae_final = io_y_ae_final_0; // @[package.scala:267:30] assign io_y_ae_stage2 = io_y_ae_stage2_0; // @[package.scala:267:30] assign io_y_pf = io_y_pf_0; // @[package.scala:267:30] assign io_y_gf = io_y_gf_0; // @[package.scala:267:30] assign io_y_sw = io_y_sw_0; // @[package.scala:267:30] assign io_y_sx = io_y_sx_0; // @[package.scala:267:30] assign io_y_sr = io_y_sr_0; // @[package.scala:267:30] assign io_y_hw = io_y_hw_0; // @[package.scala:267:30] assign io_y_hx = io_y_hx_0; // @[package.scala:267:30] assign io_y_hr = io_y_hr_0; // @[package.scala:267:30] assign io_y_pw = io_y_pw_0; // @[package.scala:267:30] assign io_y_px = io_y_px_0; // @[package.scala:267:30] assign io_y_pr = io_y_pr_0; // @[package.scala:267:30] assign io_y_ppp = io_y_ppp_0; // @[package.scala:267:30] assign io_y_pal = io_y_pal_0; // @[package.scala:267:30] assign io_y_paa = io_y_paa_0; // @[package.scala:267:30] assign io_y_eff = io_y_eff_0; // @[package.scala:267:30] assign io_y_c = io_y_c_0; // @[package.scala:267:30] endmodule
Generate the Verilog code corresponding to the following Chisel files. File RecFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import consts._ class RecFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int) extends chisel3.RawModule { val io = IO(new Bundle { val in = Input(Bits((inExpWidth + inSigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val rawIn = rawFloatFromRecFN(inExpWidth, inSigWidth, io.in); if ((inExpWidth == outExpWidth) && (inSigWidth <= outSigWidth)) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- io.out := io.in<<(outSigWidth - inSigWidth) io.exceptionFlags := isSigNaNRawFloat(rawIn) ## 0.U(4.W) } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( inExpWidth, inSigWidth, outExpWidth, outSigWidth, flRoundOpt_sigMSBitAlwaysZero )) roundAnyRawFNToRecFN.io.invalidExc := isSigNaNRawFloat(rawIn) roundAnyRawFNToRecFN.io.infiniteExc := false.B roundAnyRawFNToRecFN.io.in := rawIn roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags } } File rawFloatFromRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util._ /*---------------------------------------------------------------------------- | In the result, no more than one of 'isNaN', 'isInf', and 'isZero' will be | set. *----------------------------------------------------------------------------*/ object rawFloatFromRecFN { def apply(expWidth: Int, sigWidth: Int, in: Bits): RawFloat = { val exp = in(expWidth + sigWidth - 1, sigWidth - 1) val isZero = exp(expWidth, expWidth - 2) === 0.U val isSpecial = exp(expWidth, expWidth - 1) === 3.U val out = Wire(new RawFloat(expWidth, sigWidth)) out.isNaN := isSpecial && exp(expWidth - 2) out.isInf := isSpecial && ! exp(expWidth - 2) out.isZero := isZero out.sign := in(expWidth + sigWidth) out.sExp := exp.zext out.sig := 0.U(1.W) ## ! isZero ## in(sigWidth - 2, 0) out } }
module RecFNToRecFN_167( // @[RecFNToRecFN.scala:44:5] input [32:0] io_in, // @[RecFNToRecFN.scala:48:16] output [32:0] io_out // @[RecFNToRecFN.scala:48:16] ); wire [32:0] io_in_0 = io_in; // @[RecFNToRecFN.scala:44:5] wire io_detectTininess = 1'h1; // @[RecFNToRecFN.scala:44:5, :48:16] wire [2:0] io_roundingMode = 3'h0; // @[RecFNToRecFN.scala:44:5, :48:16] wire [32:0] _io_out_T = io_in_0; // @[RecFNToRecFN.scala:44:5, :64:35] wire [4:0] _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:65:54] wire [32:0] io_out_0; // @[RecFNToRecFN.scala:44:5] wire [4:0] io_exceptionFlags; // @[RecFNToRecFN.scala:44:5] wire [8:0] rawIn_exp = io_in_0[31:23]; // @[rawFloatFromRecFN.scala:51:21] wire [2:0] _rawIn_isZero_T = rawIn_exp[8:6]; // @[rawFloatFromRecFN.scala:51:21, :52:28] wire rawIn_isZero = _rawIn_isZero_T == 3'h0; // @[rawFloatFromRecFN.scala:52:{28,53}] wire rawIn_isZero_0 = rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :55:23] wire [1:0] _rawIn_isSpecial_T = rawIn_exp[8:7]; // @[rawFloatFromRecFN.scala:51:21, :53:28] wire rawIn_isSpecial = &_rawIn_isSpecial_T; // @[rawFloatFromRecFN.scala:53:{28,53}] wire _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:56:33] wire _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:57:33] wire _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:59:25] wire [9:0] _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:60:27] wire [24:0] _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:61:44] wire rawIn_isNaN; // @[rawFloatFromRecFN.scala:55:23] wire rawIn_isInf; // @[rawFloatFromRecFN.scala:55:23] wire rawIn_sign; // @[rawFloatFromRecFN.scala:55:23] wire [9:0] rawIn_sExp; // @[rawFloatFromRecFN.scala:55:23] wire [24:0] rawIn_sig; // @[rawFloatFromRecFN.scala:55:23] wire _rawIn_out_isNaN_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41] wire _rawIn_out_isInf_T = rawIn_exp[6]; // @[rawFloatFromRecFN.scala:51:21, :56:41, :57:41] assign _rawIn_out_isNaN_T_1 = rawIn_isSpecial & _rawIn_out_isNaN_T; // @[rawFloatFromRecFN.scala:53:53, :56:{33,41}] assign rawIn_isNaN = _rawIn_out_isNaN_T_1; // @[rawFloatFromRecFN.scala:55:23, :56:33] wire _rawIn_out_isInf_T_1 = ~_rawIn_out_isInf_T; // @[rawFloatFromRecFN.scala:57:{36,41}] assign _rawIn_out_isInf_T_2 = rawIn_isSpecial & _rawIn_out_isInf_T_1; // @[rawFloatFromRecFN.scala:53:53, :57:{33,36}] assign rawIn_isInf = _rawIn_out_isInf_T_2; // @[rawFloatFromRecFN.scala:55:23, :57:33] assign _rawIn_out_sign_T = io_in_0[32]; // @[rawFloatFromRecFN.scala:59:25] assign rawIn_sign = _rawIn_out_sign_T; // @[rawFloatFromRecFN.scala:55:23, :59:25] assign _rawIn_out_sExp_T = {1'h0, rawIn_exp}; // @[rawFloatFromRecFN.scala:51:21, :60:27] assign rawIn_sExp = _rawIn_out_sExp_T; // @[rawFloatFromRecFN.scala:55:23, :60:27] wire _rawIn_out_sig_T = ~rawIn_isZero; // @[rawFloatFromRecFN.scala:52:53, :61:35] wire [1:0] _rawIn_out_sig_T_1 = {1'h0, _rawIn_out_sig_T}; // @[rawFloatFromRecFN.scala:61:{32,35}] wire [22:0] _rawIn_out_sig_T_2 = io_in_0[22:0]; // @[rawFloatFromRecFN.scala:61:49] assign _rawIn_out_sig_T_3 = {_rawIn_out_sig_T_1, _rawIn_out_sig_T_2}; // @[rawFloatFromRecFN.scala:61:{32,44,49}] assign rawIn_sig = _rawIn_out_sig_T_3; // @[rawFloatFromRecFN.scala:55:23, :61:44] assign io_out_0 = _io_out_T; // @[RecFNToRecFN.scala:44:5, :64:35] wire _io_exceptionFlags_T = rawIn_sig[22]; // @[rawFloatFromRecFN.scala:55:23] wire _io_exceptionFlags_T_1 = ~_io_exceptionFlags_T; // @[common.scala:82:{49,56}] wire _io_exceptionFlags_T_2 = rawIn_isNaN & _io_exceptionFlags_T_1; // @[rawFloatFromRecFN.scala:55:23] assign _io_exceptionFlags_T_3 = {_io_exceptionFlags_T_2, 4'h0}; // @[common.scala:82:46] assign io_exceptionFlags = _io_exceptionFlags_T_3; // @[RecFNToRecFN.scala:44:5, :65:54] assign io_out = io_out_0; // @[RecFNToRecFN.scala:44:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File RoundAnyRawFNToRecFN.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ package hardfloat import chisel3._ import chisel3.util.Fill import consts._ //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundAnyRawFNToRecFN( inExpWidth: Int, inSigWidth: Int, outExpWidth: Int, outSigWidth: Int, options: Int ) extends RawModule { override def desiredName = s"RoundAnyRawFNToRecFN_ie${inExpWidth}_is${inSigWidth}_oe${outExpWidth}_os${outSigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(inExpWidth, inSigWidth)) // (allowed exponent range has limits) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((outExpWidth + outSigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sigMSBitAlwaysZero = ((options & flRoundOpt_sigMSBitAlwaysZero) != 0) val effectiveInSigWidth = if (sigMSBitAlwaysZero) inSigWidth else inSigWidth + 1 val neverUnderflows = ((options & (flRoundOpt_neverUnderflows | flRoundOpt_subnormsAlwaysExact) ) != 0) || (inExpWidth < outExpWidth) val neverOverflows = ((options & flRoundOpt_neverOverflows) != 0) || (inExpWidth < outExpWidth) val outNaNExp = BigInt(7)<<(outExpWidth - 2) val outInfExp = BigInt(6)<<(outExpWidth - 2) val outMaxFiniteExp = outInfExp - 1 val outMinNormExp = (BigInt(1)<<(outExpWidth - 1)) + 2 val outMinNonzeroExp = outMinNormExp - outSigWidth + 1 //------------------------------------------------------------------------ //------------------------------------------------------------------------ val roundingMode_near_even = (io.roundingMode === round_near_even) val roundingMode_minMag = (io.roundingMode === round_minMag) val roundingMode_min = (io.roundingMode === round_min) val roundingMode_max = (io.roundingMode === round_max) val roundingMode_near_maxMag = (io.roundingMode === round_near_maxMag) val roundingMode_odd = (io.roundingMode === round_odd) val roundMagUp = (roundingMode_min && io.in.sign) || (roundingMode_max && ! io.in.sign) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val sAdjustedExp = if (inExpWidth < outExpWidth) (io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S )(outExpWidth, 0).zext else if (inExpWidth == outExpWidth) io.in.sExp else io.in.sExp +& ((BigInt(1)<<outExpWidth) - (BigInt(1)<<inExpWidth)).S val adjustedSig = if (inSigWidth <= outSigWidth + 2) io.in.sig<<(outSigWidth - inSigWidth + 2) else (io.in.sig(inSigWidth, inSigWidth - outSigWidth - 1) ## io.in.sig(inSigWidth - outSigWidth - 2, 0).orR ) val doShiftSigDown1 = if (sigMSBitAlwaysZero) false.B else adjustedSig(outSigWidth + 2) val common_expOut = Wire(UInt((outExpWidth + 1).W)) val common_fractOut = Wire(UInt((outSigWidth - 1).W)) val common_overflow = Wire(Bool()) val common_totalUnderflow = Wire(Bool()) val common_underflow = Wire(Bool()) val common_inexact = Wire(Bool()) if ( neverOverflows && neverUnderflows && (effectiveInSigWidth <= outSigWidth) ) { //-------------------------------------------------------------------- //-------------------------------------------------------------------- common_expOut := sAdjustedExp(outExpWidth, 0) + doShiftSigDown1 common_fractOut := Mux(doShiftSigDown1, adjustedSig(outSigWidth + 1, 3), adjustedSig(outSigWidth, 2) ) common_overflow := false.B common_totalUnderflow := false.B common_underflow := false.B common_inexact := false.B } else { //-------------------------------------------------------------------- //-------------------------------------------------------------------- val roundMask = if (neverUnderflows) 0.U(outSigWidth.W) ## doShiftSigDown1 ## 3.U(2.W) else (lowMask( sAdjustedExp(outExpWidth, 0), outMinNormExp - outSigWidth - 1, outMinNormExp ) | doShiftSigDown1) ## 3.U(2.W) val shiftedRoundMask = 0.U(1.W) ## roundMask>>1 val roundPosMask = ~shiftedRoundMask & roundMask val roundPosBit = (adjustedSig & roundPosMask).orR val anyRoundExtra = (adjustedSig & shiftedRoundMask).orR val anyRound = roundPosBit || anyRoundExtra val roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && roundPosBit) || (roundMagUp && anyRound) val roundedSig: Bits = Mux(roundIncr, (((adjustedSig | roundMask)>>2) +& 1.U) & ~Mux(roundingMode_near_even && roundPosBit && ! anyRoundExtra, roundMask>>1, 0.U((outSigWidth + 2).W) ), (adjustedSig & ~roundMask)>>2 | Mux(roundingMode_odd && anyRound, roundPosMask>>1, 0.U) ) //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? val sRoundedExp = sAdjustedExp +& (roundedSig>>outSigWidth).asUInt.zext common_expOut := sRoundedExp(outExpWidth, 0) common_fractOut := Mux(doShiftSigDown1, roundedSig(outSigWidth - 1, 1), roundedSig(outSigWidth - 2, 0) ) common_overflow := (if (neverOverflows) false.B else //*** REWRITE BASED ON BEFORE-ROUNDING EXPONENT?: (sRoundedExp>>(outExpWidth - 1) >= 3.S)) common_totalUnderflow := (if (neverUnderflows) false.B else //*** WOULD BE GOOD ENOUGH TO USE EXPONENT BEFORE ROUNDING?: (sRoundedExp < outMinNonzeroExp.S)) val unboundedRange_roundPosBit = Mux(doShiftSigDown1, adjustedSig(2), adjustedSig(1)) val unboundedRange_anyRound = (doShiftSigDown1 && adjustedSig(2)) || adjustedSig(1, 0).orR val unboundedRange_roundIncr = ((roundingMode_near_even || roundingMode_near_maxMag) && unboundedRange_roundPosBit) || (roundMagUp && unboundedRange_anyRound) val roundCarry = Mux(doShiftSigDown1, roundedSig(outSigWidth + 1), roundedSig(outSigWidth) ) common_underflow := (if (neverUnderflows) false.B else common_totalUnderflow || //*** IF SIG WIDTH IS VERY NARROW, NEED TO ACCOUNT FOR ROUND-EVEN ZEROING //*** M.S. BIT OF SUBNORMAL SIG? (anyRound && ((sAdjustedExp>>outExpWidth) <= 0.S) && Mux(doShiftSigDown1, roundMask(3), roundMask(2)) && ! ((io.detectTininess === tininess_afterRounding) && ! Mux(doShiftSigDown1, roundMask(4), roundMask(3) ) && roundCarry && roundPosBit && unboundedRange_roundIncr))) common_inexact := common_totalUnderflow || anyRound } //------------------------------------------------------------------------ //------------------------------------------------------------------------ val isNaNOut = io.invalidExc || io.in.isNaN val notNaN_isSpecialInfOut = io.infiniteExc || io.in.isInf val commonCase = ! isNaNOut && ! notNaN_isSpecialInfOut && ! io.in.isZero val overflow = commonCase && common_overflow val underflow = commonCase && common_underflow val inexact = overflow || (commonCase && common_inexact) val overflow_roundMagUp = roundingMode_near_even || roundingMode_near_maxMag || roundMagUp val pegMinNonzeroMagOut = commonCase && common_totalUnderflow && (roundMagUp || roundingMode_odd) val pegMaxFiniteMagOut = overflow && ! overflow_roundMagUp val notNaN_isInfOut = notNaN_isSpecialInfOut || (overflow && overflow_roundMagUp) val signOut = Mux(isNaNOut, false.B, io.in.sign) val expOut = (common_expOut & ~Mux(io.in.isZero || common_totalUnderflow, (BigInt(7)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMinNonzeroMagOut, ~outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) & ~Mux(pegMaxFiniteMagOut, (BigInt(1)<<(outExpWidth - 1)).U((outExpWidth + 1).W), 0.U ) & ~Mux(notNaN_isInfOut, (BigInt(1)<<(outExpWidth - 2)).U((outExpWidth + 1).W), 0.U )) | Mux(pegMinNonzeroMagOut, outMinNonzeroExp.U((outExpWidth + 1).W), 0.U ) | Mux(pegMaxFiniteMagOut, outMaxFiniteExp.U((outExpWidth + 1).W), 0.U ) | Mux(notNaN_isInfOut, outInfExp.U((outExpWidth + 1).W), 0.U) | Mux(isNaNOut, outNaNExp.U((outExpWidth + 1).W), 0.U) val fractOut = Mux(isNaNOut || io.in.isZero || common_totalUnderflow, Mux(isNaNOut, (BigInt(1)<<(outSigWidth - 2)).U, 0.U), common_fractOut ) | Fill(outSigWidth - 1, pegMaxFiniteMagOut) io.out := signOut ## expOut ## fractOut io.exceptionFlags := io.invalidExc ## io.infiniteExc ## overflow ## underflow ## inexact } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- class RoundRawFNToRecFN(expWidth: Int, sigWidth: Int, options: Int) extends RawModule { override def desiredName = s"RoundRawFNToRecFN_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { val invalidExc = Input(Bool()) // overrides 'infiniteExc' and 'in' val infiniteExc = Input(Bool()) // overrides 'in' except for 'in.sign' val in = Input(new RawFloat(expWidth, sigWidth + 2)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) val out = Output(Bits((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(Bits(5.W)) }) val roundAnyRawFNToRecFN = Module( new RoundAnyRawFNToRecFN( expWidth, sigWidth + 2, expWidth, sigWidth, options)) roundAnyRawFNToRecFN.io.invalidExc := io.invalidExc roundAnyRawFNToRecFN.io.infiniteExc := io.infiniteExc roundAnyRawFNToRecFN.io.in := io.in roundAnyRawFNToRecFN.io.roundingMode := io.roundingMode roundAnyRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundAnyRawFNToRecFN.io.out io.exceptionFlags := roundAnyRawFNToRecFN.io.exceptionFlags }
module RoundRawFNToRecFN_e8_s24_129( // @[RoundAnyRawFNToRecFN.scala:295:5] input io_invalidExc, // @[RoundAnyRawFNToRecFN.scala:299:16] input io_in_isNaN, // @[RoundAnyRawFNToRecFN.scala:299:16] input io_in_isInf, // @[RoundAnyRawFNToRecFN.scala:299:16] input io_in_isZero, // @[RoundAnyRawFNToRecFN.scala:299:16] input io_in_sign, // @[RoundAnyRawFNToRecFN.scala:299:16] input [9:0] io_in_sExp, // @[RoundAnyRawFNToRecFN.scala:299:16] input [26:0] io_in_sig, // @[RoundAnyRawFNToRecFN.scala:299:16] output [32:0] io_out, // @[RoundAnyRawFNToRecFN.scala:299:16] output [4:0] io_exceptionFlags // @[RoundAnyRawFNToRecFN.scala:299:16] ); wire io_invalidExc_0 = io_invalidExc; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_in_isNaN_0 = io_in_isNaN; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_in_isInf_0 = io_in_isInf; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_in_isZero_0 = io_in_isZero; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_in_sign_0 = io_in_sign; // @[RoundAnyRawFNToRecFN.scala:295:5] wire [9:0] io_in_sExp_0 = io_in_sExp; // @[RoundAnyRawFNToRecFN.scala:295:5] wire [26:0] io_in_sig_0 = io_in_sig; // @[RoundAnyRawFNToRecFN.scala:295:5] wire io_detectTininess = 1'h1; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15] wire [2:0] io_roundingMode = 3'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15] wire io_infiniteExc = 1'h0; // @[RoundAnyRawFNToRecFN.scala:295:5, :299:16, :310:15] wire [32:0] io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5] wire [4:0] io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5] RoundAnyRawFNToRecFN_ie8_is26_oe8_os24_129 roundAnyRawFNToRecFN ( // @[RoundAnyRawFNToRecFN.scala:310:15] .io_invalidExc (io_invalidExc_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_isNaN (io_in_isNaN_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_isInf (io_in_isInf_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_isZero (io_in_isZero_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_sign (io_in_sign_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_sExp (io_in_sExp_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_in_sig (io_in_sig_0), // @[RoundAnyRawFNToRecFN.scala:295:5] .io_out (io_out_0), .io_exceptionFlags (io_exceptionFlags_0) ); // @[RoundAnyRawFNToRecFN.scala:310:15] assign io_out = io_out_0; // @[RoundAnyRawFNToRecFN.scala:295:5] assign io_exceptionFlags = io_exceptionFlags_0; // @[RoundAnyRawFNToRecFN.scala:295:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_26( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [25:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [7:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [25:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [7:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] c_first_beats1_decode = 3'h0; // @[Edges.scala:220:59] wire [2:0] c_first_beats1 = 3'h0; // @[Edges.scala:221:14] wire [2:0] _c_first_count_T = 3'h0; // @[Edges.scala:234:27] wire [2:0] c_first_count = 3'h0; // @[Edges.scala:234:25] wire [2:0] _c_first_counter_T = 3'h0; // @[Edges.scala:236:21] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_size = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_size = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_size = 3'h0; // @[Bundles.scala:265:61] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_27 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_29 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_33 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_35 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_53 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_55 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_59 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_61 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_65 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_67 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_71 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_73 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_77 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_79 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_83 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_85 = 1'h1; // @[Parameters.scala:57:20] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [2:0] c_first_counter1 = 3'h7; // @[Edges.scala:230:28] wire [3:0] _c_first_counter1_T = 4'hF; // @[Edges.scala:230:28] wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [25:0] _c_first_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_first_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_first_WIRE_2_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_first_WIRE_3_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_set_wo_ready_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_set_wo_ready_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_set_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_set_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_opcodes_set_interm_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_opcodes_set_interm_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_sizes_set_interm_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_sizes_set_interm_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_opcodes_set_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_opcodes_set_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_sizes_set_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_sizes_set_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_probe_ack_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_probe_ack_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_probe_ack_WIRE_2_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_probe_ack_WIRE_3_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _same_cycle_resp_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _same_cycle_resp_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _same_cycle_resp_WIRE_2_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _same_cycle_resp_WIRE_3_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _same_cycle_resp_WIRE_4_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _same_cycle_resp_WIRE_5_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [7:0] _c_first_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_first_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_first_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_first_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_set_wo_ready_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_set_wo_ready_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_opcodes_set_interm_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_opcodes_set_interm_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_sizes_set_interm_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_sizes_set_interm_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_opcodes_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_opcodes_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_sizes_set_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_sizes_set_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_probe_ack_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_probe_ack_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _c_probe_ack_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _c_probe_ack_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _same_cycle_resp_WIRE_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _same_cycle_resp_WIRE_1_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _same_cycle_resp_WIRE_2_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _same_cycle_resp_WIRE_3_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [7:0] _same_cycle_resp_WIRE_4_bits_source = 8'h0; // @[Bundles.scala:265:74] wire [7:0] _same_cycle_resp_WIRE_5_bits_source = 8'h0; // @[Bundles.scala:265:61] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [2050:0] _c_opcodes_set_T_1 = 2051'h0; // @[Monitor.scala:767:54] wire [2050:0] _c_sizes_set_T_1 = 2051'h0; // @[Monitor.scala:768:52] wire [10:0] _c_opcodes_set_T = 11'h0; // @[Monitor.scala:767:79] wire [10:0] _c_sizes_set_T = 11'h0; // @[Monitor.scala:768:77] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [3:0] _c_sizes_set_interm_T_1 = 4'h1; // @[Monitor.scala:766:59] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] c_sizes_set_interm = 4'h0; // @[Monitor.scala:755:40] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_T = 4'h0; // @[Monitor.scala:766:51] wire [255:0] _c_set_wo_ready_T = 256'h1; // @[OneHot.scala:58:35] wire [255:0] _c_set_T = 256'h1; // @[OneHot.scala:58:35] wire [515:0] c_opcodes_set = 516'h0; // @[Monitor.scala:740:34] wire [515:0] c_sizes_set = 516'h0; // @[Monitor.scala:741:34] wire [128:0] c_set = 129'h0; // @[Monitor.scala:738:34] wire [128:0] c_set_wo_ready = 129'h0; // @[Monitor.scala:739:34] wire [5:0] _c_first_beats1_decode_T_2 = 6'h0; // @[package.scala:243:46] wire [5:0] _c_first_beats1_decode_T_1 = 6'h3F; // @[package.scala:243:76] wire [12:0] _c_first_beats1_decode_T = 13'h3F; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [2:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [7:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_44 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_45 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_46 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_47 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_48 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_49 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_50 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_51 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_52 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_53 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_54 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_55 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_56 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_57 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_58 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_59 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_60 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_61 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_62 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_63 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_64 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _uncommonBits_T_65 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_8 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_9 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_10 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [7:0] _source_ok_uncommonBits_T_11 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire _source_ok_T = io_in_a_bits_source_0 == 8'h30; // @[Monitor.scala:36:7] wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [5:0] _source_ok_T_1 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_7 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_13 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_19 = io_in_a_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire _source_ok_T_2 = _source_ok_T_1 == 6'h8; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_8 = _source_ok_T_7 == 6'h9; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_14 = _source_ok_T_13 == 6'hA; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_20 = _source_ok_T_19 == 6'hB; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31] wire [3:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] _source_ok_T_25 = io_in_a_bits_source_0[7:4]; // @[Monitor.scala:36:7] wire [3:0] _source_ok_T_31 = io_in_a_bits_source_0[7:4]; // @[Monitor.scala:36:7] wire _source_ok_T_26 = _source_ok_T_25 == 4'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_28 = _source_ok_T_26; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_30 = _source_ok_T_28; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_5 = _source_ok_T_30; // @[Parameters.scala:1138:31] wire [3:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[3:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_32 = _source_ok_T_31 == 4'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_34 = _source_ok_T_32; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_36 = _source_ok_T_34; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_6 = _source_ok_T_36; // @[Parameters.scala:1138:31] wire _source_ok_T_37 = io_in_a_bits_source_0 == 8'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_7 = _source_ok_T_37; // @[Parameters.scala:1138:31] wire _source_ok_T_38 = io_in_a_bits_source_0 == 8'h41; // @[Monitor.scala:36:7] wire _source_ok_WIRE_8 = _source_ok_T_38; // @[Parameters.scala:1138:31] wire _source_ok_T_39 = io_in_a_bits_source_0 == 8'h42; // @[Monitor.scala:36:7] wire _source_ok_WIRE_9 = _source_ok_T_39; // @[Parameters.scala:1138:31] wire _source_ok_T_40 = io_in_a_bits_source_0 == 8'h80; // @[Monitor.scala:36:7] wire _source_ok_WIRE_10 = _source_ok_T_40; // @[Parameters.scala:1138:31] wire _source_ok_T_41 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_42 = _source_ok_T_41 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_43 = _source_ok_T_42 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_44 = _source_ok_T_43 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_45 = _source_ok_T_44 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_46 = _source_ok_T_45 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_47 = _source_ok_T_46 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_48 = _source_ok_T_47 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_49 = _source_ok_T_48 | _source_ok_WIRE_9; // @[Parameters.scala:1138:31, :1139:46] wire source_ok = _source_ok_T_49 | _source_ok_WIRE_10; // @[Parameters.scala:1138:31, :1139:46] wire [12:0] _GEN = 13'h3F << io_in_a_bits_size_0; // @[package.scala:243:71] wire [12:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [12:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [5:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [25:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[5:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 26'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 3'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_4 = _uncommonBits_T_4[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_5 = _uncommonBits_T_5[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_10 = _uncommonBits_T_10[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_11 = _uncommonBits_T_11[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_16 = _uncommonBits_T_16[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_17 = _uncommonBits_T_17[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_22 = _uncommonBits_T_22[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_23 = _uncommonBits_T_23[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_28 = _uncommonBits_T_28[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_29 = _uncommonBits_T_29[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_34 = _uncommonBits_T_34[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_35 = _uncommonBits_T_35[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_40 = _uncommonBits_T_40[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_41 = _uncommonBits_T_41[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_44 = _uncommonBits_T_44[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_45 = _uncommonBits_T_45[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_46 = _uncommonBits_T_46[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_47 = _uncommonBits_T_47[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_48 = _uncommonBits_T_48[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_49 = _uncommonBits_T_49[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_50 = _uncommonBits_T_50[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_51 = _uncommonBits_T_51[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_52 = _uncommonBits_T_52[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_53 = _uncommonBits_T_53[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_54 = _uncommonBits_T_54[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_55 = _uncommonBits_T_55[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_56 = _uncommonBits_T_56[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_57 = _uncommonBits_T_57[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_58 = _uncommonBits_T_58[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_59 = _uncommonBits_T_59[3:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_60 = _uncommonBits_T_60[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_61 = _uncommonBits_T_61[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_62 = _uncommonBits_T_62[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_63 = _uncommonBits_T_63[1:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_64 = _uncommonBits_T_64[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] uncommonBits_65 = _uncommonBits_T_65[3:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_50 = io_in_d_bits_source_0 == 8'h30; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_0 = _source_ok_T_50; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [5:0] _source_ok_T_51 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_57 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_63 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire [5:0] _source_ok_T_69 = io_in_d_bits_source_0[7:2]; // @[Monitor.scala:36:7] wire _source_ok_T_52 = _source_ok_T_51 == 6'h8; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_54 = _source_ok_T_52; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_56 = _source_ok_T_54; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_1 = _source_ok_T_56; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_58 = _source_ok_T_57 == 6'h9; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_60 = _source_ok_T_58; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_62 = _source_ok_T_60; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_2 = _source_ok_T_62; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_8 = _source_ok_uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_64 = _source_ok_T_63 == 6'hA; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_66 = _source_ok_T_64; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_68 = _source_ok_T_66; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_3 = _source_ok_T_68; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_9 = _source_ok_uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_70 = _source_ok_T_69 == 6'hB; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_72 = _source_ok_T_70; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_74 = _source_ok_T_72; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_4 = _source_ok_T_74; // @[Parameters.scala:1138:31] wire [3:0] source_ok_uncommonBits_10 = _source_ok_uncommonBits_T_10[3:0]; // @[Parameters.scala:52:{29,56}] wire [3:0] _source_ok_T_75 = io_in_d_bits_source_0[7:4]; // @[Monitor.scala:36:7] wire [3:0] _source_ok_T_81 = io_in_d_bits_source_0[7:4]; // @[Monitor.scala:36:7] wire _source_ok_T_76 = _source_ok_T_75 == 4'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_78 = _source_ok_T_76; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_80 = _source_ok_T_78; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_5 = _source_ok_T_80; // @[Parameters.scala:1138:31] wire [3:0] source_ok_uncommonBits_11 = _source_ok_uncommonBits_T_11[3:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_82 = _source_ok_T_81 == 4'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_84 = _source_ok_T_82; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_86 = _source_ok_T_84; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_6 = _source_ok_T_86; // @[Parameters.scala:1138:31] wire _source_ok_T_87 = io_in_d_bits_source_0 == 8'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_7 = _source_ok_T_87; // @[Parameters.scala:1138:31] wire _source_ok_T_88 = io_in_d_bits_source_0 == 8'h41; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_8 = _source_ok_T_88; // @[Parameters.scala:1138:31] wire _source_ok_T_89 = io_in_d_bits_source_0 == 8'h42; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_9 = _source_ok_T_89; // @[Parameters.scala:1138:31] wire _source_ok_T_90 = io_in_d_bits_source_0 == 8'h80; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_10 = _source_ok_T_90; // @[Parameters.scala:1138:31] wire _source_ok_T_91 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_92 = _source_ok_T_91 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_93 = _source_ok_T_92 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_94 = _source_ok_T_93 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_95 = _source_ok_T_94 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_96 = _source_ok_T_95 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_97 = _source_ok_T_96 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_98 = _source_ok_T_97 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_99 = _source_ok_T_98 | _source_ok_WIRE_1_9; // @[Parameters.scala:1138:31, :1139:46] wire source_ok_1 = _source_ok_T_99 | _source_ok_WIRE_1_10; // @[Parameters.scala:1138:31, :1139:46] wire _T_1266 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1266; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1266; // @[Decoupled.scala:51:35] wire [5:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T = {1'h0, a_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1 = _a_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [2:0] size; // @[Monitor.scala:389:22] reg [7:0] source; // @[Monitor.scala:390:22] reg [25:0] address; // @[Monitor.scala:391:22] wire _T_1334 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1334; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1334; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1334; // @[Decoupled.scala:51:35] wire [12:0] _GEN_0 = 13'h3F << io_in_d_bits_size_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [12:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[5:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [2:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T = {1'h0, d_first_counter} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1 = _d_first_counter1_T[2:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [2:0] size_1; // @[Monitor.scala:540:22] reg [7:0] source_1; // @[Monitor.scala:541:22] reg [128:0] inflight; // @[Monitor.scala:614:27] reg [515:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [515:0] inflight_sizes; // @[Monitor.scala:618:33] wire [5:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [2:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 3'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [2:0] a_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] a_first_counter1_1 = _a_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [5:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_1; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_1 = _d_first_counter1_T_1[2:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [128:0] a_set; // @[Monitor.scala:626:34] wire [128:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [515:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [515:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [10:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [10:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [10:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65] wire [10:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [10:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99] wire [10:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [10:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67] wire [10:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [10:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99] wire [515:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [515:0] _a_opcode_lookup_T_6 = {512'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [515:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[515:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [515:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [515:0] _a_size_lookup_T_6 = {512'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}] wire [515:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[515:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [3:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [255:0] _GEN_2 = 256'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [255:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35] wire [255:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[128:0] : 129'h0; // @[OneHot.scala:58:35] wire _T_1199 = _T_1266 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1199 ? _a_set_T[128:0] : 129'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1199 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [3:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [3:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1199 ? _a_sizes_set_interm_T_1 : 4'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [10:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [10:0] _a_opcodes_set_T; // @[Monitor.scala:659:79] assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79] wire [10:0] _a_sizes_set_T; // @[Monitor.scala:660:77] assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77] wire [2050:0] _a_opcodes_set_T_1 = {2047'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1199 ? _a_opcodes_set_T_1[515:0] : 516'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [2050:0] _a_sizes_set_T_1 = {2047'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1199 ? _a_sizes_set_T_1[515:0] : 516'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [128:0] d_clr; // @[Monitor.scala:664:34] wire [128:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [515:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [515:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_1245 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [255:0] _GEN_5 = 256'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [255:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [255:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [255:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [255:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1245 & ~d_release_ack ? _d_clr_wo_ready_T[128:0] : 129'h0; // @[OneHot.scala:58:35] wire _T_1214 = _T_1334 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1214 ? _d_clr_T[128:0] : 129'h0; // @[OneHot.scala:58:35] wire [2062:0] _d_opcodes_clr_T_5 = 2063'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1214 ? _d_opcodes_clr_T_5[515:0] : 516'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [2062:0] _d_sizes_clr_T_5 = 2063'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1214 ? _d_sizes_clr_T_5[515:0] : 516'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [128:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [128:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [128:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [515:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [515:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [515:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [515:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [515:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [515:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [128:0] inflight_1; // @[Monitor.scala:726:35] wire [128:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [515:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [515:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [515:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [515:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [5:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [2:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[5:3]; // @[package.scala:243:46] wire [2:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 3'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [2:0] d_first_counter_2; // @[Edges.scala:229:27] wire [3:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 4'h1; // @[Edges.scala:229:27, :230:28] wire [2:0] d_first_counter1_2 = _d_first_counter1_T_2[2:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 3'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 3'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 3'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [2:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [2:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [2:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [515:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [515:0] _c_opcode_lookup_T_6 = {512'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [515:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[515:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [515:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [515:0] _c_size_lookup_T_6 = {512'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}] wire [515:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[515:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [128:0] d_clr_1; // @[Monitor.scala:774:34] wire [128:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [515:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [515:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1310 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1310 & d_release_ack_1 ? _d_clr_wo_ready_T_1[128:0] : 129'h0; // @[OneHot.scala:58:35] wire _T_1292 = _T_1334 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1292 ? _d_clr_T_1[128:0] : 129'h0; // @[OneHot.scala:58:35] wire [2062:0] _d_opcodes_clr_T_11 = 2063'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1292 ? _d_opcodes_clr_T_11[515:0] : 516'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [2062:0] _d_sizes_clr_T_11 = 2063'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1292 ? _d_sizes_clr_T_11[515:0] : 516'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 8'h0; // @[Monitor.scala:36:7, :795:113] wire [128:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [128:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [515:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [515:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [515:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [515:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File WidthWidget.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.AddressSet import freechips.rocketchip.util.{Repeater, UIntToOH1} // innBeatBytes => the new client-facing bus width class TLWidthWidget(innerBeatBytes: Int)(implicit p: Parameters) extends LazyModule { private def noChangeRequired(manager: TLManagerPortParameters) = manager.beatBytes == innerBeatBytes val node = new TLAdapterNode( clientFn = { case c => c }, managerFn = { case m => m.v1copy(beatBytes = innerBeatBytes) }){ override def circuitIdentity = edges.out.map(_.manager).forall(noChangeRequired) } override lazy val desiredName = s"TLWidthWidget$innerBeatBytes" lazy val module = new Impl class Impl extends LazyModuleImp(this) { def merge[T <: TLDataChannel](edgeIn: TLEdge, in: DecoupledIO[T], edgeOut: TLEdge, out: DecoupledIO[T]) = { val inBytes = edgeIn.manager.beatBytes val outBytes = edgeOut.manager.beatBytes val ratio = outBytes / inBytes val keepBits = log2Ceil(outBytes) val dropBits = log2Ceil(inBytes) val countBits = log2Ceil(ratio) val size = edgeIn.size(in.bits) val hasData = edgeIn.hasData(in.bits) val limit = UIntToOH1(size, keepBits) >> dropBits val count = RegInit(0.U(countBits.W)) val first = count === 0.U val last = count === limit || !hasData val enable = Seq.tabulate(ratio) { i => !((count ^ i.U) & limit).orR } val corrupt_reg = RegInit(false.B) val corrupt_in = edgeIn.corrupt(in.bits) val corrupt_out = corrupt_in || corrupt_reg when (in.fire) { count := count + 1.U corrupt_reg := corrupt_out when (last) { count := 0.U corrupt_reg := false.B } } def helper(idata: UInt): UInt = { // rdata is X until the first time a multi-beat write occurs. // Prevent the X from leaking outside by jamming the mux control until // the first time rdata is written (and hence no longer X). val rdata_written_once = RegInit(false.B) val masked_enable = enable.map(_ || !rdata_written_once) val odata = Seq.fill(ratio) { WireInit(idata) } val rdata = Reg(Vec(ratio-1, chiselTypeOf(idata))) val pdata = rdata :+ idata val mdata = (masked_enable zip (odata zip pdata)) map { case (e, (o, p)) => Mux(e, o, p) } when (in.fire && !last) { rdata_written_once := true.B (rdata zip mdata) foreach { case (r, m) => r := m } } Cat(mdata.reverse) } in.ready := out.ready || !last out.valid := in.valid && last out.bits := in.bits // Don't put down hardware if we never carry data edgeOut.data(out.bits) := (if (edgeIn.staticHasData(in.bits) == Some(false)) 0.U else helper(edgeIn.data(in.bits))) edgeOut.corrupt(out.bits) := corrupt_out (out.bits, in.bits) match { case (o: TLBundleA, i: TLBundleA) => o.mask := edgeOut.mask(o.address, o.size) & Mux(hasData, helper(i.mask), ~0.U(outBytes.W)) case (o: TLBundleB, i: TLBundleB) => o.mask := edgeOut.mask(o.address, o.size) & Mux(hasData, helper(i.mask), ~0.U(outBytes.W)) case (o: TLBundleC, i: TLBundleC) => () case (o: TLBundleD, i: TLBundleD) => () case _ => require(false, "Impossible bundle combination in WidthWidget") } } def split[T <: TLDataChannel](edgeIn: TLEdge, in: DecoupledIO[T], edgeOut: TLEdge, out: DecoupledIO[T], sourceMap: UInt => UInt) = { val inBytes = edgeIn.manager.beatBytes val outBytes = edgeOut.manager.beatBytes val ratio = inBytes / outBytes val keepBits = log2Ceil(inBytes) val dropBits = log2Ceil(outBytes) val countBits = log2Ceil(ratio) val size = edgeIn.size(in.bits) val hasData = edgeIn.hasData(in.bits) val limit = UIntToOH1(size, keepBits) >> dropBits val count = RegInit(0.U(countBits.W)) val first = count === 0.U val last = count === limit || !hasData when (out.fire) { count := count + 1.U when (last) { count := 0.U } } // For sub-beat transfer, extract which part matters val sel = in.bits match { case a: TLBundleA => a.address(keepBits-1, dropBits) case b: TLBundleB => b.address(keepBits-1, dropBits) case c: TLBundleC => c.address(keepBits-1, dropBits) case d: TLBundleD => { val sel = sourceMap(d.source) val hold = Mux(first, sel, RegEnable(sel, first)) // a_first is not for whole xfer hold & ~limit // if more than one a_first/xfer, the address must be aligned anyway } } val index = sel | count def helper(idata: UInt, width: Int): UInt = { val mux = VecInit.tabulate(ratio) { i => idata((i+1)*outBytes*width-1, i*outBytes*width) } mux(index) } out.bits := in.bits out.valid := in.valid in.ready := out.ready // Don't put down hardware if we never carry data edgeOut.data(out.bits) := (if (edgeIn.staticHasData(in.bits) == Some(false)) 0.U else helper(edgeIn.data(in.bits), 8)) (out.bits, in.bits) match { case (o: TLBundleA, i: TLBundleA) => o.mask := helper(i.mask, 1) case (o: TLBundleB, i: TLBundleB) => o.mask := helper(i.mask, 1) case (o: TLBundleC, i: TLBundleC) => () // replicating corrupt to all beats is ok case (o: TLBundleD, i: TLBundleD) => () case _ => require(false, "Impossbile bundle combination in WidthWidget") } // Repeat the input if we're not last !last } def splice[T <: TLDataChannel](edgeIn: TLEdge, in: DecoupledIO[T], edgeOut: TLEdge, out: DecoupledIO[T], sourceMap: UInt => UInt) = { if (edgeIn.manager.beatBytes == edgeOut.manager.beatBytes) { // nothing to do; pass it through out.bits := in.bits out.valid := in.valid in.ready := out.ready } else if (edgeIn.manager.beatBytes > edgeOut.manager.beatBytes) { // split input to output val repeat = Wire(Bool()) val repeated = Repeater(in, repeat) val cated = Wire(chiselTypeOf(repeated)) cated <> repeated edgeIn.data(cated.bits) := Cat( edgeIn.data(repeated.bits)(edgeIn.manager.beatBytes*8-1, edgeOut.manager.beatBytes*8), edgeIn.data(in.bits)(edgeOut.manager.beatBytes*8-1, 0)) repeat := split(edgeIn, cated, edgeOut, out, sourceMap) } else { // merge input to output merge(edgeIn, in, edgeOut, out) } } (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => // If the master is narrower than the slave, the D channel must be narrowed. // This is tricky, because the D channel has no address data. // Thus, you don't know which part of a sub-beat transfer to extract. // To fix this, we record the relevant address bits for all sources. // The assumption is that this sort of situation happens only where // you connect a narrow master to the system bus, so there are few sources. def sourceMap(source_bits: UInt) = { val source = if (edgeIn.client.endSourceId == 1) 0.U(0.W) else source_bits require (edgeOut.manager.beatBytes > edgeIn.manager.beatBytes) val keepBits = log2Ceil(edgeOut.manager.beatBytes) val dropBits = log2Ceil(edgeIn.manager.beatBytes) val sources = Reg(Vec(edgeIn.client.endSourceId, UInt((keepBits-dropBits).W))) val a_sel = in.a.bits.address(keepBits-1, dropBits) when (in.a.fire) { if (edgeIn.client.endSourceId == 1) { // avoid extraction-index-width warning sources(0) := a_sel } else { sources(in.a.bits.source) := a_sel } } // depopulate unused source registers: edgeIn.client.unusedSources.foreach { id => sources(id) := 0.U } val bypass = in.a.valid && in.a.bits.source === source if (edgeIn.manager.minLatency > 0) sources(source) else Mux(bypass, a_sel, sources(source)) } splice(edgeIn, in.a, edgeOut, out.a, sourceMap) splice(edgeOut, out.d, edgeIn, in.d, sourceMap) if (edgeOut.manager.anySupportAcquireB && edgeIn.client.anySupportProbe) { splice(edgeOut, out.b, edgeIn, in.b, sourceMap) splice(edgeIn, in.c, edgeOut, out.c, sourceMap) out.e.valid := in.e.valid out.e.bits := in.e.bits in.e.ready := out.e.ready } else { in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLWidthWidget { def apply(innerBeatBytes: Int)(implicit p: Parameters): TLNode = { val widget = LazyModule(new TLWidthWidget(innerBeatBytes)) widget.node } def apply(wrapper: TLBusWrapper)(implicit p: Parameters): TLNode = apply(wrapper.beatBytes) } // Synthesizable unit tests import freechips.rocketchip.unittest._ class TLRAMWidthWidget(first: Int, second: Int, txns: Int)(implicit p: Parameters) extends LazyModule { val fuzz = LazyModule(new TLFuzzer(txns)) val model = LazyModule(new TLRAMModel("WidthWidget")) val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff))) (ram.node := TLDelayer(0.1) := TLFragmenter(4, 256) := TLWidthWidget(second) := TLWidthWidget(first) := TLDelayer(0.1) := model.node := fuzz.node) lazy val module = new Impl class Impl extends LazyModuleImp(this) with UnitTestModule { io.finished := fuzz.module.io.finished } } class TLRAMWidthWidgetTest(little: Int, big: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { val dut = Module(LazyModule(new TLRAMWidthWidget(little,big,txns)).module) dut.io.start := DontCare io.finished := dut.io.finished } File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File Repeater.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{Decoupled, DecoupledIO} // A Repeater passes its input to its output, unless repeat is asserted. // When repeat is asserted, the Repeater copies the input and repeats it next cycle. class Repeater[T <: Data](gen: T) extends Module { override def desiredName = s"Repeater_${gen.typeName}" val io = IO( new Bundle { val repeat = Input(Bool()) val full = Output(Bool()) val enq = Flipped(Decoupled(gen.cloneType)) val deq = Decoupled(gen.cloneType) } ) val full = RegInit(false.B) val saved = Reg(gen.cloneType) // When !full, a repeater is pass-through io.deq.valid := io.enq.valid || full io.enq.ready := io.deq.ready && !full io.deq.bits := Mux(full, saved, io.enq.bits) io.full := full when (io.enq.fire && io.repeat) { full := true.B; saved := io.enq.bits } when (io.deq.fire && !io.repeat) { full := false.B } } object Repeater { def apply[T <: Data](enq: DecoupledIO[T], repeat: Bool): DecoupledIO[T] = { val repeater = Module(new Repeater(chiselTypeOf(enq.bits))) repeater.io.repeat := repeat repeater.io.enq <> enq repeater.io.deq } } File MixedNode.scala: package org.chipsalliance.diplomacy.nodes import chisel3.{Data, DontCare, Wire} import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.{Field, Parameters} import org.chipsalliance.diplomacy.ValName import org.chipsalliance.diplomacy.sourceLine /** One side metadata of a [[Dangle]]. * * Describes one side of an edge going into or out of a [[BaseNode]]. * * @param serial * the global [[BaseNode.serial]] number of the [[BaseNode]] that this [[HalfEdge]] connects to. * @param index * the `index` in the [[BaseNode]]'s input or output port list that this [[HalfEdge]] belongs to. */ case class HalfEdge(serial: Int, index: Int) extends Ordered[HalfEdge] { import scala.math.Ordered.orderingToOrdered def compare(that: HalfEdge): Int = HalfEdge.unapply(this).compare(HalfEdge.unapply(that)) } /** [[Dangle]] captures the `IO` information of a [[LazyModule]] and which two [[BaseNode]]s the [[Edges]]/[[Bundle]] * connects. * * [[Dangle]]s are generated by [[BaseNode.instantiate]] using [[MixedNode.danglesOut]] and [[MixedNode.danglesIn]] , * [[LazyModuleImp.instantiate]] connects those that go to internal or explicit IO connections in a [[LazyModule]]. * * @param source * the source [[HalfEdge]] of this [[Dangle]], which captures the source [[BaseNode]] and the port `index` within * that [[BaseNode]]. * @param sink * sink [[HalfEdge]] of this [[Dangle]], which captures the sink [[BaseNode]] and the port `index` within that * [[BaseNode]]. * @param flipped * flip or not in [[AutoBundle.makeElements]]. If true this corresponds to `danglesOut`, if false it corresponds to * `danglesIn`. * @param dataOpt * actual [[Data]] for the hardware connection. Can be empty if this belongs to a cloned module */ case class Dangle(source: HalfEdge, sink: HalfEdge, flipped: Boolean, name: String, dataOpt: Option[Data]) { def data = dataOpt.get } /** [[Edges]] is a collection of parameters describing the functionality and connection for an interface, which is often * derived from the interconnection protocol and can inform the parameterization of the hardware bundles that actually * implement the protocol. */ case class Edges[EI, EO](in: Seq[EI], out: Seq[EO]) /** A field available in [[Parameters]] used to determine whether [[InwardNodeImp.monitor]] will be called. */ case object MonitorsEnabled extends Field[Boolean](true) /** When rendering the edge in a graphical format, flip the order in which the edges' source and sink are presented. * * For example, when rendering graphML, yEd by default tries to put the source node vertically above the sink node, but * [[RenderFlipped]] inverts this relationship. When a particular [[LazyModule]] contains both source nodes and sink * nodes, flipping the rendering of one node's edge will usual produce a more concise visual layout for the * [[LazyModule]]. */ case object RenderFlipped extends Field[Boolean](false) /** The sealed node class in the package, all node are derived from it. * * @param inner * Sink interface implementation. * @param outer * Source interface implementation. * @param valName * val name of this node. * @tparam DI * Downward-flowing parameters received on the inner side of the node. It is usually a brunch of parameters * describing the protocol parameters from a source. For an [[InwardNode]], it is determined by the connected * [[OutwardNode]]. Since it can be connected to multiple sources, this parameter is always a Seq of source port * parameters. * @tparam UI * Upward-flowing parameters generated by the inner side of the node. It is usually a brunch of parameters describing * the protocol parameters of a sink. For an [[InwardNode]], it is determined itself. * @tparam EI * Edge Parameters describing a connection on the inner side of the node. It is usually a brunch of transfers * specified for a sink according to protocol. * @tparam BI * Bundle type used when connecting to the inner side of the node. It is a hardware interface of this sink interface. * It should extends from [[chisel3.Data]], which represents the real hardware. * @tparam DO * Downward-flowing parameters generated on the outer side of the node. It is usually a brunch of parameters * describing the protocol parameters of a source. For an [[OutwardNode]], it is determined itself. * @tparam UO * Upward-flowing parameters received by the outer side of the node. It is usually a brunch of parameters describing * the protocol parameters from a sink. For an [[OutwardNode]], it is determined by the connected [[InwardNode]]. * Since it can be connected to multiple sinks, this parameter is always a Seq of sink port parameters. * @tparam EO * Edge Parameters describing a connection on the outer side of the node. It is usually a brunch of transfers * specified for a source according to protocol. * @tparam BO * Bundle type used when connecting to the outer side of the node. It is a hardware interface of this source * interface. It should extends from [[chisel3.Data]], which represents the real hardware. * * @note * Call Graph of [[MixedNode]] * - line `─`: source is process by a function and generate pass to others * - Arrow `→`: target of arrow is generated by source * * {{{ * (from the other node) * ┌─────────────────────────────────────────────────────────[[InwardNode.uiParams]]─────────────┐ * ↓ │ * (binding node when elaboration) [[OutwardNode.uoParams]]────────────────────────[[MixedNode.mapParamsU]]→──────────┐ │ * [[InwardNode.accPI]] │ │ │ * │ │ (based on protocol) │ * │ │ [[MixedNode.inner.edgeI]] │ * │ │ ↓ │ * ↓ │ │ │ * (immobilize after elaboration) (inward port from [[OutwardNode]]) │ ↓ │ * [[InwardNode.iBindings]]──┐ [[MixedNode.iDirectPorts]]────────────────────→[[MixedNode.iPorts]] [[InwardNode.uiParams]] │ * │ │ ↑ │ │ │ * │ │ │ [[OutwardNode.doParams]] │ │ * │ │ │ (from the other node) │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * │ │ │ └────────┬──────────────┤ │ * │ │ │ │ │ │ * │ │ │ │ (based on protocol) │ * │ │ │ │ [[MixedNode.inner.edgeI]] │ * │ │ │ │ │ │ * │ │ (from the other node) │ ↓ │ * │ └───[[OutwardNode.oPortMapping]] [[OutwardNode.oStar]] │ [[MixedNode.edgesIn]]───┐ │ * │ ↑ ↑ │ │ ↓ │ * │ │ │ │ │ [[MixedNode.in]] │ * │ │ │ │ ↓ ↑ │ * │ (solve star connection) │ │ │ [[MixedNode.bundleIn]]──┘ │ * ├───[[MixedNode.resolveStar]]→─┼─────────────────────────────┤ └────────────────────────────────────┐ │ * │ │ │ [[MixedNode.bundleOut]]─┐ │ │ * │ │ │ ↑ ↓ │ │ * │ │ │ │ [[MixedNode.out]] │ │ * │ ↓ ↓ │ ↑ │ │ * │ ┌─────[[InwardNode.iPortMapping]] [[InwardNode.iStar]] [[MixedNode.edgesOut]]──┘ │ │ * │ │ (from the other node) ↑ │ │ * │ │ │ │ │ │ * │ │ │ [[MixedNode.outer.edgeO]] │ │ * │ │ │ (based on protocol) │ │ * │ │ │ │ │ │ * │ │ │ ┌────────────────────────────────────────┤ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * │ │ │ │ │ │ │ * (immobilize after elaboration)│ ↓ │ │ │ │ * [[OutwardNode.oBindings]]─┘ [[MixedNode.oDirectPorts]]───→[[MixedNode.oPorts]] [[OutwardNode.doParams]] │ │ * ↑ (inward port from [[OutwardNode]]) │ │ │ │ * │ ┌─────────────────────────────────────────┤ │ │ │ * │ │ │ │ │ │ * │ │ │ │ │ │ * [[OutwardNode.accPO]] │ ↓ │ │ │ * (binding node when elaboration) │ [[InwardNode.diParams]]─────→[[MixedNode.mapParamsD]]────────────────────────────┘ │ │ * │ ↑ │ │ * │ └──────────────────────────────────────────────────────────────────────────────────────────┘ │ * └──────────────────────────────────────────────────────────────────────────────────────────────────────────┘ * }}} */ abstract class MixedNode[DI, UI, EI, BI <: Data, DO, UO, EO, BO <: Data]( val inner: InwardNodeImp[DI, UI, EI, BI], val outer: OutwardNodeImp[DO, UO, EO, BO] )( implicit valName: ValName) extends BaseNode with NodeHandle[DI, UI, EI, BI, DO, UO, EO, BO] with InwardNode[DI, UI, BI] with OutwardNode[DO, UO, BO] { // Generate a [[NodeHandle]] with inward and outward node are both this node. val inward = this val outward = this /** Debug info of nodes binding. */ def bindingInfo: String = s"""$iBindingInfo |$oBindingInfo |""".stripMargin /** Debug info of ports connecting. */ def connectedPortsInfo: String = s"""${oPorts.size} outward ports connected: [${oPorts.map(_._2.name).mkString(",")}] |${iPorts.size} inward ports connected: [${iPorts.map(_._2.name).mkString(",")}] |""".stripMargin /** Debug info of parameters propagations. */ def parametersInfo: String = s"""${doParams.size} downstream outward parameters: [${doParams.mkString(",")}] |${uoParams.size} upstream outward parameters: [${uoParams.mkString(",")}] |${diParams.size} downstream inward parameters: [${diParams.mkString(",")}] |${uiParams.size} upstream inward parameters: [${uiParams.mkString(",")}] |""".stripMargin /** For a given node, converts [[OutwardNode.accPO]] and [[InwardNode.accPI]] to [[MixedNode.oPortMapping]] and * [[MixedNode.iPortMapping]]. * * Given counts of known inward and outward binding and inward and outward star bindings, return the resolved inward * stars and outward stars. * * This method will also validate the arguments and throw a runtime error if the values are unsuitable for this type * of node. * * @param iKnown * Number of known-size ([[BIND_ONCE]]) input bindings. * @param oKnown * Number of known-size ([[BIND_ONCE]]) output bindings. * @param iStar * Number of unknown size ([[BIND_STAR]]) input bindings. * @param oStar * Number of unknown size ([[BIND_STAR]]) output bindings. * @return * A Tuple of the resolved number of input and output connections. */ protected[diplomacy] def resolveStar(iKnown: Int, oKnown: Int, iStar: Int, oStar: Int): (Int, Int) /** Function to generate downward-flowing outward params from the downward-flowing input params and the current output * ports. * * @param n * The size of the output sequence to generate. * @param p * Sequence of downward-flowing input parameters of this node. * @return * A `n`-sized sequence of downward-flowing output edge parameters. */ protected[diplomacy] def mapParamsD(n: Int, p: Seq[DI]): Seq[DO] /** Function to generate upward-flowing input parameters from the upward-flowing output parameters [[uiParams]]. * * @param n * Size of the output sequence. * @param p * Upward-flowing output edge parameters. * @return * A n-sized sequence of upward-flowing input edge parameters. */ protected[diplomacy] def mapParamsU(n: Int, p: Seq[UO]): Seq[UI] /** @return * The sink cardinality of the node, the number of outputs bound with [[BIND_QUERY]] summed with inputs bound with * [[BIND_STAR]]. */ protected[diplomacy] lazy val sinkCard: Int = oBindings.count(_._3 == BIND_QUERY) + iBindings.count(_._3 == BIND_STAR) /** @return * The source cardinality of this node, the number of inputs bound with [[BIND_QUERY]] summed with the number of * output bindings bound with [[BIND_STAR]]. */ protected[diplomacy] lazy val sourceCard: Int = iBindings.count(_._3 == BIND_QUERY) + oBindings.count(_._3 == BIND_STAR) /** @return list of nodes involved in flex bindings with this node. */ protected[diplomacy] lazy val flexes: Seq[BaseNode] = oBindings.filter(_._3 == BIND_FLEX).map(_._2) ++ iBindings.filter(_._3 == BIND_FLEX).map(_._2) /** Resolves the flex to be either source or sink and returns the offset where the [[BIND_STAR]] operators begin * greedily taking up the remaining connections. * * @return * A value >= 0 if it is sink cardinality, a negative value for source cardinality. The magnitude of the return * value is not relevant. */ protected[diplomacy] lazy val flexOffset: Int = { /** Recursively performs a depth-first search of the [[flexes]], [[BaseNode]]s connected to this node with flex * operators. The algorithm bottoms out when we either get to a node we have already visited or when we get to a * connection that is not a flex and can set the direction for us. Otherwise, recurse by visiting the `flexes` of * each node in the current set and decide whether they should be added to the set or not. * * @return * the mapping of [[BaseNode]] indexed by their serial numbers. */ def DFS(v: BaseNode, visited: Map[Int, BaseNode]): Map[Int, BaseNode] = { if (visited.contains(v.serial) || !v.flexibleArityDirection) { visited } else { v.flexes.foldLeft(visited + (v.serial -> v))((sum, n) => DFS(n, sum)) } } /** Determine which [[BaseNode]] are involved in resolving the flex connections to/from this node. * * @example * {{{ * a :*=* b :*=* c * d :*=* b * e :*=* f * }}} * * `flexSet` for `a`, `b`, `c`, or `d` will be `Set(a, b, c, d)` `flexSet` for `e` or `f` will be `Set(e,f)` */ val flexSet = DFS(this, Map()).values /** The total number of :*= operators where we're on the left. */ val allSink = flexSet.map(_.sinkCard).sum /** The total number of :=* operators used when we're on the right. */ val allSource = flexSet.map(_.sourceCard).sum require( allSink == 0 || allSource == 0, s"The nodes ${flexSet.map(_.name)} which are inter-connected by :*=* have ${allSink} :*= operators and ${allSource} :=* operators connected to them, making it impossible to determine cardinality inference direction." ) allSink - allSource } /** @return A value >= 0 if it is sink cardinality, a negative value for source cardinality. */ protected[diplomacy] def edgeArityDirection(n: BaseNode): Int = { if (flexibleArityDirection) flexOffset else if (n.flexibleArityDirection) n.flexOffset else 0 } /** For a node which is connected between two nodes, select the one that will influence the direction of the flex * resolution. */ protected[diplomacy] def edgeAritySelect(n: BaseNode, l: => Int, r: => Int): Int = { val dir = edgeArityDirection(n) if (dir < 0) l else if (dir > 0) r else 1 } /** Ensure that the same node is not visited twice in resolving `:*=`, etc operators. */ private var starCycleGuard = false /** Resolve all the star operators into concrete indicies. As connections are being made, some may be "star" * connections which need to be resolved. In some way to determine how many actual edges they correspond to. We also * need to build up the ranges of edges which correspond to each binding operator, so that We can apply the correct * edge parameters and later build up correct bundle connections. * * [[oPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that oPort (binding * operator). [[iPortMapping]]: `Seq[(Int, Int)]` where each item is the range of edges corresponding to that iPort * (binding operator). [[oStar]]: `Int` the value to return for this node `N` for any `N :*= foo` or `N :*=* foo :*= * bar` [[iStar]]: `Int` the value to return for this node `N` for any `foo :=* N` or `bar :=* foo :*=* N` */ protected[diplomacy] lazy val ( oPortMapping: Seq[(Int, Int)], iPortMapping: Seq[(Int, Int)], oStar: Int, iStar: Int ) = { try { if (starCycleGuard) throw StarCycleException() starCycleGuard = true // For a given node N... // Number of foo :=* N // + Number of bar :=* foo :*=* N val oStars = oBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) < 0) } // Number of N :*= foo // + Number of N :*=* foo :*= bar val iStars = iBindings.count { case (_, n, b, _, _) => b == BIND_STAR || (b == BIND_FLEX && edgeArityDirection(n) > 0) } // 1 for foo := N // + bar.iStar for bar :*= foo :*=* N // + foo.iStar for foo :*= N // + 0 for foo :=* N val oKnown = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, 0, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => 0 } }.sum // 1 for N := foo // + bar.oStar for N :*=* foo :=* bar // + foo.oStar for N :=* foo // + 0 for N :*= foo val iKnown = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, 0) case BIND_QUERY => n.oStar case BIND_STAR => 0 } }.sum // Resolve star depends on the node subclass to implement the algorithm for this. val (iStar, oStar) = resolveStar(iKnown, oKnown, iStars, oStars) // Cumulative list of resolved outward binding range starting points val oSum = oBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, oStar, n.iStar) case BIND_QUERY => n.iStar case BIND_STAR => oStar } }.scanLeft(0)(_ + _) // Cumulative list of resolved inward binding range starting points val iSum = iBindings.map { case (_, n, b, _, _) => b match { case BIND_ONCE => 1 case BIND_FLEX => edgeAritySelect(n, n.oStar, iStar) case BIND_QUERY => n.oStar case BIND_STAR => iStar } }.scanLeft(0)(_ + _) // Create ranges for each binding based on the running sums and return // those along with resolved values for the star operations. (oSum.init.zip(oSum.tail), iSum.init.zip(iSum.tail), oStar, iStar) } catch { case c: StarCycleException => throw c.copy(loop = context +: c.loop) } } /** Sequence of inward ports. * * This should be called after all star bindings are resolved. * * Each element is: `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. * `n` Instance of inward node. `p` View of [[Parameters]] where this connection was made. `s` Source info where this * connection was made in the source code. */ protected[diplomacy] lazy val oDirectPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oBindings.flatMap { case (i, n, _, p, s) => // for each binding operator in this node, look at what it connects to val (start, end) = n.iPortMapping(i) (start until end).map { j => (j, n, p, s) } } /** Sequence of outward ports. * * This should be called after all star bindings are resolved. * * `j` Port index of this binding in the Node's [[oPortMapping]] on the other side of the binding. `n` Instance of * outward node. `p` View of [[Parameters]] where this connection was made. `s` [[SourceInfo]] where this connection * was made in the source code. */ protected[diplomacy] lazy val iDirectPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iBindings.flatMap { case (i, n, _, p, s) => // query this port index range of this node in the other side of node. val (start, end) = n.oPortMapping(i) (start until end).map { j => (j, n, p, s) } } // Ephemeral nodes ( which have non-None iForward/oForward) have in_degree = out_degree // Thus, there must exist an Eulerian path and the below algorithms terminate @scala.annotation.tailrec private def oTrace( tuple: (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) ): (Int, InwardNode[DO, UO, BO], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.iForward(i) match { case None => (i, n, p, s) case Some((j, m)) => oTrace((j, m, p, s)) } } @scala.annotation.tailrec private def iTrace( tuple: (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) ): (Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo) = tuple match { case (i, n, p, s) => n.oForward(i) match { case None => (i, n, p, s) case Some((j, m)) => iTrace((j, m, p, s)) } } /** Final output ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - Numeric index of this binding in the [[InwardNode]] on the other end. * - [[InwardNode]] on the other end of this binding. * - A view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val oPorts: Seq[(Int, InwardNode[DO, UO, BO], Parameters, SourceInfo)] = oDirectPorts.map(oTrace) /** Final input ports after all stars and port forwarding (e.g. [[EphemeralNode]]s) have been resolved. * * Each Port is a tuple of: * - numeric index of this binding in [[OutwardNode]] on the other end. * - [[OutwardNode]] on the other end of this binding. * - a view of [[Parameters]] where the binding occurred. * - [[SourceInfo]] for source-level error reporting. */ lazy val iPorts: Seq[(Int, OutwardNode[DI, UI, BI], Parameters, SourceInfo)] = iDirectPorts.map(iTrace) private var oParamsCycleGuard = false protected[diplomacy] lazy val diParams: Seq[DI] = iPorts.map { case (i, n, _, _) => n.doParams(i) } protected[diplomacy] lazy val doParams: Seq[DO] = { try { if (oParamsCycleGuard) throw DownwardCycleException() oParamsCycleGuard = true val o = mapParamsD(oPorts.size, diParams) require( o.size == oPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of outward ports should equal the number of produced outward parameters. |$context |$connectedPortsInfo |Downstreamed inward parameters: [${diParams.mkString(",")}] |Produced outward parameters: [${o.mkString(",")}] |""".stripMargin ) o.map(outer.mixO(_, this)) } catch { case c: DownwardCycleException => throw c.copy(loop = context +: c.loop) } } private var iParamsCycleGuard = false protected[diplomacy] lazy val uoParams: Seq[UO] = oPorts.map { case (o, n, _, _) => n.uiParams(o) } protected[diplomacy] lazy val uiParams: Seq[UI] = { try { if (iParamsCycleGuard) throw UpwardCycleException() iParamsCycleGuard = true val i = mapParamsU(iPorts.size, uoParams) require( i.size == iPorts.size, s"""Diplomacy has detected a problem with your graph: |At the following node, the number of inward ports should equal the number of produced inward parameters. |$context |$connectedPortsInfo |Upstreamed outward parameters: [${uoParams.mkString(",")}] |Produced inward parameters: [${i.mkString(",")}] |""".stripMargin ) i.map(inner.mixI(_, this)) } catch { case c: UpwardCycleException => throw c.copy(loop = context +: c.loop) } } /** Outward edge parameters. */ protected[diplomacy] lazy val edgesOut: Seq[EO] = (oPorts.zip(doParams)).map { case ((i, n, p, s), o) => outer.edgeO(o, n.uiParams(i), p, s) } /** Inward edge parameters. */ protected[diplomacy] lazy val edgesIn: Seq[EI] = (iPorts.zip(uiParams)).map { case ((o, n, p, s), i) => inner.edgeI(n.doParams(o), i, p, s) } /** A tuple of the input edge parameters and output edge parameters for the edges bound to this node. * * If you need to access to the edges of a foreign Node, use this method (in/out create bundles). */ lazy val edges: Edges[EI, EO] = Edges(edgesIn, edgesOut) /** Create actual Wires corresponding to the Bundles parameterized by the outward edges of this node. */ protected[diplomacy] lazy val bundleOut: Seq[BO] = edgesOut.map { e => val x = Wire(outer.bundleO(e)).suggestName(s"${valName.value}Out") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } /** Create actual Wires corresponding to the Bundles parameterized by the inward edges of this node. */ protected[diplomacy] lazy val bundleIn: Seq[BI] = edgesIn.map { e => val x = Wire(inner.bundleI(e)).suggestName(s"${valName.value}In") // TODO: Don't care unconnected forwarded diplomatic signals for compatibility issue, // In the future, we should add an option to decide whether allowing unconnected in the LazyModule x := DontCare x } private def emptyDanglesOut: Seq[Dangle] = oPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(serial, i), sink = HalfEdge(n.serial, j), flipped = false, name = wirePrefix + "out", dataOpt = None ) } private def emptyDanglesIn: Seq[Dangle] = iPorts.zipWithIndex.map { case ((j, n, _, _), i) => Dangle( source = HalfEdge(n.serial, j), sink = HalfEdge(serial, i), flipped = true, name = wirePrefix + "in", dataOpt = None ) } /** Create the [[Dangle]]s which describe the connections from this node output to other nodes inputs. */ protected[diplomacy] def danglesOut: Seq[Dangle] = emptyDanglesOut.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleOut(i))) } /** Create the [[Dangle]]s which describe the connections from this node input from other nodes outputs. */ protected[diplomacy] def danglesIn: Seq[Dangle] = emptyDanglesIn.zipWithIndex.map { case (d, i) => d.copy(dataOpt = Some(bundleIn(i))) } private[diplomacy] var instantiated = false /** Gather Bundle and edge parameters of outward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def out: Seq[(BO, EO)] = { require( instantiated, s"$name.out should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleOut.zip(edgesOut) } /** Gather Bundle and edge parameters of inward ports. * * Accessors to the result of negotiation to be used within [[LazyModuleImp]] Code. Should only be used within * [[LazyModuleImp]] code or after its instantiation has completed. */ def in: Seq[(BI, EI)] = { require( instantiated, s"$name.in should not be called until after instantiation of its parent LazyModule.module has begun" ) bundleIn.zip(edgesIn) } /** Actually instantiate this node during [[LazyModuleImp]] evaluation. Mark that it's safe to use the Bundle wires, * instantiate monitors on all input ports if appropriate, and return all the dangles of this node. */ protected[diplomacy] def instantiate(): Seq[Dangle] = { instantiated = true if (!circuitIdentity) { (iPorts.zip(in)).foreach { case ((_, _, p, _), (b, e)) => if (p(MonitorsEnabled)) inner.monitor(b, e) } } danglesOut ++ danglesIn } protected[diplomacy] def cloneDangles(): Seq[Dangle] = emptyDanglesOut ++ emptyDanglesIn /** Connects the outward part of a node with the inward part of this node. */ protected[diplomacy] def bind( h: OutwardNode[DI, UI, BI], binding: NodeBinding )( implicit p: Parameters, sourceInfo: SourceInfo ): Unit = { val x = this // x := y val y = h sourceLine(sourceInfo, " at ", "") val i = x.iPushed val o = y.oPushed y.oPush( i, x, binding match { case BIND_ONCE => BIND_ONCE case BIND_FLEX => BIND_FLEX case BIND_STAR => BIND_QUERY case BIND_QUERY => BIND_STAR } ) x.iPush(o, y, binding) } /* Metadata for printing the node graph. */ def inputs: Seq[(OutwardNode[DI, UI, BI], RenderedEdge)] = (iPorts.zip(edgesIn)).map { case ((_, n, p, _), e) => val re = inner.render(e) (n, re.copy(flipped = re.flipped != p(RenderFlipped))) } /** Metadata for printing the node graph */ def outputs: Seq[(InwardNode[DO, UO, BO], RenderedEdge)] = oPorts.map { case (i, n, _, _) => (n, n.inputs(i)._2) } }
module TLWidthWidget16( // @[WidthWidget.scala:27:9] input clock, // @[WidthWidget.scala:27:9] input reset, // @[WidthWidget.scala:27:9] output auto_anon_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_anon_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [7:0] auto_anon_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [28:0] auto_anon_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [15:0] auto_anon_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [127:0] auto_anon_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_anon_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [1:0] auto_anon_in_d_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_anon_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [7:0] auto_anon_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_bits_sink, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_bits_denied, // @[LazyModuleImp.scala:107:25] output [127:0] auto_anon_in_d_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_anon_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [3:0] auto_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [7:0] auto_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [28:0] auto_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_anon_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_anon_out_d_bits_param, // @[LazyModuleImp.scala:107:25] input [3:0] auto_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [7:0] auto_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_bits_sink, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_bits_denied, // @[LazyModuleImp.scala:107:25] input [63:0] auto_anon_out_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_bits_corrupt // @[LazyModuleImp.scala:107:25] ); wire [127:0] _repeated_repeater_io_deq_bits_data; // @[Repeater.scala:36:26] wire auto_anon_in_a_valid_0 = auto_anon_in_a_valid; // @[WidthWidget.scala:27:9] wire [2:0] auto_anon_in_a_bits_opcode_0 = auto_anon_in_a_bits_opcode; // @[WidthWidget.scala:27:9] wire [2:0] auto_anon_in_a_bits_param_0 = auto_anon_in_a_bits_param; // @[WidthWidget.scala:27:9] wire [3:0] auto_anon_in_a_bits_size_0 = auto_anon_in_a_bits_size; // @[WidthWidget.scala:27:9] wire [7:0] auto_anon_in_a_bits_source_0 = auto_anon_in_a_bits_source; // @[WidthWidget.scala:27:9] wire [28:0] auto_anon_in_a_bits_address_0 = auto_anon_in_a_bits_address; // @[WidthWidget.scala:27:9] wire [15:0] auto_anon_in_a_bits_mask_0 = auto_anon_in_a_bits_mask; // @[WidthWidget.scala:27:9] wire [127:0] auto_anon_in_a_bits_data_0 = auto_anon_in_a_bits_data; // @[WidthWidget.scala:27:9] wire auto_anon_in_a_bits_corrupt_0 = auto_anon_in_a_bits_corrupt; // @[WidthWidget.scala:27:9] wire auto_anon_in_d_ready_0 = auto_anon_in_d_ready; // @[WidthWidget.scala:27:9] wire auto_anon_out_a_ready_0 = auto_anon_out_a_ready; // @[WidthWidget.scala:27:9] wire auto_anon_out_d_valid_0 = auto_anon_out_d_valid; // @[WidthWidget.scala:27:9] wire [2:0] auto_anon_out_d_bits_opcode_0 = auto_anon_out_d_bits_opcode; // @[WidthWidget.scala:27:9] wire [1:0] auto_anon_out_d_bits_param_0 = auto_anon_out_d_bits_param; // @[WidthWidget.scala:27:9] wire [3:0] auto_anon_out_d_bits_size_0 = auto_anon_out_d_bits_size; // @[WidthWidget.scala:27:9] wire [7:0] auto_anon_out_d_bits_source_0 = auto_anon_out_d_bits_source; // @[WidthWidget.scala:27:9] wire auto_anon_out_d_bits_sink_0 = auto_anon_out_d_bits_sink; // @[WidthWidget.scala:27:9] wire auto_anon_out_d_bits_denied_0 = auto_anon_out_d_bits_denied; // @[WidthWidget.scala:27:9] wire [63:0] auto_anon_out_d_bits_data_0 = auto_anon_out_d_bits_data; // @[WidthWidget.scala:27:9] wire auto_anon_out_d_bits_corrupt_0 = auto_anon_out_d_bits_corrupt; // @[WidthWidget.scala:27:9] wire anonIn_a_ready; // @[MixedNode.scala:551:17] wire anonIn_a_valid = auto_anon_in_a_valid_0; // @[WidthWidget.scala:27:9] wire [2:0] anonIn_a_bits_opcode = auto_anon_in_a_bits_opcode_0; // @[WidthWidget.scala:27:9] wire [2:0] anonIn_a_bits_param = auto_anon_in_a_bits_param_0; // @[WidthWidget.scala:27:9] wire [3:0] anonIn_a_bits_size = auto_anon_in_a_bits_size_0; // @[WidthWidget.scala:27:9] wire [7:0] anonIn_a_bits_source = auto_anon_in_a_bits_source_0; // @[WidthWidget.scala:27:9] wire [28:0] anonIn_a_bits_address = auto_anon_in_a_bits_address_0; // @[WidthWidget.scala:27:9] wire [15:0] anonIn_a_bits_mask = auto_anon_in_a_bits_mask_0; // @[WidthWidget.scala:27:9] wire [127:0] anonIn_a_bits_data = auto_anon_in_a_bits_data_0; // @[WidthWidget.scala:27:9] wire anonIn_a_bits_corrupt = auto_anon_in_a_bits_corrupt_0; // @[WidthWidget.scala:27:9] wire anonIn_d_ready = auto_anon_in_d_ready_0; // @[WidthWidget.scala:27:9] wire anonIn_d_valid; // @[MixedNode.scala:551:17] wire [2:0] anonIn_d_bits_opcode; // @[MixedNode.scala:551:17] wire [1:0] anonIn_d_bits_param; // @[MixedNode.scala:551:17] wire [3:0] anonIn_d_bits_size; // @[MixedNode.scala:551:17] wire [7:0] anonIn_d_bits_source; // @[MixedNode.scala:551:17] wire anonIn_d_bits_sink; // @[MixedNode.scala:551:17] wire anonIn_d_bits_denied; // @[MixedNode.scala:551:17] wire [127:0] anonIn_d_bits_data; // @[MixedNode.scala:551:17] wire anonIn_d_bits_corrupt; // @[MixedNode.scala:551:17] wire anonOut_a_ready = auto_anon_out_a_ready_0; // @[WidthWidget.scala:27:9] wire anonOut_a_valid; // @[MixedNode.scala:542:17] wire [2:0] anonOut_a_bits_opcode; // @[MixedNode.scala:542:17] wire [2:0] anonOut_a_bits_param; // @[MixedNode.scala:542:17] wire [3:0] anonOut_a_bits_size; // @[MixedNode.scala:542:17] wire [7:0] anonOut_a_bits_source; // @[MixedNode.scala:542:17] wire [28:0] anonOut_a_bits_address; // @[MixedNode.scala:542:17] wire [7:0] anonOut_a_bits_mask; // @[MixedNode.scala:542:17] wire [63:0] anonOut_a_bits_data; // @[MixedNode.scala:542:17] wire anonOut_a_bits_corrupt; // @[MixedNode.scala:542:17] wire anonOut_d_ready; // @[MixedNode.scala:542:17] wire anonOut_d_valid = auto_anon_out_d_valid_0; // @[WidthWidget.scala:27:9] wire [2:0] anonOut_d_bits_opcode = auto_anon_out_d_bits_opcode_0; // @[WidthWidget.scala:27:9] wire [1:0] anonOut_d_bits_param = auto_anon_out_d_bits_param_0; // @[WidthWidget.scala:27:9] wire [3:0] anonOut_d_bits_size = auto_anon_out_d_bits_size_0; // @[WidthWidget.scala:27:9] wire [7:0] anonOut_d_bits_source = auto_anon_out_d_bits_source_0; // @[WidthWidget.scala:27:9] wire anonOut_d_bits_sink = auto_anon_out_d_bits_sink_0; // @[WidthWidget.scala:27:9] wire anonOut_d_bits_denied = auto_anon_out_d_bits_denied_0; // @[WidthWidget.scala:27:9] wire [63:0] anonOut_d_bits_data = auto_anon_out_d_bits_data_0; // @[WidthWidget.scala:27:9] wire anonOut_d_bits_corrupt = auto_anon_out_d_bits_corrupt_0; // @[WidthWidget.scala:27:9] wire auto_anon_in_a_ready_0; // @[WidthWidget.scala:27:9] wire [2:0] auto_anon_in_d_bits_opcode_0; // @[WidthWidget.scala:27:9] wire [1:0] auto_anon_in_d_bits_param_0; // @[WidthWidget.scala:27:9] wire [3:0] auto_anon_in_d_bits_size_0; // @[WidthWidget.scala:27:9] wire [7:0] auto_anon_in_d_bits_source_0; // @[WidthWidget.scala:27:9] wire auto_anon_in_d_bits_sink_0; // @[WidthWidget.scala:27:9] wire auto_anon_in_d_bits_denied_0; // @[WidthWidget.scala:27:9] wire [127:0] auto_anon_in_d_bits_data_0; // @[WidthWidget.scala:27:9] wire auto_anon_in_d_bits_corrupt_0; // @[WidthWidget.scala:27:9] wire auto_anon_in_d_valid_0; // @[WidthWidget.scala:27:9] wire [2:0] auto_anon_out_a_bits_opcode_0; // @[WidthWidget.scala:27:9] wire [2:0] auto_anon_out_a_bits_param_0; // @[WidthWidget.scala:27:9] wire [3:0] auto_anon_out_a_bits_size_0; // @[WidthWidget.scala:27:9] wire [7:0] auto_anon_out_a_bits_source_0; // @[WidthWidget.scala:27:9] wire [28:0] auto_anon_out_a_bits_address_0; // @[WidthWidget.scala:27:9] wire [7:0] auto_anon_out_a_bits_mask_0; // @[WidthWidget.scala:27:9] wire [63:0] auto_anon_out_a_bits_data_0; // @[WidthWidget.scala:27:9] wire auto_anon_out_a_bits_corrupt_0; // @[WidthWidget.scala:27:9] wire auto_anon_out_a_valid_0; // @[WidthWidget.scala:27:9] wire auto_anon_out_d_ready_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_a_ready_0 = anonIn_a_ready; // @[WidthWidget.scala:27:9] wire _anonIn_d_valid_T; // @[WidthWidget.scala:77:29] assign auto_anon_in_d_valid_0 = anonIn_d_valid; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_opcode_0 = anonIn_d_bits_opcode; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_param_0 = anonIn_d_bits_param; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_size_0 = anonIn_d_bits_size; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_source_0 = anonIn_d_bits_source; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_sink_0 = anonIn_d_bits_sink; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_denied_0 = anonIn_d_bits_denied; // @[WidthWidget.scala:27:9] wire [127:0] _anonIn_d_bits_data_T_3; // @[WidthWidget.scala:73:12] assign auto_anon_in_d_bits_data_0 = anonIn_d_bits_data; // @[WidthWidget.scala:27:9] wire corrupt_out; // @[WidthWidget.scala:47:36] assign auto_anon_in_d_bits_corrupt_0 = anonIn_d_bits_corrupt; // @[WidthWidget.scala:27:9] wire cated_ready = anonOut_a_ready; // @[WidthWidget.scala:161:25] wire cated_valid; // @[WidthWidget.scala:161:25] assign auto_anon_out_a_valid_0 = anonOut_a_valid; // @[WidthWidget.scala:27:9] wire [2:0] cated_bits_opcode; // @[WidthWidget.scala:161:25] assign auto_anon_out_a_bits_opcode_0 = anonOut_a_bits_opcode; // @[WidthWidget.scala:27:9] wire [2:0] cated_bits_param; // @[WidthWidget.scala:161:25] assign auto_anon_out_a_bits_param_0 = anonOut_a_bits_param; // @[WidthWidget.scala:27:9] wire [3:0] cated_bits_size; // @[WidthWidget.scala:161:25] assign auto_anon_out_a_bits_size_0 = anonOut_a_bits_size; // @[WidthWidget.scala:27:9] wire [7:0] cated_bits_source; // @[WidthWidget.scala:161:25] assign auto_anon_out_a_bits_source_0 = anonOut_a_bits_source; // @[WidthWidget.scala:27:9] wire [28:0] cated_bits_address; // @[WidthWidget.scala:161:25] assign auto_anon_out_a_bits_address_0 = anonOut_a_bits_address; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_mask_0 = anonOut_a_bits_mask; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_data_0 = anonOut_a_bits_data; // @[WidthWidget.scala:27:9] wire cated_bits_corrupt; // @[WidthWidget.scala:161:25] assign auto_anon_out_a_bits_corrupt_0 = anonOut_a_bits_corrupt; // @[WidthWidget.scala:27:9] wire _anonOut_d_ready_T_1; // @[WidthWidget.scala:76:29] assign auto_anon_out_d_ready_0 = anonOut_d_ready; // @[WidthWidget.scala:27:9] assign anonIn_d_bits_opcode = anonOut_d_bits_opcode; // @[MixedNode.scala:542:17, :551:17] assign anonIn_d_bits_param = anonOut_d_bits_param; // @[MixedNode.scala:542:17, :551:17] assign anonIn_d_bits_size = anonOut_d_bits_size; // @[MixedNode.scala:542:17, :551:17] assign anonIn_d_bits_source = anonOut_d_bits_source; // @[MixedNode.scala:542:17, :551:17] assign anonIn_d_bits_sink = anonOut_d_bits_sink; // @[MixedNode.scala:542:17, :551:17] assign anonIn_d_bits_denied = anonOut_d_bits_denied; // @[MixedNode.scala:542:17, :551:17] wire [63:0] anonIn_d_bits_data_odata_0 = anonOut_d_bits_data; // @[WidthWidget.scala:65:47] wire [63:0] anonIn_d_bits_data_odata_1 = anonOut_d_bits_data; // @[WidthWidget.scala:65:47] wire _repeat_T_1; // @[WidthWidget.scala:148:7] wire repeat_0; // @[WidthWidget.scala:159:26] assign anonOut_a_valid = cated_valid; // @[WidthWidget.scala:161:25] assign anonOut_a_bits_opcode = cated_bits_opcode; // @[WidthWidget.scala:161:25] assign anonOut_a_bits_param = cated_bits_param; // @[WidthWidget.scala:161:25] assign anonOut_a_bits_size = cated_bits_size; // @[WidthWidget.scala:161:25] assign anonOut_a_bits_source = cated_bits_source; // @[WidthWidget.scala:161:25] assign anonOut_a_bits_address = cated_bits_address; // @[WidthWidget.scala:161:25] wire [127:0] _cated_bits_data_T_2; // @[WidthWidget.scala:163:39] assign anonOut_a_bits_corrupt = cated_bits_corrupt; // @[WidthWidget.scala:161:25] wire [15:0] cated_bits_mask; // @[WidthWidget.scala:161:25] wire [127:0] cated_bits_data; // @[WidthWidget.scala:161:25] wire [63:0] _cated_bits_data_T = _repeated_repeater_io_deq_bits_data[127:64]; // @[Repeater.scala:36:26] wire [63:0] _cated_bits_data_T_1 = anonIn_a_bits_data[63:0]; // @[WidthWidget.scala:165:31] assign _cated_bits_data_T_2 = {_cated_bits_data_T, _cated_bits_data_T_1}; // @[WidthWidget.scala:163:39, :164:37, :165:31] assign cated_bits_data = _cated_bits_data_T_2; // @[WidthWidget.scala:161:25, :163:39] wire _repeat_hasData_opdata_T = cated_bits_opcode[2]; // @[WidthWidget.scala:161:25] wire repeat_hasData = ~_repeat_hasData_opdata_T; // @[Edges.scala:92:{28,37}] wire [18:0] _repeat_limit_T = 19'hF << cated_bits_size; // @[package.scala:243:71] wire [3:0] _repeat_limit_T_1 = _repeat_limit_T[3:0]; // @[package.scala:243:{71,76}] wire [3:0] _repeat_limit_T_2 = ~_repeat_limit_T_1; // @[package.scala:243:{46,76}] wire repeat_limit = _repeat_limit_T_2[3]; // @[package.scala:243:46] reg repeat_count; // @[WidthWidget.scala:105:26] wire repeat_first = ~repeat_count; // @[WidthWidget.scala:105:26, :106:25] wire _repeat_last_T = repeat_count == repeat_limit; // @[WidthWidget.scala:103:47, :105:26, :107:25] wire _repeat_last_T_1 = ~repeat_hasData; // @[WidthWidget.scala:107:38] wire repeat_last = _repeat_last_T | _repeat_last_T_1; // @[WidthWidget.scala:107:{25,35,38}] wire _repeat_T = anonOut_a_ready & anonOut_a_valid; // @[Decoupled.scala:51:35] wire [1:0] _repeat_count_T = {1'h0, repeat_count} + 2'h1; // @[WidthWidget.scala:105:26, :110:24] wire _repeat_count_T_1 = _repeat_count_T[0]; // @[WidthWidget.scala:110:24] wire repeat_sel = cated_bits_address[3]; // @[WidthWidget.scala:116:39, :161:25] wire repeat_index = repeat_sel | repeat_count; // @[WidthWidget.scala:105:26, :116:39, :126:24] wire [63:0] _repeat_anonOut_a_bits_data_mux_T = cated_bits_data[63:0]; // @[WidthWidget.scala:128:55, :161:25] wire [63:0] repeat_anonOut_a_bits_data_mux_0 = _repeat_anonOut_a_bits_data_mux_T; // @[WidthWidget.scala:128:{43,55}] wire [63:0] _repeat_anonOut_a_bits_data_mux_T_1 = cated_bits_data[127:64]; // @[WidthWidget.scala:128:55, :161:25] wire [63:0] repeat_anonOut_a_bits_data_mux_1 = _repeat_anonOut_a_bits_data_mux_T_1; // @[WidthWidget.scala:128:{43,55}] assign anonOut_a_bits_data = repeat_index ? repeat_anonOut_a_bits_data_mux_1 : repeat_anonOut_a_bits_data_mux_0; // @[WidthWidget.scala:126:24, :128:43, :137:30] wire [7:0] _repeat_anonOut_a_bits_mask_mux_T = cated_bits_mask[7:0]; // @[WidthWidget.scala:128:55, :161:25] wire [7:0] repeat_anonOut_a_bits_mask_mux_0 = _repeat_anonOut_a_bits_mask_mux_T; // @[WidthWidget.scala:128:{43,55}] wire [7:0] _repeat_anonOut_a_bits_mask_mux_T_1 = cated_bits_mask[15:8]; // @[WidthWidget.scala:128:55, :161:25] wire [7:0] repeat_anonOut_a_bits_mask_mux_1 = _repeat_anonOut_a_bits_mask_mux_T_1; // @[WidthWidget.scala:128:{43,55}] assign anonOut_a_bits_mask = repeat_index ? repeat_anonOut_a_bits_mask_mux_1 : repeat_anonOut_a_bits_mask_mux_0; // @[WidthWidget.scala:126:24, :128:43, :140:53] assign _repeat_T_1 = ~repeat_last; // @[WidthWidget.scala:107:35, :148:7] assign repeat_0 = _repeat_T_1; // @[WidthWidget.scala:148:7, :159:26] wire hasData = anonOut_d_bits_opcode[0]; // @[Edges.scala:106:36] wire [18:0] _limit_T = 19'hF << anonOut_d_bits_size; // @[package.scala:243:71] wire [3:0] _limit_T_1 = _limit_T[3:0]; // @[package.scala:243:{71,76}] wire [3:0] _limit_T_2 = ~_limit_T_1; // @[package.scala:243:{46,76}] wire limit = _limit_T_2[3]; // @[package.scala:243:46] reg count; // @[WidthWidget.scala:40:27] wire _enable_T = count; // @[WidthWidget.scala:40:27, :43:56] wire first = ~count; // @[WidthWidget.scala:40:27, :41:26] wire _last_T = count == limit; // @[WidthWidget.scala:38:47, :40:27, :42:26] wire _last_T_1 = ~hasData; // @[WidthWidget.scala:42:39] wire last = _last_T | _last_T_1; // @[WidthWidget.scala:42:{26,36,39}] wire _enable_T_1 = _enable_T & limit; // @[WidthWidget.scala:38:47, :43:{56,63}] wire _enable_T_2 = _enable_T_1; // @[WidthWidget.scala:43:{63,72}] wire enable_0 = ~_enable_T_2; // @[WidthWidget.scala:43:{47,72}] wire _enable_T_3 = ~count; // @[WidthWidget.scala:40:27, :41:26, :43:56] wire _enable_T_4 = _enable_T_3 & limit; // @[WidthWidget.scala:38:47, :43:{56,63}] wire _enable_T_5 = _enable_T_4; // @[WidthWidget.scala:43:{63,72}] wire enable_1 = ~_enable_T_5; // @[WidthWidget.scala:43:{47,72}] reg corrupt_reg; // @[WidthWidget.scala:45:32] assign corrupt_out = anonOut_d_bits_corrupt | corrupt_reg; // @[WidthWidget.scala:45:32, :47:36] assign anonIn_d_bits_corrupt = corrupt_out; // @[WidthWidget.scala:47:36] wire _anonIn_d_bits_data_T = anonOut_d_ready & anonOut_d_valid; // @[Decoupled.scala:51:35] wire [1:0] _count_T = {1'h0, count} + 2'h1; // @[WidthWidget.scala:40:27, :50:24] wire _count_T_1 = _count_T[0]; // @[WidthWidget.scala:50:24] wire _anonOut_d_ready_T = ~last; // @[WidthWidget.scala:42:36, :76:32] assign _anonOut_d_ready_T_1 = anonIn_d_ready | _anonOut_d_ready_T; // @[WidthWidget.scala:76:{29,32}] assign anonOut_d_ready = _anonOut_d_ready_T_1; // @[WidthWidget.scala:76:29] assign _anonIn_d_valid_T = anonOut_d_valid & last; // @[WidthWidget.scala:42:36, :77:29] assign anonIn_d_valid = _anonIn_d_valid_T; // @[WidthWidget.scala:77:29] reg anonIn_d_bits_data_rdata_written_once; // @[WidthWidget.scala:62:41] wire _anonIn_d_bits_data_masked_enable_T = ~anonIn_d_bits_data_rdata_written_once; // @[WidthWidget.scala:62:41, :63:45] wire anonIn_d_bits_data_masked_enable_0 = enable_0 | _anonIn_d_bits_data_masked_enable_T; // @[WidthWidget.scala:43:47, :63:{42,45}] wire _anonIn_d_bits_data_masked_enable_T_1 = ~anonIn_d_bits_data_rdata_written_once; // @[WidthWidget.scala:62:41, :63:45] wire anonIn_d_bits_data_masked_enable_1 = enable_1 | _anonIn_d_bits_data_masked_enable_T_1; // @[WidthWidget.scala:43:47, :63:{42,45}] reg [63:0] anonIn_d_bits_data_rdata_0; // @[WidthWidget.scala:66:24] wire [63:0] anonIn_d_bits_data_mdata_0 = anonIn_d_bits_data_masked_enable_0 ? anonIn_d_bits_data_odata_0 : anonIn_d_bits_data_rdata_0; // @[WidthWidget.scala:63:42, :65:47, :66:24, :68:88] wire [63:0] anonIn_d_bits_data_mdata_1 = anonIn_d_bits_data_masked_enable_1 ? anonIn_d_bits_data_odata_1 : anonOut_d_bits_data; // @[WidthWidget.scala:63:42, :65:47, :68:88] wire _anonIn_d_bits_data_T_1 = ~last; // @[WidthWidget.scala:42:36, :69:26, :76:32] wire _anonIn_d_bits_data_T_2 = _anonIn_d_bits_data_T & _anonIn_d_bits_data_T_1; // @[Decoupled.scala:51:35] assign _anonIn_d_bits_data_T_3 = {anonIn_d_bits_data_mdata_1, anonIn_d_bits_data_mdata_0}; // @[WidthWidget.scala:68:88, :73:12] assign anonIn_d_bits_data = _anonIn_d_bits_data_T_3; // @[WidthWidget.scala:73:12] always @(posedge clock) begin // @[WidthWidget.scala:27:9] if (reset) begin // @[WidthWidget.scala:27:9] repeat_count <= 1'h0; // @[WidthWidget.scala:105:26] count <= 1'h0; // @[WidthWidget.scala:40:27] corrupt_reg <= 1'h0; // @[WidthWidget.scala:45:32] anonIn_d_bits_data_rdata_written_once <= 1'h0; // @[WidthWidget.scala:62:41] end else begin // @[WidthWidget.scala:27:9] if (_repeat_T) // @[Decoupled.scala:51:35] repeat_count <= ~repeat_last & _repeat_count_T_1; // @[WidthWidget.scala:105:26, :107:35, :110:{15,24}, :111:{21,29}] if (_anonIn_d_bits_data_T) begin // @[Decoupled.scala:51:35] count <= ~last & _count_T_1; // @[WidthWidget.scala:40:27, :42:36, :50:{15,24}, :52:21, :53:17] corrupt_reg <= ~last & corrupt_out; // @[WidthWidget.scala:42:36, :45:32, :47:36, :50:15, :51:21, :52:21, :53:17, :54:23] end anonIn_d_bits_data_rdata_written_once <= _anonIn_d_bits_data_T_2 | anonIn_d_bits_data_rdata_written_once; // @[WidthWidget.scala:62:41, :69:{23,33}, :70:30] end if (_anonIn_d_bits_data_T_2) // @[WidthWidget.scala:69:23] anonIn_d_bits_data_rdata_0 <= anonIn_d_bits_data_mdata_0; // @[WidthWidget.scala:66:24, :68:88] always @(posedge) TLMonitor_3 monitor ( // @[Nodes.scala:27:25] .clock (clock), .reset (reset), .io_in_a_ready (anonIn_a_ready), // @[MixedNode.scala:551:17] .io_in_a_valid (anonIn_a_valid), // @[MixedNode.scala:551:17] .io_in_a_bits_opcode (anonIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_in_a_bits_param (anonIn_a_bits_param), // @[MixedNode.scala:551:17] .io_in_a_bits_size (anonIn_a_bits_size), // @[MixedNode.scala:551:17] .io_in_a_bits_source (anonIn_a_bits_source), // @[MixedNode.scala:551:17] .io_in_a_bits_address (anonIn_a_bits_address), // @[MixedNode.scala:551:17] .io_in_a_bits_mask (anonIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_in_a_bits_data (anonIn_a_bits_data), // @[MixedNode.scala:551:17] .io_in_a_bits_corrupt (anonIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_in_d_ready (anonIn_d_ready), // @[MixedNode.scala:551:17] .io_in_d_valid (anonIn_d_valid), // @[MixedNode.scala:551:17] .io_in_d_bits_opcode (anonIn_d_bits_opcode), // @[MixedNode.scala:551:17] .io_in_d_bits_param (anonIn_d_bits_param), // @[MixedNode.scala:551:17] .io_in_d_bits_size (anonIn_d_bits_size), // @[MixedNode.scala:551:17] .io_in_d_bits_source (anonIn_d_bits_source), // @[MixedNode.scala:551:17] .io_in_d_bits_sink (anonIn_d_bits_sink), // @[MixedNode.scala:551:17] .io_in_d_bits_denied (anonIn_d_bits_denied), // @[MixedNode.scala:551:17] .io_in_d_bits_data (anonIn_d_bits_data), // @[MixedNode.scala:551:17] .io_in_d_bits_corrupt (anonIn_d_bits_corrupt) // @[MixedNode.scala:551:17] ); // @[Nodes.scala:27:25] Repeater_TLBundleA_a29d128s8k1z4u repeated_repeater ( // @[Repeater.scala:36:26] .clock (clock), .reset (reset), .io_repeat (repeat_0), // @[WidthWidget.scala:159:26] .io_enq_ready (anonIn_a_ready), .io_enq_valid (anonIn_a_valid), // @[MixedNode.scala:551:17] .io_enq_bits_opcode (anonIn_a_bits_opcode), // @[MixedNode.scala:551:17] .io_enq_bits_param (anonIn_a_bits_param), // @[MixedNode.scala:551:17] .io_enq_bits_size (anonIn_a_bits_size), // @[MixedNode.scala:551:17] .io_enq_bits_source (anonIn_a_bits_source), // @[MixedNode.scala:551:17] .io_enq_bits_address (anonIn_a_bits_address), // @[MixedNode.scala:551:17] .io_enq_bits_mask (anonIn_a_bits_mask), // @[MixedNode.scala:551:17] .io_enq_bits_data (anonIn_a_bits_data), // @[MixedNode.scala:551:17] .io_enq_bits_corrupt (anonIn_a_bits_corrupt), // @[MixedNode.scala:551:17] .io_deq_ready (cated_ready), // @[WidthWidget.scala:161:25] .io_deq_valid (cated_valid), .io_deq_bits_opcode (cated_bits_opcode), .io_deq_bits_param (cated_bits_param), .io_deq_bits_size (cated_bits_size), .io_deq_bits_source (cated_bits_source), .io_deq_bits_address (cated_bits_address), .io_deq_bits_mask (cated_bits_mask), .io_deq_bits_data (_repeated_repeater_io_deq_bits_data), .io_deq_bits_corrupt (cated_bits_corrupt) ); // @[Repeater.scala:36:26] assign auto_anon_in_a_ready = auto_anon_in_a_ready_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_valid = auto_anon_in_d_valid_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_opcode = auto_anon_in_d_bits_opcode_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_param = auto_anon_in_d_bits_param_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_size = auto_anon_in_d_bits_size_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_source = auto_anon_in_d_bits_source_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_sink = auto_anon_in_d_bits_sink_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_denied = auto_anon_in_d_bits_denied_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_data = auto_anon_in_d_bits_data_0; // @[WidthWidget.scala:27:9] assign auto_anon_in_d_bits_corrupt = auto_anon_in_d_bits_corrupt_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_valid = auto_anon_out_a_valid_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_opcode = auto_anon_out_a_bits_opcode_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_param = auto_anon_out_a_bits_param_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_size = auto_anon_out_a_bits_size_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_source = auto_anon_out_a_bits_source_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_address = auto_anon_out_a_bits_address_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_mask = auto_anon_out_a_bits_mask_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_data = auto_anon_out_a_bits_data_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_a_bits_corrupt = auto_anon_out_a_bits_corrupt_0; // @[WidthWidget.scala:27:9] assign auto_anon_out_d_ready = auto_anon_out_d_ready_0; // @[WidthWidget.scala:27:9] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.diplomacy.{ AddressDecoder, AddressSet, BufferParams, DirectedBuffers, IdMap, IdMapEntry, IdRange, RegionType, TransferSizes } import freechips.rocketchip.resources.{Resource, ResourceAddress, ResourcePermissions} import freechips.rocketchip.util.{ AsyncQueueParams, BundleField, BundleFieldBase, BundleKeyBase, CreditedDelay, groupByIntoSeq, RationalDirection, SimpleProduct } import scala.math.max //These transfer sizes describe requests issued from masters on the A channel that will be responded by slaves on the D channel case class TLMasterToSlaveTransferSizes( // Supports both Acquire+Release of the following two sizes: acquireT: TransferSizes = TransferSizes.none, acquireB: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none) extends TLCommonTransferSizes { def intersect(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .intersect(rhs.acquireT), acquireB = acquireB .intersect(rhs.acquireB), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint)) def mincover(rhs: TLMasterToSlaveTransferSizes) = TLMasterToSlaveTransferSizes( acquireT = acquireT .mincover(rhs.acquireT), acquireB = acquireB .mincover(rhs.acquireB), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint)) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(acquireT, "T"), str(acquireB, "B"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""acquireT = ${acquireT} |acquireB = ${acquireB} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLMasterToSlaveTransferSizes { def unknownEmits = TLMasterToSlaveTransferSizes( acquireT = TransferSizes(1, 4096), acquireB = TransferSizes(1, 4096), arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096)) def unknownSupports = TLMasterToSlaveTransferSizes() } //These transfer sizes describe requests issued from slaves on the B channel that will be responded by masters on the C channel case class TLSlaveToMasterTransferSizes( probe: TransferSizes = TransferSizes.none, arithmetic: TransferSizes = TransferSizes.none, logical: TransferSizes = TransferSizes.none, get: TransferSizes = TransferSizes.none, putFull: TransferSizes = TransferSizes.none, putPartial: TransferSizes = TransferSizes.none, hint: TransferSizes = TransferSizes.none ) extends TLCommonTransferSizes { def intersect(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .intersect(rhs.probe), arithmetic = arithmetic.intersect(rhs.arithmetic), logical = logical .intersect(rhs.logical), get = get .intersect(rhs.get), putFull = putFull .intersect(rhs.putFull), putPartial = putPartial.intersect(rhs.putPartial), hint = hint .intersect(rhs.hint) ) def mincover(rhs: TLSlaveToMasterTransferSizes) = TLSlaveToMasterTransferSizes( probe = probe .mincover(rhs.probe), arithmetic = arithmetic.mincover(rhs.arithmetic), logical = logical .mincover(rhs.logical), get = get .mincover(rhs.get), putFull = putFull .mincover(rhs.putFull), putPartial = putPartial.mincover(rhs.putPartial), hint = hint .mincover(rhs.hint) ) // Reduce rendering to a simple yes/no per field override def toString = { def str(x: TransferSizes, flag: String) = if (x.none) "" else flag def flags = Vector( str(probe, "P"), str(arithmetic, "A"), str(logical, "L"), str(get, "G"), str(putFull, "F"), str(putPartial, "P"), str(hint, "H")) flags.mkString } // Prints out the actual information in a user readable way def infoString = { s"""probe = ${probe} |arithmetic = ${arithmetic} |logical = ${logical} |get = ${get} |putFull = ${putFull} |putPartial = ${putPartial} |hint = ${hint} | |""".stripMargin } } object TLSlaveToMasterTransferSizes { def unknownEmits = TLSlaveToMasterTransferSizes( arithmetic = TransferSizes(1, 4096), logical = TransferSizes(1, 4096), get = TransferSizes(1, 4096), putFull = TransferSizes(1, 4096), putPartial = TransferSizes(1, 4096), hint = TransferSizes(1, 4096), probe = TransferSizes(1, 4096)) def unknownSupports = TLSlaveToMasterTransferSizes() } trait TLCommonTransferSizes { def arithmetic: TransferSizes def logical: TransferSizes def get: TransferSizes def putFull: TransferSizes def putPartial: TransferSizes def hint: TransferSizes } class TLSlaveParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], setName: Option[String], val address: Seq[AddressSet], val regionType: RegionType.T, val executable: Boolean, val fifoId: Option[Int], val supports: TLMasterToSlaveTransferSizes, val emits: TLSlaveToMasterTransferSizes, // By default, slaves are forbidden from issuing 'denied' responses (it prevents Fragmentation) val alwaysGrantsT: Boolean, // typically only true for CacheCork'd read-write devices; dual: neverReleaseData // If fifoId=Some, all accesses sent to the same fifoId are executed and ACK'd in FIFO order // Note: you can only rely on this FIFO behaviour if your TLMasterParameters include requestFifo val mayDenyGet: Boolean, // applies to: AccessAckData, GrantData val mayDenyPut: Boolean) // applies to: AccessAck, Grant, HintAck // ReleaseAck may NEVER be denied extends SimpleProduct { def sortedAddress = address.sorted override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlaveParameters] override def productPrefix = "TLSlaveParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 11 def productElement(n: Int): Any = n match { case 0 => name case 1 => address case 2 => resources case 3 => regionType case 4 => executable case 5 => fifoId case 6 => supports case 7 => emits case 8 => alwaysGrantsT case 9 => mayDenyGet case 10 => mayDenyPut case _ => throw new IndexOutOfBoundsException(n.toString) } def supportsAcquireT: TransferSizes = supports.acquireT def supportsAcquireB: TransferSizes = supports.acquireB def supportsArithmetic: TransferSizes = supports.arithmetic def supportsLogical: TransferSizes = supports.logical def supportsGet: TransferSizes = supports.get def supportsPutFull: TransferSizes = supports.putFull def supportsPutPartial: TransferSizes = supports.putPartial def supportsHint: TransferSizes = supports.hint require (!address.isEmpty, "Address cannot be empty") address.foreach { a => require (a.finite, "Address must be finite") } address.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } require (supportsPutFull.contains(supportsPutPartial), s"PutFull($supportsPutFull) < PutPartial($supportsPutPartial)") require (supportsPutFull.contains(supportsArithmetic), s"PutFull($supportsPutFull) < Arithmetic($supportsArithmetic)") require (supportsPutFull.contains(supportsLogical), s"PutFull($supportsPutFull) < Logical($supportsLogical)") require (supportsGet.contains(supportsArithmetic), s"Get($supportsGet) < Arithmetic($supportsArithmetic)") require (supportsGet.contains(supportsLogical), s"Get($supportsGet) < Logical($supportsLogical)") require (supportsAcquireB.contains(supportsAcquireT), s"AcquireB($supportsAcquireB) < AcquireT($supportsAcquireT)") require (!alwaysGrantsT || supportsAcquireT, s"Must supportAcquireT if promising to always grantT") // Make sure that the regionType agrees with the capabilities require (!supportsAcquireB || regionType >= RegionType.UNCACHED) // acquire -> uncached, tracked, cached require (regionType <= RegionType.UNCACHED || supportsAcquireB) // tracked, cached -> acquire require (regionType != RegionType.UNCACHED || supportsGet) // uncached -> supportsGet val name = setName.orElse(nodePath.lastOption.map(_.lazyModule.name)).getOrElse("disconnected") val maxTransfer = List( // Largest supported transfer of all types supportsAcquireT.max, supportsAcquireB.max, supportsArithmetic.max, supportsLogical.max, supportsGet.max, supportsPutFull.max, supportsPutPartial.max).max val maxAddress = address.map(_.max).max val minAlignment = address.map(_.alignment).min // The device had better not support a transfer larger than its alignment require (minAlignment >= maxTransfer, s"Bad $address: minAlignment ($minAlignment) must be >= maxTransfer ($maxTransfer)") def toResource: ResourceAddress = { ResourceAddress(address, ResourcePermissions( r = supportsAcquireB || supportsGet, w = supportsAcquireT || supportsPutFull, x = executable, c = supportsAcquireB, a = supportsArithmetic && supportsLogical)) } def findTreeViolation() = nodePath.find { case _: MixedAdapterNode[_, _, _, _, _, _, _, _] => false case _: SinkNode[_, _, _, _, _] => false case node => node.inputs.size != 1 } def isTree = findTreeViolation() == None def infoString = { s"""Slave Name = ${name} |Slave Address = ${address} |supports = ${supports.infoString} | |""".stripMargin } def v1copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { new TLSlaveParameters( setName = setName, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = emits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: Option[String] = setName, address: Seq[AddressSet] = address, regionType: RegionType.T = regionType, executable: Boolean = executable, fifoId: Option[Int] = fifoId, supports: TLMasterToSlaveTransferSizes = supports, emits: TLSlaveToMasterTransferSizes = emits, alwaysGrantsT: Boolean = alwaysGrantsT, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } @deprecated("Use v1copy instead of copy","") def copy( address: Seq[AddressSet] = address, resources: Seq[Resource] = resources, regionType: RegionType.T = regionType, executable: Boolean = executable, nodePath: Seq[BaseNode] = nodePath, supportsAcquireT: TransferSizes = supports.acquireT, supportsAcquireB: TransferSizes = supports.acquireB, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint, mayDenyGet: Boolean = mayDenyGet, mayDenyPut: Boolean = mayDenyPut, alwaysGrantsT: Boolean = alwaysGrantsT, fifoId: Option[Int] = fifoId) = { v1copy( address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supportsAcquireT = supportsAcquireT, supportsAcquireB = supportsAcquireB, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } } object TLSlaveParameters { def v1( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = { new TLSlaveParameters( setName = None, address = address, resources = resources, regionType = regionType, executable = executable, nodePath = nodePath, supports = TLMasterToSlaveTransferSizes( acquireT = supportsAcquireT, acquireB = supportsAcquireB, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLSlaveToMasterTransferSizes.unknownEmits, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut, alwaysGrantsT = alwaysGrantsT, fifoId = fifoId) } def v2( address: Seq[AddressSet], nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Seq(), name: Option[String] = None, regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, fifoId: Option[Int] = None, supports: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownSupports, emits: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownEmits, alwaysGrantsT: Boolean = false, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false) = { new TLSlaveParameters( nodePath = nodePath, resources = resources, setName = name, address = address, regionType = regionType, executable = executable, fifoId = fifoId, supports = supports, emits = emits, alwaysGrantsT = alwaysGrantsT, mayDenyGet = mayDenyGet, mayDenyPut = mayDenyPut) } } object TLManagerParameters { @deprecated("Use TLSlaveParameters.v1 instead of TLManagerParameters","") def apply( address: Seq[AddressSet], resources: Seq[Resource] = Seq(), regionType: RegionType.T = RegionType.GET_EFFECTS, executable: Boolean = false, nodePath: Seq[BaseNode] = Seq(), supportsAcquireT: TransferSizes = TransferSizes.none, supportsAcquireB: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none, mayDenyGet: Boolean = false, mayDenyPut: Boolean = false, alwaysGrantsT: Boolean = false, fifoId: Option[Int] = None) = TLSlaveParameters.v1( address, resources, regionType, executable, nodePath, supportsAcquireT, supportsAcquireB, supportsArithmetic, supportsLogical, supportsGet, supportsPutFull, supportsPutPartial, supportsHint, mayDenyGet, mayDenyPut, alwaysGrantsT, fifoId, ) } case class TLChannelBeatBytes(a: Option[Int], b: Option[Int], c: Option[Int], d: Option[Int]) { def members = Seq(a, b, c, d) members.collect { case Some(beatBytes) => require (isPow2(beatBytes), "Data channel width must be a power of 2") } } object TLChannelBeatBytes{ def apply(beatBytes: Int): TLChannelBeatBytes = TLChannelBeatBytes( Some(beatBytes), Some(beatBytes), Some(beatBytes), Some(beatBytes)) def apply(): TLChannelBeatBytes = TLChannelBeatBytes( None, None, None, None) } class TLSlavePortParameters private( val slaves: Seq[TLSlaveParameters], val channelBytes: TLChannelBeatBytes, val endSinkId: Int, val minLatency: Int, val responseFields: Seq[BundleFieldBase], val requestKeys: Seq[BundleKeyBase]) extends SimpleProduct { def sortedSlaves = slaves.sortBy(_.sortedAddress.head) override def canEqual(that: Any): Boolean = that.isInstanceOf[TLSlavePortParameters] override def productPrefix = "TLSlavePortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => slaves case 1 => channelBytes case 2 => endSinkId case 3 => minLatency case 4 => responseFields case 5 => requestKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!slaves.isEmpty, "Slave ports must have slaves") require (endSinkId >= 0, "Sink ids cannot be negative") require (minLatency >= 0, "Minimum required latency cannot be negative") // Using this API implies you cannot handle mixed-width busses def beatBytes = { channelBytes.members.foreach { width => require (width.isDefined && width == channelBytes.a) } channelBytes.a.get } // TODO this should be deprecated def managers = slaves def requireFifo(policy: TLFIFOFixer.Policy = TLFIFOFixer.allFIFO) = { val relevant = slaves.filter(m => policy(m)) relevant.foreach { m => require(m.fifoId == relevant.head.fifoId, s"${m.name} had fifoId ${m.fifoId}, which was not homogeneous (${slaves.map(s => (s.name, s.fifoId))}) ") } } // Bounds on required sizes def maxAddress = slaves.map(_.maxAddress).max def maxTransfer = slaves.map(_.maxTransfer).max def mayDenyGet = slaves.exists(_.mayDenyGet) def mayDenyPut = slaves.exists(_.mayDenyPut) // Diplomatically determined operation sizes emitted by all outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = slaves.map(_.emits).reduce( _ intersect _) // Operation Emitted by at least one outward Slaves // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = slaves.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val allSupportClaims = slaves.map(_.supports).reduce( _ intersect _) val allSupportAcquireT = allSupportClaims.acquireT val allSupportAcquireB = allSupportClaims.acquireB val allSupportArithmetic = allSupportClaims.arithmetic val allSupportLogical = allSupportClaims.logical val allSupportGet = allSupportClaims.get val allSupportPutFull = allSupportClaims.putFull val allSupportPutPartial = allSupportClaims.putPartial val allSupportHint = allSupportClaims.hint // Operation supported by at least one outward Slaves // as opposed to supports* which generate circuitry to check which specific addresses val anySupportClaims = slaves.map(_.supports).reduce(_ mincover _) val anySupportAcquireT = !anySupportClaims.acquireT.none val anySupportAcquireB = !anySupportClaims.acquireB.none val anySupportArithmetic = !anySupportClaims.arithmetic.none val anySupportLogical = !anySupportClaims.logical.none val anySupportGet = !anySupportClaims.get.none val anySupportPutFull = !anySupportClaims.putFull.none val anySupportPutPartial = !anySupportClaims.putPartial.none val anySupportHint = !anySupportClaims.hint.none // Supporting Acquire means being routable for GrantAck require ((endSinkId == 0) == !anySupportAcquireB) // These return Option[TLSlaveParameters] for your convenience def find(address: BigInt) = slaves.find(_.address.exists(_.contains(address))) // The safe version will check the entire address def findSafe(address: UInt) = VecInit(sortedSlaves.map(_.address.map(_.contains(address)).reduce(_ || _))) // The fast version assumes the address is valid (you probably want fastProperty instead of this function) def findFast(address: UInt) = { val routingMask = AddressDecoder(slaves.map(_.address)) VecInit(sortedSlaves.map(_.address.map(_.widen(~routingMask)).distinct.map(_.contains(address)).reduce(_ || _))) } // Compute the simplest AddressSets that decide a key def fastPropertyGroup[K](p: TLSlaveParameters => K): Seq[(K, Seq[AddressSet])] = { val groups = groupByIntoSeq(sortedSlaves.map(m => (p(m), m.address)))( _._1).map { case (k, vs) => k -> vs.flatMap(_._2) } val reductionMask = AddressDecoder(groups.map(_._2)) groups.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~reductionMask)).distinct) } } // Select a property def fastProperty[K, D <: Data](address: UInt, p: TLSlaveParameters => K, d: K => D): D = Mux1H(fastPropertyGroup(p).map { case (v, a) => (a.map(_.contains(address)).reduce(_||_), d(v)) }) // Note: returns the actual fifoId + 1 or 0 if None def findFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.map(_+1).getOrElse(0), (i:Int) => i.U) def hasFifoIdFast(address: UInt) = fastProperty(address, _.fifoId.isDefined, (b:Boolean) => b.B) // Does this Port manage this ID/address? def containsSafe(address: UInt) = findSafe(address).reduce(_ || _) private def addressHelper( // setting safe to false indicates that all addresses are expected to be legal, which might reduce circuit complexity safe: Boolean, // member filters out the sizes being checked based on the opcode being emitted or supported member: TLSlaveParameters => TransferSizes, address: UInt, lgSize: UInt, // range provides a limit on the sizes that are expected to be evaluated, which might reduce circuit complexity range: Option[TransferSizes]): Bool = { // trim reduces circuit complexity by intersecting checked sizes with the range argument def trim(x: TransferSizes) = range.map(_.intersect(x)).getOrElse(x) // groupBy returns an unordered map, convert back to Seq and sort the result for determinism // groupByIntoSeq is turning slaves into trimmed membership sizes // We are grouping all the slaves by their transfer size where // if they support the trimmed size then // member is the type of transfer that you are looking for (What you are trying to filter on) // When you consider membership, you are trimming the sizes to only the ones that you care about // you are filtering the slaves based on both whether they support a particular opcode and the size // Grouping the slaves based on the actual transfer size range they support // intersecting the range and checking their membership // FOR SUPPORTCASES instead of returning the list of slaves, // you are returning a map from transfer size to the set of // address sets that are supported for that transfer size // find all the slaves that support a certain type of operation and then group their addresses by the supported size // for every size there could be multiple address ranges // safety is a trade off between checking between all possible addresses vs only the addresses // that are known to have supported sizes // the trade off is 'checking all addresses is a more expensive circuit but will always give you // the right answer even if you give it an illegal address' // the not safe version is a cheaper circuit but if you give it an illegal address then it might produce the wrong answer // fast presumes address legality // This groupByIntoSeq deterministically groups all address sets for which a given `member` transfer size applies. // In the resulting Map of cases, the keys are transfer sizes and the values are all address sets which emit or support that size. val supportCases = groupByIntoSeq(slaves)(m => trim(member(m))).map { case (k: TransferSizes, vs: Seq[TLSlaveParameters]) => k -> vs.flatMap(_.address) } // safe produces a circuit that compares against all possible addresses, // whereas fast presumes that the address is legal but uses an efficient address decoder val mask = if (safe) ~BigInt(0) else AddressDecoder(supportCases.map(_._2)) // Simplified creates the most concise possible representation of each cases' address sets based on the mask. val simplified = supportCases.map { case (k, seq) => k -> AddressSet.unify(seq.map(_.widen(~mask)).distinct) } simplified.map { case (s, a) => // s is a size, you are checking for this size either the size of the operation is in s // We return an or-reduction of all the cases, checking whether any contains both the dynamic size and dynamic address on the wire. ((Some(s) == range).B || s.containsLg(lgSize)) && a.map(_.contains(address)).reduce(_||_) }.foldLeft(false.B)(_||_) } def supportsAcquireTSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireT, address, lgSize, range) def supportsAcquireBSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.acquireB, address, lgSize, range) def supportsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.arithmetic, address, lgSize, range) def supportsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.logical, address, lgSize, range) def supportsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.get, address, lgSize, range) def supportsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putFull, address, lgSize, range) def supportsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.putPartial, address, lgSize, range) def supportsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.supports.hint, address, lgSize, range) def supportsAcquireTFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireT, address, lgSize, range) def supportsAcquireBFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.acquireB, address, lgSize, range) def supportsArithmeticFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.arithmetic, address, lgSize, range) def supportsLogicalFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.logical, address, lgSize, range) def supportsGetFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.get, address, lgSize, range) def supportsPutFullFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putFull, address, lgSize, range) def supportsPutPartialFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.putPartial, address, lgSize, range) def supportsHintFast (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(false, _.supports.hint, address, lgSize, range) def emitsProbeSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.probe, address, lgSize, range) def emitsArithmeticSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.arithmetic, address, lgSize, range) def emitsLogicalSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.logical, address, lgSize, range) def emitsGetSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.get, address, lgSize, range) def emitsPutFullSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putFull, address, lgSize, range) def emitsPutPartialSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.putPartial, address, lgSize, range) def emitsHintSafe (address: UInt, lgSize: UInt, range: Option[TransferSizes] = None) = addressHelper(true, _.emits.hint, address, lgSize, range) def findTreeViolation() = slaves.flatMap(_.findTreeViolation()).headOption def isTree = !slaves.exists(!_.isTree) def infoString = "Slave Port Beatbytes = " + beatBytes + "\n" + "Slave Port MinLatency = " + minLatency + "\n\n" + slaves.map(_.infoString).mkString def v1copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = managers, channelBytes = if (beatBytes != -1) TLChannelBeatBytes(beatBytes) else channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } def v2copy( slaves: Seq[TLSlaveParameters] = slaves, channelBytes: TLChannelBeatBytes = channelBytes, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { new TLSlavePortParameters( slaves = slaves, channelBytes = channelBytes, endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } @deprecated("Use v1copy instead of copy","") def copy( managers: Seq[TLSlaveParameters] = slaves, beatBytes: Int = -1, endSinkId: Int = endSinkId, minLatency: Int = minLatency, responseFields: Seq[BundleFieldBase] = responseFields, requestKeys: Seq[BundleKeyBase] = requestKeys) = { v1copy( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } object TLSlavePortParameters { def v1( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { new TLSlavePortParameters( slaves = managers, channelBytes = TLChannelBeatBytes(beatBytes), endSinkId = endSinkId, minLatency = minLatency, responseFields = responseFields, requestKeys = requestKeys) } } object TLManagerPortParameters { @deprecated("Use TLSlavePortParameters.v1 instead of TLManagerPortParameters","") def apply( managers: Seq[TLSlaveParameters], beatBytes: Int, endSinkId: Int = 0, minLatency: Int = 0, responseFields: Seq[BundleFieldBase] = Nil, requestKeys: Seq[BundleKeyBase] = Nil) = { TLSlavePortParameters.v1( managers, beatBytes, endSinkId, minLatency, responseFields, requestKeys) } } class TLMasterParameters private( val nodePath: Seq[BaseNode], val resources: Seq[Resource], val name: String, val visibility: Seq[AddressSet], val unusedRegionTypes: Set[RegionType.T], val executesOnly: Boolean, val requestFifo: Boolean, // only a request, not a requirement. applies to A, not C. val supports: TLSlaveToMasterTransferSizes, val emits: TLMasterToSlaveTransferSizes, val neverReleasesData: Boolean, val sourceId: IdRange) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterParameters] override def productPrefix = "TLMasterParameters" // We intentionally omit nodePath for equality testing / formatting def productArity: Int = 10 def productElement(n: Int): Any = n match { case 0 => name case 1 => sourceId case 2 => resources case 3 => visibility case 4 => unusedRegionTypes case 5 => executesOnly case 6 => requestFifo case 7 => supports case 8 => emits case 9 => neverReleasesData case _ => throw new IndexOutOfBoundsException(n.toString) } require (!sourceId.isEmpty) require (!visibility.isEmpty) require (supports.putFull.contains(supports.putPartial)) // We only support these operations if we support Probe (ie: we're a cache) require (supports.probe.contains(supports.arithmetic)) require (supports.probe.contains(supports.logical)) require (supports.probe.contains(supports.get)) require (supports.probe.contains(supports.putFull)) require (supports.probe.contains(supports.putPartial)) require (supports.probe.contains(supports.hint)) visibility.combinations(2).foreach { case Seq(x,y) => require (!x.overlaps(y), s"$x and $y overlap.") } val maxTransfer = List( supports.probe.max, supports.arithmetic.max, supports.logical.max, supports.get.max, supports.putFull.max, supports.putPartial.max).max def infoString = { s"""Master Name = ${name} |visibility = ${visibility} |emits = ${emits.infoString} |sourceId = ${sourceId} | |""".stripMargin } def v1copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { new TLMasterParameters( nodePath = nodePath, resources = this.resources, name = name, visibility = visibility, unusedRegionTypes = this.unusedRegionTypes, executesOnly = this.executesOnly, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = this.emits, neverReleasesData = this.neverReleasesData, sourceId = sourceId) } def v2copy( nodePath: Seq[BaseNode] = nodePath, resources: Seq[Resource] = resources, name: String = name, visibility: Seq[AddressSet] = visibility, unusedRegionTypes: Set[RegionType.T] = unusedRegionTypes, executesOnly: Boolean = executesOnly, requestFifo: Boolean = requestFifo, supports: TLSlaveToMasterTransferSizes = supports, emits: TLMasterToSlaveTransferSizes = emits, neverReleasesData: Boolean = neverReleasesData, sourceId: IdRange = sourceId) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } @deprecated("Use v1copy instead of copy","") def copy( name: String = name, sourceId: IdRange = sourceId, nodePath: Seq[BaseNode] = nodePath, requestFifo: Boolean = requestFifo, visibility: Seq[AddressSet] = visibility, supportsProbe: TransferSizes = supports.probe, supportsArithmetic: TransferSizes = supports.arithmetic, supportsLogical: TransferSizes = supports.logical, supportsGet: TransferSizes = supports.get, supportsPutFull: TransferSizes = supports.putFull, supportsPutPartial: TransferSizes = supports.putPartial, supportsHint: TransferSizes = supports.hint) = { v1copy( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } object TLMasterParameters { def v1( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { new TLMasterParameters( nodePath = nodePath, resources = Nil, name = name, visibility = visibility, unusedRegionTypes = Set(), executesOnly = false, requestFifo = requestFifo, supports = TLSlaveToMasterTransferSizes( probe = supportsProbe, arithmetic = supportsArithmetic, logical = supportsLogical, get = supportsGet, putFull = supportsPutFull, putPartial = supportsPutPartial, hint = supportsHint), emits = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData = false, sourceId = sourceId) } def v2( nodePath: Seq[BaseNode] = Seq(), resources: Seq[Resource] = Nil, name: String, visibility: Seq[AddressSet] = Seq(AddressSet(0, ~0)), unusedRegionTypes: Set[RegionType.T] = Set(), executesOnly: Boolean = false, requestFifo: Boolean = false, supports: TLSlaveToMasterTransferSizes = TLSlaveToMasterTransferSizes.unknownSupports, emits: TLMasterToSlaveTransferSizes = TLMasterToSlaveTransferSizes.unknownEmits, neverReleasesData: Boolean = false, sourceId: IdRange = IdRange(0,1)) = { new TLMasterParameters( nodePath = nodePath, resources = resources, name = name, visibility = visibility, unusedRegionTypes = unusedRegionTypes, executesOnly = executesOnly, requestFifo = requestFifo, supports = supports, emits = emits, neverReleasesData = neverReleasesData, sourceId = sourceId) } } object TLClientParameters { @deprecated("Use TLMasterParameters.v1 instead of TLClientParameters","") def apply( name: String, sourceId: IdRange = IdRange(0,1), nodePath: Seq[BaseNode] = Seq(), requestFifo: Boolean = false, visibility: Seq[AddressSet] = Seq(AddressSet.everything), supportsProbe: TransferSizes = TransferSizes.none, supportsArithmetic: TransferSizes = TransferSizes.none, supportsLogical: TransferSizes = TransferSizes.none, supportsGet: TransferSizes = TransferSizes.none, supportsPutFull: TransferSizes = TransferSizes.none, supportsPutPartial: TransferSizes = TransferSizes.none, supportsHint: TransferSizes = TransferSizes.none) = { TLMasterParameters.v1( name = name, sourceId = sourceId, nodePath = nodePath, requestFifo = requestFifo, visibility = visibility, supportsProbe = supportsProbe, supportsArithmetic = supportsArithmetic, supportsLogical = supportsLogical, supportsGet = supportsGet, supportsPutFull = supportsPutFull, supportsPutPartial = supportsPutPartial, supportsHint = supportsHint) } } class TLMasterPortParameters private( val masters: Seq[TLMasterParameters], val channelBytes: TLChannelBeatBytes, val minLatency: Int, val echoFields: Seq[BundleFieldBase], val requestFields: Seq[BundleFieldBase], val responseKeys: Seq[BundleKeyBase]) extends SimpleProduct { override def canEqual(that: Any): Boolean = that.isInstanceOf[TLMasterPortParameters] override def productPrefix = "TLMasterPortParameters" def productArity: Int = 6 def productElement(n: Int): Any = n match { case 0 => masters case 1 => channelBytes case 2 => minLatency case 3 => echoFields case 4 => requestFields case 5 => responseKeys case _ => throw new IndexOutOfBoundsException(n.toString) } require (!masters.isEmpty) require (minLatency >= 0) def clients = masters // Require disjoint ranges for Ids IdRange.overlaps(masters.map(_.sourceId)).foreach { case (x, y) => require (!x.overlaps(y), s"TLClientParameters.sourceId ${x} overlaps ${y}") } // Bounds on required sizes def endSourceId = masters.map(_.sourceId.end).max def maxTransfer = masters.map(_.maxTransfer).max // The unused sources < endSourceId def unusedSources: Seq[Int] = { val usedSources = masters.map(_.sourceId).sortBy(_.start) ((Seq(0) ++ usedSources.map(_.end)) zip usedSources.map(_.start)) flatMap { case (end, start) => end until start } } // Diplomatically determined operation sizes emitted by all inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val allEmitClaims = masters.map(_.emits).reduce( _ intersect _) // Diplomatically determined operation sizes Emitted by at least one inward Masters // as opposed to emits* which generate circuitry to check which specific addresses val anyEmitClaims = masters.map(_.emits).reduce(_ mincover _) // Diplomatically determined operation sizes supported by all inward Masters // as opposed to supports* which generate circuitry to check which specific addresses val allSupportProbe = masters.map(_.supports.probe) .reduce(_ intersect _) val allSupportArithmetic = masters.map(_.supports.arithmetic).reduce(_ intersect _) val allSupportLogical = masters.map(_.supports.logical) .reduce(_ intersect _) val allSupportGet = masters.map(_.supports.get) .reduce(_ intersect _) val allSupportPutFull = masters.map(_.supports.putFull) .reduce(_ intersect _) val allSupportPutPartial = masters.map(_.supports.putPartial).reduce(_ intersect _) val allSupportHint = masters.map(_.supports.hint) .reduce(_ intersect _) // Diplomatically determined operation sizes supported by at least one master // as opposed to supports* which generate circuitry to check which specific addresses val anySupportProbe = masters.map(!_.supports.probe.none) .reduce(_ || _) val anySupportArithmetic = masters.map(!_.supports.arithmetic.none).reduce(_ || _) val anySupportLogical = masters.map(!_.supports.logical.none) .reduce(_ || _) val anySupportGet = masters.map(!_.supports.get.none) .reduce(_ || _) val anySupportPutFull = masters.map(!_.supports.putFull.none) .reduce(_ || _) val anySupportPutPartial = masters.map(!_.supports.putPartial.none).reduce(_ || _) val anySupportHint = masters.map(!_.supports.hint.none) .reduce(_ || _) // These return Option[TLMasterParameters] for your convenience def find(id: Int) = masters.find(_.sourceId.contains(id)) // Synthesizable lookup methods def find(id: UInt) = VecInit(masters.map(_.sourceId.contains(id))) def contains(id: UInt) = find(id).reduce(_ || _) def requestFifo(id: UInt) = Mux1H(find(id), masters.map(c => c.requestFifo.B)) // Available during RTL runtime, checks to see if (id, size) is supported by the master's (client's) diplomatic parameters private def sourceIdHelper(member: TLMasterParameters => TransferSizes)(id: UInt, lgSize: UInt) = { val allSame = masters.map(member(_) == member(masters(0))).reduce(_ && _) // this if statement is a coarse generalization of the groupBy in the sourceIdHelper2 version; // the case where there is only one group. if (allSame) member(masters(0)).containsLg(lgSize) else { // Find the master associated with ID and returns whether that particular master is able to receive transaction of lgSize Mux1H(find(id), masters.map(member(_).containsLg(lgSize))) } } // Check for support of a given operation at a specific id val supportsProbe = sourceIdHelper(_.supports.probe) _ val supportsArithmetic = sourceIdHelper(_.supports.arithmetic) _ val supportsLogical = sourceIdHelper(_.supports.logical) _ val supportsGet = sourceIdHelper(_.supports.get) _ val supportsPutFull = sourceIdHelper(_.supports.putFull) _ val supportsPutPartial = sourceIdHelper(_.supports.putPartial) _ val supportsHint = sourceIdHelper(_.supports.hint) _ // TODO: Merge sourceIdHelper2 with sourceIdHelper private def sourceIdHelper2( member: TLMasterParameters => TransferSizes, sourceId: UInt, lgSize: UInt): Bool = { // Because sourceIds are uniquely owned by each master, we use them to group the // cases that have to be checked. val emitCases = groupByIntoSeq(masters)(m => member(m)).map { case (k, vs) => k -> vs.map(_.sourceId) } emitCases.map { case (s, a) => (s.containsLg(lgSize)) && a.map(_.contains(sourceId)).reduce(_||_) }.foldLeft(false.B)(_||_) } // Check for emit of a given operation at a specific id def emitsAcquireT (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireT, sourceId, lgSize) def emitsAcquireB (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.acquireB, sourceId, lgSize) def emitsArithmetic(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.arithmetic, sourceId, lgSize) def emitsLogical (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.logical, sourceId, lgSize) def emitsGet (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.get, sourceId, lgSize) def emitsPutFull (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putFull, sourceId, lgSize) def emitsPutPartial(sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.putPartial, sourceId, lgSize) def emitsHint (sourceId: UInt, lgSize: UInt) = sourceIdHelper2(_.emits.hint, sourceId, lgSize) def infoString = masters.map(_.infoString).mkString def v1copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = clients, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2copy( masters: Seq[TLMasterParameters] = masters, channelBytes: TLChannelBeatBytes = channelBytes, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } @deprecated("Use v1copy instead of copy","") def copy( clients: Seq[TLMasterParameters] = masters, minLatency: Int = minLatency, echoFields: Seq[BundleFieldBase] = echoFields, requestFields: Seq[BundleFieldBase] = requestFields, responseKeys: Seq[BundleKeyBase] = responseKeys) = { v1copy( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLClientPortParameters { @deprecated("Use TLMasterPortParameters.v1 instead of TLClientPortParameters","") def apply( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { TLMasterPortParameters.v1( clients, minLatency, echoFields, requestFields, responseKeys) } } object TLMasterPortParameters { def v1( clients: Seq[TLMasterParameters], minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = clients, channelBytes = TLChannelBeatBytes(), minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } def v2( masters: Seq[TLMasterParameters], channelBytes: TLChannelBeatBytes = TLChannelBeatBytes(), minLatency: Int = 0, echoFields: Seq[BundleFieldBase] = Nil, requestFields: Seq[BundleFieldBase] = Nil, responseKeys: Seq[BundleKeyBase] = Nil) = { new TLMasterPortParameters( masters = masters, channelBytes = channelBytes, minLatency = minLatency, echoFields = echoFields, requestFields = requestFields, responseKeys = responseKeys) } } case class TLBundleParameters( addressBits: Int, dataBits: Int, sourceBits: Int, sinkBits: Int, sizeBits: Int, echoFields: Seq[BundleFieldBase], requestFields: Seq[BundleFieldBase], responseFields: Seq[BundleFieldBase], hasBCE: Boolean) { // Chisel has issues with 0-width wires require (addressBits >= 1) require (dataBits >= 8) require (sourceBits >= 1) require (sinkBits >= 1) require (sizeBits >= 1) require (isPow2(dataBits)) echoFields.foreach { f => require (f.key.isControl, s"${f} is not a legal echo field") } val addrLoBits = log2Up(dataBits/8) // Used to uniquify bus IP names def shortName = s"a${addressBits}d${dataBits}s${sourceBits}k${sinkBits}z${sizeBits}" + (if (hasBCE) "c" else "u") def union(x: TLBundleParameters) = TLBundleParameters( max(addressBits, x.addressBits), max(dataBits, x.dataBits), max(sourceBits, x.sourceBits), max(sinkBits, x.sinkBits), max(sizeBits, x.sizeBits), echoFields = BundleField.union(echoFields ++ x.echoFields), requestFields = BundleField.union(requestFields ++ x.requestFields), responseFields = BundleField.union(responseFields ++ x.responseFields), hasBCE || x.hasBCE) } object TLBundleParameters { val emptyBundleParams = TLBundleParameters( addressBits = 1, dataBits = 8, sourceBits = 1, sinkBits = 1, sizeBits = 1, echoFields = Nil, requestFields = Nil, responseFields = Nil, hasBCE = false) def union(x: Seq[TLBundleParameters]) = x.foldLeft(emptyBundleParams)((x,y) => x.union(y)) def apply(master: TLMasterPortParameters, slave: TLSlavePortParameters) = new TLBundleParameters( addressBits = log2Up(slave.maxAddress + 1), dataBits = slave.beatBytes * 8, sourceBits = log2Up(master.endSourceId), sinkBits = log2Up(slave.endSinkId), sizeBits = log2Up(log2Ceil(max(master.maxTransfer, slave.maxTransfer))+1), echoFields = master.echoFields, requestFields = BundleField.accept(master.requestFields, slave.requestKeys), responseFields = BundleField.accept(slave.responseFields, master.responseKeys), hasBCE = master.anySupportProbe && slave.anySupportAcquireB) } case class TLEdgeParameters( master: TLMasterPortParameters, slave: TLSlavePortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { // legacy names: def manager = slave def client = master val maxTransfer = max(master.maxTransfer, slave.maxTransfer) val maxLgSize = log2Ceil(maxTransfer) // Sanity check the link... require (maxTransfer >= slave.beatBytes, s"Link's max transfer (${maxTransfer}) < ${slave.slaves.map(_.name)}'s beatBytes (${slave.beatBytes})") def diplomaticClaimsMasterToSlave = master.anyEmitClaims.intersect(slave.anySupportClaims) val bundle = TLBundleParameters(master, slave) def formatEdge = master.infoString + "\n" + slave.infoString } case class TLCreditedDelay( a: CreditedDelay, b: CreditedDelay, c: CreditedDelay, d: CreditedDelay, e: CreditedDelay) { def + (that: TLCreditedDelay): TLCreditedDelay = TLCreditedDelay( a = a + that.a, b = b + that.b, c = c + that.c, d = d + that.d, e = e + that.e) override def toString = s"(${a}, ${b}, ${c}, ${d}, ${e})" } object TLCreditedDelay { def apply(delay: CreditedDelay): TLCreditedDelay = apply(delay, delay.flip, delay, delay.flip, delay) } case class TLCreditedManagerPortParameters(delay: TLCreditedDelay, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLCreditedClientPortParameters(delay: TLCreditedDelay, base: TLMasterPortParameters) {def infoString = base.infoString} case class TLCreditedEdgeParameters(client: TLCreditedClientPortParameters, manager: TLCreditedManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val delay = client.delay + manager.delay val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLAsyncManagerPortParameters(async: AsyncQueueParams, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLAsyncClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLAsyncBundleParameters(async: AsyncQueueParams, base: TLBundleParameters) case class TLAsyncEdgeParameters(client: TLAsyncClientPortParameters, manager: TLAsyncManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLAsyncBundleParameters(manager.async, TLBundleParameters(client.base, manager.base)) def formatEdge = client.infoString + "\n" + manager.infoString } case class TLRationalManagerPortParameters(direction: RationalDirection, base: TLSlavePortParameters) {def infoString = base.infoString} case class TLRationalClientPortParameters(base: TLMasterPortParameters) {def infoString = base.infoString} case class TLRationalEdgeParameters(client: TLRationalClientPortParameters, manager: TLRationalManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends FormatEdge { val bundle = TLBundleParameters(client.base, manager.base) def formatEdge = client.infoString + "\n" + manager.infoString } // To be unified, devices must agree on all of these terms case class ManagerUnificationKey( resources: Seq[Resource], regionType: RegionType.T, executable: Boolean, supportsAcquireT: TransferSizes, supportsAcquireB: TransferSizes, supportsArithmetic: TransferSizes, supportsLogical: TransferSizes, supportsGet: TransferSizes, supportsPutFull: TransferSizes, supportsPutPartial: TransferSizes, supportsHint: TransferSizes) object ManagerUnificationKey { def apply(x: TLSlaveParameters): ManagerUnificationKey = ManagerUnificationKey( resources = x.resources, regionType = x.regionType, executable = x.executable, supportsAcquireT = x.supportsAcquireT, supportsAcquireB = x.supportsAcquireB, supportsArithmetic = x.supportsArithmetic, supportsLogical = x.supportsLogical, supportsGet = x.supportsGet, supportsPutFull = x.supportsPutFull, supportsPutPartial = x.supportsPutPartial, supportsHint = x.supportsHint) } object ManagerUnification { def apply(slaves: Seq[TLSlaveParameters]): List[TLSlaveParameters] = { slaves.groupBy(ManagerUnificationKey.apply).values.map { seq => val agree = seq.forall(_.fifoId == seq.head.fifoId) seq(0).v1copy( address = AddressSet.unify(seq.flatMap(_.address)), fifoId = if (agree) seq(0).fifoId else None) }.toList } } case class TLBufferParams( a: BufferParams = BufferParams.none, b: BufferParams = BufferParams.none, c: BufferParams = BufferParams.none, d: BufferParams = BufferParams.none, e: BufferParams = BufferParams.none ) extends DirectedBuffers[TLBufferParams] { def copyIn(x: BufferParams) = this.copy(b = x, d = x) def copyOut(x: BufferParams) = this.copy(a = x, c = x, e = x) def copyInOut(x: BufferParams) = this.copyIn(x).copyOut(x) } /** Pretty printing of TL source id maps */ class TLSourceIdMap(tl: TLMasterPortParameters) extends IdMap[TLSourceIdMapEntry] { private val tlDigits = String.valueOf(tl.endSourceId-1).length() protected val fmt = s"\t[%${tlDigits}d, %${tlDigits}d) %s%s%s" private val sorted = tl.masters.sortBy(_.sourceId) val mapping: Seq[TLSourceIdMapEntry] = sorted.map { case c => TLSourceIdMapEntry(c.sourceId, c.name, c.supports.probe, c.requestFifo) } } case class TLSourceIdMapEntry(tlId: IdRange, name: String, isCache: Boolean, requestFifo: Boolean) extends IdMapEntry { val from = tlId val to = tlId val maxTransactionsInFlight = Some(tlId.size) } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_12( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [4:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [31:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [4:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [4:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [31:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [4:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7] wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7] wire _source_ok_T = 1'h0; // @[Parameters.scala:54:10] wire _source_ok_T_6 = 1'h0; // @[Parameters.scala:54:10] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [8:0] c_first_beats1_decode = 9'h0; // @[Edges.scala:220:59] wire [8:0] c_first_beats1 = 9'h0; // @[Edges.scala:221:14] wire [8:0] _c_first_count_T = 9'h0; // @[Edges.scala:234:27] wire [8:0] c_first_count = 9'h0; // @[Edges.scala:234:25] wire [8:0] _c_first_counter_T = 9'h0; // @[Edges.scala:236:21] wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_2 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:54:67] wire _source_ok_T_4 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:56:48] wire _source_ok_WIRE_0 = 1'h1; // @[Parameters.scala:1138:31] wire _source_ok_T_7 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_8 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:54:67] wire _source_ok_T_10 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:56:48] wire _source_ok_WIRE_1_0 = 1'h1; // @[Parameters.scala:1138:31] wire sink_ok = 1'h1; // @[Monitor.scala:309:31] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [8:0] c_first_counter1 = 9'h1FF; // @[Edges.scala:230:28] wire [9:0] _c_first_counter1_T = 10'h3FF; // @[Edges.scala:230:28] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [31:0] _c_first_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_first_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_first_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] c_set = 32'h0; // @[Monitor.scala:738:34] wire [31:0] c_set_wo_ready = 32'h0; // @[Monitor.scala:739:34] wire [31:0] _c_set_wo_ready_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_wo_ready_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_interm_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_interm_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_opcodes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_opcodes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_sizes_set_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_sizes_set_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _c_probe_ack_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _c_probe_ack_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_1_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_2_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_3_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [31:0] _same_cycle_resp_WIRE_4_bits_address = 32'h0; // @[Bundles.scala:265:74] wire [31:0] _same_cycle_resp_WIRE_5_bits_address = 32'h0; // @[Bundles.scala:265:61] wire [4:0] _c_first_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_first_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_first_WIRE_2_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_first_WIRE_3_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] c_sizes_set_interm = 5'h0; // @[Monitor.scala:755:40] wire [4:0] _c_set_wo_ready_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_set_wo_ready_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_set_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_set_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_opcodes_set_interm_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_opcodes_set_interm_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_sizes_set_interm_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_sizes_set_interm_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_sizes_set_interm_T = 5'h0; // @[Monitor.scala:766:51] wire [4:0] _c_opcodes_set_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_opcodes_set_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_sizes_set_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_sizes_set_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_probe_ack_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_probe_ack_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _c_probe_ack_WIRE_2_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _c_probe_ack_WIRE_3_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _same_cycle_resp_WIRE_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _same_cycle_resp_WIRE_1_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _same_cycle_resp_WIRE_2_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _same_cycle_resp_WIRE_3_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [4:0] _same_cycle_resp_WIRE_4_bits_source = 5'h0; // @[Bundles.scala:265:74] wire [4:0] _same_cycle_resp_WIRE_5_bits_source = 5'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] _c_set_wo_ready_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_wo_ready_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_sizes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_4_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_5_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57] wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57] wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [259:0] _c_sizes_set_T_1 = 260'h0; // @[Monitor.scala:768:52] wire [7:0] _c_opcodes_set_T = 8'h0; // @[Monitor.scala:767:79] wire [7:0] _c_sizes_set_T = 8'h0; // @[Monitor.scala:768:77] wire [258:0] _c_opcodes_set_T_1 = 259'h0; // @[Monitor.scala:767:54] wire [4:0] _c_sizes_set_interm_T_1 = 5'h1; // @[Monitor.scala:766:59] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [31:0] _c_set_wo_ready_T = 32'h1; // @[OneHot.scala:58:35] wire [31:0] _c_set_T = 32'h1; // @[OneHot.scala:58:35] wire [255:0] c_sizes_set = 256'h0; // @[Monitor.scala:741:34] wire [127:0] c_opcodes_set = 128'h0; // @[Monitor.scala:740:34] wire [11:0] _c_first_beats1_decode_T_2 = 12'h0; // @[package.scala:243:46] wire [11:0] _c_first_beats1_decode_T_1 = 12'hFFF; // @[package.scala:243:76] wire [26:0] _c_first_beats1_decode_T = 27'hFFF; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117] wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48] wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119] wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [4:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] _source_ok_uncommonBits_T_1 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [4:0] source_ok_uncommonBits = _source_ok_uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71] wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [31:0] _is_aligned_T = {20'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 32'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 4'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [4:0] uncommonBits = _uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_1 = _uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_2 = _uncommonBits_T_2; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_3 = _uncommonBits_T_3; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_4 = _uncommonBits_T_4; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_5 = _uncommonBits_T_5; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_6 = _uncommonBits_T_6; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_7 = _uncommonBits_T_7; // @[Parameters.scala:52:{29,56}] wire [4:0] uncommonBits_8 = _uncommonBits_T_8; // @[Parameters.scala:52:{29,56}] wire [4:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire _T_1257 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1257; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1257; // @[Decoupled.scala:51:35] wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [8:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [8:0] a_first_counter; // @[Edges.scala:229:27] wire [9:0] _a_first_counter1_T = {1'h0, a_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] a_first_counter1 = _a_first_counter1_T[8:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [8:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [3:0] size; // @[Monitor.scala:389:22] reg [4:0] source; // @[Monitor.scala:390:22] reg [31:0] address; // @[Monitor.scala:391:22] wire _T_1330 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1330; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1330; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1330; // @[Decoupled.scala:51:35] wire [26:0] _GEN_0 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [8:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T = {1'h0, d_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1 = _d_first_counter1_T[8:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [3:0] size_1; // @[Monitor.scala:540:22] reg [4:0] source_1; // @[Monitor.scala:541:22] reg [2:0] sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [31:0] inflight; // @[Monitor.scala:614:27] reg [127:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [255:0] inflight_sizes; // @[Monitor.scala:618:33] wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [8:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [8:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [8:0] a_first_counter_1; // @[Edges.scala:229:27] wire [9:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] a_first_counter1_1 = _a_first_counter1_T_1[8:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [8:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [8:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46] wire [8:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter_1; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1_1 = _d_first_counter1_T_1[8:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [31:0] a_set; // @[Monitor.scala:626:34] wire [31:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [127:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [255:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [7:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [7:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [7:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [7:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [7:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [127:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [127:0] _a_opcode_lookup_T_6 = {124'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [127:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[127:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [7:0] a_size_lookup; // @[Monitor.scala:639:33] wire [7:0] _GEN_2 = {io_in_d_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :641:65] wire [7:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65] wire [7:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_2; // @[Monitor.scala:641:65, :681:99] wire [7:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65, :750:67] wire [7:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_2; // @[Monitor.scala:641:65, :791:99] wire [255:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [255:0] _a_size_lookup_T_6 = {248'h0, _a_size_lookup_T_1[7:0]}; // @[Monitor.scala:641:{40,91}] wire [255:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[255:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [31:0] _GEN_3 = {27'h0, io_in_a_bits_source_0}; // @[OneHot.scala:58:35] wire [31:0] _GEN_4 = 32'h1 << _GEN_3; // @[OneHot.scala:58:35] wire [31:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_4; // @[OneHot.scala:58:35] wire [31:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_4; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T : 32'h0; // @[OneHot.scala:58:35] wire _T_1183 = _T_1257 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1183 ? _a_set_T : 32'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1183 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1183 ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [7:0] _a_opcodes_set_T = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [258:0] _a_opcodes_set_T_1 = {255'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1183 ? _a_opcodes_set_T_1[127:0] : 128'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [7:0] _a_sizes_set_T = {io_in_a_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :660:77] wire [259:0] _a_sizes_set_T_1 = {255'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1183 ? _a_sizes_set_T_1[255:0] : 256'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [31:0] d_clr; // @[Monitor.scala:664:34] wire [31:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [127:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [255:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_5 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_5; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_5; // @[Monitor.scala:673:46, :783:46] wire _T_1229 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [31:0] _GEN_6 = {27'h0, io_in_d_bits_source_0}; // @[OneHot.scala:58:35] wire [31:0] _GEN_7 = 32'h1 << _GEN_6; // @[OneHot.scala:58:35] wire [31:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_7; // @[OneHot.scala:58:35] wire [31:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_7; // @[OneHot.scala:58:35] wire [31:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_7; // @[OneHot.scala:58:35] wire [31:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_7; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1229 & ~d_release_ack ? _d_clr_wo_ready_T : 32'h0; // @[OneHot.scala:58:35] wire _T_1198 = _T_1330 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1198 ? _d_clr_T : 32'h0; // @[OneHot.scala:58:35] wire [270:0] _d_opcodes_clr_T_5 = 271'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1198 ? _d_opcodes_clr_T_5[127:0] : 128'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [270:0] _d_sizes_clr_T_5 = 271'hFF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1198 ? _d_sizes_clr_T_5[255:0] : 256'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [31:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [31:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [31:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [127:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [127:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [127:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [255:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [255:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [255:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [31:0] inflight_1; // @[Monitor.scala:726:35] wire [31:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [127:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [127:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [255:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [255:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:3]; // @[package.scala:243:46] wire [8:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter_2; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1_2 = _d_first_counter1_T_2[8:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [7:0] c_size_lookup; // @[Monitor.scala:748:35] wire [127:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [127:0] _c_opcode_lookup_T_6 = {124'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [127:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[127:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [255:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [255:0] _c_size_lookup_T_6 = {248'h0, _c_size_lookup_T_1[7:0]}; // @[Monitor.scala:750:{42,93}] wire [255:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[255:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [31:0] d_clr_1; // @[Monitor.scala:774:34] wire [31:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [127:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [255:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1301 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1301 & d_release_ack_1 ? _d_clr_wo_ready_T_1 : 32'h0; // @[OneHot.scala:58:35] wire _T_1283 = _T_1330 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1283 ? _d_clr_T_1 : 32'h0; // @[OneHot.scala:58:35] wire [270:0] _d_opcodes_clr_T_11 = 271'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1283 ? _d_opcodes_clr_T_11[127:0] : 128'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [270:0] _d_sizes_clr_T_11 = 271'hFF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1283 ? _d_sizes_clr_T_11[255:0] : 256'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 5'h0; // @[Monitor.scala:36:7, :795:113] wire [31:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [31:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [127:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [127:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [255:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [255:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_19( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [13:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_param, // @[Monitor.scala:20:14] input [3:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [6:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input io_in_d_bits_sink, // @[Monitor.scala:20:14] input io_in_d_bits_denied, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data, // @[Monitor.scala:20:14] input io_in_d_bits_corrupt // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [6:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [13:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_param_0 = io_in_d_bits_param; // @[Monitor.scala:36:7] wire [3:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [6:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire io_in_d_bits_sink_0 = io_in_d_bits_sink; // @[Monitor.scala:36:7] wire io_in_d_bits_denied_0 = io_in_d_bits_denied; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt_0 = io_in_d_bits_corrupt; // @[Monitor.scala:36:7] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire [8:0] c_first_beats1_decode = 9'h0; // @[Edges.scala:220:59] wire [8:0] c_first_beats1 = 9'h0; // @[Edges.scala:221:14] wire [8:0] _c_first_count_T = 9'h0; // @[Edges.scala:234:27] wire [8:0] c_first_count = 9'h0; // @[Edges.scala:234:25] wire [8:0] _c_first_counter_T = 9'h0; // @[Edges.scala:236:21] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_5 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_11 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_15 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_17 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_21 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_23 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_39 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_41 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_45 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_47 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_51 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_53 = 1'h1; // @[Parameters.scala:57:20] wire _source_ok_T_57 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_59 = 1'h1; // @[Parameters.scala:57:20] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire [8:0] c_first_counter1 = 9'h1FF; // @[Edges.scala:230:28] wire [9:0] _c_first_counter1_T = 10'h3FF; // @[Edges.scala:230:28] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [13:0] _c_first_WIRE_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_first_WIRE_1_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _c_first_WIRE_2_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_first_WIRE_3_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _c_set_wo_ready_WIRE_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_set_wo_ready_WIRE_1_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _c_set_WIRE_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_set_WIRE_1_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _c_opcodes_set_interm_WIRE_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_opcodes_set_interm_WIRE_1_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _c_sizes_set_interm_WIRE_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_sizes_set_interm_WIRE_1_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _c_opcodes_set_WIRE_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_opcodes_set_WIRE_1_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _c_sizes_set_WIRE_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_sizes_set_WIRE_1_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _c_probe_ack_WIRE_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_probe_ack_WIRE_1_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _c_probe_ack_WIRE_2_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _c_probe_ack_WIRE_3_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _same_cycle_resp_WIRE_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _same_cycle_resp_WIRE_1_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _same_cycle_resp_WIRE_2_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _same_cycle_resp_WIRE_3_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [13:0] _same_cycle_resp_WIRE_4_bits_address = 14'h0; // @[Bundles.scala:265:74] wire [13:0] _same_cycle_resp_WIRE_5_bits_address = 14'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_first_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_first_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_wo_ready_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_wo_ready_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_interm_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_interm_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_opcodes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_opcodes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_sizes_set_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_sizes_set_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _c_probe_ack_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _c_probe_ack_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_1_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_2_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_3_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [6:0] _same_cycle_resp_WIRE_4_bits_source = 7'h0; // @[Bundles.scala:265:74] wire [6:0] _same_cycle_resp_WIRE_5_bits_source = 7'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_first_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_first_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] _c_set_wo_ready_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_wo_ready_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [3:0] _c_sizes_set_interm_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_interm_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_opcodes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_opcodes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_sizes_set_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_sizes_set_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _c_probe_ack_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _c_probe_ack_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_1_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_2_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_3_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [3:0] _same_cycle_resp_WIRE_4_bits_size = 4'h0; // @[Bundles.scala:265:74] wire [3:0] _same_cycle_resp_WIRE_5_bits_size = 4'h0; // @[Bundles.scala:265:61] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [15:0] _a_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hFF; // @[Monitor.scala:612:57] wire [15:0] _c_size_lookup_T_5 = 16'hFF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hFF; // @[Monitor.scala:724:57] wire [16:0] _a_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hFF; // @[Monitor.scala:612:57] wire [16:0] _c_size_lookup_T_4 = 17'hFF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hFF; // @[Monitor.scala:724:57] wire [15:0] _a_size_lookup_T_3 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h100; // @[Monitor.scala:612:51] wire [15:0] _c_size_lookup_T_3 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h100; // @[Monitor.scala:724:51] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [1027:0] _c_sizes_set_T_1 = 1028'h0; // @[Monitor.scala:768:52] wire [9:0] _c_opcodes_set_T = 10'h0; // @[Monitor.scala:767:79] wire [9:0] _c_sizes_set_T = 10'h0; // @[Monitor.scala:768:77] wire [1026:0] _c_opcodes_set_T_1 = 1027'h0; // @[Monitor.scala:767:54] wire [4:0] _c_sizes_set_interm_T_1 = 5'h1; // @[Monitor.scala:766:59] wire [4:0] c_sizes_set_interm = 5'h0; // @[Monitor.scala:755:40] wire [4:0] _c_sizes_set_interm_T = 5'h0; // @[Monitor.scala:766:51] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [127:0] _c_set_wo_ready_T = 128'h1; // @[OneHot.scala:58:35] wire [127:0] _c_set_T = 128'h1; // @[OneHot.scala:58:35] wire [519:0] c_sizes_set = 520'h0; // @[Monitor.scala:741:34] wire [259:0] c_opcodes_set = 260'h0; // @[Monitor.scala:740:34] wire [64:0] c_set = 65'h0; // @[Monitor.scala:738:34] wire [64:0] c_set_wo_ready = 65'h0; // @[Monitor.scala:739:34] wire [11:0] _c_first_beats1_decode_T_2 = 12'h0; // @[package.scala:243:46] wire [11:0] _c_first_beats1_decode_T_1 = 12'hFFF; // @[package.scala:243:76] wire [26:0] _c_first_beats1_decode_T = 27'hFFF; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [3:0] _a_size_lookup_T_2 = 4'h8; // @[Monitor.scala:641:117] wire [3:0] _d_sizes_clr_T = 4'h8; // @[Monitor.scala:681:48] wire [3:0] _c_size_lookup_T_2 = 4'h8; // @[Monitor.scala:750:119] wire [3:0] _d_sizes_clr_T_6 = 4'h8; // @[Monitor.scala:791:48] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _mask_sizeOH_T = io_in_a_bits_size_0; // @[Misc.scala:202:34] wire [6:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_9 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_10 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_11 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_12 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_13 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_14 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_15 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_16 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_17 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_18 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_19 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_20 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_21 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_22 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_23 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_24 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_25 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_26 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_27 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_28 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_29 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_30 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_31 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_32 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_33 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_34 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_35 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_36 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_37 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_38 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_39 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_40 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_41 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_42 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _uncommonBits_T_43 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_4 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_5 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_6 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [6:0] _source_ok_uncommonBits_T_7 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire _source_ok_T = io_in_a_bits_source_0 == 7'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_0 = _source_ok_T; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits = _source_ok_uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_1 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_7 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_13 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_19 = io_in_a_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire _source_ok_T_2 = _source_ok_T_1 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_4 = _source_ok_T_2; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_6 = _source_ok_T_4; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1 = _source_ok_T_6; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_8 = _source_ok_T_7 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_10 = _source_ok_T_8; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_12 = _source_ok_T_10; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_2 = _source_ok_T_12; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_2 = _source_ok_uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_14 = _source_ok_T_13 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_16 = _source_ok_T_14; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_18 = _source_ok_T_16; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_3 = _source_ok_T_18; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_3 = _source_ok_uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_20 = _source_ok_T_19 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_22 = _source_ok_T_20; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_24 = _source_ok_T_22; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_4 = _source_ok_T_24; // @[Parameters.scala:1138:31] wire _source_ok_T_25 = io_in_a_bits_source_0 == 7'h20; // @[Monitor.scala:36:7] wire _source_ok_WIRE_5 = _source_ok_T_25; // @[Parameters.scala:1138:31] wire _source_ok_T_26 = io_in_a_bits_source_0 == 7'h21; // @[Monitor.scala:36:7] wire _source_ok_WIRE_6 = _source_ok_T_26; // @[Parameters.scala:1138:31] wire _source_ok_T_27 = io_in_a_bits_source_0 == 7'h22; // @[Monitor.scala:36:7] wire _source_ok_WIRE_7 = _source_ok_T_27; // @[Parameters.scala:1138:31] wire _source_ok_T_28 = io_in_a_bits_source_0 == 7'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_8 = _source_ok_T_28; // @[Parameters.scala:1138:31] wire _source_ok_T_29 = _source_ok_WIRE_0 | _source_ok_WIRE_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_30 = _source_ok_T_29 | _source_ok_WIRE_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_31 = _source_ok_T_30 | _source_ok_WIRE_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_32 = _source_ok_T_31 | _source_ok_WIRE_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_33 = _source_ok_T_32 | _source_ok_WIRE_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_34 = _source_ok_T_33 | _source_ok_WIRE_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_35 = _source_ok_T_34 | _source_ok_WIRE_7; // @[Parameters.scala:1138:31, :1139:46] wire source_ok = _source_ok_T_35 | _source_ok_WIRE_8; // @[Parameters.scala:1138:31, :1139:46] wire [26:0] _GEN = 27'hFFF << io_in_a_bits_size_0; // @[package.scala:243:71] wire [26:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [26:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [11:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [13:0] _is_aligned_T = {2'h0, io_in_a_bits_address_0[11:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 14'h0; // @[Edges.scala:21:{16,24}] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = io_in_a_bits_size_0 > 4'h2; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [1:0] uncommonBits = _uncommonBits_T[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_1 = _uncommonBits_T_1[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_2 = _uncommonBits_T_2[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_3 = _uncommonBits_T_3[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_4 = _uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_5 = _uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_6 = _uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_7 = _uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_8 = _uncommonBits_T_8[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_9 = _uncommonBits_T_9[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_10 = _uncommonBits_T_10[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_11 = _uncommonBits_T_11[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_12 = _uncommonBits_T_12[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_13 = _uncommonBits_T_13[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_14 = _uncommonBits_T_14[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_15 = _uncommonBits_T_15[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_16 = _uncommonBits_T_16[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_17 = _uncommonBits_T_17[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_18 = _uncommonBits_T_18[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_19 = _uncommonBits_T_19[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_20 = _uncommonBits_T_20[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_21 = _uncommonBits_T_21[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_22 = _uncommonBits_T_22[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_23 = _uncommonBits_T_23[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_24 = _uncommonBits_T_24[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_25 = _uncommonBits_T_25[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_26 = _uncommonBits_T_26[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_27 = _uncommonBits_T_27[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_28 = _uncommonBits_T_28[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_29 = _uncommonBits_T_29[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_30 = _uncommonBits_T_30[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_31 = _uncommonBits_T_31[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_32 = _uncommonBits_T_32[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_33 = _uncommonBits_T_33[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_34 = _uncommonBits_T_34[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_35 = _uncommonBits_T_35[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_36 = _uncommonBits_T_36[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_37 = _uncommonBits_T_37[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_38 = _uncommonBits_T_38[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_39 = _uncommonBits_T_39[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_40 = _uncommonBits_T_40[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_41 = _uncommonBits_T_41[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_42 = _uncommonBits_T_42[1:0]; // @[Parameters.scala:52:{29,56}] wire [1:0] uncommonBits_43 = _uncommonBits_T_43[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_36 = io_in_d_bits_source_0 == 7'h10; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_0 = _source_ok_T_36; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_4 = _source_ok_uncommonBits_T_4[1:0]; // @[Parameters.scala:52:{29,56}] wire [4:0] _source_ok_T_37 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_43 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_49 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire [4:0] _source_ok_T_55 = io_in_d_bits_source_0[6:2]; // @[Monitor.scala:36:7] wire _source_ok_T_38 = _source_ok_T_37 == 5'h0; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_40 = _source_ok_T_38; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_42 = _source_ok_T_40; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_1 = _source_ok_T_42; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_5 = _source_ok_uncommonBits_T_5[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_44 = _source_ok_T_43 == 5'h1; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_46 = _source_ok_T_44; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_48 = _source_ok_T_46; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_2 = _source_ok_T_48; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_6 = _source_ok_uncommonBits_T_6[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_50 = _source_ok_T_49 == 5'h2; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_52 = _source_ok_T_50; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_54 = _source_ok_T_52; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_3 = _source_ok_T_54; // @[Parameters.scala:1138:31] wire [1:0] source_ok_uncommonBits_7 = _source_ok_uncommonBits_T_7[1:0]; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_56 = _source_ok_T_55 == 5'h3; // @[Parameters.scala:54:{10,32}] wire _source_ok_T_58 = _source_ok_T_56; // @[Parameters.scala:54:{32,67}] wire _source_ok_T_60 = _source_ok_T_58; // @[Parameters.scala:54:67, :56:48] wire _source_ok_WIRE_1_4 = _source_ok_T_60; // @[Parameters.scala:1138:31] wire _source_ok_T_61 = io_in_d_bits_source_0 == 7'h20; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_5 = _source_ok_T_61; // @[Parameters.scala:1138:31] wire _source_ok_T_62 = io_in_d_bits_source_0 == 7'h21; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_6 = _source_ok_T_62; // @[Parameters.scala:1138:31] wire _source_ok_T_63 = io_in_d_bits_source_0 == 7'h22; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_7 = _source_ok_T_63; // @[Parameters.scala:1138:31] wire _source_ok_T_64 = io_in_d_bits_source_0 == 7'h40; // @[Monitor.scala:36:7] wire _source_ok_WIRE_1_8 = _source_ok_T_64; // @[Parameters.scala:1138:31] wire _source_ok_T_65 = _source_ok_WIRE_1_0 | _source_ok_WIRE_1_1; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_66 = _source_ok_T_65 | _source_ok_WIRE_1_2; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_67 = _source_ok_T_66 | _source_ok_WIRE_1_3; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_68 = _source_ok_T_67 | _source_ok_WIRE_1_4; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_69 = _source_ok_T_68 | _source_ok_WIRE_1_5; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_70 = _source_ok_T_69 | _source_ok_WIRE_1_6; // @[Parameters.scala:1138:31, :1139:46] wire _source_ok_T_71 = _source_ok_T_70 | _source_ok_WIRE_1_7; // @[Parameters.scala:1138:31, :1139:46] wire source_ok_1 = _source_ok_T_71 | _source_ok_WIRE_1_8; // @[Parameters.scala:1138:31, :1139:46] wire _T_1110 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_1110; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_1110; // @[Decoupled.scala:51:35] wire [11:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] a_first_beats1_decode = _a_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] wire [8:0] a_first_beats1 = a_first_beats1_opdata ? a_first_beats1_decode : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [8:0] a_first_counter; // @[Edges.scala:229:27] wire [9:0] _a_first_counter1_T = {1'h0, a_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] a_first_counter1 = _a_first_counter1_T[8:0]; // @[Edges.scala:230:28] wire a_first = a_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T = a_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_1 = a_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last = _a_first_last_T | _a_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire a_first_done = a_first_last & _a_first_T; // @[Decoupled.scala:51:35] wire [8:0] _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] a_first_count = a_first_beats1 & _a_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _a_first_counter_T = a_first ? a_first_beats1 : a_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [3:0] size; // @[Monitor.scala:389:22] reg [6:0] source; // @[Monitor.scala:390:22] reg [13:0] address; // @[Monitor.scala:391:22] wire _T_1183 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_1183; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_1183; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_1183; // @[Decoupled.scala:51:35] wire [26:0] _GEN_0 = 27'hFFF << io_in_d_bits_size_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [26:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [11:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode = _d_first_beats1_decode_T_2[11:3]; // @[package.scala:243:46] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire [8:0] d_first_beats1 = d_first_beats1_opdata ? d_first_beats1_decode : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T = {1'h0, d_first_counter} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1 = _d_first_counter1_T[8:0]; // @[Edges.scala:230:28] wire d_first = d_first_counter == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T = d_first_counter == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_1 = d_first_beats1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last = _d_first_last_T | _d_first_last_T_1; // @[Edges.scala:232:{25,33,43}] wire d_first_done = d_first_last & _d_first_T; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count = d_first_beats1 & _d_first_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T = d_first ? d_first_beats1 : d_first_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] param_1; // @[Monitor.scala:539:22] reg [3:0] size_1; // @[Monitor.scala:540:22] reg [6:0] source_1; // @[Monitor.scala:541:22] reg sink; // @[Monitor.scala:542:22] reg denied; // @[Monitor.scala:543:22] reg [64:0] inflight; // @[Monitor.scala:614:27] reg [259:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [519:0] inflight_sizes; // @[Monitor.scala:618:33] wire [11:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [8:0] a_first_beats1_decode_1 = _a_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] wire [8:0] a_first_beats1_1 = a_first_beats1_opdata_1 ? a_first_beats1_decode_1 : 9'h0; // @[Edges.scala:92:28, :220:59, :221:14] reg [8:0] a_first_counter_1; // @[Edges.scala:229:27] wire [9:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] a_first_counter1_1 = _a_first_counter1_T_1[8:0]; // @[Edges.scala:230:28] wire a_first_1 = a_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _a_first_last_T_2 = a_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _a_first_last_T_3 = a_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire a_first_last_1 = _a_first_last_T_2 | _a_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire a_first_done_1 = a_first_last_1 & _a_first_T_1; // @[Decoupled.scala:51:35] wire [8:0] _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [8:0] a_first_count_1 = a_first_beats1_1 & _a_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _a_first_counter_T_1 = a_first_1 ? a_first_beats1_1 : a_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [11:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode_1 = _d_first_beats1_decode_T_5[11:3]; // @[package.scala:243:46] wire [8:0] d_first_beats1_1 = d_first_beats1_opdata_1 ? d_first_beats1_decode_1 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter_1; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1_1 = _d_first_counter1_T_1[8:0]; // @[Edges.scala:230:28] wire d_first_1 = d_first_counter_1 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_2 = d_first_counter_1 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_3 = d_first_beats1_1 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_1 = _d_first_last_T_2 | _d_first_last_T_3; // @[Edges.scala:232:{25,33,43}] wire d_first_done_1 = d_first_last_1 & _d_first_T_1; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count_1 = d_first_beats1_1 & _d_first_count_T_1; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T_1 = d_first_1 ? d_first_beats1_1 : d_first_counter1_1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [64:0] a_set; // @[Monitor.scala:626:34] wire [64:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [259:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [519:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [9:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [9:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [9:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [9:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [9:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [259:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [259:0] _a_opcode_lookup_T_6 = {256'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [259:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [7:0] a_size_lookup; // @[Monitor.scala:639:33] wire [9:0] _GEN_2 = {io_in_d_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :641:65] wire [9:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65] wire [9:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_2; // @[Monitor.scala:641:65, :681:99] wire [9:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_2; // @[Monitor.scala:641:65, :750:67] wire [9:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_2; // @[Monitor.scala:641:65, :791:99] wire [519:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [519:0] _a_size_lookup_T_6 = {512'h0, _a_size_lookup_T_1[7:0]}; // @[Monitor.scala:641:{40,91}] wire [519:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[519:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[7:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [4:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [127:0] _GEN_3 = 128'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [127:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_3; // @[OneHot.scala:58:35] wire [127:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_3; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1036 = _T_1110 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_1036 ? _a_set_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_1036 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [4:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [4:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[4:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_1036 ? _a_sizes_set_interm_T_1 : 5'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [9:0] _a_opcodes_set_T = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [1026:0] _a_opcodes_set_T_1 = {1023'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_1036 ? _a_opcodes_set_T_1[259:0] : 260'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [9:0] _a_sizes_set_T = {io_in_a_bits_source_0, 3'h0}; // @[Monitor.scala:36:7, :660:77] wire [1027:0] _a_sizes_set_T_1 = {1023'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_1036 ? _a_sizes_set_T_1[519:0] : 520'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [64:0] d_clr; // @[Monitor.scala:664:34] wire [64:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [259:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [519:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_1082 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [127:0] _GEN_5 = 128'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [127:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [127:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_1082 & ~d_release_ack ? _d_clr_wo_ready_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1051 = _T_1183 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_1051 ? _d_clr_T[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [1038:0] _d_opcodes_clr_T_5 = 1039'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_1051 ? _d_opcodes_clr_T_5[259:0] : 260'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [1038:0] _d_sizes_clr_T_5 = 1039'hFF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_1051 ? _d_sizes_clr_T_5[519:0] : 520'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [64:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [64:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [64:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [259:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [259:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [259:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [519:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [519:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [519:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [64:0] inflight_1; // @[Monitor.scala:726:35] wire [64:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [259:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [259:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [519:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [519:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire [11:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[11:0]; // @[package.scala:243:{71,76}] wire [11:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] wire [8:0] d_first_beats1_decode_2 = _d_first_beats1_decode_T_8[11:3]; // @[package.scala:243:46] wire [8:0] d_first_beats1_2 = d_first_beats1_opdata_2 ? d_first_beats1_decode_2 : 9'h0; // @[Edges.scala:106:36, :220:59, :221:14] reg [8:0] d_first_counter_2; // @[Edges.scala:229:27] wire [9:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 10'h1; // @[Edges.scala:229:27, :230:28] wire [8:0] d_first_counter1_2 = _d_first_counter1_T_2[8:0]; // @[Edges.scala:230:28] wire d_first_2 = d_first_counter_2 == 9'h0; // @[Edges.scala:229:27, :231:25] wire _d_first_last_T_4 = d_first_counter_2 == 9'h1; // @[Edges.scala:229:27, :232:25] wire _d_first_last_T_5 = d_first_beats1_2 == 9'h0; // @[Edges.scala:221:14, :232:43] wire d_first_last_2 = _d_first_last_T_4 | _d_first_last_T_5; // @[Edges.scala:232:{25,33,43}] wire d_first_done_2 = d_first_last_2 & _d_first_T_2; // @[Decoupled.scala:51:35] wire [8:0] _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire [8:0] d_first_count_2 = d_first_beats1_2 & _d_first_count_T_2; // @[Edges.scala:221:14, :234:{25,27}] wire [8:0] _d_first_counter_T_2 = d_first_2 ? d_first_beats1_2 : d_first_counter1_2; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [7:0] c_size_lookup; // @[Monitor.scala:748:35] wire [259:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [259:0] _c_opcode_lookup_T_6 = {256'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [259:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[259:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [519:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [519:0] _c_size_lookup_T_6 = {512'h0, _c_size_lookup_T_1[7:0]}; // @[Monitor.scala:750:{42,93}] wire [519:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[519:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[7:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [64:0] d_clr_1; // @[Monitor.scala:774:34] wire [64:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [259:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [519:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_1154 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_1154 & d_release_ack_1 ? _d_clr_wo_ready_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35] wire _T_1136 = _T_1183 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_1136 ? _d_clr_T_1[64:0] : 65'h0; // @[OneHot.scala:58:35] wire [1038:0] _d_opcodes_clr_T_11 = 1039'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_1136 ? _d_opcodes_clr_T_11[259:0] : 260'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [1038:0] _d_sizes_clr_T_11 = 1039'hFF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_1136 ? _d_sizes_clr_T_11[519:0] : 520'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 7'h0; // @[Monitor.scala:36:7, :795:113] wire [64:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [64:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [259:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [259:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [519:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [519:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File ShiftReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ // Similar to the Chisel ShiftRegister but allows the user to suggest a // name to the registers that get instantiated, and // to provide a reset value. object ShiftRegInit { def apply[T <: Data](in: T, n: Int, init: T, name: Option[String] = None): T = (0 until n).foldRight(in) { case (i, next) => { val r = RegNext(next, init) name.foreach { na => r.suggestName(s"${na}_${i}") } r } } } /** These wrap behavioral * shift registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * The different types vary in their reset behavior: * AsyncResetShiftReg -- Asynchronously reset register array * A W(width) x D(depth) sized array is constructed from D instantiations of a * W-wide register vector. Functionally identical to AsyncResetSyncrhonizerShiftReg, * but only used for timing applications */ abstract class AbstractPipelineReg(w: Int = 1) extends Module { val io = IO(new Bundle { val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) } ) } object AbstractPipelineReg { def apply [T <: Data](gen: => AbstractPipelineReg, in: T, name: Option[String] = None): T = { val chain = Module(gen) name.foreach{ chain.suggestName(_) } chain.io.d := in.asUInt chain.io.q.asTypeOf(in) } } class AsyncResetShiftReg(w: Int = 1, depth: Int = 1, init: Int = 0, name: String = "pipe") extends AbstractPipelineReg(w) { require(depth > 0, "Depth must be greater than 0.") override def desiredName = s"AsyncResetShiftReg_w${w}_d${depth}_i${init}" val chain = List.tabulate(depth) { i => Module (new AsyncResetRegVec(w, init)).suggestName(s"${name}_${i}") } chain.last.io.d := io.d chain.last.io.en := true.B (chain.init zip chain.tail).foreach { case (sink, source) => sink.io.d := source.io.q sink.io.en := true.B } io.q := chain.head.io.q } object AsyncResetShiftReg { def apply [T <: Data](in: T, depth: Int, init: Int = 0, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetShiftReg(in.getWidth, depth, init), in, name) def apply [T <: Data](in: T, depth: Int, name: Option[String]): T = apply(in, depth, 0, name) def apply [T <: Data](in: T, depth: Int, init: T, name: Option[String]): T = apply(in, depth, init.litValue.toInt, name) def apply [T <: Data](in: T, depth: Int, init: T): T = apply (in, depth, init.litValue.toInt, None) } File SynchronizerReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util.{RegEnable, Cat} /** These wrap behavioral * shift and next registers into specific modules to allow for * backend flows to replace or constrain * them properly when used for CDC synchronization, * rather than buffering. * * * These are built up of *ResetSynchronizerPrimitiveShiftReg, * intended to be replaced by the integrator's metastable flops chains or replaced * at this level if they have a multi-bit wide synchronizer primitive. * The different types vary in their reset behavior: * NonSyncResetSynchronizerShiftReg -- Register array which does not have a reset pin * AsyncResetSynchronizerShiftReg -- Asynchronously reset register array, constructed from W instantiations of D deep * 1-bit-wide shift registers. * SyncResetSynchronizerShiftReg -- Synchronously reset register array, constructed similarly to AsyncResetSynchronizerShiftReg * * [Inferred]ResetSynchronizerShiftReg -- TBD reset type by chisel3 reset inference. * * ClockCrossingReg -- Not made up of SynchronizerPrimitiveShiftReg. This is for single-deep flops which cross * Clock Domains. */ object SynchronizerResetType extends Enumeration { val NonSync, Inferred, Sync, Async = Value } // Note: this should not be used directly. // Use the companion object to generate this with the correct reset type mixin. private class SynchronizerPrimitiveShiftReg( sync: Int, init: Boolean, resetType: SynchronizerResetType.Value) extends AbstractPipelineReg(1) { val initInt = if (init) 1 else 0 val initPostfix = resetType match { case SynchronizerResetType.NonSync => "" case _ => s"_i${initInt}" } override def desiredName = s"${resetType.toString}ResetSynchronizerPrimitiveShiftReg_d${sync}${initPostfix}" val chain = List.tabulate(sync) { i => val reg = if (resetType == SynchronizerResetType.NonSync) Reg(Bool()) else RegInit(init.B) reg.suggestName(s"sync_$i") } chain.last := io.d.asBool (chain.init zip chain.tail).foreach { case (sink, source) => sink := source } io.q := chain.head.asUInt } private object SynchronizerPrimitiveShiftReg { def apply (in: Bool, sync: Int, init: Boolean, resetType: SynchronizerResetType.Value): Bool = { val gen: () => SynchronizerPrimitiveShiftReg = resetType match { case SynchronizerResetType.NonSync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) case SynchronizerResetType.Async => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireAsyncReset case SynchronizerResetType.Sync => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) with RequireSyncReset case SynchronizerResetType.Inferred => () => new SynchronizerPrimitiveShiftReg(sync, init, resetType) } AbstractPipelineReg(gen(), in) } } // Note: This module may end up with a non-AsyncReset type reset. // But the Primitives within will always have AsyncReset type. class AsyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"AsyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asAsyncReset){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Async) } } io.q := Cat(output.reverse) } object AsyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new AsyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } // Note: This module may end up with a non-Bool type reset. // But the Primitives within will always have Bool reset type. @deprecated("SyncResetSynchronizerShiftReg is unecessary with Chisel3 inferred resets. Use ResetSynchronizerShiftReg which will use the inferred reset type.", "rocket-chip 1.2") class SyncResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SyncResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 withReset(reset.asBool){ SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Sync) } } io.q := Cat(output.reverse) } object SyncResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SyncResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class ResetSynchronizerShiftReg(w: Int = 1, sync: Int, init: Int) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"ResetSynchronizerShiftReg_w${w}_d${sync}_i${init}" val output = Seq.tabulate(w) { i => val initBit = ((init >> i) & 1) > 0 SynchronizerPrimitiveShiftReg(io.d(i), sync, initBit, SynchronizerResetType.Inferred) } io.q := Cat(output.reverse) } object ResetSynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, init: Int, name: Option[String] = None): T = AbstractPipelineReg(new ResetSynchronizerShiftReg(in.getWidth, sync, init), in, name) def apply [T <: Data](in: T, sync: Int, name: Option[String]): T = apply (in, sync, 0, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, 0, None) def apply [T <: Data](in: T, sync: Int, init: T, name: Option[String]): T = apply(in, sync, init.litValue.toInt, name) def apply [T <: Data](in: T, sync: Int, init: T): T = apply (in, sync, init.litValue.toInt, None) } class SynchronizerShiftReg(w: Int = 1, sync: Int = 3) extends AbstractPipelineReg(w) { require(sync > 1, s"Sync must be greater than 1, not ${sync}.") override def desiredName = s"SynchronizerShiftReg_w${w}_d${sync}" val output = Seq.tabulate(w) { i => SynchronizerPrimitiveShiftReg(io.d(i), sync, false, SynchronizerResetType.NonSync) } io.q := Cat(output.reverse) } object SynchronizerShiftReg { def apply [T <: Data](in: T, sync: Int, name: Option[String] = None): T = if (sync == 0) in else AbstractPipelineReg(new SynchronizerShiftReg(in.getWidth, sync), in, name) def apply [T <: Data](in: T, sync: Int): T = apply (in, sync, None) def apply [T <: Data](in: T): T = apply (in, 3, None) } class ClockCrossingReg(w: Int = 1, doInit: Boolean) extends Module { override def desiredName = s"ClockCrossingReg_w${w}" val io = IO(new Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) }) val cdc_reg = if (doInit) RegEnable(io.d, 0.U(w.W), io.en) else RegEnable(io.d, io.en) io.q := cdc_reg } object ClockCrossingReg { def apply [T <: Data](in: T, en: Bool, doInit: Boolean, name: Option[String] = None): T = { val cdc_reg = Module(new ClockCrossingReg(in.getWidth, doInit)) name.foreach{ cdc_reg.suggestName(_) } cdc_reg.io.d := in.asUInt cdc_reg.io.en := en cdc_reg.io.q.asTypeOf(in) } }
module AsyncResetSynchronizerShiftReg_w1_d3_i0_67( // @[SynchronizerReg.scala:80:7] input clock, // @[SynchronizerReg.scala:80:7] input reset, // @[SynchronizerReg.scala:80:7] output io_q // @[ShiftReg.scala:36:14] ); wire _output_T = reset; // @[SynchronizerReg.scala:86:21] wire io_d = 1'h1; // @[SynchronizerReg.scala:80:7, :87:41] wire _output_T_1 = 1'h1; // @[SynchronizerReg.scala:80:7, :87:41] wire output_0; // @[ShiftReg.scala:48:24] wire io_q_0; // @[SynchronizerReg.scala:80:7] assign io_q_0 = output_0; // @[SynchronizerReg.scala:80:7] AsyncResetSynchronizerPrimitiveShiftReg_d3_i0_103 output_chain ( // @[ShiftReg.scala:45:23] .clock (clock), .reset (_output_T), // @[SynchronizerReg.scala:86:21] .io_q (output_0) ); // @[ShiftReg.scala:45:23] assign io_q = io_q_0; // @[SynchronizerReg.scala:80:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Bundles.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import freechips.rocketchip.util._ import scala.collection.immutable.ListMap import chisel3.util.Decoupled import chisel3.util.DecoupledIO import chisel3.reflect.DataMirror abstract class TLBundleBase(val params: TLBundleParameters) extends Bundle // common combos in lazy policy: // Put + Acquire // Release + AccessAck object TLMessages { // A B C D E def PutFullData = 0.U // . . => AccessAck def PutPartialData = 1.U // . . => AccessAck def ArithmeticData = 2.U // . . => AccessAckData def LogicalData = 3.U // . . => AccessAckData def Get = 4.U // . . => AccessAckData def Hint = 5.U // . . => HintAck def AcquireBlock = 6.U // . => Grant[Data] def AcquirePerm = 7.U // . => Grant[Data] def Probe = 6.U // . => ProbeAck[Data] def AccessAck = 0.U // . . def AccessAckData = 1.U // . . def HintAck = 2.U // . . def ProbeAck = 4.U // . def ProbeAckData = 5.U // . def Release = 6.U // . => ReleaseAck def ReleaseData = 7.U // . => ReleaseAck def Grant = 4.U // . => GrantAck def GrantData = 5.U // . => GrantAck def ReleaseAck = 6.U // . def GrantAck = 0.U // . def isA(x: UInt) = x <= AcquirePerm def isB(x: UInt) = x <= Probe def isC(x: UInt) = x <= ReleaseData def isD(x: UInt) = x <= ReleaseAck def adResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, Grant, Grant) def bcResponse = VecInit(AccessAck, AccessAck, AccessAckData, AccessAckData, AccessAckData, HintAck, ProbeAck, ProbeAck) def a = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("AcquireBlock",TLPermissions.PermMsgGrow), ("AcquirePerm",TLPermissions.PermMsgGrow)) def b = Seq( ("PutFullData",TLPermissions.PermMsgReserved), ("PutPartialData",TLPermissions.PermMsgReserved), ("ArithmeticData",TLAtomics.ArithMsg), ("LogicalData",TLAtomics.LogicMsg), ("Get",TLPermissions.PermMsgReserved), ("Hint",TLHints.HintsMsg), ("Probe",TLPermissions.PermMsgCap)) def c = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("ProbeAck",TLPermissions.PermMsgReport), ("ProbeAckData",TLPermissions.PermMsgReport), ("Release",TLPermissions.PermMsgReport), ("ReleaseData",TLPermissions.PermMsgReport)) def d = Seq( ("AccessAck",TLPermissions.PermMsgReserved), ("AccessAckData",TLPermissions.PermMsgReserved), ("HintAck",TLPermissions.PermMsgReserved), ("Invalid Opcode",TLPermissions.PermMsgReserved), ("Grant",TLPermissions.PermMsgCap), ("GrantData",TLPermissions.PermMsgCap), ("ReleaseAck",TLPermissions.PermMsgReserved)) } /** * The three primary TileLink permissions are: * (T)runk: the agent is (or is on inwards path to) the global point of serialization. * (B)ranch: the agent is on an outwards path to * (N)one: * These permissions are permuted by transfer operations in various ways. * Operations can cap permissions, request for them to be grown or shrunk, * or for a report on their current status. */ object TLPermissions { val aWidth = 2 val bdWidth = 2 val cWidth = 3 // Cap types (Grant = new permissions, Probe = permisions <= target) def toT = 0.U(bdWidth.W) def toB = 1.U(bdWidth.W) def toN = 2.U(bdWidth.W) def isCap(x: UInt) = x <= toN // Grow types (Acquire = permissions >= target) def NtoB = 0.U(aWidth.W) def NtoT = 1.U(aWidth.W) def BtoT = 2.U(aWidth.W) def isGrow(x: UInt) = x <= BtoT // Shrink types (ProbeAck, Release) def TtoB = 0.U(cWidth.W) def TtoN = 1.U(cWidth.W) def BtoN = 2.U(cWidth.W) def isShrink(x: UInt) = x <= BtoN // Report types (ProbeAck, Release) def TtoT = 3.U(cWidth.W) def BtoB = 4.U(cWidth.W) def NtoN = 5.U(cWidth.W) def isReport(x: UInt) = x <= NtoN def PermMsgGrow:Seq[String] = Seq("Grow NtoB", "Grow NtoT", "Grow BtoT") def PermMsgCap:Seq[String] = Seq("Cap toT", "Cap toB", "Cap toN") def PermMsgReport:Seq[String] = Seq("Shrink TtoB", "Shrink TtoN", "Shrink BtoN", "Report TotT", "Report BtoB", "Report NtoN") def PermMsgReserved:Seq[String] = Seq("Reserved") } object TLAtomics { val width = 3 // Arithmetic types def MIN = 0.U(width.W) def MAX = 1.U(width.W) def MINU = 2.U(width.W) def MAXU = 3.U(width.W) def ADD = 4.U(width.W) def isArithmetic(x: UInt) = x <= ADD // Logical types def XOR = 0.U(width.W) def OR = 1.U(width.W) def AND = 2.U(width.W) def SWAP = 3.U(width.W) def isLogical(x: UInt) = x <= SWAP def ArithMsg:Seq[String] = Seq("MIN", "MAX", "MINU", "MAXU", "ADD") def LogicMsg:Seq[String] = Seq("XOR", "OR", "AND", "SWAP") } object TLHints { val width = 1 def PREFETCH_READ = 0.U(width.W) def PREFETCH_WRITE = 1.U(width.W) def isHints(x: UInt) = x <= PREFETCH_WRITE def HintsMsg:Seq[String] = Seq("PrefetchRead", "PrefetchWrite") } sealed trait TLChannel extends TLBundleBase { val channelName: String } sealed trait TLDataChannel extends TLChannel sealed trait TLAddrChannel extends TLDataChannel final class TLBundleA(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleA_${params.shortName}" val channelName = "'A' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(List(TLAtomics.width, TLPermissions.aWidth, TLHints.width).max.W) // amo_opcode || grow perms || hint val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleB(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleB_${params.shortName}" val channelName = "'B' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val address = UInt(params.addressBits.W) // from // variable fields during multibeat: val mask = UInt((params.dataBits/8).W) val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleC(params: TLBundleParameters) extends TLBundleBase(params) with TLAddrChannel { override def typeName = s"TLBundleC_${params.shortName}" val channelName = "'C' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.cWidth.W) // shrink or report perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // from val address = UInt(params.addressBits.W) // to val user = BundleMap(params.requestFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleD(params: TLBundleParameters) extends TLBundleBase(params) with TLDataChannel { override def typeName = s"TLBundleD_${params.shortName}" val channelName = "'D' channel" // fixed fields during multibeat: val opcode = UInt(3.W) val param = UInt(TLPermissions.bdWidth.W) // cap perms val size = UInt(params.sizeBits.W) val source = UInt(params.sourceBits.W) // to val sink = UInt(params.sinkBits.W) // from val denied = Bool() // implies corrupt iff *Data val user = BundleMap(params.responseFields) val echo = BundleMap(params.echoFields) // variable fields during multibeat: val data = UInt(params.dataBits.W) val corrupt = Bool() // only applies to *Data messages } final class TLBundleE(params: TLBundleParameters) extends TLBundleBase(params) with TLChannel { override def typeName = s"TLBundleE_${params.shortName}" val channelName = "'E' channel" val sink = UInt(params.sinkBits.W) // to } class TLBundle(val params: TLBundleParameters) extends Record { // Emulate a Bundle with elements abcde or ad depending on params.hasBCE private val optA = Some (Decoupled(new TLBundleA(params))) private val optB = params.hasBCE.option(Flipped(Decoupled(new TLBundleB(params)))) private val optC = params.hasBCE.option(Decoupled(new TLBundleC(params))) private val optD = Some (Flipped(Decoupled(new TLBundleD(params)))) private val optE = params.hasBCE.option(Decoupled(new TLBundleE(params))) def a: DecoupledIO[TLBundleA] = optA.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleA(params))))) def b: DecoupledIO[TLBundleB] = optB.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleB(params))))) def c: DecoupledIO[TLBundleC] = optC.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleC(params))))) def d: DecoupledIO[TLBundleD] = optD.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleD(params))))) def e: DecoupledIO[TLBundleE] = optE.getOrElse(WireDefault(0.U.asTypeOf(Decoupled(new TLBundleE(params))))) val elements = if (params.hasBCE) ListMap("e" -> e, "d" -> d, "c" -> c, "b" -> b, "a" -> a) else ListMap("d" -> d, "a" -> a) def tieoff(): Unit = { DataMirror.specifiedDirectionOf(a.ready) match { case SpecifiedDirection.Input => a.ready := false.B c.ready := false.B e.ready := false.B b.valid := false.B d.valid := false.B case SpecifiedDirection.Output => a.valid := false.B c.valid := false.B e.valid := false.B b.ready := false.B d.ready := false.B case _ => } } } object TLBundle { def apply(params: TLBundleParameters) = new TLBundle(params) } class TLAsyncBundleBase(val params: TLAsyncBundleParameters) extends Bundle class TLAsyncBundle(params: TLAsyncBundleParameters) extends TLAsyncBundleBase(params) { val a = new AsyncBundle(new TLBundleA(params.base), params.async) val b = Flipped(new AsyncBundle(new TLBundleB(params.base), params.async)) val c = new AsyncBundle(new TLBundleC(params.base), params.async) val d = Flipped(new AsyncBundle(new TLBundleD(params.base), params.async)) val e = new AsyncBundle(new TLBundleE(params.base), params.async) } class TLRationalBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = RationalIO(new TLBundleA(params)) val b = Flipped(RationalIO(new TLBundleB(params))) val c = RationalIO(new TLBundleC(params)) val d = Flipped(RationalIO(new TLBundleD(params))) val e = RationalIO(new TLBundleE(params)) } class TLCreditedBundle(params: TLBundleParameters) extends TLBundleBase(params) { val a = CreditedIO(new TLBundleA(params)) val b = Flipped(CreditedIO(new TLBundleB(params))) val c = CreditedIO(new TLBundleC(params)) val d = Flipped(CreditedIO(new TLBundleD(params))) val e = CreditedIO(new TLBundleE(params)) } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_43( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [1:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [10:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [25:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input [63:0] io_in_a_bits_data, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [10:0] io_in_d_bits_source, // @[Monitor.scala:20:14] input [63:0] io_in_d_bits_data // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire io_in_a_ready_0 = io_in_a_ready; // @[Monitor.scala:36:7] wire io_in_a_valid_0 = io_in_a_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_opcode_0 = io_in_a_bits_opcode; // @[Monitor.scala:36:7] wire [2:0] io_in_a_bits_param_0 = io_in_a_bits_param; // @[Monitor.scala:36:7] wire [1:0] io_in_a_bits_size_0 = io_in_a_bits_size; // @[Monitor.scala:36:7] wire [10:0] io_in_a_bits_source_0 = io_in_a_bits_source; // @[Monitor.scala:36:7] wire [25:0] io_in_a_bits_address_0 = io_in_a_bits_address; // @[Monitor.scala:36:7] wire [7:0] io_in_a_bits_mask_0 = io_in_a_bits_mask; // @[Monitor.scala:36:7] wire [63:0] io_in_a_bits_data_0 = io_in_a_bits_data; // @[Monitor.scala:36:7] wire io_in_a_bits_corrupt_0 = io_in_a_bits_corrupt; // @[Monitor.scala:36:7] wire io_in_d_ready_0 = io_in_d_ready; // @[Monitor.scala:36:7] wire io_in_d_valid_0 = io_in_d_valid; // @[Monitor.scala:36:7] wire [2:0] io_in_d_bits_opcode_0 = io_in_d_bits_opcode; // @[Monitor.scala:36:7] wire [1:0] io_in_d_bits_size_0 = io_in_d_bits_size; // @[Monitor.scala:36:7] wire [10:0] io_in_d_bits_source_0 = io_in_d_bits_source; // @[Monitor.scala:36:7] wire [63:0] io_in_d_bits_data_0 = io_in_d_bits_data; // @[Monitor.scala:36:7] wire io_in_d_bits_sink = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_denied = 1'h0; // @[Monitor.scala:36:7] wire io_in_d_bits_corrupt = 1'h0; // @[Monitor.scala:36:7] wire _source_ok_T = 1'h0; // @[Parameters.scala:54:10] wire _source_ok_T_6 = 1'h0; // @[Parameters.scala:54:10] wire sink_ok = 1'h0; // @[Monitor.scala:309:31] wire a_first_beats1_decode = 1'h0; // @[Edges.scala:220:59] wire a_first_beats1 = 1'h0; // @[Edges.scala:221:14] wire a_first_count = 1'h0; // @[Edges.scala:234:25] wire d_first_beats1_decode = 1'h0; // @[Edges.scala:220:59] wire d_first_beats1 = 1'h0; // @[Edges.scala:221:14] wire d_first_count = 1'h0; // @[Edges.scala:234:25] wire a_first_beats1_decode_1 = 1'h0; // @[Edges.scala:220:59] wire a_first_beats1_1 = 1'h0; // @[Edges.scala:221:14] wire a_first_count_1 = 1'h0; // @[Edges.scala:234:25] wire d_first_beats1_decode_1 = 1'h0; // @[Edges.scala:220:59] wire d_first_beats1_1 = 1'h0; // @[Edges.scala:221:14] wire d_first_count_1 = 1'h0; // @[Edges.scala:234:25] wire _c_first_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_first_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_first_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_first_T = 1'h0; // @[Decoupled.scala:51:35] wire c_first_beats1_decode = 1'h0; // @[Edges.scala:220:59] wire c_first_beats1_opdata = 1'h0; // @[Edges.scala:102:36] wire c_first_beats1 = 1'h0; // @[Edges.scala:221:14] wire _c_first_last_T = 1'h0; // @[Edges.scala:232:25] wire c_first_done = 1'h0; // @[Edges.scala:233:22] wire _c_first_count_T = 1'h0; // @[Edges.scala:234:27] wire c_first_count = 1'h0; // @[Edges.scala:234:25] wire _c_first_counter_T = 1'h0; // @[Edges.scala:236:21] wire d_first_beats1_decode_2 = 1'h0; // @[Edges.scala:220:59] wire d_first_beats1_2 = 1'h0; // @[Edges.scala:221:14] wire d_first_count_2 = 1'h0; // @[Edges.scala:234:25] wire _c_set_wo_ready_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_wo_ready_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_wo_ready_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_interm_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_interm_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_opcodes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_opcodes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_sizes_set_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_sizes_set_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T = 1'h0; // @[Monitor.scala:772:47] wire _c_probe_ack_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _c_probe_ack_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _c_probe_ack_T_1 = 1'h0; // @[Monitor.scala:772:95] wire c_probe_ack = 1'h0; // @[Monitor.scala:772:71] wire _same_cycle_resp_WIRE_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_1_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_1_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_3 = 1'h0; // @[Monitor.scala:795:44] wire _same_cycle_resp_WIRE_2_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_2_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_3_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_3_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_T_4 = 1'h0; // @[Edges.scala:68:36] wire _same_cycle_resp_T_5 = 1'h0; // @[Edges.scala:68:51] wire _same_cycle_resp_T_6 = 1'h0; // @[Edges.scala:68:40] wire _same_cycle_resp_T_7 = 1'h0; // @[Monitor.scala:795:55] wire _same_cycle_resp_WIRE_4_ready = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_valid = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_4_bits_corrupt = 1'h0; // @[Bundles.scala:265:74] wire _same_cycle_resp_WIRE_5_ready = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_valid = 1'h0; // @[Bundles.scala:265:61] wire _same_cycle_resp_WIRE_5_bits_corrupt = 1'h0; // @[Bundles.scala:265:61] wire same_cycle_resp_1 = 1'h0; // @[Monitor.scala:795:88] wire _source_ok_T_1 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_2 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_3 = 1'h1; // @[Parameters.scala:54:67] wire _source_ok_T_7 = 1'h1; // @[Parameters.scala:54:32] wire _source_ok_T_8 = 1'h1; // @[Parameters.scala:56:32] wire _source_ok_T_9 = 1'h1; // @[Parameters.scala:54:67] wire _a_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire a_first_last = 1'h1; // @[Edges.scala:232:33] wire _d_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire d_first_last = 1'h1; // @[Edges.scala:232:33] wire _a_first_last_T_3 = 1'h1; // @[Edges.scala:232:43] wire a_first_last_1 = 1'h1; // @[Edges.scala:232:33] wire _d_first_last_T_3 = 1'h1; // @[Edges.scala:232:43] wire d_first_last_1 = 1'h1; // @[Edges.scala:232:33] wire c_first_counter1 = 1'h1; // @[Edges.scala:230:28] wire c_first = 1'h1; // @[Edges.scala:231:25] wire _c_first_last_T_1 = 1'h1; // @[Edges.scala:232:43] wire c_first_last = 1'h1; // @[Edges.scala:232:33] wire _d_first_last_T_5 = 1'h1; // @[Edges.scala:232:43] wire d_first_last_2 = 1'h1; // @[Edges.scala:232:33] wire [1:0] _c_first_counter1_T = 2'h3; // @[Edges.scala:230:28] wire [1:0] io_in_d_bits_param = 2'h0; // @[Monitor.scala:36:7] wire [1:0] _c_first_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_first_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_first_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_first_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_set_wo_ready_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_set_wo_ready_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_opcodes_set_interm_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_opcodes_set_interm_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_sizes_set_interm_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_sizes_set_interm_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_opcodes_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_opcodes_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_sizes_set_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_sizes_set_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_probe_ack_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_probe_ack_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _c_probe_ack_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _c_probe_ack_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _same_cycle_resp_WIRE_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _same_cycle_resp_WIRE_1_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _same_cycle_resp_WIRE_2_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _same_cycle_resp_WIRE_3_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [1:0] _same_cycle_resp_WIRE_4_bits_size = 2'h0; // @[Bundles.scala:265:74] wire [1:0] _same_cycle_resp_WIRE_5_bits_size = 2'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_first_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_first_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_wo_ready_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_wo_ready_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_interm_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_interm_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_opcodes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_opcodes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_sizes_set_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_sizes_set_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _c_probe_ack_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _c_probe_ack_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_1_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_2_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_3_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [63:0] _same_cycle_resp_WIRE_4_bits_data = 64'h0; // @[Bundles.scala:265:74] wire [63:0] _same_cycle_resp_WIRE_5_bits_data = 64'h0; // @[Bundles.scala:265:61] wire [25:0] _c_first_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_first_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_first_WIRE_2_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_first_WIRE_3_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_set_wo_ready_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_set_wo_ready_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_set_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_set_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_opcodes_set_interm_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_opcodes_set_interm_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_sizes_set_interm_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_sizes_set_interm_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_opcodes_set_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_opcodes_set_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_sizes_set_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_sizes_set_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_probe_ack_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_probe_ack_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _c_probe_ack_WIRE_2_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _c_probe_ack_WIRE_3_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _same_cycle_resp_WIRE_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _same_cycle_resp_WIRE_1_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _same_cycle_resp_WIRE_2_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _same_cycle_resp_WIRE_3_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [25:0] _same_cycle_resp_WIRE_4_bits_address = 26'h0; // @[Bundles.scala:265:74] wire [25:0] _same_cycle_resp_WIRE_5_bits_address = 26'h0; // @[Bundles.scala:265:61] wire [10:0] _c_first_WIRE_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_first_WIRE_1_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _c_first_WIRE_2_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_first_WIRE_3_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _c_set_wo_ready_WIRE_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_set_wo_ready_WIRE_1_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _c_set_WIRE_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_set_WIRE_1_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _c_opcodes_set_interm_WIRE_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_opcodes_set_interm_WIRE_1_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _c_sizes_set_interm_WIRE_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_sizes_set_interm_WIRE_1_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _c_opcodes_set_WIRE_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_opcodes_set_WIRE_1_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _c_sizes_set_WIRE_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_sizes_set_WIRE_1_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _c_probe_ack_WIRE_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_probe_ack_WIRE_1_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _c_probe_ack_WIRE_2_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _c_probe_ack_WIRE_3_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _same_cycle_resp_WIRE_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _same_cycle_resp_WIRE_1_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _same_cycle_resp_WIRE_2_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _same_cycle_resp_WIRE_3_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [10:0] _same_cycle_resp_WIRE_4_bits_source = 11'h0; // @[Bundles.scala:265:74] wire [10:0] _same_cycle_resp_WIRE_5_bits_source = 11'h0; // @[Bundles.scala:265:61] wire [2:0] responseMap_0 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMap_1 = 3'h0; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_0 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_1 = 3'h0; // @[Monitor.scala:644:42] wire [2:0] _c_first_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_first_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_first_beats1_decode_T_2 = 3'h0; // @[package.scala:243:46] wire [2:0] c_sizes_set_interm = 3'h0; // @[Monitor.scala:755:40] wire [2:0] _c_set_wo_ready_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_wo_ready_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_wo_ready_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_interm_T = 3'h0; // @[Monitor.scala:766:51] wire [2:0] _c_opcodes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_opcodes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_opcodes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_sizes_set_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_sizes_set_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _c_probe_ack_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _c_probe_ack_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_1_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_1_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_2_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_2_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_3_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_3_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_4_bits_opcode = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_4_bits_param = 3'h0; // @[Bundles.scala:265:74] wire [2:0] _same_cycle_resp_WIRE_5_bits_opcode = 3'h0; // @[Bundles.scala:265:61] wire [2:0] _same_cycle_resp_WIRE_5_bits_param = 3'h0; // @[Bundles.scala:265:61] wire [15:0] _a_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _a_size_lookup_T_5 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_opcodes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _d_sizes_clr_T_3 = 16'hF; // @[Monitor.scala:612:57] wire [15:0] _c_opcode_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _c_size_lookup_T_5 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_opcodes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [15:0] _d_sizes_clr_T_9 = 16'hF; // @[Monitor.scala:724:57] wire [16:0] _a_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _a_size_lookup_T_4 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_opcodes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _d_sizes_clr_T_2 = 17'hF; // @[Monitor.scala:612:57] wire [16:0] _c_opcode_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _c_size_lookup_T_4 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_opcodes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [16:0] _d_sizes_clr_T_8 = 17'hF; // @[Monitor.scala:724:57] wire [15:0] _a_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _a_size_lookup_T_3 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_opcodes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _d_sizes_clr_T_1 = 16'h10; // @[Monitor.scala:612:51] wire [15:0] _c_opcode_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _c_size_lookup_T_3 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_opcodes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [15:0] _d_sizes_clr_T_7 = 16'h10; // @[Monitor.scala:724:51] wire [16385:0] _c_sizes_set_T_1 = 16386'h0; // @[Monitor.scala:768:52] wire [13:0] _c_opcodes_set_T = 14'h0; // @[Monitor.scala:767:79] wire [13:0] _c_sizes_set_T = 14'h0; // @[Monitor.scala:768:77] wire [16386:0] _c_opcodes_set_T_1 = 16387'h0; // @[Monitor.scala:767:54] wire [2:0] responseMap_2 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_3 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMap_4 = 3'h1; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_2 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_3 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_4 = 3'h1; // @[Monitor.scala:644:42] wire [2:0] _c_sizes_set_interm_T_1 = 3'h1; // @[Monitor.scala:766:59] wire [3:0] _c_opcodes_set_interm_T_1 = 4'h1; // @[Monitor.scala:765:61] wire [3:0] c_opcodes_set_interm = 4'h0; // @[Monitor.scala:754:40] wire [3:0] _c_opcodes_set_interm_T = 4'h0; // @[Monitor.scala:765:53] wire [2047:0] _c_set_wo_ready_T = 2048'h1; // @[OneHot.scala:58:35] wire [2047:0] _c_set_T = 2048'h1; // @[OneHot.scala:58:35] wire [4159:0] c_opcodes_set = 4160'h0; // @[Monitor.scala:740:34] wire [4159:0] c_sizes_set = 4160'h0; // @[Monitor.scala:741:34] wire [1039:0] c_set = 1040'h0; // @[Monitor.scala:738:34] wire [1039:0] c_set_wo_ready = 1040'h0; // @[Monitor.scala:739:34] wire [2:0] _c_first_beats1_decode_T_1 = 3'h7; // @[package.scala:243:76] wire [5:0] _c_first_beats1_decode_T = 6'h7; // @[package.scala:243:71] wire [2:0] responseMap_6 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMap_7 = 3'h4; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_7 = 3'h4; // @[Monitor.scala:644:42] wire [2:0] responseMapSecondOption_6 = 3'h5; // @[Monitor.scala:644:42] wire [2:0] responseMap_5 = 3'h2; // @[Monitor.scala:643:42] wire [2:0] responseMapSecondOption_5 = 3'h2; // @[Monitor.scala:644:42] wire [3:0] _a_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:637:123] wire [3:0] _a_size_lookup_T_2 = 4'h4; // @[Monitor.scala:641:117] wire [3:0] _d_opcodes_clr_T = 4'h4; // @[Monitor.scala:680:48] wire [3:0] _d_sizes_clr_T = 4'h4; // @[Monitor.scala:681:48] wire [3:0] _c_opcode_lookup_T_2 = 4'h4; // @[Monitor.scala:749:123] wire [3:0] _c_size_lookup_T_2 = 4'h4; // @[Monitor.scala:750:119] wire [3:0] _d_opcodes_clr_T_6 = 4'h4; // @[Monitor.scala:790:48] wire [3:0] _d_sizes_clr_T_6 = 4'h4; // @[Monitor.scala:791:48] wire [10:0] _source_ok_uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _uncommonBits_T = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _uncommonBits_T_1 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _uncommonBits_T_2 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _uncommonBits_T_3 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _uncommonBits_T_4 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _uncommonBits_T_5 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _uncommonBits_T_6 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _uncommonBits_T_7 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _uncommonBits_T_8 = io_in_a_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] _source_ok_uncommonBits_T_1 = io_in_d_bits_source_0; // @[Monitor.scala:36:7] wire [10:0] source_ok_uncommonBits = _source_ok_uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_4 = source_ok_uncommonBits < 11'h410; // @[Parameters.scala:52:56, :57:20] wire _source_ok_T_5 = _source_ok_T_4; // @[Parameters.scala:56:48, :57:20] wire _source_ok_WIRE_0 = _source_ok_T_5; // @[Parameters.scala:1138:31] wire [5:0] _GEN = 6'h7 << io_in_a_bits_size_0; // @[package.scala:243:71] wire [5:0] _is_aligned_mask_T; // @[package.scala:243:71] assign _is_aligned_mask_T = _GEN; // @[package.scala:243:71] wire [5:0] _a_first_beats1_decode_T; // @[package.scala:243:71] assign _a_first_beats1_decode_T = _GEN; // @[package.scala:243:71] wire [5:0] _a_first_beats1_decode_T_3; // @[package.scala:243:71] assign _a_first_beats1_decode_T_3 = _GEN; // @[package.scala:243:71] wire [2:0] _is_aligned_mask_T_1 = _is_aligned_mask_T[2:0]; // @[package.scala:243:{71,76}] wire [2:0] is_aligned_mask = ~_is_aligned_mask_T_1; // @[package.scala:243:{46,76}] wire [25:0] _is_aligned_T = {23'h0, io_in_a_bits_address_0[2:0] & is_aligned_mask}; // @[package.scala:243:46] wire is_aligned = _is_aligned_T == 26'h0; // @[Edges.scala:21:{16,24}] wire [2:0] _mask_sizeOH_T = {1'h0, io_in_a_bits_size_0}; // @[Misc.scala:202:34] wire [1:0] mask_sizeOH_shiftAmount = _mask_sizeOH_T[1:0]; // @[OneHot.scala:64:49] wire [3:0] _mask_sizeOH_T_1 = 4'h1 << mask_sizeOH_shiftAmount; // @[OneHot.scala:64:49, :65:12] wire [2:0] _mask_sizeOH_T_2 = _mask_sizeOH_T_1[2:0]; // @[OneHot.scala:65:{12,27}] wire [2:0] mask_sizeOH = {_mask_sizeOH_T_2[2:1], 1'h1}; // @[OneHot.scala:65:27] wire mask_sub_sub_sub_0_1 = &io_in_a_bits_size_0; // @[Misc.scala:206:21] wire mask_sub_sub_size = mask_sizeOH[2]; // @[Misc.scala:202:81, :209:26] wire mask_sub_sub_bit = io_in_a_bits_address_0[2]; // @[Misc.scala:210:26] wire mask_sub_sub_1_2 = mask_sub_sub_bit; // @[Misc.scala:210:26, :214:27] wire mask_sub_sub_nbit = ~mask_sub_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_sub_0_2 = mask_sub_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_sub_acc_T = mask_sub_sub_size & mask_sub_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_0_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T; // @[Misc.scala:206:21, :215:{29,38}] wire _mask_sub_sub_acc_T_1 = mask_sub_sub_size & mask_sub_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_sub_1_1 = mask_sub_sub_sub_0_1 | _mask_sub_sub_acc_T_1; // @[Misc.scala:206:21, :215:{29,38}] wire mask_sub_size = mask_sizeOH[1]; // @[Misc.scala:202:81, :209:26] wire mask_sub_bit = io_in_a_bits_address_0[1]; // @[Misc.scala:210:26] wire mask_sub_nbit = ~mask_sub_bit; // @[Misc.scala:210:26, :211:20] wire mask_sub_0_2 = mask_sub_sub_0_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T = mask_sub_size & mask_sub_0_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_0_1 = mask_sub_sub_0_1 | _mask_sub_acc_T; // @[Misc.scala:215:{29,38}] wire mask_sub_1_2 = mask_sub_sub_0_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_1 = mask_sub_size & mask_sub_1_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_1_1 = mask_sub_sub_0_1 | _mask_sub_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_sub_2_2 = mask_sub_sub_1_2 & mask_sub_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_sub_acc_T_2 = mask_sub_size & mask_sub_2_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_2_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_sub_3_2 = mask_sub_sub_1_2 & mask_sub_bit; // @[Misc.scala:210:26, :214:27] wire _mask_sub_acc_T_3 = mask_sub_size & mask_sub_3_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_sub_3_1 = mask_sub_sub_1_1 | _mask_sub_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_size = mask_sizeOH[0]; // @[Misc.scala:202:81, :209:26] wire mask_bit = io_in_a_bits_address_0[0]; // @[Misc.scala:210:26] wire mask_nbit = ~mask_bit; // @[Misc.scala:210:26, :211:20] wire mask_eq = mask_sub_0_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T = mask_size & mask_eq; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc = mask_sub_0_1 | _mask_acc_T; // @[Misc.scala:215:{29,38}] wire mask_eq_1 = mask_sub_0_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_1 = mask_size & mask_eq_1; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_1 = mask_sub_0_1 | _mask_acc_T_1; // @[Misc.scala:215:{29,38}] wire mask_eq_2 = mask_sub_1_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_2 = mask_size & mask_eq_2; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_2 = mask_sub_1_1 | _mask_acc_T_2; // @[Misc.scala:215:{29,38}] wire mask_eq_3 = mask_sub_1_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_3 = mask_size & mask_eq_3; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_3 = mask_sub_1_1 | _mask_acc_T_3; // @[Misc.scala:215:{29,38}] wire mask_eq_4 = mask_sub_2_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_4 = mask_size & mask_eq_4; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_4 = mask_sub_2_1 | _mask_acc_T_4; // @[Misc.scala:215:{29,38}] wire mask_eq_5 = mask_sub_2_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_5 = mask_size & mask_eq_5; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_5 = mask_sub_2_1 | _mask_acc_T_5; // @[Misc.scala:215:{29,38}] wire mask_eq_6 = mask_sub_3_2 & mask_nbit; // @[Misc.scala:211:20, :214:27] wire _mask_acc_T_6 = mask_size & mask_eq_6; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_6 = mask_sub_3_1 | _mask_acc_T_6; // @[Misc.scala:215:{29,38}] wire mask_eq_7 = mask_sub_3_2 & mask_bit; // @[Misc.scala:210:26, :214:27] wire _mask_acc_T_7 = mask_size & mask_eq_7; // @[Misc.scala:209:26, :214:27, :215:38] wire mask_acc_7 = mask_sub_3_1 | _mask_acc_T_7; // @[Misc.scala:215:{29,38}] wire [1:0] mask_lo_lo = {mask_acc_1, mask_acc}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_lo_hi = {mask_acc_3, mask_acc_2}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_lo = {mask_lo_hi, mask_lo_lo}; // @[Misc.scala:222:10] wire [1:0] mask_hi_lo = {mask_acc_5, mask_acc_4}; // @[Misc.scala:215:29, :222:10] wire [1:0] mask_hi_hi = {mask_acc_7, mask_acc_6}; // @[Misc.scala:215:29, :222:10] wire [3:0] mask_hi = {mask_hi_hi, mask_hi_lo}; // @[Misc.scala:222:10] wire [7:0] mask = {mask_hi, mask_lo}; // @[Misc.scala:222:10] wire [10:0] uncommonBits = _uncommonBits_T; // @[Parameters.scala:52:{29,56}] wire [10:0] uncommonBits_1 = _uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire [10:0] uncommonBits_2 = _uncommonBits_T_2; // @[Parameters.scala:52:{29,56}] wire [10:0] uncommonBits_3 = _uncommonBits_T_3; // @[Parameters.scala:52:{29,56}] wire [10:0] uncommonBits_4 = _uncommonBits_T_4; // @[Parameters.scala:52:{29,56}] wire [10:0] uncommonBits_5 = _uncommonBits_T_5; // @[Parameters.scala:52:{29,56}] wire [10:0] uncommonBits_6 = _uncommonBits_T_6; // @[Parameters.scala:52:{29,56}] wire [10:0] uncommonBits_7 = _uncommonBits_T_7; // @[Parameters.scala:52:{29,56}] wire [10:0] uncommonBits_8 = _uncommonBits_T_8; // @[Parameters.scala:52:{29,56}] wire [10:0] source_ok_uncommonBits_1 = _source_ok_uncommonBits_T_1; // @[Parameters.scala:52:{29,56}] wire _source_ok_T_10 = source_ok_uncommonBits_1 < 11'h410; // @[Parameters.scala:52:56, :57:20] wire _source_ok_T_11 = _source_ok_T_10; // @[Parameters.scala:56:48, :57:20] wire _source_ok_WIRE_1_0 = _source_ok_T_11; // @[Parameters.scala:1138:31] wire _T_665 = io_in_a_ready_0 & io_in_a_valid_0; // @[Decoupled.scala:51:35] wire _a_first_T; // @[Decoupled.scala:51:35] assign _a_first_T = _T_665; // @[Decoupled.scala:51:35] wire _a_first_T_1; // @[Decoupled.scala:51:35] assign _a_first_T_1 = _T_665; // @[Decoupled.scala:51:35] wire a_first_done = _a_first_T; // @[Decoupled.scala:51:35] wire [2:0] _a_first_beats1_decode_T_1 = _a_first_beats1_decode_T[2:0]; // @[package.scala:243:{71,76}] wire [2:0] _a_first_beats1_decode_T_2 = ~_a_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire _a_first_beats1_opdata_T = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire _a_first_beats1_opdata_T_1 = io_in_a_bits_opcode_0[2]; // @[Monitor.scala:36:7] wire a_first_beats1_opdata = ~_a_first_beats1_opdata_T; // @[Edges.scala:92:{28,37}] reg a_first_counter; // @[Edges.scala:229:27] wire _a_first_last_T = a_first_counter; // @[Edges.scala:229:27, :232:25] wire [1:0] _a_first_counter1_T = {1'h0, a_first_counter} - 2'h1; // @[Edges.scala:229:27, :230:28] wire a_first_counter1 = _a_first_counter1_T[0]; // @[Edges.scala:230:28] wire a_first = ~a_first_counter; // @[Edges.scala:229:27, :231:25] wire _a_first_count_T = ~a_first_counter1; // @[Edges.scala:230:28, :234:27] wire _a_first_counter_T = ~a_first & a_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [1:0] size; // @[Monitor.scala:389:22] reg [10:0] source; // @[Monitor.scala:390:22] reg [25:0] address; // @[Monitor.scala:391:22] wire _T_733 = io_in_d_ready_0 & io_in_d_valid_0; // @[Decoupled.scala:51:35] wire _d_first_T; // @[Decoupled.scala:51:35] assign _d_first_T = _T_733; // @[Decoupled.scala:51:35] wire _d_first_T_1; // @[Decoupled.scala:51:35] assign _d_first_T_1 = _T_733; // @[Decoupled.scala:51:35] wire _d_first_T_2; // @[Decoupled.scala:51:35] assign _d_first_T_2 = _T_733; // @[Decoupled.scala:51:35] wire d_first_done = _d_first_T; // @[Decoupled.scala:51:35] wire [5:0] _GEN_0 = 6'h7 << io_in_d_bits_size_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T; // @[package.scala:243:71] assign _d_first_beats1_decode_T = _GEN_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T_3; // @[package.scala:243:71] assign _d_first_beats1_decode_T_3 = _GEN_0; // @[package.scala:243:71] wire [5:0] _d_first_beats1_decode_T_6; // @[package.scala:243:71] assign _d_first_beats1_decode_T_6 = _GEN_0; // @[package.scala:243:71] wire [2:0] _d_first_beats1_decode_T_1 = _d_first_beats1_decode_T[2:0]; // @[package.scala:243:{71,76}] wire [2:0] _d_first_beats1_decode_T_2 = ~_d_first_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire d_first_beats1_opdata = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_1 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] wire d_first_beats1_opdata_2 = io_in_d_bits_opcode_0[0]; // @[Monitor.scala:36:7] reg d_first_counter; // @[Edges.scala:229:27] wire _d_first_last_T = d_first_counter; // @[Edges.scala:229:27, :232:25] wire [1:0] _d_first_counter1_T = {1'h0, d_first_counter} - 2'h1; // @[Edges.scala:229:27, :230:28] wire d_first_counter1 = _d_first_counter1_T[0]; // @[Edges.scala:230:28] wire d_first = ~d_first_counter; // @[Edges.scala:229:27, :231:25] wire _d_first_count_T = ~d_first_counter1; // @[Edges.scala:230:28, :234:27] wire _d_first_counter_T = ~d_first & d_first_counter1; // @[Edges.scala:230:28, :231:25, :236:21] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] size_1; // @[Monitor.scala:540:22] reg [10:0] source_1; // @[Monitor.scala:541:22] reg [1039:0] inflight; // @[Monitor.scala:614:27] reg [4159:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [4159:0] inflight_sizes; // @[Monitor.scala:618:33] wire a_first_done_1 = _a_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _a_first_beats1_decode_T_4 = _a_first_beats1_decode_T_3[2:0]; // @[package.scala:243:{71,76}] wire [2:0] _a_first_beats1_decode_T_5 = ~_a_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] wire a_first_beats1_opdata_1 = ~_a_first_beats1_opdata_T_1; // @[Edges.scala:92:{28,37}] reg a_first_counter_1; // @[Edges.scala:229:27] wire _a_first_last_T_2 = a_first_counter_1; // @[Edges.scala:229:27, :232:25] wire [1:0] _a_first_counter1_T_1 = {1'h0, a_first_counter_1} - 2'h1; // @[Edges.scala:229:27, :230:28] wire a_first_counter1_1 = _a_first_counter1_T_1[0]; // @[Edges.scala:230:28] wire a_first_1 = ~a_first_counter_1; // @[Edges.scala:229:27, :231:25] wire _a_first_count_T_1 = ~a_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire _a_first_counter_T_1 = ~a_first_1 & a_first_counter1_1; // @[Edges.scala:230:28, :231:25, :236:21] wire d_first_done_1 = _d_first_T_1; // @[Decoupled.scala:51:35] wire [2:0] _d_first_beats1_decode_T_4 = _d_first_beats1_decode_T_3[2:0]; // @[package.scala:243:{71,76}] wire [2:0] _d_first_beats1_decode_T_5 = ~_d_first_beats1_decode_T_4; // @[package.scala:243:{46,76}] reg d_first_counter_1; // @[Edges.scala:229:27] wire _d_first_last_T_2 = d_first_counter_1; // @[Edges.scala:229:27, :232:25] wire [1:0] _d_first_counter1_T_1 = {1'h0, d_first_counter_1} - 2'h1; // @[Edges.scala:229:27, :230:28] wire d_first_counter1_1 = _d_first_counter1_T_1[0]; // @[Edges.scala:230:28] wire d_first_1 = ~d_first_counter_1; // @[Edges.scala:229:27, :231:25] wire _d_first_count_T_1 = ~d_first_counter1_1; // @[Edges.scala:230:28, :234:27] wire _d_first_counter_T_1 = ~d_first_1 & d_first_counter1_1; // @[Edges.scala:230:28, :231:25, :236:21] wire [1039:0] a_set; // @[Monitor.scala:626:34] wire [1039:0] a_set_wo_ready; // @[Monitor.scala:627:34] wire [4159:0] a_opcodes_set; // @[Monitor.scala:630:33] wire [4159:0] a_sizes_set; // @[Monitor.scala:632:31] wire [2:0] a_opcode_lookup; // @[Monitor.scala:635:35] wire [13:0] _GEN_1 = {1'h0, io_in_d_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :637:69] wire [13:0] _a_opcode_lookup_T; // @[Monitor.scala:637:69] assign _a_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69] wire [13:0] _a_size_lookup_T; // @[Monitor.scala:641:65] assign _a_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :641:65] wire [13:0] _d_opcodes_clr_T_4; // @[Monitor.scala:680:101] assign _d_opcodes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :680:101] wire [13:0] _d_sizes_clr_T_4; // @[Monitor.scala:681:99] assign _d_sizes_clr_T_4 = _GEN_1; // @[Monitor.scala:637:69, :681:99] wire [13:0] _c_opcode_lookup_T; // @[Monitor.scala:749:69] assign _c_opcode_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :749:69] wire [13:0] _c_size_lookup_T; // @[Monitor.scala:750:67] assign _c_size_lookup_T = _GEN_1; // @[Monitor.scala:637:69, :750:67] wire [13:0] _d_opcodes_clr_T_10; // @[Monitor.scala:790:101] assign _d_opcodes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :790:101] wire [13:0] _d_sizes_clr_T_10; // @[Monitor.scala:791:99] assign _d_sizes_clr_T_10 = _GEN_1; // @[Monitor.scala:637:69, :791:99] wire [4159:0] _a_opcode_lookup_T_1 = inflight_opcodes >> _a_opcode_lookup_T; // @[Monitor.scala:616:35, :637:{44,69}] wire [4159:0] _a_opcode_lookup_T_6 = {4156'h0, _a_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:637:{44,97}] wire [4159:0] _a_opcode_lookup_T_7 = {1'h0, _a_opcode_lookup_T_6[4159:1]}; // @[Monitor.scala:637:{97,152}] assign a_opcode_lookup = _a_opcode_lookup_T_7[2:0]; // @[Monitor.scala:635:35, :637:{21,152}] wire [3:0] a_size_lookup; // @[Monitor.scala:639:33] wire [4159:0] _a_size_lookup_T_1 = inflight_sizes >> _a_size_lookup_T; // @[Monitor.scala:618:33, :641:{40,65}] wire [4159:0] _a_size_lookup_T_6 = {4156'h0, _a_size_lookup_T_1[3:0]}; // @[Monitor.scala:641:{40,91}] wire [4159:0] _a_size_lookup_T_7 = {1'h0, _a_size_lookup_T_6[4159:1]}; // @[Monitor.scala:641:{91,144}] assign a_size_lookup = _a_size_lookup_T_7[3:0]; // @[Monitor.scala:639:33, :641:{19,144}] wire [3:0] a_opcodes_set_interm; // @[Monitor.scala:646:40] wire [2:0] a_sizes_set_interm; // @[Monitor.scala:648:38] wire _same_cycle_resp_T = io_in_a_valid_0 & a_first_1; // @[Monitor.scala:36:7, :651:26, :684:44] wire [2047:0] _GEN_2 = 2048'h1 << io_in_a_bits_source_0; // @[OneHot.scala:58:35] wire [2047:0] _a_set_wo_ready_T; // @[OneHot.scala:58:35] assign _a_set_wo_ready_T = _GEN_2; // @[OneHot.scala:58:35] wire [2047:0] _a_set_T; // @[OneHot.scala:58:35] assign _a_set_T = _GEN_2; // @[OneHot.scala:58:35] assign a_set_wo_ready = _same_cycle_resp_T ? _a_set_wo_ready_T[1039:0] : 1040'h0; // @[OneHot.scala:58:35] wire _T_598 = _T_665 & a_first_1; // @[Decoupled.scala:51:35] assign a_set = _T_598 ? _a_set_T[1039:0] : 1040'h0; // @[OneHot.scala:58:35] wire [3:0] _a_opcodes_set_interm_T = {io_in_a_bits_opcode_0, 1'h0}; // @[Monitor.scala:36:7, :657:53] wire [3:0] _a_opcodes_set_interm_T_1 = {_a_opcodes_set_interm_T[3:1], 1'h1}; // @[Monitor.scala:657:{53,61}] assign a_opcodes_set_interm = _T_598 ? _a_opcodes_set_interm_T_1 : 4'h0; // @[Monitor.scala:646:40, :655:{25,70}, :657:{28,61}] wire [2:0] _a_sizes_set_interm_T = {io_in_a_bits_size_0, 1'h0}; // @[Monitor.scala:36:7, :658:51] wire [2:0] _a_sizes_set_interm_T_1 = {_a_sizes_set_interm_T[2:1], 1'h1}; // @[Monitor.scala:658:{51,59}] assign a_sizes_set_interm = _T_598 ? _a_sizes_set_interm_T_1 : 3'h0; // @[Monitor.scala:648:38, :655:{25,70}, :658:{28,59}] wire [13:0] _GEN_3 = {1'h0, io_in_a_bits_source_0, 2'h0}; // @[Monitor.scala:36:7, :659:79] wire [13:0] _a_opcodes_set_T; // @[Monitor.scala:659:79] assign _a_opcodes_set_T = _GEN_3; // @[Monitor.scala:659:79] wire [13:0] _a_sizes_set_T; // @[Monitor.scala:660:77] assign _a_sizes_set_T = _GEN_3; // @[Monitor.scala:659:79, :660:77] wire [16386:0] _a_opcodes_set_T_1 = {16383'h0, a_opcodes_set_interm} << _a_opcodes_set_T; // @[Monitor.scala:646:40, :659:{54,79}] assign a_opcodes_set = _T_598 ? _a_opcodes_set_T_1[4159:0] : 4160'h0; // @[Monitor.scala:630:33, :655:{25,70}, :659:{28,54}] wire [16385:0] _a_sizes_set_T_1 = {16383'h0, a_sizes_set_interm} << _a_sizes_set_T; // @[Monitor.scala:648:38, :659:54, :660:{52,77}] assign a_sizes_set = _T_598 ? _a_sizes_set_T_1[4159:0] : 4160'h0; // @[Monitor.scala:632:31, :655:{25,70}, :660:{28,52}] wire [1039:0] d_clr; // @[Monitor.scala:664:34] wire [1039:0] d_clr_wo_ready; // @[Monitor.scala:665:34] wire [4159:0] d_opcodes_clr; // @[Monitor.scala:668:33] wire [4159:0] d_sizes_clr; // @[Monitor.scala:670:31] wire _GEN_4 = io_in_d_bits_opcode_0 == 3'h6; // @[Monitor.scala:36:7, :673:46] wire d_release_ack; // @[Monitor.scala:673:46] assign d_release_ack = _GEN_4; // @[Monitor.scala:673:46] wire d_release_ack_1; // @[Monitor.scala:783:46] assign d_release_ack_1 = _GEN_4; // @[Monitor.scala:673:46, :783:46] wire _T_644 = io_in_d_valid_0 & d_first_1; // @[Monitor.scala:36:7, :674:26] wire [2047:0] _GEN_5 = 2048'h1 << io_in_d_bits_source_0; // @[OneHot.scala:58:35] wire [2047:0] _d_clr_wo_ready_T; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T = _GEN_5; // @[OneHot.scala:58:35] wire [2047:0] _d_clr_T; // @[OneHot.scala:58:35] assign _d_clr_T = _GEN_5; // @[OneHot.scala:58:35] wire [2047:0] _d_clr_wo_ready_T_1; // @[OneHot.scala:58:35] assign _d_clr_wo_ready_T_1 = _GEN_5; // @[OneHot.scala:58:35] wire [2047:0] _d_clr_T_1; // @[OneHot.scala:58:35] assign _d_clr_T_1 = _GEN_5; // @[OneHot.scala:58:35] assign d_clr_wo_ready = _T_644 & ~d_release_ack ? _d_clr_wo_ready_T[1039:0] : 1040'h0; // @[OneHot.scala:58:35] wire _T_613 = _T_733 & d_first_1 & ~d_release_ack; // @[Decoupled.scala:51:35] assign d_clr = _T_613 ? _d_clr_T[1039:0] : 1040'h0; // @[OneHot.scala:58:35] wire [16398:0] _d_opcodes_clr_T_5 = 16399'hF << _d_opcodes_clr_T_4; // @[Monitor.scala:680:{76,101}] assign d_opcodes_clr = _T_613 ? _d_opcodes_clr_T_5[4159:0] : 4160'h0; // @[Monitor.scala:668:33, :678:{25,70,89}, :680:{21,76}] wire [16398:0] _d_sizes_clr_T_5 = 16399'hF << _d_sizes_clr_T_4; // @[Monitor.scala:681:{74,99}] assign d_sizes_clr = _T_613 ? _d_sizes_clr_T_5[4159:0] : 4160'h0; // @[Monitor.scala:670:31, :678:{25,70,89}, :681:{21,74}] wire _same_cycle_resp_T_1 = _same_cycle_resp_T; // @[Monitor.scala:684:{44,55}] wire _same_cycle_resp_T_2 = io_in_a_bits_source_0 == io_in_d_bits_source_0; // @[Monitor.scala:36:7, :684:113] wire same_cycle_resp = _same_cycle_resp_T_1 & _same_cycle_resp_T_2; // @[Monitor.scala:684:{55,88,113}] wire [1039:0] _inflight_T = inflight | a_set; // @[Monitor.scala:614:27, :626:34, :705:27] wire [1039:0] _inflight_T_1 = ~d_clr; // @[Monitor.scala:664:34, :705:38] wire [1039:0] _inflight_T_2 = _inflight_T & _inflight_T_1; // @[Monitor.scala:705:{27,36,38}] wire [4159:0] _inflight_opcodes_T = inflight_opcodes | a_opcodes_set; // @[Monitor.scala:616:35, :630:33, :706:43] wire [4159:0] _inflight_opcodes_T_1 = ~d_opcodes_clr; // @[Monitor.scala:668:33, :706:62] wire [4159:0] _inflight_opcodes_T_2 = _inflight_opcodes_T & _inflight_opcodes_T_1; // @[Monitor.scala:706:{43,60,62}] wire [4159:0] _inflight_sizes_T = inflight_sizes | a_sizes_set; // @[Monitor.scala:618:33, :632:31, :707:39] wire [4159:0] _inflight_sizes_T_1 = ~d_sizes_clr; // @[Monitor.scala:670:31, :707:56] wire [4159:0] _inflight_sizes_T_2 = _inflight_sizes_T & _inflight_sizes_T_1; // @[Monitor.scala:707:{39,54,56}] reg [31:0] watchdog; // @[Monitor.scala:709:27] wire [32:0] _watchdog_T = {1'h0, watchdog} + 33'h1; // @[Monitor.scala:709:27, :714:26] wire [31:0] _watchdog_T_1 = _watchdog_T[31:0]; // @[Monitor.scala:714:26] reg [1039:0] inflight_1; // @[Monitor.scala:726:35] wire [1039:0] _inflight_T_3 = inflight_1; // @[Monitor.scala:726:35, :814:35] reg [4159:0] inflight_opcodes_1; // @[Monitor.scala:727:35] wire [4159:0] _inflight_opcodes_T_3 = inflight_opcodes_1; // @[Monitor.scala:727:35, :815:43] reg [4159:0] inflight_sizes_1; // @[Monitor.scala:728:35] wire [4159:0] _inflight_sizes_T_3 = inflight_sizes_1; // @[Monitor.scala:728:35, :816:41] wire d_first_done_2 = _d_first_T_2; // @[Decoupled.scala:51:35] wire [2:0] _d_first_beats1_decode_T_7 = _d_first_beats1_decode_T_6[2:0]; // @[package.scala:243:{71,76}] wire [2:0] _d_first_beats1_decode_T_8 = ~_d_first_beats1_decode_T_7; // @[package.scala:243:{46,76}] reg d_first_counter_2; // @[Edges.scala:229:27] wire _d_first_last_T_4 = d_first_counter_2; // @[Edges.scala:229:27, :232:25] wire [1:0] _d_first_counter1_T_2 = {1'h0, d_first_counter_2} - 2'h1; // @[Edges.scala:229:27, :230:28] wire d_first_counter1_2 = _d_first_counter1_T_2[0]; // @[Edges.scala:230:28] wire d_first_2 = ~d_first_counter_2; // @[Edges.scala:229:27, :231:25] wire _d_first_count_T_2 = ~d_first_counter1_2; // @[Edges.scala:230:28, :234:27] wire _d_first_counter_T_2 = ~d_first_2 & d_first_counter1_2; // @[Edges.scala:230:28, :231:25, :236:21] wire [3:0] c_opcode_lookup; // @[Monitor.scala:747:35] wire [3:0] c_size_lookup; // @[Monitor.scala:748:35] wire [4159:0] _c_opcode_lookup_T_1 = inflight_opcodes_1 >> _c_opcode_lookup_T; // @[Monitor.scala:727:35, :749:{44,69}] wire [4159:0] _c_opcode_lookup_T_6 = {4156'h0, _c_opcode_lookup_T_1[3:0]}; // @[Monitor.scala:749:{44,97}] wire [4159:0] _c_opcode_lookup_T_7 = {1'h0, _c_opcode_lookup_T_6[4159:1]}; // @[Monitor.scala:749:{97,152}] assign c_opcode_lookup = _c_opcode_lookup_T_7[3:0]; // @[Monitor.scala:747:35, :749:{21,152}] wire [4159:0] _c_size_lookup_T_1 = inflight_sizes_1 >> _c_size_lookup_T; // @[Monitor.scala:728:35, :750:{42,67}] wire [4159:0] _c_size_lookup_T_6 = {4156'h0, _c_size_lookup_T_1[3:0]}; // @[Monitor.scala:750:{42,93}] wire [4159:0] _c_size_lookup_T_7 = {1'h0, _c_size_lookup_T_6[4159:1]}; // @[Monitor.scala:750:{93,146}] assign c_size_lookup = _c_size_lookup_T_7[3:0]; // @[Monitor.scala:748:35, :750:{21,146}] wire [1039:0] d_clr_1; // @[Monitor.scala:774:34] wire [1039:0] d_clr_wo_ready_1; // @[Monitor.scala:775:34] wire [4159:0] d_opcodes_clr_1; // @[Monitor.scala:776:34] wire [4159:0] d_sizes_clr_1; // @[Monitor.scala:777:34] wire _T_709 = io_in_d_valid_0 & d_first_2; // @[Monitor.scala:36:7, :784:26] assign d_clr_wo_ready_1 = _T_709 & d_release_ack_1 ? _d_clr_wo_ready_T_1[1039:0] : 1040'h0; // @[OneHot.scala:58:35] wire _T_691 = _T_733 & d_first_2 & d_release_ack_1; // @[Decoupled.scala:51:35] assign d_clr_1 = _T_691 ? _d_clr_T_1[1039:0] : 1040'h0; // @[OneHot.scala:58:35] wire [16398:0] _d_opcodes_clr_T_11 = 16399'hF << _d_opcodes_clr_T_10; // @[Monitor.scala:790:{76,101}] assign d_opcodes_clr_1 = _T_691 ? _d_opcodes_clr_T_11[4159:0] : 4160'h0; // @[Monitor.scala:776:34, :788:{25,70,88}, :790:{21,76}] wire [16398:0] _d_sizes_clr_T_11 = 16399'hF << _d_sizes_clr_T_10; // @[Monitor.scala:791:{74,99}] assign d_sizes_clr_1 = _T_691 ? _d_sizes_clr_T_11[4159:0] : 4160'h0; // @[Monitor.scala:777:34, :788:{25,70,88}, :791:{21,74}] wire _same_cycle_resp_T_8 = io_in_d_bits_source_0 == 11'h0; // @[Monitor.scala:36:7, :795:113] wire [1039:0] _inflight_T_4 = ~d_clr_1; // @[Monitor.scala:774:34, :814:46] wire [1039:0] _inflight_T_5 = _inflight_T_3 & _inflight_T_4; // @[Monitor.scala:814:{35,44,46}] wire [4159:0] _inflight_opcodes_T_4 = ~d_opcodes_clr_1; // @[Monitor.scala:776:34, :815:62] wire [4159:0] _inflight_opcodes_T_5 = _inflight_opcodes_T_3 & _inflight_opcodes_T_4; // @[Monitor.scala:815:{43,60,62}] wire [4159:0] _inflight_sizes_T_4 = ~d_sizes_clr_1; // @[Monitor.scala:777:34, :816:58] wire [4159:0] _inflight_sizes_T_5 = _inflight_sizes_T_3 & _inflight_sizes_T_4; // @[Monitor.scala:816:{41,56,58}] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File DivSqrtRecFN_small.scala: /*============================================================================ This Chisel source file is part of a pre-release version of the HardFloat IEEE Floating-Point Arithmetic Package, by John R. Hauser (with some contributions from Yunsup Lee and Andrew Waterman, mainly concerning testing). Copyright 2017 SiFive, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of SiFive nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY SIFIVE AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL SIFIVE OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ /* s = sigWidth c_i = newBit Division: width of a is (s+2) Normal ------ (qi + ci * 2^(-i))*b <= a q0 = 0 r0 = a q(i+1) = qi + ci*2^(-i) ri = a - qi*b r(i+1) = a - q(i+1)*b = a - qi*b - ci*2^(-i)*b r(i+1) = ri - ci*2^(-i)*b ci = ri >= 2^(-i)*b summary_i = ri != 0 i = 0 to s+1 (s+1)th bit plus summary_(i+1) gives enough information for rounding If (a < b), then we need to calculate (s+2)th bit and summary_(i+1) because we need s bits ignoring the leading zero. (This is skipCycle2 part of Hauser's code.) Hauser ------ sig_i = qi rem_i = 2^(i-2)*ri cycle_i = s+3-i sig_0 = 0 rem_0 = a/4 cycle_0 = s+3 bit_0 = 2^0 (= 2^(s+1), since we represent a, b and q with (s+2) bits) sig(i+1) = sig(i) + ci*bit_i rem(i+1) = 2rem_i - ci*b/2 ci = 2rem_i >= b/2 bit_i = 2^-i (=2^(cycle_i-2), since we represent a, b and q with (s+2) bits) cycle(i+1) = cycle_i-1 summary_1 = a <> b summary(i+1) = if ci then 2rem_i-b/2 <> 0 else summary_i, i <> 0 Proof: 2^i*r(i+1) = 2^i*ri - ci*b. Qed ci = 2^i*ri >= b. Qed summary(i+1) = if ci then rem(i+1) else summary_i, i <> 0 Now, note that all of ck's cannot be 0, since that means a is 0. So when you traverse through a chain of 0 ck's, from the end, eventually, you reach a non-zero cj. That is exactly the value of ri as the reminder remains the same. When all ck's are 0 except c0 (which must be 1) then summary_1 is set correctly according to r1 = a-b != 0. So summary(i+1) is always set correctly according to r(i+1) Square root: width of a is (s+1) Normal ------ (xi + ci*2^(-i))^2 <= a xi^2 + ci*2^(-i)*(2xi+ci*2^(-i)) <= a x0 = 0 x(i+1) = xi + ci*2^(-i) ri = a - xi^2 r(i+1) = a - x(i+1)^2 = a - (xi^2 + ci*2^(-i)*(2xi+ci*2^(-i))) = ri - ci*2^(-i)*(2xi+ci*2^(-i)) = ri - ci*2^(-i)*(2xi+2^(-i)) // ci is always 0 or 1 ci = ri >= 2^(-i)*(2xi + 2^(-i)) summary_i = ri != 0 i = 0 to s+1 For odd expression, do 2 steps initially. (s+1)th bit plus summary_(i+1) gives enough information for rounding. Hauser ------ sig_i = xi rem_i = ri*2^(i-1) cycle_i = s+2-i bit_i = 2^(-i) (= 2^(s-i) = 2^(cycle_i-2) in terms of bit representation) sig_0 = 0 rem_0 = a/2 cycle_0 = s+2 bit_0 = 1 (= 2^s in terms of bit representation) sig(i+1) = sig_i + ci * bit_i rem(i+1) = 2rem_i - ci*(2sig_i + bit_i) ci = 2*sig_i + bit_i <= 2*rem_i bit_i = 2^(cycle_i-2) (in terms of bit representation) cycle(i+1) = cycle_i-1 summary_1 = a - (2^s) (in terms of bit representation) summary(i+1) = if ci then rem(i+1) <> 0 else summary_i, i <> 0 Proof: ci = 2*sig_i + bit_i <= 2*rem_i ci = 2xi + 2^(-i) <= ri*2^i. Qed sig(i+1) = sig_i + ci * bit_i x(i+1) = xi + ci*2^(-i). Qed rem(i+1) = 2rem_i - ci*(2sig_i + bit_i) r(i+1)*2^i = ri*2^i - ci*(2xi + 2^(-i)) r(i+1) = ri - ci*2^(-i)*(2xi + 2^(-i)). Qed Same argument as before for summary. ------------------------------ Note that all registers are updated normally until cycle == 2. At cycle == 2, rem is not updated, but all other registers are updated normally. But, cycle == 1 does not read rem to calculate anything (note that final summary is calculated using the values at cycle = 2). */ package hardfloat import chisel3._ import chisel3.util._ import consts._ /*---------------------------------------------------------------------------- | Computes a division or square root for floating-point in recoded form. | Multiple clock cycles are needed for each division or square-root operation, | except possibly in special cases. *----------------------------------------------------------------------------*/ class DivSqrtRawFN_small(expWidth: Int, sigWidth: Int, options: Int) extends Module { override def desiredName = s"DivSqrtRawFN_small_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val inReady = Output(Bool()) val inValid = Input(Bool()) val sqrtOp = Input(Bool()) val a = Input(new RawFloat(expWidth, sigWidth)) val b = Input(new RawFloat(expWidth, sigWidth)) val roundingMode = Input(UInt(3.W)) /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val rawOutValid_div = Output(Bool()) val rawOutValid_sqrt = Output(Bool()) val roundingModeOut = Output(UInt(3.W)) val invalidExc = Output(Bool()) val infiniteExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ val cycleNum = RegInit(0.U(log2Ceil(sigWidth + 3).W)) val inReady = RegInit(true.B) // <-> (cycleNum <= 1) val rawOutValid = RegInit(false.B) // <-> (cycleNum === 1) val sqrtOp_Z = Reg(Bool()) val majorExc_Z = Reg(Bool()) //*** REDUCE 3 BITS TO 2-BIT CODE: val isNaN_Z = Reg(Bool()) val isInf_Z = Reg(Bool()) val isZero_Z = Reg(Bool()) val sign_Z = Reg(Bool()) val sExp_Z = Reg(SInt((expWidth + 2).W)) val fractB_Z = Reg(UInt(sigWidth.W)) val roundingMode_Z = Reg(UInt(3.W)) /*------------------------------------------------------------------------ | (The most-significant and least-significant bits of 'rem_Z' are needed | only for square roots.) *------------------------------------------------------------------------*/ val rem_Z = Reg(UInt((sigWidth + 2).W)) val notZeroRem_Z = Reg(Bool()) val sigX_Z = Reg(UInt((sigWidth + 2).W)) /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ val rawA_S = io.a val rawB_S = io.b //*** IMPROVE THESE: val notSigNaNIn_invalidExc_S_div = (rawA_S.isZero && rawB_S.isZero) || (rawA_S.isInf && rawB_S.isInf) val notSigNaNIn_invalidExc_S_sqrt = ! rawA_S.isNaN && ! rawA_S.isZero && rawA_S.sign val majorExc_S = Mux(io.sqrtOp, isSigNaNRawFloat(rawA_S) || notSigNaNIn_invalidExc_S_sqrt, isSigNaNRawFloat(rawA_S) || isSigNaNRawFloat(rawB_S) || notSigNaNIn_invalidExc_S_div || (! rawA_S.isNaN && ! rawA_S.isInf && rawB_S.isZero) ) val isNaN_S = Mux(io.sqrtOp, rawA_S.isNaN || notSigNaNIn_invalidExc_S_sqrt, rawA_S.isNaN || rawB_S.isNaN || notSigNaNIn_invalidExc_S_div ) val isInf_S = Mux(io.sqrtOp, rawA_S.isInf, rawA_S.isInf || rawB_S.isZero) val isZero_S = Mux(io.sqrtOp, rawA_S.isZero, rawA_S.isZero || rawB_S.isInf) val sign_S = rawA_S.sign ^ (! io.sqrtOp && rawB_S.sign) val specialCaseA_S = rawA_S.isNaN || rawA_S.isInf || rawA_S.isZero val specialCaseB_S = rawB_S.isNaN || rawB_S.isInf || rawB_S.isZero val normalCase_S_div = ! specialCaseA_S && ! specialCaseB_S val normalCase_S_sqrt = ! specialCaseA_S && ! rawA_S.sign val normalCase_S = Mux(io.sqrtOp, normalCase_S_sqrt, normalCase_S_div) val sExpQuot_S_div = rawA_S.sExp +& Cat(rawB_S.sExp(expWidth), ~rawB_S.sExp(expWidth - 1, 0)).asSInt //*** IS THIS OPTIMAL?: val sSatExpQuot_S_div = Cat(Mux(((BigInt(7)<<(expWidth - 2)).S <= sExpQuot_S_div), 6.U, sExpQuot_S_div(expWidth + 1, expWidth - 2) ), sExpQuot_S_div(expWidth - 3, 0) ).asSInt val evenSqrt_S = io.sqrtOp && ! rawA_S.sExp(0) val oddSqrt_S = io.sqrtOp && rawA_S.sExp(0) /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ val idle = cycleNum === 0.U val entering = inReady && io.inValid val entering_normalCase = entering && normalCase_S val processTwoBits = cycleNum >= 3.U && ((options & divSqrtOpt_twoBitsPerCycle) != 0).B val skipCycle2 = cycleNum === 3.U && sigX_Z(sigWidth + 1) && ((options & divSqrtOpt_twoBitsPerCycle) == 0).B when (! idle || entering) { def computeCycleNum(f: UInt => UInt): UInt = { Mux(entering & ! normalCase_S, f(1.U), 0.U) | Mux(entering_normalCase, Mux(io.sqrtOp, Mux(rawA_S.sExp(0), f(sigWidth.U), f((sigWidth + 1).U)), f((sigWidth + 2).U) ), 0.U ) | Mux(! entering && ! skipCycle2, f(cycleNum - Mux(processTwoBits, 2.U, 1.U)), 0.U) | Mux(skipCycle2, f(1.U), 0.U) } inReady := computeCycleNum(_ <= 1.U).asBool rawOutValid := computeCycleNum(_ === 1.U).asBool cycleNum := computeCycleNum(x => x) } io.inReady := inReady /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ when (entering) { sqrtOp_Z := io.sqrtOp majorExc_Z := majorExc_S isNaN_Z := isNaN_S isInf_Z := isInf_S isZero_Z := isZero_S sign_Z := sign_S sExp_Z := Mux(io.sqrtOp, (rawA_S.sExp>>1) +& (BigInt(1)<<(expWidth - 1)).S, sSatExpQuot_S_div ) roundingMode_Z := io.roundingMode } when (entering || ! inReady && sqrtOp_Z) { fractB_Z := Mux(inReady && ! io.sqrtOp, rawB_S.sig(sigWidth - 2, 0)<<1, 0.U) | Mux(inReady && io.sqrtOp && rawA_S.sExp(0), (BigInt(1)<<(sigWidth - 2)).U, 0.U) | Mux(inReady && io.sqrtOp && ! rawA_S.sExp(0), (BigInt(1)<<(sigWidth - 1)).U, 0.U) | Mux(! inReady /* sqrtOp_Z */ && processTwoBits, fractB_Z>>2, 0.U) | Mux(! inReady /* sqrtOp_Z */ && ! processTwoBits, fractB_Z>>1, 0.U) } /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ val rem = Mux(inReady && ! oddSqrt_S, rawA_S.sig<<1, 0.U) | Mux(inReady && oddSqrt_S, Cat(rawA_S.sig(sigWidth - 1, sigWidth - 2) - 1.U, rawA_S.sig(sigWidth - 3, 0)<<3 ), 0.U ) | Mux(! inReady, rem_Z<<1, 0.U) val bitMask = (1.U<<cycleNum)>>2 val trialTerm = Mux(inReady && ! io.sqrtOp, rawB_S.sig<<1, 0.U) | Mux(inReady && evenSqrt_S, (BigInt(1)<<sigWidth).U, 0.U) | Mux(inReady && oddSqrt_S, (BigInt(5)<<(sigWidth - 1)).U, 0.U) | Mux(! inReady, fractB_Z, 0.U) | Mux(! inReady && ! sqrtOp_Z, 1.U << sigWidth, 0.U) | Mux(! inReady && sqrtOp_Z, sigX_Z<<1, 0.U) val trialRem = rem.zext -& trialTerm.zext val newBit = (0.S <= trialRem) val nextRem_Z = Mux(newBit, trialRem.asUInt, rem)(sigWidth + 1, 0) val rem2 = nextRem_Z<<1 val trialTerm2_newBit0 = Mux(sqrtOp_Z, fractB_Z>>1 | sigX_Z<<1, fractB_Z | (1.U << sigWidth)) val trialTerm2_newBit1 = trialTerm2_newBit0 | Mux(sqrtOp_Z, fractB_Z<<1, 0.U) val trialRem2 = Mux(newBit, (trialRem<<1) - trialTerm2_newBit1.zext, (rem_Z<<2)(sigWidth+2, 0).zext - trialTerm2_newBit0.zext) val newBit2 = (0.S <= trialRem2) val nextNotZeroRem_Z = Mux(inReady || newBit, trialRem =/= 0.S, notZeroRem_Z) val nextNotZeroRem_Z_2 = // <-> Mux(newBit2, trialRem2 =/= 0.S, nextNotZeroRem_Z) processTwoBits && newBit && (0.S < (trialRem<<1) - trialTerm2_newBit1.zext) || processTwoBits && !newBit && (0.S < (rem_Z<<2)(sigWidth+2, 0).zext - trialTerm2_newBit0.zext) || !(processTwoBits && newBit2) && nextNotZeroRem_Z val nextRem_Z_2 = Mux(processTwoBits && newBit2, trialRem2.asUInt(sigWidth + 1, 0), 0.U) | Mux(processTwoBits && !newBit2, rem2(sigWidth + 1, 0), 0.U) | Mux(!processTwoBits, nextRem_Z, 0.U) when (entering || ! inReady) { notZeroRem_Z := nextNotZeroRem_Z_2 rem_Z := nextRem_Z_2 sigX_Z := Mux(inReady && ! io.sqrtOp, newBit<<(sigWidth + 1), 0.U) | Mux(inReady && io.sqrtOp, (BigInt(1)<<sigWidth).U, 0.U) | Mux(inReady && oddSqrt_S, newBit<<(sigWidth - 1), 0.U) | Mux(! inReady, sigX_Z, 0.U) | Mux(! inReady && newBit, bitMask, 0.U) | Mux(processTwoBits && newBit2, bitMask>>1, 0.U) } /*------------------------------------------------------------------------ *------------------------------------------------------------------------*/ io.rawOutValid_div := rawOutValid && ! sqrtOp_Z io.rawOutValid_sqrt := rawOutValid && sqrtOp_Z io.roundingModeOut := roundingMode_Z io.invalidExc := majorExc_Z && isNaN_Z io.infiniteExc := majorExc_Z && ! isNaN_Z io.rawOut.isNaN := isNaN_Z io.rawOut.isInf := isInf_Z io.rawOut.isZero := isZero_Z io.rawOut.sign := sign_Z io.rawOut.sExp := sExp_Z io.rawOut.sig := sigX_Z<<1 | notZeroRem_Z } /*---------------------------------------------------------------------------- *----------------------------------------------------------------------------*/ class DivSqrtRecFNToRaw_small(expWidth: Int, sigWidth: Int, options: Int) extends Module { override def desiredName = s"DivSqrtRecFMToRaw_small_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val inReady = Output(Bool()) val inValid = Input(Bool()) val sqrtOp = Input(Bool()) val a = Input(UInt((expWidth + sigWidth + 1).W)) val b = Input(UInt((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val rawOutValid_div = Output(Bool()) val rawOutValid_sqrt = Output(Bool()) val roundingModeOut = Output(UInt(3.W)) val invalidExc = Output(Bool()) val infiniteExc = Output(Bool()) val rawOut = Output(new RawFloat(expWidth, sigWidth + 2)) }) val divSqrtRawFN = Module(new DivSqrtRawFN_small(expWidth, sigWidth, options)) io.inReady := divSqrtRawFN.io.inReady divSqrtRawFN.io.inValid := io.inValid divSqrtRawFN.io.sqrtOp := io.sqrtOp divSqrtRawFN.io.a := rawFloatFromRecFN(expWidth, sigWidth, io.a) divSqrtRawFN.io.b := rawFloatFromRecFN(expWidth, sigWidth, io.b) divSqrtRawFN.io.roundingMode := io.roundingMode io.rawOutValid_div := divSqrtRawFN.io.rawOutValid_div io.rawOutValid_sqrt := divSqrtRawFN.io.rawOutValid_sqrt io.roundingModeOut := divSqrtRawFN.io.roundingModeOut io.invalidExc := divSqrtRawFN.io.invalidExc io.infiniteExc := divSqrtRawFN.io.infiniteExc io.rawOut := divSqrtRawFN.io.rawOut } /*---------------------------------------------------------------------------- *----------------------------------------------------------------------------*/ class DivSqrtRecFN_small(expWidth: Int, sigWidth: Int, options: Int) extends Module { override def desiredName = s"DivSqrtRecFM_small_e${expWidth}_s${sigWidth}" val io = IO(new Bundle { /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val inReady = Output(Bool()) val inValid = Input(Bool()) val sqrtOp = Input(Bool()) val a = Input(UInt((expWidth + sigWidth + 1).W)) val b = Input(UInt((expWidth + sigWidth + 1).W)) val roundingMode = Input(UInt(3.W)) val detectTininess = Input(UInt(1.W)) /*-------------------------------------------------------------------- *--------------------------------------------------------------------*/ val outValid_div = Output(Bool()) val outValid_sqrt = Output(Bool()) val out = Output(UInt((expWidth + sigWidth + 1).W)) val exceptionFlags = Output(UInt(5.W)) }) //------------------------------------------------------------------------ //------------------------------------------------------------------------ val divSqrtRecFNToRaw = Module(new DivSqrtRecFNToRaw_small(expWidth, sigWidth, options)) io.inReady := divSqrtRecFNToRaw.io.inReady divSqrtRecFNToRaw.io.inValid := io.inValid divSqrtRecFNToRaw.io.sqrtOp := io.sqrtOp divSqrtRecFNToRaw.io.a := io.a divSqrtRecFNToRaw.io.b := io.b divSqrtRecFNToRaw.io.roundingMode := io.roundingMode //------------------------------------------------------------------------ //------------------------------------------------------------------------ io.outValid_div := divSqrtRecFNToRaw.io.rawOutValid_div io.outValid_sqrt := divSqrtRecFNToRaw.io.rawOutValid_sqrt val roundRawFNToRecFN = Module(new RoundRawFNToRecFN(expWidth, sigWidth, 0)) roundRawFNToRecFN.io.invalidExc := divSqrtRecFNToRaw.io.invalidExc roundRawFNToRecFN.io.infiniteExc := divSqrtRecFNToRaw.io.infiniteExc roundRawFNToRecFN.io.in := divSqrtRecFNToRaw.io.rawOut roundRawFNToRecFN.io.roundingMode := divSqrtRecFNToRaw.io.roundingModeOut roundRawFNToRecFN.io.detectTininess := io.detectTininess io.out := roundRawFNToRecFN.io.out io.exceptionFlags := roundRawFNToRecFN.io.exceptionFlags }
module DivSqrtRawFN_small_e8_s24_4( // @[DivSqrtRecFN_small.scala:199:5] input clock, // @[DivSqrtRecFN_small.scala:199:5] input reset, // @[DivSqrtRecFN_small.scala:199:5] output io_inReady, // @[DivSqrtRecFN_small.scala:203:16] input io_inValid, // @[DivSqrtRecFN_small.scala:203:16] input io_sqrtOp, // @[DivSqrtRecFN_small.scala:203:16] input io_a_isNaN, // @[DivSqrtRecFN_small.scala:203:16] input io_a_isInf, // @[DivSqrtRecFN_small.scala:203:16] input io_a_isZero, // @[DivSqrtRecFN_small.scala:203:16] input io_a_sign, // @[DivSqrtRecFN_small.scala:203:16] input [9:0] io_a_sExp, // @[DivSqrtRecFN_small.scala:203:16] input [24:0] io_a_sig, // @[DivSqrtRecFN_small.scala:203:16] input io_b_isNaN, // @[DivSqrtRecFN_small.scala:203:16] input io_b_isInf, // @[DivSqrtRecFN_small.scala:203:16] input io_b_isZero, // @[DivSqrtRecFN_small.scala:203:16] input io_b_sign, // @[DivSqrtRecFN_small.scala:203:16] input [9:0] io_b_sExp, // @[DivSqrtRecFN_small.scala:203:16] input [24:0] io_b_sig, // @[DivSqrtRecFN_small.scala:203:16] input [2:0] io_roundingMode, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOutValid_div, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOutValid_sqrt, // @[DivSqrtRecFN_small.scala:203:16] output [2:0] io_roundingModeOut, // @[DivSqrtRecFN_small.scala:203:16] output io_invalidExc, // @[DivSqrtRecFN_small.scala:203:16] output io_infiniteExc, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOut_isNaN, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOut_isInf, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOut_isZero, // @[DivSqrtRecFN_small.scala:203:16] output io_rawOut_sign, // @[DivSqrtRecFN_small.scala:203:16] output [9:0] io_rawOut_sExp, // @[DivSqrtRecFN_small.scala:203:16] output [26:0] io_rawOut_sig // @[DivSqrtRecFN_small.scala:203:16] ); wire io_inValid_0 = io_inValid; // @[DivSqrtRecFN_small.scala:199:5] wire io_sqrtOp_0 = io_sqrtOp; // @[DivSqrtRecFN_small.scala:199:5] wire io_a_isNaN_0 = io_a_isNaN; // @[DivSqrtRecFN_small.scala:199:5] wire io_a_isInf_0 = io_a_isInf; // @[DivSqrtRecFN_small.scala:199:5] wire io_a_isZero_0 = io_a_isZero; // @[DivSqrtRecFN_small.scala:199:5] wire io_a_sign_0 = io_a_sign; // @[DivSqrtRecFN_small.scala:199:5] wire [9:0] io_a_sExp_0 = io_a_sExp; // @[DivSqrtRecFN_small.scala:199:5] wire [24:0] io_a_sig_0 = io_a_sig; // @[DivSqrtRecFN_small.scala:199:5] wire io_b_isNaN_0 = io_b_isNaN; // @[DivSqrtRecFN_small.scala:199:5] wire io_b_isInf_0 = io_b_isInf; // @[DivSqrtRecFN_small.scala:199:5] wire io_b_isZero_0 = io_b_isZero; // @[DivSqrtRecFN_small.scala:199:5] wire io_b_sign_0 = io_b_sign; // @[DivSqrtRecFN_small.scala:199:5] wire [9:0] io_b_sExp_0 = io_b_sExp; // @[DivSqrtRecFN_small.scala:199:5] wire [24:0] io_b_sig_0 = io_b_sig; // @[DivSqrtRecFN_small.scala:199:5] wire [2:0] io_roundingMode_0 = io_roundingMode; // @[DivSqrtRecFN_small.scala:199:5] wire [1:0] _inReady_T_15 = 2'h1; // @[DivSqrtRecFN_small.scala:313:61] wire [1:0] _rawOutValid_T_15 = 2'h1; // @[DivSqrtRecFN_small.scala:313:61] wire [1:0] _cycleNum_T_11 = 2'h1; // @[DivSqrtRecFN_small.scala:313:61] wire [21:0] _fractB_Z_T_19 = 22'h0; // @[DivSqrtRecFN_small.scala:345:16] wire [24:0] _trialTerm_T_16 = 25'h1000000; // @[DivSqrtRecFN_small.scala:366:42] wire [24:0] _trialTerm2_newBit0_T_3 = 25'h1000000; // @[DivSqrtRecFN_small.scala:373:85] wire [25:0] _nextRem_Z_2_T_3 = 26'h0; // @[DivSqrtRecFN_small.scala:386:12] wire [25:0] _nextRem_Z_2_T_7 = 26'h0; // @[DivSqrtRecFN_small.scala:387:12] wire [25:0] _nextRem_Z_2_T_8 = 26'h0; // @[DivSqrtRecFN_small.scala:386:81] wire _inReady_T_2 = 1'h1; // @[DivSqrtRecFN_small.scala:317:38] wire _inReady_T_21 = 1'h1; // @[DivSqrtRecFN_small.scala:317:38] wire _rawOutValid_T_2 = 1'h1; // @[DivSqrtRecFN_small.scala:318:42] wire _rawOutValid_T_21 = 1'h1; // @[DivSqrtRecFN_small.scala:318:42] wire _fractB_Z_T_22 = 1'h1; // @[DivSqrtRecFN_small.scala:346:45] wire _nextNotZeroRem_Z_2_T_21 = 1'h1; // @[DivSqrtRecFN_small.scala:384:9] wire _nextRem_Z_2_T_9 = 1'h1; // @[DivSqrtRecFN_small.scala:388:13] wire processTwoBits = 1'h0; // @[DivSqrtRecFN_small.scala:300:42] wire _inReady_T_5 = 1'h0; // @[DivSqrtRecFN_small.scala:317:38] wire _inReady_T_6 = 1'h0; // @[DivSqrtRecFN_small.scala:317:38] wire _inReady_T_7 = 1'h0; // @[DivSqrtRecFN_small.scala:308:24] wire _inReady_T_8 = 1'h0; // @[DivSqrtRecFN_small.scala:317:38] wire _inReady_T_9 = 1'h0; // @[DivSqrtRecFN_small.scala:307:20] wire _inReady_T_10 = 1'h0; // @[DivSqrtRecFN_small.scala:306:16] wire _rawOutValid_T_5 = 1'h0; // @[DivSqrtRecFN_small.scala:318:42] wire _rawOutValid_T_6 = 1'h0; // @[DivSqrtRecFN_small.scala:318:42] wire _rawOutValid_T_7 = 1'h0; // @[DivSqrtRecFN_small.scala:308:24] wire _rawOutValid_T_8 = 1'h0; // @[DivSqrtRecFN_small.scala:318:42] wire _rawOutValid_T_9 = 1'h0; // @[DivSqrtRecFN_small.scala:307:20] wire _rawOutValid_T_10 = 1'h0; // @[DivSqrtRecFN_small.scala:306:16] wire _fractB_Z_T_17 = 1'h0; // @[DivSqrtRecFN_small.scala:345:42] wire _nextNotZeroRem_Z_2_T = 1'h0; // @[DivSqrtRecFN_small.scala:382:24] wire _nextNotZeroRem_Z_2_T_7 = 1'h0; // @[DivSqrtRecFN_small.scala:382:34] wire _nextNotZeroRem_Z_2_T_9 = 1'h0; // @[DivSqrtRecFN_small.scala:383:24] wire _nextNotZeroRem_Z_2_T_18 = 1'h0; // @[DivSqrtRecFN_small.scala:383:35] wire _nextNotZeroRem_Z_2_T_19 = 1'h0; // @[DivSqrtRecFN_small.scala:382:85] wire _nextNotZeroRem_Z_2_T_20 = 1'h0; // @[DivSqrtRecFN_small.scala:384:26] wire _nextRem_Z_2_T = 1'h0; // @[DivSqrtRecFN_small.scala:386:28] wire _nextRem_Z_2_T_5 = 1'h0; // @[DivSqrtRecFN_small.scala:387:28] wire _sigX_Z_T_18 = 1'h0; // @[DivSqrtRecFN_small.scala:399:32] wire [28:0] _sigX_Z_T_20 = 29'h0; // @[DivSqrtRecFN_small.scala:399:16] wire _io_rawOutValid_div_T_1; // @[DivSqrtRecFN_small.scala:404:40] wire _io_rawOutValid_sqrt_T; // @[DivSqrtRecFN_small.scala:405:40] wire _io_invalidExc_T; // @[DivSqrtRecFN_small.scala:407:36] wire _io_infiniteExc_T_1; // @[DivSqrtRecFN_small.scala:408:36] wire [26:0] _io_rawOut_sig_T_1; // @[DivSqrtRecFN_small.scala:414:35] wire io_rawOut_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOut_isInf_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOut_isZero_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOut_sign_0; // @[DivSqrtRecFN_small.scala:199:5] wire [9:0] io_rawOut_sExp_0; // @[DivSqrtRecFN_small.scala:199:5] wire [26:0] io_rawOut_sig_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_inReady_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOutValid_div_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_rawOutValid_sqrt_0; // @[DivSqrtRecFN_small.scala:199:5] wire [2:0] io_roundingModeOut_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_invalidExc_0; // @[DivSqrtRecFN_small.scala:199:5] wire io_infiniteExc_0; // @[DivSqrtRecFN_small.scala:199:5] reg [4:0] cycleNum; // @[DivSqrtRecFN_small.scala:224:33] reg inReady; // @[DivSqrtRecFN_small.scala:225:33] assign io_inReady_0 = inReady; // @[DivSqrtRecFN_small.scala:199:5, :225:33] reg rawOutValid; // @[DivSqrtRecFN_small.scala:226:33] reg sqrtOp_Z; // @[DivSqrtRecFN_small.scala:228:29] reg majorExc_Z; // @[DivSqrtRecFN_small.scala:229:29] reg isNaN_Z; // @[DivSqrtRecFN_small.scala:231:29] assign io_rawOut_isNaN_0 = isNaN_Z; // @[DivSqrtRecFN_small.scala:199:5, :231:29] reg isInf_Z; // @[DivSqrtRecFN_small.scala:232:29] assign io_rawOut_isInf_0 = isInf_Z; // @[DivSqrtRecFN_small.scala:199:5, :232:29] reg isZero_Z; // @[DivSqrtRecFN_small.scala:233:29] assign io_rawOut_isZero_0 = isZero_Z; // @[DivSqrtRecFN_small.scala:199:5, :233:29] reg sign_Z; // @[DivSqrtRecFN_small.scala:234:29] assign io_rawOut_sign_0 = sign_Z; // @[DivSqrtRecFN_small.scala:199:5, :234:29] reg [9:0] sExp_Z; // @[DivSqrtRecFN_small.scala:235:29] assign io_rawOut_sExp_0 = sExp_Z; // @[DivSqrtRecFN_small.scala:199:5, :235:29] reg [23:0] fractB_Z; // @[DivSqrtRecFN_small.scala:236:29] reg [2:0] roundingMode_Z; // @[DivSqrtRecFN_small.scala:237:29] assign io_roundingModeOut_0 = roundingMode_Z; // @[DivSqrtRecFN_small.scala:199:5, :237:29] reg [25:0] rem_Z; // @[DivSqrtRecFN_small.scala:243:29] reg notZeroRem_Z; // @[DivSqrtRecFN_small.scala:244:29] reg [25:0] sigX_Z; // @[DivSqrtRecFN_small.scala:245:29] wire _notSigNaNIn_invalidExc_S_div_T = io_a_isZero_0 & io_b_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :254:24] wire _notSigNaNIn_invalidExc_S_div_T_1 = io_a_isInf_0 & io_b_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :254:59] wire notSigNaNIn_invalidExc_S_div = _notSigNaNIn_invalidExc_S_div_T | _notSigNaNIn_invalidExc_S_div_T_1; // @[DivSqrtRecFN_small.scala:254:{24,42,59}] wire _notSigNaNIn_invalidExc_S_sqrt_T = ~io_a_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5, :256:9] wire _notSigNaNIn_invalidExc_S_sqrt_T_1 = ~io_a_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :256:27] wire _notSigNaNIn_invalidExc_S_sqrt_T_2 = _notSigNaNIn_invalidExc_S_sqrt_T & _notSigNaNIn_invalidExc_S_sqrt_T_1; // @[DivSqrtRecFN_small.scala:256:{9,24,27}] wire notSigNaNIn_invalidExc_S_sqrt = _notSigNaNIn_invalidExc_S_sqrt_T_2 & io_a_sign_0; // @[DivSqrtRecFN_small.scala:199:5, :256:{24,43}] wire _majorExc_S_T = io_a_sig_0[22]; // @[common.scala:82:56] wire _majorExc_S_T_4 = io_a_sig_0[22]; // @[common.scala:82:56] wire _majorExc_S_T_1 = ~_majorExc_S_T; // @[common.scala:82:{49,56}] wire _majorExc_S_T_2 = io_a_isNaN_0 & _majorExc_S_T_1; // @[common.scala:82:{46,49}] wire _majorExc_S_T_3 = _majorExc_S_T_2 | notSigNaNIn_invalidExc_S_sqrt; // @[common.scala:82:46] wire _majorExc_S_T_5 = ~_majorExc_S_T_4; // @[common.scala:82:{49,56}] wire _majorExc_S_T_6 = io_a_isNaN_0 & _majorExc_S_T_5; // @[common.scala:82:{46,49}] wire _majorExc_S_T_7 = io_b_sig_0[22]; // @[common.scala:82:56] wire _majorExc_S_T_8 = ~_majorExc_S_T_7; // @[common.scala:82:{49,56}] wire _majorExc_S_T_9 = io_b_isNaN_0 & _majorExc_S_T_8; // @[common.scala:82:{46,49}] wire _majorExc_S_T_10 = _majorExc_S_T_6 | _majorExc_S_T_9; // @[common.scala:82:46] wire _majorExc_S_T_11 = _majorExc_S_T_10 | notSigNaNIn_invalidExc_S_div; // @[DivSqrtRecFN_small.scala:254:42, :260:{38,66}] wire _majorExc_S_T_12 = ~io_a_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5, :256:9, :262:18] wire _majorExc_S_T_13 = ~io_a_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :262:36] wire _majorExc_S_T_14 = _majorExc_S_T_12 & _majorExc_S_T_13; // @[DivSqrtRecFN_small.scala:262:{18,33,36}] wire _majorExc_S_T_15 = _majorExc_S_T_14 & io_b_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :262:{33,51}] wire _majorExc_S_T_16 = _majorExc_S_T_11 | _majorExc_S_T_15; // @[DivSqrtRecFN_small.scala:260:66, :261:46, :262:51] wire majorExc_S = io_sqrtOp_0 ? _majorExc_S_T_3 : _majorExc_S_T_16; // @[DivSqrtRecFN_small.scala:199:5, :258:12, :259:38, :261:46] wire _isNaN_S_T = io_a_isNaN_0 | notSigNaNIn_invalidExc_S_sqrt; // @[DivSqrtRecFN_small.scala:199:5, :256:43, :266:26] wire _isNaN_S_T_1 = io_a_isNaN_0 | io_b_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5, :267:26] wire _isNaN_S_T_2 = _isNaN_S_T_1 | notSigNaNIn_invalidExc_S_div; // @[DivSqrtRecFN_small.scala:254:42, :267:{26,42}] wire isNaN_S = io_sqrtOp_0 ? _isNaN_S_T : _isNaN_S_T_2; // @[DivSqrtRecFN_small.scala:199:5, :265:12, :266:26, :267:42] wire _isInf_S_T = io_a_isInf_0 | io_b_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :269:63] wire isInf_S = io_sqrtOp_0 ? io_a_isInf_0 : _isInf_S_T; // @[DivSqrtRecFN_small.scala:199:5, :269:{23,63}] wire _isZero_S_T = io_a_isZero_0 | io_b_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :270:64] wire isZero_S = io_sqrtOp_0 ? io_a_isZero_0 : _isZero_S_T; // @[DivSqrtRecFN_small.scala:199:5, :270:{23,64}] wire _sign_S_T = ~io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :271:33] wire _sign_S_T_1 = _sign_S_T & io_b_sign_0; // @[DivSqrtRecFN_small.scala:199:5, :271:{33,45}] wire sign_S = io_a_sign_0 ^ _sign_S_T_1; // @[DivSqrtRecFN_small.scala:199:5, :271:{30,45}] wire _specialCaseA_S_T = io_a_isNaN_0 | io_a_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :273:39] wire specialCaseA_S = _specialCaseA_S_T | io_a_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :273:{39,55}] wire _specialCaseB_S_T = io_b_isNaN_0 | io_b_isInf_0; // @[DivSqrtRecFN_small.scala:199:5, :274:39] wire specialCaseB_S = _specialCaseB_S_T | io_b_isZero_0; // @[DivSqrtRecFN_small.scala:199:5, :274:{39,55}] wire _normalCase_S_div_T = ~specialCaseA_S; // @[DivSqrtRecFN_small.scala:273:55, :275:28] wire _normalCase_S_div_T_1 = ~specialCaseB_S; // @[DivSqrtRecFN_small.scala:274:55, :275:48] wire normalCase_S_div = _normalCase_S_div_T & _normalCase_S_div_T_1; // @[DivSqrtRecFN_small.scala:275:{28,45,48}] wire _normalCase_S_sqrt_T = ~specialCaseA_S; // @[DivSqrtRecFN_small.scala:273:55, :275:28, :276:29] wire _normalCase_S_sqrt_T_1 = ~io_a_sign_0; // @[DivSqrtRecFN_small.scala:199:5, :276:49] wire normalCase_S_sqrt = _normalCase_S_sqrt_T & _normalCase_S_sqrt_T_1; // @[DivSqrtRecFN_small.scala:276:{29,46,49}] wire normalCase_S = io_sqrtOp_0 ? normalCase_S_sqrt : normalCase_S_div; // @[DivSqrtRecFN_small.scala:199:5, :275:45, :276:46, :277:27] wire _sExpQuot_S_div_T = io_b_sExp_0[8]; // @[DivSqrtRecFN_small.scala:199:5, :281:28] wire [7:0] _sExpQuot_S_div_T_1 = io_b_sExp_0[7:0]; // @[DivSqrtRecFN_small.scala:199:5, :281:52] wire [7:0] _sExpQuot_S_div_T_2 = ~_sExpQuot_S_div_T_1; // @[DivSqrtRecFN_small.scala:281:{40,52}] wire [8:0] _sExpQuot_S_div_T_3 = {_sExpQuot_S_div_T, _sExpQuot_S_div_T_2}; // @[DivSqrtRecFN_small.scala:281:{16,28,40}] wire [8:0] _sExpQuot_S_div_T_4 = _sExpQuot_S_div_T_3; // @[DivSqrtRecFN_small.scala:281:{16,71}] wire [10:0] sExpQuot_S_div = {io_a_sExp_0[9], io_a_sExp_0} + {{2{_sExpQuot_S_div_T_4[8]}}, _sExpQuot_S_div_T_4}; // @[DivSqrtRecFN_small.scala:199:5, :280:21, :281:71] wire _sSatExpQuot_S_div_T = $signed(sExpQuot_S_div) > 11'sh1BF; // @[DivSqrtRecFN_small.scala:280:21, :284:48] wire [3:0] _sSatExpQuot_S_div_T_1 = sExpQuot_S_div[9:6]; // @[DivSqrtRecFN_small.scala:280:21, :286:31] wire [3:0] _sSatExpQuot_S_div_T_2 = _sSatExpQuot_S_div_T ? 4'h6 : _sSatExpQuot_S_div_T_1; // @[DivSqrtRecFN_small.scala:284:{16,48}, :286:31] wire [5:0] _sSatExpQuot_S_div_T_3 = sExpQuot_S_div[5:0]; // @[DivSqrtRecFN_small.scala:280:21, :288:27] wire [9:0] _sSatExpQuot_S_div_T_4 = {_sSatExpQuot_S_div_T_2, _sSatExpQuot_S_div_T_3}; // @[DivSqrtRecFN_small.scala:284:{12,16}, :288:27] wire [9:0] sSatExpQuot_S_div = _sSatExpQuot_S_div_T_4; // @[DivSqrtRecFN_small.scala:284:12, :289:11] wire _evenSqrt_S_T = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48] wire _oddSqrt_S_T = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :292:48] wire _inReady_T_4 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :308:36] wire _rawOutValid_T_4 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :308:36] wire _cycleNum_T_3 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :308:36] wire _fractB_Z_T_6 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :343:52] wire _fractB_Z_T_11 = io_a_sExp_0[0]; // @[DivSqrtRecFN_small.scala:199:5, :291:48, :344:54] wire _evenSqrt_S_T_1 = ~_evenSqrt_S_T; // @[DivSqrtRecFN_small.scala:291:{35,48}] wire evenSqrt_S = io_sqrtOp_0 & _evenSqrt_S_T_1; // @[DivSqrtRecFN_small.scala:199:5, :291:{32,35}] wire oddSqrt_S = io_sqrtOp_0 & _oddSqrt_S_T; // @[DivSqrtRecFN_small.scala:199:5, :292:{32,48}] wire idle = cycleNum == 5'h0; // @[DivSqrtRecFN_small.scala:224:33, :296:25] wire entering = inReady & io_inValid_0; // @[DivSqrtRecFN_small.scala:199:5, :225:33, :297:28] wire entering_normalCase = entering & normalCase_S; // @[DivSqrtRecFN_small.scala:277:27, :297:28, :298:40] wire _processTwoBits_T = cycleNum > 5'h2; // @[DivSqrtRecFN_small.scala:224:33, :300:35] wire _skipCycle2_T = cycleNum == 5'h3; // @[DivSqrtRecFN_small.scala:224:33, :301:31] wire _skipCycle2_T_1 = sigX_Z[25]; // @[DivSqrtRecFN_small.scala:245:29, :301:48] wire _skipCycle2_T_2 = _skipCycle2_T & _skipCycle2_T_1; // @[DivSqrtRecFN_small.scala:301:{31,39,48}] wire skipCycle2 = _skipCycle2_T_2; // @[DivSqrtRecFN_small.scala:301:{39,63}] wire _inReady_T_22 = skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :314:16] wire _rawOutValid_T_22 = skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :314:16] wire _cycleNum_T_16 = skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :314:16] wire _inReady_T = ~normalCase_S; // @[DivSqrtRecFN_small.scala:277:27, :305:28] wire _inReady_T_1 = entering & _inReady_T; // @[DivSqrtRecFN_small.scala:297:28, :305:{26,28}] wire _inReady_T_3 = _inReady_T_1; // @[DivSqrtRecFN_small.scala:305:{16,26}] wire _inReady_T_11 = _inReady_T_3; // @[DivSqrtRecFN_small.scala:305:{16,57}] wire _inReady_T_12 = ~entering; // @[DivSqrtRecFN_small.scala:297:28, :313:17] wire _inReady_T_13 = ~skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :313:31] wire _inReady_T_14 = _inReady_T_12 & _inReady_T_13; // @[DivSqrtRecFN_small.scala:313:{17,28,31}] wire [5:0] _GEN = {1'h0, cycleNum} - 6'h1; // @[DivSqrtRecFN_small.scala:224:33, :313:56] wire [5:0] _inReady_T_16; // @[DivSqrtRecFN_small.scala:313:56] assign _inReady_T_16 = _GEN; // @[DivSqrtRecFN_small.scala:313:56] wire [5:0] _rawOutValid_T_16; // @[DivSqrtRecFN_small.scala:313:56] assign _rawOutValid_T_16 = _GEN; // @[DivSqrtRecFN_small.scala:313:56] wire [5:0] _cycleNum_T_12; // @[DivSqrtRecFN_small.scala:313:56] assign _cycleNum_T_12 = _GEN; // @[DivSqrtRecFN_small.scala:313:56] wire [4:0] _inReady_T_17 = _inReady_T_16[4:0]; // @[DivSqrtRecFN_small.scala:313:56] wire _inReady_T_18 = _inReady_T_17 < 5'h2; // @[DivSqrtRecFN_small.scala:313:56, :317:38] wire _inReady_T_19 = _inReady_T_14 & _inReady_T_18; // @[DivSqrtRecFN_small.scala:313:{16,28}, :317:38] wire _inReady_T_20 = _inReady_T_11 | _inReady_T_19; // @[DivSqrtRecFN_small.scala:305:57, :312:15, :313:16] wire _inReady_T_23 = _inReady_T_20 | _inReady_T_22; // @[DivSqrtRecFN_small.scala:312:15, :313:95, :314:16] wire _inReady_T_24 = _inReady_T_23; // @[DivSqrtRecFN_small.scala:313:95, :317:46] wire _rawOutValid_T = ~normalCase_S; // @[DivSqrtRecFN_small.scala:277:27, :305:28] wire _rawOutValid_T_1 = entering & _rawOutValid_T; // @[DivSqrtRecFN_small.scala:297:28, :305:{26,28}] wire _rawOutValid_T_3 = _rawOutValid_T_1; // @[DivSqrtRecFN_small.scala:305:{16,26}] wire _rawOutValid_T_11 = _rawOutValid_T_3; // @[DivSqrtRecFN_small.scala:305:{16,57}] wire _rawOutValid_T_12 = ~entering; // @[DivSqrtRecFN_small.scala:297:28, :313:17] wire _rawOutValid_T_13 = ~skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :313:31] wire _rawOutValid_T_14 = _rawOutValid_T_12 & _rawOutValid_T_13; // @[DivSqrtRecFN_small.scala:313:{17,28,31}] wire [4:0] _rawOutValid_T_17 = _rawOutValid_T_16[4:0]; // @[DivSqrtRecFN_small.scala:313:56] wire _rawOutValid_T_18 = _rawOutValid_T_17 == 5'h1; // @[DivSqrtRecFN_small.scala:313:56, :318:42] wire _rawOutValid_T_19 = _rawOutValid_T_14 & _rawOutValid_T_18; // @[DivSqrtRecFN_small.scala:313:{16,28}, :318:42] wire _rawOutValid_T_20 = _rawOutValid_T_11 | _rawOutValid_T_19; // @[DivSqrtRecFN_small.scala:305:57, :312:15, :313:16] wire _rawOutValid_T_23 = _rawOutValid_T_20 | _rawOutValid_T_22; // @[DivSqrtRecFN_small.scala:312:15, :313:95, :314:16] wire _rawOutValid_T_24 = _rawOutValid_T_23; // @[DivSqrtRecFN_small.scala:313:95, :318:51] wire _cycleNum_T = ~normalCase_S; // @[DivSqrtRecFN_small.scala:277:27, :305:28] wire _cycleNum_T_1 = entering & _cycleNum_T; // @[DivSqrtRecFN_small.scala:297:28, :305:{26,28}] wire _cycleNum_T_2 = _cycleNum_T_1; // @[DivSqrtRecFN_small.scala:305:{16,26}] wire [4:0] _cycleNum_T_4 = {4'hC, ~_cycleNum_T_3}; // @[DivSqrtRecFN_small.scala:308:{24,36}] wire [4:0] _cycleNum_T_5 = io_sqrtOp_0 ? _cycleNum_T_4 : 5'h1A; // @[DivSqrtRecFN_small.scala:199:5, :307:20, :308:24] wire [4:0] _cycleNum_T_6 = entering_normalCase ? _cycleNum_T_5 : 5'h0; // @[DivSqrtRecFN_small.scala:298:40, :306:16, :307:20] wire [4:0] _cycleNum_T_7 = {4'h0, _cycleNum_T_2} | _cycleNum_T_6; // @[DivSqrtRecFN_small.scala:305:{16,57}, :306:16, :313:56] wire _cycleNum_T_8 = ~entering; // @[DivSqrtRecFN_small.scala:297:28, :313:17] wire _cycleNum_T_9 = ~skipCycle2; // @[DivSqrtRecFN_small.scala:301:63, :313:31] wire _cycleNum_T_10 = _cycleNum_T_8 & _cycleNum_T_9; // @[DivSqrtRecFN_small.scala:313:{17,28,31}] wire [4:0] _cycleNum_T_13 = _cycleNum_T_12[4:0]; // @[DivSqrtRecFN_small.scala:313:56] wire [4:0] _cycleNum_T_14 = _cycleNum_T_10 ? _cycleNum_T_13 : 5'h0; // @[DivSqrtRecFN_small.scala:313:{16,28,56}] wire [4:0] _cycleNum_T_15 = _cycleNum_T_7 | _cycleNum_T_14; // @[DivSqrtRecFN_small.scala:305:57, :312:15, :313:16] wire [4:0] _cycleNum_T_17 = {_cycleNum_T_15[4:1], _cycleNum_T_15[0] | _cycleNum_T_16}; // @[DivSqrtRecFN_small.scala:312:15, :313:95, :314:16] wire [8:0] _sExp_Z_T = io_a_sExp_0[9:1]; // @[DivSqrtRecFN_small.scala:199:5, :335:29] wire [9:0] _sExp_Z_T_1 = {_sExp_Z_T[8], _sExp_Z_T} + 10'h80; // @[DivSqrtRecFN_small.scala:335:{29,34}] wire [9:0] _sExp_Z_T_2 = io_sqrtOp_0 ? _sExp_Z_T_1 : sSatExpQuot_S_div; // @[DivSqrtRecFN_small.scala:199:5, :289:11, :334:16, :335:34] wire _fractB_Z_T = ~io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :271:33, :342:28] wire _fractB_Z_T_1 = inReady & _fractB_Z_T; // @[DivSqrtRecFN_small.scala:225:33, :342:{25,28}] wire [22:0] _fractB_Z_T_2 = io_b_sig_0[22:0]; // @[DivSqrtRecFN_small.scala:199:5, :342:73] wire [23:0] _fractB_Z_T_3 = {_fractB_Z_T_2, 1'h0}; // @[DivSqrtRecFN_small.scala:342:{73,90}] wire [23:0] _fractB_Z_T_4 = _fractB_Z_T_1 ? _fractB_Z_T_3 : 24'h0; // @[DivSqrtRecFN_small.scala:342:{16,25,90}] wire _GEN_0 = inReady & io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :225:33, :343:25] wire _fractB_Z_T_5; // @[DivSqrtRecFN_small.scala:343:25] assign _fractB_Z_T_5 = _GEN_0; // @[DivSqrtRecFN_small.scala:343:25] wire _fractB_Z_T_10; // @[DivSqrtRecFN_small.scala:344:25] assign _fractB_Z_T_10 = _GEN_0; // @[DivSqrtRecFN_small.scala:343:25, :344:25] wire _sigX_Z_T_4; // @[DivSqrtRecFN_small.scala:395:25] assign _sigX_Z_T_4 = _GEN_0; // @[DivSqrtRecFN_small.scala:343:25, :395:25] wire _fractB_Z_T_7 = _fractB_Z_T_5 & _fractB_Z_T_6; // @[DivSqrtRecFN_small.scala:343:{25,38,52}] wire [22:0] _fractB_Z_T_8 = {_fractB_Z_T_7, 22'h0}; // @[DivSqrtRecFN_small.scala:343:{16,38}] wire [23:0] _fractB_Z_T_9 = {_fractB_Z_T_4[23], _fractB_Z_T_4[22:0] | _fractB_Z_T_8}; // @[DivSqrtRecFN_small.scala:342:{16,100}, :343:16] wire _fractB_Z_T_12 = ~_fractB_Z_T_11; // @[DivSqrtRecFN_small.scala:344:{41,54}] wire _fractB_Z_T_13 = _fractB_Z_T_10 & _fractB_Z_T_12; // @[DivSqrtRecFN_small.scala:344:{25,38,41}] wire [23:0] _fractB_Z_T_14 = {_fractB_Z_T_13, 23'h0}; // @[DivSqrtRecFN_small.scala:344:{16,38}] wire [23:0] _fractB_Z_T_15 = _fractB_Z_T_9 | _fractB_Z_T_14; // @[DivSqrtRecFN_small.scala:342:100, :343:100, :344:16] wire [23:0] _fractB_Z_T_20 = _fractB_Z_T_15; // @[DivSqrtRecFN_small.scala:343:100, :344:100] wire _fractB_Z_T_16 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :345:17] wire [21:0] _fractB_Z_T_18 = fractB_Z[23:2]; // @[DivSqrtRecFN_small.scala:236:29, :345:71] wire _fractB_Z_T_21 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :346:17] wire _fractB_Z_T_23 = _fractB_Z_T_21; // @[DivSqrtRecFN_small.scala:346:{17,42}] wire [22:0] _fractB_Z_T_24 = fractB_Z[23:1]; // @[DivSqrtRecFN_small.scala:236:29, :346:71] wire [22:0] _trialTerm2_newBit0_T = fractB_Z[23:1]; // @[DivSqrtRecFN_small.scala:236:29, :346:71, :373:52] wire [22:0] _fractB_Z_T_25 = _fractB_Z_T_23 ? _fractB_Z_T_24 : 23'h0; // @[DivSqrtRecFN_small.scala:346:{16,42,71}] wire [23:0] _fractB_Z_T_26 = {_fractB_Z_T_20[23], _fractB_Z_T_20[22:0] | _fractB_Z_T_25}; // @[DivSqrtRecFN_small.scala:344:100, :345:100, :346:16] wire _rem_T = ~oddSqrt_S; // @[DivSqrtRecFN_small.scala:292:32, :352:24] wire _rem_T_1 = inReady & _rem_T; // @[DivSqrtRecFN_small.scala:225:33, :352:{21,24}] wire [25:0] _rem_T_2 = {io_a_sig_0, 1'h0}; // @[DivSqrtRecFN_small.scala:199:5, :352:47] wire [25:0] _rem_T_3 = _rem_T_1 ? _rem_T_2 : 26'h0; // @[DivSqrtRecFN_small.scala:352:{12,21,47}] wire _GEN_1 = inReady & oddSqrt_S; // @[DivSqrtRecFN_small.scala:225:33, :292:32, :353:21] wire _rem_T_4; // @[DivSqrtRecFN_small.scala:353:21] assign _rem_T_4 = _GEN_1; // @[DivSqrtRecFN_small.scala:353:21] wire _trialTerm_T_7; // @[DivSqrtRecFN_small.scala:364:21] assign _trialTerm_T_7 = _GEN_1; // @[DivSqrtRecFN_small.scala:353:21, :364:21] wire _sigX_Z_T_7; // @[DivSqrtRecFN_small.scala:396:25] assign _sigX_Z_T_7 = _GEN_1; // @[DivSqrtRecFN_small.scala:353:21, :396:25] wire [1:0] _rem_T_5 = io_a_sig_0[23:22]; // @[DivSqrtRecFN_small.scala:199:5, :354:27] wire [2:0] _rem_T_6 = {1'h0, _rem_T_5} - 3'h1; // @[DivSqrtRecFN_small.scala:354:{27,56}] wire [1:0] _rem_T_7 = _rem_T_6[1:0]; // @[DivSqrtRecFN_small.scala:354:56] wire [21:0] _rem_T_8 = io_a_sig_0[21:0]; // @[DivSqrtRecFN_small.scala:199:5, :355:27] wire [24:0] _rem_T_9 = {_rem_T_8, 3'h0}; // @[DivSqrtRecFN_small.scala:300:35, :355:{27,44}] wire [26:0] _rem_T_10 = {_rem_T_7, _rem_T_9}; // @[DivSqrtRecFN_small.scala:354:{16,56}, :355:44] wire [26:0] _rem_T_11 = _rem_T_4 ? _rem_T_10 : 27'h0; // @[DivSqrtRecFN_small.scala:353:{12,21}, :354:16] wire [26:0] _rem_T_12 = {1'h0, _rem_T_3} | _rem_T_11; // @[DivSqrtRecFN_small.scala:352:{12,57}, :353:12] wire _rem_T_13 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :359:13] wire [26:0] _rem_T_14 = {rem_Z, 1'h0}; // @[DivSqrtRecFN_small.scala:243:29, :359:29] wire [26:0] _rem_T_15 = _rem_T_13 ? _rem_T_14 : 27'h0; // @[DivSqrtRecFN_small.scala:359:{12,13,29}] wire [26:0] rem = _rem_T_12 | _rem_T_15; // @[DivSqrtRecFN_small.scala:352:57, :358:11, :359:12] wire [31:0] _bitMask_T = 32'h1 << cycleNum; // @[DivSqrtRecFN_small.scala:224:33, :360:23] wire [29:0] bitMask = _bitMask_T[31:2]; // @[DivSqrtRecFN_small.scala:360:{23,34}] wire _trialTerm_T = ~io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :271:33, :362:24] wire _trialTerm_T_1 = inReady & _trialTerm_T; // @[DivSqrtRecFN_small.scala:225:33, :362:{21,24}] wire [25:0] _trialTerm_T_2 = {io_b_sig_0, 1'h0}; // @[DivSqrtRecFN_small.scala:199:5, :362:48] wire [25:0] _trialTerm_T_3 = _trialTerm_T_1 ? _trialTerm_T_2 : 26'h0; // @[DivSqrtRecFN_small.scala:362:{12,21,48}] wire _trialTerm_T_4 = inReady & evenSqrt_S; // @[DivSqrtRecFN_small.scala:225:33, :291:32, :363:21] wire [24:0] _trialTerm_T_5 = {_trialTerm_T_4, 24'h0}; // @[DivSqrtRecFN_small.scala:363:{12,21}] wire [25:0] _trialTerm_T_6 = {_trialTerm_T_3[25], _trialTerm_T_3[24:0] | _trialTerm_T_5}; // @[DivSqrtRecFN_small.scala:362:{12,74}, :363:12] wire [25:0] _trialTerm_T_8 = _trialTerm_T_7 ? 26'h2800000 : 26'h0; // @[DivSqrtRecFN_small.scala:364:{12,21}] wire [25:0] _trialTerm_T_9 = _trialTerm_T_6 | _trialTerm_T_8; // @[DivSqrtRecFN_small.scala:362:74, :363:74, :364:12] wire _trialTerm_T_10 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :365:13] wire [23:0] _trialTerm_T_11 = _trialTerm_T_10 ? fractB_Z : 24'h0; // @[DivSqrtRecFN_small.scala:236:29, :365:{12,13}] wire [25:0] _trialTerm_T_12 = {_trialTerm_T_9[25:24], _trialTerm_T_9[23:0] | _trialTerm_T_11}; // @[DivSqrtRecFN_small.scala:363:74, :364:74, :365:12] wire _trialTerm_T_13 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :366:13] wire _trialTerm_T_14 = ~sqrtOp_Z; // @[DivSqrtRecFN_small.scala:228:29, :366:26] wire _trialTerm_T_15 = _trialTerm_T_13 & _trialTerm_T_14; // @[DivSqrtRecFN_small.scala:366:{13,23,26}] wire [24:0] _trialTerm_T_17 = {_trialTerm_T_15, 24'h0}; // @[DivSqrtRecFN_small.scala:366:{12,23}] wire [25:0] _trialTerm_T_18 = {_trialTerm_T_12[25], _trialTerm_T_12[24:0] | _trialTerm_T_17}; // @[DivSqrtRecFN_small.scala:364:74, :365:74, :366:12] wire _trialTerm_T_19 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :367:13] wire _trialTerm_T_20 = _trialTerm_T_19 & sqrtOp_Z; // @[DivSqrtRecFN_small.scala:228:29, :367:{13,23}] wire [26:0] _GEN_2 = {sigX_Z, 1'h0}; // @[DivSqrtRecFN_small.scala:245:29, :367:44] wire [26:0] _trialTerm_T_21; // @[DivSqrtRecFN_small.scala:367:44] assign _trialTerm_T_21 = _GEN_2; // @[DivSqrtRecFN_small.scala:367:44] wire [26:0] _trialTerm2_newBit0_T_1; // @[DivSqrtRecFN_small.scala:373:64] assign _trialTerm2_newBit0_T_1 = _GEN_2; // @[DivSqrtRecFN_small.scala:367:44, :373:64] wire [26:0] _io_rawOut_sig_T; // @[DivSqrtRecFN_small.scala:414:31] assign _io_rawOut_sig_T = _GEN_2; // @[DivSqrtRecFN_small.scala:367:44, :414:31] wire [26:0] _trialTerm_T_22 = _trialTerm_T_20 ? _trialTerm_T_21 : 27'h0; // @[DivSqrtRecFN_small.scala:367:{12,23,44}] wire [26:0] trialTerm = {1'h0, _trialTerm_T_18} | _trialTerm_T_22; // @[DivSqrtRecFN_small.scala:365:74, :366:74, :367:12] wire [27:0] _trialRem_T = {1'h0, rem}; // @[DivSqrtRecFN_small.scala:358:11, :368:24] wire [27:0] _trialRem_T_1 = {1'h0, trialTerm}; // @[DivSqrtRecFN_small.scala:366:74, :368:42] wire [28:0] trialRem = {_trialRem_T[27], _trialRem_T} - {_trialRem_T_1[27], _trialRem_T_1}; // @[DivSqrtRecFN_small.scala:368:{24,29,42}] wire [28:0] _nextRem_Z_T = trialRem; // @[DivSqrtRecFN_small.scala:368:29, :371:42] wire newBit = $signed(trialRem) > -29'sh1; // @[DivSqrtRecFN_small.scala:368:29, :369:23] wire [28:0] _nextRem_Z_T_1 = newBit ? _nextRem_Z_T : {2'h0, rem}; // @[DivSqrtRecFN_small.scala:354:56, :358:11, :369:23, :371:{24,42}] wire [25:0] nextRem_Z = _nextRem_Z_T_1[25:0]; // @[DivSqrtRecFN_small.scala:371:{24,54}] wire [25:0] _nextRem_Z_2_T_10 = nextRem_Z; // @[DivSqrtRecFN_small.scala:371:54, :388:12] wire [26:0] rem2 = {nextRem_Z, 1'h0}; // @[DivSqrtRecFN_small.scala:371:54, :372:25] wire [26:0] _trialTerm2_newBit0_T_2 = {4'h0, _trialTerm2_newBit0_T} | _trialTerm2_newBit0_T_1; // @[DivSqrtRecFN_small.scala:313:56, :373:{52,56,64}] wire [24:0] _trialTerm2_newBit0_T_4 = {1'h1, fractB_Z}; // @[DivSqrtRecFN_small.scala:236:29, :373:78] wire [26:0] trialTerm2_newBit0 = sqrtOp_Z ? _trialTerm2_newBit0_T_2 : {2'h0, _trialTerm2_newBit0_T_4}; // @[DivSqrtRecFN_small.scala:228:29, :354:56, :373:{33,56,78}] wire [24:0] _trialTerm2_newBit1_T = {fractB_Z, 1'h0}; // @[DivSqrtRecFN_small.scala:236:29, :374:73] wire [24:0] _trialTerm2_newBit1_T_1 = sqrtOp_Z ? _trialTerm2_newBit1_T : 25'h0; // @[DivSqrtRecFN_small.scala:228:29, :374:{54,73}] wire [26:0] trialTerm2_newBit1 = {trialTerm2_newBit0[26:25], trialTerm2_newBit0[24:0] | _trialTerm2_newBit1_T_1}; // @[DivSqrtRecFN_small.scala:373:33, :374:{49,54}] wire [29:0] _GEN_3 = {trialRem, 1'h0}; // @[DivSqrtRecFN_small.scala:368:29, :377:22] wire [29:0] _trialRem2_T; // @[DivSqrtRecFN_small.scala:377:22] assign _trialRem2_T = _GEN_3; // @[DivSqrtRecFN_small.scala:377:22] wire [29:0] _nextNotZeroRem_Z_2_T_1; // @[DivSqrtRecFN_small.scala:382:53] assign _nextNotZeroRem_Z_2_T_1 = _GEN_3; // @[DivSqrtRecFN_small.scala:377:22, :382:53] wire [27:0] _GEN_4 = {1'h0, trialTerm2_newBit1}; // @[DivSqrtRecFN_small.scala:374:49, :377:48] wire [27:0] _trialRem2_T_1; // @[DivSqrtRecFN_small.scala:377:48] assign _trialRem2_T_1 = _GEN_4; // @[DivSqrtRecFN_small.scala:377:48] wire [27:0] _nextNotZeroRem_Z_2_T_2; // @[DivSqrtRecFN_small.scala:382:79] assign _nextNotZeroRem_Z_2_T_2 = _GEN_4; // @[DivSqrtRecFN_small.scala:377:48, :382:79] wire [30:0] _trialRem2_T_2 = {_trialRem2_T[29], _trialRem2_T} - {{3{_trialRem2_T_1[27]}}, _trialRem2_T_1}; // @[DivSqrtRecFN_small.scala:377:{22,27,48}] wire [29:0] _trialRem2_T_3 = _trialRem2_T_2[29:0]; // @[DivSqrtRecFN_small.scala:377:27] wire [29:0] _trialRem2_T_4 = _trialRem2_T_3; // @[DivSqrtRecFN_small.scala:377:27] wire [27:0] _GEN_5 = {rem_Z, 2'h0}; // @[DivSqrtRecFN_small.scala:243:29, :354:56, :378:19] wire [27:0] _trialRem2_T_5; // @[DivSqrtRecFN_small.scala:378:19] assign _trialRem2_T_5 = _GEN_5; // @[DivSqrtRecFN_small.scala:378:19] wire [27:0] _nextNotZeroRem_Z_2_T_10; // @[DivSqrtRecFN_small.scala:383:51] assign _nextNotZeroRem_Z_2_T_10 = _GEN_5; // @[DivSqrtRecFN_small.scala:378:19, :383:51] wire [26:0] _trialRem2_T_6 = _trialRem2_T_5[26:0]; // @[DivSqrtRecFN_small.scala:378:{19,23}] wire [27:0] _trialRem2_T_7 = {1'h0, _trialRem2_T_6}; // @[DivSqrtRecFN_small.scala:378:{23,39}] wire [27:0] _GEN_6 = {1'h0, trialTerm2_newBit0}; // @[DivSqrtRecFN_small.scala:373:33, :378:65] wire [27:0] _trialRem2_T_8; // @[DivSqrtRecFN_small.scala:378:65] assign _trialRem2_T_8 = _GEN_6; // @[DivSqrtRecFN_small.scala:378:65] wire [27:0] _nextNotZeroRem_Z_2_T_13; // @[DivSqrtRecFN_small.scala:383:97] assign _nextNotZeroRem_Z_2_T_13 = _GEN_6; // @[DivSqrtRecFN_small.scala:378:65, :383:97] wire [28:0] _trialRem2_T_9 = {_trialRem2_T_7[27], _trialRem2_T_7} - {_trialRem2_T_8[27], _trialRem2_T_8}; // @[DivSqrtRecFN_small.scala:378:{39,44,65}] wire [27:0] _trialRem2_T_10 = _trialRem2_T_9[27:0]; // @[DivSqrtRecFN_small.scala:378:44] wire [27:0] _trialRem2_T_11 = _trialRem2_T_10; // @[DivSqrtRecFN_small.scala:378:44] wire [29:0] trialRem2 = newBit ? _trialRem2_T_4 : {{2{_trialRem2_T_11[27]}}, _trialRem2_T_11}; // @[DivSqrtRecFN_small.scala:369:23, :376:12, :377:27, :378:44] wire [29:0] _nextRem_Z_2_T_1 = trialRem2; // @[DivSqrtRecFN_small.scala:376:12, :386:51] wire newBit2 = $signed(trialRem2) > -30'sh1; // @[DivSqrtRecFN_small.scala:376:12, :379:24] wire _nextNotZeroRem_Z_T = inReady | newBit; // @[DivSqrtRecFN_small.scala:225:33, :369:23, :380:40] wire _nextNotZeroRem_Z_T_1 = |trialRem; // @[DivSqrtRecFN_small.scala:368:29, :380:60] wire nextNotZeroRem_Z = _nextNotZeroRem_Z_T ? _nextNotZeroRem_Z_T_1 : notZeroRem_Z; // @[DivSqrtRecFN_small.scala:244:29, :380:{31,40,60}] wire _nextNotZeroRem_Z_2_T_22 = nextNotZeroRem_Z; // @[DivSqrtRecFN_small.scala:380:31, :384:38] wire [30:0] _nextNotZeroRem_Z_2_T_3 = {_nextNotZeroRem_Z_2_T_1[29], _nextNotZeroRem_Z_2_T_1} - {{3{_nextNotZeroRem_Z_2_T_2[27]}}, _nextNotZeroRem_Z_2_T_2}; // @[DivSqrtRecFN_small.scala:382:{53,58,79}] wire [29:0] _nextNotZeroRem_Z_2_T_4 = _nextNotZeroRem_Z_2_T_3[29:0]; // @[DivSqrtRecFN_small.scala:382:58] wire [29:0] _nextNotZeroRem_Z_2_T_5 = _nextNotZeroRem_Z_2_T_4; // @[DivSqrtRecFN_small.scala:382:58] wire _nextNotZeroRem_Z_2_T_6 = $signed(_nextNotZeroRem_Z_2_T_5) > 30'sh0; // @[DivSqrtRecFN_small.scala:379:24, :382:{42,58}] wire _nextNotZeroRem_Z_2_T_8 = ~newBit; // @[DivSqrtRecFN_small.scala:369:23, :383:27] wire [26:0] _nextNotZeroRem_Z_2_T_11 = _nextNotZeroRem_Z_2_T_10[26:0]; // @[DivSqrtRecFN_small.scala:383:{51,55}] wire [27:0] _nextNotZeroRem_Z_2_T_12 = {1'h0, _nextNotZeroRem_Z_2_T_11}; // @[DivSqrtRecFN_small.scala:383:{55,71}] wire [28:0] _nextNotZeroRem_Z_2_T_14 = {_nextNotZeroRem_Z_2_T_12[27], _nextNotZeroRem_Z_2_T_12} - {_nextNotZeroRem_Z_2_T_13[27], _nextNotZeroRem_Z_2_T_13}; // @[DivSqrtRecFN_small.scala:383:{71,76,97}] wire [27:0] _nextNotZeroRem_Z_2_T_15 = _nextNotZeroRem_Z_2_T_14[27:0]; // @[DivSqrtRecFN_small.scala:383:76] wire [27:0] _nextNotZeroRem_Z_2_T_16 = _nextNotZeroRem_Z_2_T_15; // @[DivSqrtRecFN_small.scala:383:76] wire _nextNotZeroRem_Z_2_T_17 = $signed(_nextNotZeroRem_Z_2_T_16) > 28'sh0; // @[DivSqrtRecFN_small.scala:383:{43,76}] wire nextNotZeroRem_Z_2 = _nextNotZeroRem_Z_2_T_22; // @[DivSqrtRecFN_small.scala:383:103, :384:38] wire [25:0] _nextRem_Z_2_T_2 = _nextRem_Z_2_T_1[25:0]; // @[DivSqrtRecFN_small.scala:386:{51,57}] wire _nextRem_Z_2_T_4 = ~newBit2; // @[DivSqrtRecFN_small.scala:379:24, :387:31] wire [25:0] _nextRem_Z_2_T_6 = rem2[25:0]; // @[DivSqrtRecFN_small.scala:372:25, :387:45] wire [25:0] nextRem_Z_2 = _nextRem_Z_2_T_10; // @[DivSqrtRecFN_small.scala:387:83, :388:12] wire _sigX_Z_T = ~io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :271:33, :394:28] wire _sigX_Z_T_1 = inReady & _sigX_Z_T; // @[DivSqrtRecFN_small.scala:225:33, :394:{25,28}] wire [25:0] _sigX_Z_T_2 = {newBit, 25'h0}; // @[DivSqrtRecFN_small.scala:369:23, :394:50] wire [25:0] _sigX_Z_T_3 = _sigX_Z_T_1 ? _sigX_Z_T_2 : 26'h0; // @[DivSqrtRecFN_small.scala:394:{16,25,50}] wire [24:0] _sigX_Z_T_5 = {_sigX_Z_T_4, 24'h0}; // @[DivSqrtRecFN_small.scala:395:{16,25}] wire [25:0] _sigX_Z_T_6 = {_sigX_Z_T_3[25], _sigX_Z_T_3[24:0] | _sigX_Z_T_5}; // @[DivSqrtRecFN_small.scala:394:{16,74}, :395:16] wire [23:0] _sigX_Z_T_8 = {newBit, 23'h0}; // @[DivSqrtRecFN_small.scala:369:23, :396:50] wire [23:0] _sigX_Z_T_9 = _sigX_Z_T_7 ? _sigX_Z_T_8 : 24'h0; // @[DivSqrtRecFN_small.scala:396:{16,25,50}] wire [25:0] _sigX_Z_T_10 = {_sigX_Z_T_6[25:24], _sigX_Z_T_6[23:0] | _sigX_Z_T_9}; // @[DivSqrtRecFN_small.scala:394:74, :395:74, :396:16] wire _sigX_Z_T_11 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :397:17] wire [25:0] _sigX_Z_T_12 = _sigX_Z_T_11 ? sigX_Z : 26'h0; // @[DivSqrtRecFN_small.scala:245:29, :397:{16,17}] wire [25:0] _sigX_Z_T_13 = _sigX_Z_T_10 | _sigX_Z_T_12; // @[DivSqrtRecFN_small.scala:395:74, :396:74, :397:16] wire _sigX_Z_T_14 = ~inReady; // @[DivSqrtRecFN_small.scala:225:33, :340:23, :398:17] wire _sigX_Z_T_15 = _sigX_Z_T_14 & newBit; // @[DivSqrtRecFN_small.scala:369:23, :398:{17,27}] wire [29:0] _sigX_Z_T_16 = _sigX_Z_T_15 ? bitMask : 30'h0; // @[DivSqrtRecFN_small.scala:360:34, :379:24, :398:{16,27}] wire [29:0] _sigX_Z_T_17 = {4'h0, _sigX_Z_T_13} | _sigX_Z_T_16; // @[DivSqrtRecFN_small.scala:313:56, :396:74, :397:74, :398:16] wire [29:0] _sigX_Z_T_21 = _sigX_Z_T_17; // @[DivSqrtRecFN_small.scala:397:74, :398:74] wire [28:0] _sigX_Z_T_19 = bitMask[29:1]; // @[DivSqrtRecFN_small.scala:360:34, :399:51] wire _io_rawOutValid_div_T = ~sqrtOp_Z; // @[DivSqrtRecFN_small.scala:228:29, :366:26, :404:43] assign _io_rawOutValid_div_T_1 = rawOutValid & _io_rawOutValid_div_T; // @[DivSqrtRecFN_small.scala:226:33, :404:{40,43}] assign io_rawOutValid_div_0 = _io_rawOutValid_div_T_1; // @[DivSqrtRecFN_small.scala:199:5, :404:40] assign _io_rawOutValid_sqrt_T = rawOutValid & sqrtOp_Z; // @[DivSqrtRecFN_small.scala:226:33, :228:29, :405:40] assign io_rawOutValid_sqrt_0 = _io_rawOutValid_sqrt_T; // @[DivSqrtRecFN_small.scala:199:5, :405:40] assign _io_invalidExc_T = majorExc_Z & isNaN_Z; // @[DivSqrtRecFN_small.scala:229:29, :231:29, :407:36] assign io_invalidExc_0 = _io_invalidExc_T; // @[DivSqrtRecFN_small.scala:199:5, :407:36] wire _io_infiniteExc_T = ~isNaN_Z; // @[DivSqrtRecFN_small.scala:231:29, :408:39] assign _io_infiniteExc_T_1 = majorExc_Z & _io_infiniteExc_T; // @[DivSqrtRecFN_small.scala:229:29, :408:{36,39}] assign io_infiniteExc_0 = _io_infiniteExc_T_1; // @[DivSqrtRecFN_small.scala:199:5, :408:36] assign _io_rawOut_sig_T_1 = {_io_rawOut_sig_T[26:1], _io_rawOut_sig_T[0] | notZeroRem_Z}; // @[DivSqrtRecFN_small.scala:244:29, :414:{31,35}] assign io_rawOut_sig_0 = _io_rawOut_sig_T_1; // @[DivSqrtRecFN_small.scala:199:5, :414:35] always @(posedge clock) begin // @[DivSqrtRecFN_small.scala:199:5] if (reset) begin // @[DivSqrtRecFN_small.scala:199:5] cycleNum <= 5'h0; // @[DivSqrtRecFN_small.scala:224:33] inReady <= 1'h1; // @[DivSqrtRecFN_small.scala:225:33] rawOutValid <= 1'h0; // @[DivSqrtRecFN_small.scala:226:33] end else if (~idle | entering) begin // @[DivSqrtRecFN_small.scala:296:25, :297:28, :303:{11,18}] cycleNum <= _cycleNum_T_17; // @[DivSqrtRecFN_small.scala:224:33, :313:95] inReady <= _inReady_T_24; // @[DivSqrtRecFN_small.scala:225:33, :317:46] rawOutValid <= _rawOutValid_T_24; // @[DivSqrtRecFN_small.scala:226:33, :318:51] end if (entering) begin // @[DivSqrtRecFN_small.scala:297:28] sqrtOp_Z <= io_sqrtOp_0; // @[DivSqrtRecFN_small.scala:199:5, :228:29] majorExc_Z <= majorExc_S; // @[DivSqrtRecFN_small.scala:229:29, :258:12] isNaN_Z <= isNaN_S; // @[DivSqrtRecFN_small.scala:231:29, :265:12] isInf_Z <= isInf_S; // @[DivSqrtRecFN_small.scala:232:29, :269:23] isZero_Z <= isZero_S; // @[DivSqrtRecFN_small.scala:233:29, :270:23] sign_Z <= sign_S; // @[DivSqrtRecFN_small.scala:234:29, :271:30] sExp_Z <= _sExp_Z_T_2; // @[DivSqrtRecFN_small.scala:235:29, :334:16] roundingMode_Z <= io_roundingMode_0; // @[DivSqrtRecFN_small.scala:199:5, :237:29] end if (entering | ~inReady & sqrtOp_Z) // @[DivSqrtRecFN_small.scala:225:33, :228:29, :297:28, :340:{20,23,33}] fractB_Z <= _fractB_Z_T_26; // @[DivSqrtRecFN_small.scala:236:29, :345:100] if (entering | ~inReady) begin // @[DivSqrtRecFN_small.scala:225:33, :297:28, :340:23, :390:20] rem_Z <= nextRem_Z_2; // @[DivSqrtRecFN_small.scala:243:29, :387:83] notZeroRem_Z <= nextNotZeroRem_Z_2; // @[DivSqrtRecFN_small.scala:244:29, :383:103] sigX_Z <= _sigX_Z_T_21[25:0]; // @[DivSqrtRecFN_small.scala:245:29, :393:16, :398:74] end always @(posedge) assign io_inReady = io_inReady_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOutValid_div = io_rawOutValid_div_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOutValid_sqrt = io_rawOutValid_sqrt_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_roundingModeOut = io_roundingModeOut_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_invalidExc = io_invalidExc_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_infiniteExc = io_infiniteExc_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_isNaN = io_rawOut_isNaN_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_isInf = io_rawOut_isInf_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_isZero = io_rawOut_isZero_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_sign = io_rawOut_sign_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_sExp = io_rawOut_sExp_0; // @[DivSqrtRecFN_small.scala:199:5] assign io_rawOut_sig = io_rawOut_sig_0; // @[DivSqrtRecFN_small.scala:199:5] endmodule
Generate the Verilog code corresponding to the following Chisel files. File SinkC.scala: /* * Copyright 2019 SiFive, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You should have received a copy of LICENSE.Apache2 along with * this software. If not, you may obtain a copy at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package sifive.blocks.inclusivecache import chisel3._ import chisel3.util._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ class SinkCResponse(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params) { val last = Bool() val set = UInt(params.setBits.W) val tag = UInt(params.tagBits.W) val source = UInt(params.inner.bundle.sourceBits.W) val param = UInt(3.W) val data = Bool() } class PutBufferCEntry(params: InclusiveCacheParameters) extends InclusiveCacheBundle(params) { val data = UInt(params.inner.bundle.dataBits.W) val corrupt = Bool() } class SinkC(params: InclusiveCacheParameters) extends Module { val io = IO(new Bundle { val req = Decoupled(new FullRequest(params)) // Release val resp = Valid(new SinkCResponse(params)) // ProbeAck val c = Flipped(Decoupled(new TLBundleC(params.inner.bundle))) // Find 'way' via MSHR CAM lookup val set = UInt(params.setBits.W) val way = Flipped(UInt(params.wayBits.W)) // ProbeAck write-back val bs_adr = Decoupled(new BankedStoreInnerAddress(params)) val bs_dat = new BankedStoreInnerPoison(params) // SourceD sideband val rel_pop = Flipped(Decoupled(new PutBufferPop(params))) val rel_beat = new PutBufferCEntry(params) }) if (params.firstLevel) { // Tie off unused ports io.req.valid := false.B io.req.bits := DontCare io.resp.valid := false.B io.resp.bits := DontCare io.c.ready := true.B io.set := 0.U io.bs_adr.valid := false.B io.bs_adr.bits := DontCare io.bs_dat := DontCare io.rel_pop.ready := true.B io.rel_beat := DontCare } else { // No restrictions on the type of buffer val c = params.micro.innerBuf.c(io.c) val (tag, set, offset) = params.parseAddress(c.bits.address) val (first, last, _, beat) = params.inner.count(c) val hasData = params.inner.hasData(c.bits) val raw_resp = c.bits.opcode === TLMessages.ProbeAck || c.bits.opcode === TLMessages.ProbeAckData val resp = Mux(c.valid, raw_resp, RegEnable(raw_resp, c.valid)) // Handling of C is broken into two cases: // ProbeAck // if hasData, must be written to BankedStore // if last beat, trigger resp // Release // if first beat, trigger req // if hasData, go to putBuffer // if hasData && first beat, must claim a list assert (!(c.valid && c.bits.corrupt), "Data poisoning unavailable") io.set := Mux(c.valid, set, RegEnable(set, c.valid)) // finds us the way // Cut path from inner C to the BankedStore SRAM setup // ... this makes it easier to layout the L2 data banks far away val bs_adr = Wire(chiselTypeOf(io.bs_adr)) io.bs_adr <> Queue(bs_adr, 1, pipe=true) io.bs_dat.data := RegEnable(c.bits.data, bs_adr.fire) bs_adr.valid := resp && (!first || (c.valid && hasData)) bs_adr.bits.noop := !c.valid bs_adr.bits.way := io.way bs_adr.bits.set := io.set bs_adr.bits.beat := Mux(c.valid, beat, RegEnable(beat + bs_adr.ready.asUInt, c.valid)) bs_adr.bits.mask := ~0.U(params.innerMaskBits.W) params.ccover(bs_adr.valid && !bs_adr.ready, "SINKC_SRAM_STALL", "Data SRAM busy") io.resp.valid := resp && c.valid && (first || last) && (!hasData || bs_adr.ready) io.resp.bits.last := last io.resp.bits.set := set io.resp.bits.tag := tag io.resp.bits.source := c.bits.source io.resp.bits.param := c.bits.param io.resp.bits.data := hasData val putbuffer = Module(new ListBuffer(ListBufferParameters(new PutBufferCEntry(params), params.relLists, params.relBeats, false))) val lists = RegInit(0.U(params.relLists.W)) val lists_set = WireInit(init = 0.U(params.relLists.W)) val lists_clr = WireInit(init = 0.U(params.relLists.W)) lists := (lists | lists_set) & ~lists_clr val free = !lists.andR val freeOH = ~(leftOR(~lists) << 1) & ~lists val freeIdx = OHToUInt(freeOH) val req_block = first && !io.req.ready val buf_block = hasData && !putbuffer.io.push.ready val set_block = hasData && first && !free params.ccover(c.valid && !raw_resp && req_block, "SINKC_REQ_STALL", "No MSHR available to sink request") params.ccover(c.valid && !raw_resp && buf_block, "SINKC_BUF_STALL", "No space in putbuffer for beat") params.ccover(c.valid && !raw_resp && set_block, "SINKC_SET_STALL", "No space in putbuffer for request") c.ready := Mux(raw_resp, !hasData || bs_adr.ready, !req_block && !buf_block && !set_block) io.req.valid := !resp && c.valid && first && !buf_block && !set_block putbuffer.io.push.valid := !resp && c.valid && hasData && !req_block && !set_block when (!resp && c.valid && first && hasData && !req_block && !buf_block) { lists_set := freeOH } val put = Mux(first, freeIdx, RegEnable(freeIdx, first)) io.req.bits.prio := VecInit(4.U(3.W).asBools) io.req.bits.control:= false.B io.req.bits.opcode := c.bits.opcode io.req.bits.param := c.bits.param io.req.bits.size := c.bits.size io.req.bits.source := c.bits.source io.req.bits.offset := offset io.req.bits.set := set io.req.bits.tag := tag io.req.bits.put := put putbuffer.io.push.bits.index := put putbuffer.io.push.bits.data.data := c.bits.data putbuffer.io.push.bits.data.corrupt := c.bits.corrupt // Grant access to pop the data putbuffer.io.pop.bits := io.rel_pop.bits.index putbuffer.io.pop.valid := io.rel_pop.fire io.rel_pop.ready := putbuffer.io.valid(io.rel_pop.bits.index(log2Ceil(params.relLists)-1,0)) io.rel_beat := putbuffer.io.data when (io.rel_pop.fire && io.rel_pop.bits.last) { lists_clr := UIntToOH(io.rel_pop.bits.index, params.relLists) } } } File Parameters.scala: /* * Copyright 2019 SiFive, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You should have received a copy of LICENSE.Apache2 along with * this software. If not, you may obtain a copy at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package sifive.blocks.inclusivecache import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util._ import freechips.rocketchip.util.property.cover import scala.math.{min,max} case class CacheParameters( level: Int, ways: Int, sets: Int, blockBytes: Int, beatBytes: Int, // inner hintsSkipProbe: Boolean) { require (ways > 0) require (sets > 0) require (blockBytes > 0 && isPow2(blockBytes)) require (beatBytes > 0 && isPow2(beatBytes)) require (blockBytes >= beatBytes) val blocks = ways * sets val sizeBytes = blocks * blockBytes val blockBeats = blockBytes/beatBytes } case class InclusiveCachePortParameters( a: BufferParams, b: BufferParams, c: BufferParams, d: BufferParams, e: BufferParams) { def apply()(implicit p: Parameters, valName: ValName) = LazyModule(new TLBuffer(a, b, c, d, e)) } object InclusiveCachePortParameters { val none = InclusiveCachePortParameters( a = BufferParams.none, b = BufferParams.none, c = BufferParams.none, d = BufferParams.none, e = BufferParams.none) val full = InclusiveCachePortParameters( a = BufferParams.default, b = BufferParams.default, c = BufferParams.default, d = BufferParams.default, e = BufferParams.default) // This removes feed-through paths from C=>A and A=>C val fullC = InclusiveCachePortParameters( a = BufferParams.none, b = BufferParams.none, c = BufferParams.default, d = BufferParams.none, e = BufferParams.none) val flowAD = InclusiveCachePortParameters( a = BufferParams.flow, b = BufferParams.none, c = BufferParams.none, d = BufferParams.flow, e = BufferParams.none) val flowAE = InclusiveCachePortParameters( a = BufferParams.flow, b = BufferParams.none, c = BufferParams.none, d = BufferParams.none, e = BufferParams.flow) // For innerBuf: // SinkA: no restrictions, flows into scheduler+putbuffer // SourceB: no restrictions, flows out of scheduler // sinkC: no restrictions, flows into scheduler+putbuffer & buffered to bankedStore // SourceD: no restrictions, flows out of bankedStore/regout // SinkE: no restrictions, flows into scheduler // // ... so while none is possible, you probably want at least flowAC to cut ready // from the scheduler delay and flowD to ease SourceD back-pressure // For outerBufer: // SourceA: must not be pipe, flows out of scheduler // SinkB: no restrictions, flows into scheduler // SourceC: pipe is useless, flows out of bankedStore/regout, parameter depth ignored // SinkD: no restrictions, flows into scheduler & bankedStore // SourceE: must not be pipe, flows out of scheduler // // ... AE take the channel ready into the scheduler, so you need at least flowAE } case class InclusiveCacheMicroParameters( writeBytes: Int, // backing store update granularity memCycles: Int = 40, // # of L2 clock cycles for a memory round-trip (50ns @ 800MHz) portFactor: Int = 4, // numSubBanks = (widest TL port * portFactor) / writeBytes dirReg: Boolean = false, innerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.fullC, // or none outerBuf: InclusiveCachePortParameters = InclusiveCachePortParameters.full) // or flowAE { require (writeBytes > 0 && isPow2(writeBytes)) require (memCycles > 0) require (portFactor >= 2) // for inner RMW and concurrent outer Relase + Grant } case class InclusiveCacheControlParameters( address: BigInt, beatBytes: Int, bankedControl: Boolean) case class InclusiveCacheParameters( cache: CacheParameters, micro: InclusiveCacheMicroParameters, control: Boolean, inner: TLEdgeIn, outer: TLEdgeOut)(implicit val p: Parameters) { require (cache.ways > 1) require (cache.sets > 1 && isPow2(cache.sets)) require (micro.writeBytes <= inner.manager.beatBytes) require (micro.writeBytes <= outer.manager.beatBytes) require (inner.manager.beatBytes <= cache.blockBytes) require (outer.manager.beatBytes <= cache.blockBytes) // Require that all cached address ranges have contiguous blocks outer.manager.managers.flatMap(_.address).foreach { a => require (a.alignment >= cache.blockBytes) } // If we are the first level cache, we do not need to support inner-BCE val firstLevel = !inner.client.clients.exists(_.supports.probe) // If we are the last level cache, we do not need to support outer-B val lastLevel = !outer.manager.managers.exists(_.regionType > RegionType.UNCACHED) require (lastLevel) // Provision enough resources to achieve full throughput with missing single-beat accesses val mshrs = InclusiveCacheParameters.all_mshrs(cache, micro) val secondary = max(mshrs, micro.memCycles - mshrs) val putLists = micro.memCycles // allow every request to be single beat val putBeats = max(2*cache.blockBeats, micro.memCycles) val relLists = 2 val relBeats = relLists*cache.blockBeats val flatAddresses = AddressSet.unify(outer.manager.managers.flatMap(_.address)) val pickMask = AddressDecoder(flatAddresses.map(Seq(_)), flatAddresses.map(_.mask).reduce(_|_)) def bitOffsets(x: BigInt, offset: Int = 0, tail: List[Int] = List.empty[Int]): List[Int] = if (x == 0) tail.reverse else bitOffsets(x >> 1, offset + 1, if ((x & 1) == 1) offset :: tail else tail) val addressMapping = bitOffsets(pickMask) val addressBits = addressMapping.size // println(s"addresses: ${flatAddresses} => ${pickMask} => ${addressBits}") val allClients = inner.client.clients.size val clientBitsRaw = inner.client.clients.filter(_.supports.probe).size val clientBits = max(1, clientBitsRaw) val stateBits = 2 val wayBits = log2Ceil(cache.ways) val setBits = log2Ceil(cache.sets) val offsetBits = log2Ceil(cache.blockBytes) val tagBits = addressBits - setBits - offsetBits val putBits = log2Ceil(max(putLists, relLists)) require (tagBits > 0) require (offsetBits > 0) val innerBeatBits = (offsetBits - log2Ceil(inner.manager.beatBytes)) max 1 val outerBeatBits = (offsetBits - log2Ceil(outer.manager.beatBytes)) max 1 val innerMaskBits = inner.manager.beatBytes / micro.writeBytes val outerMaskBits = outer.manager.beatBytes / micro.writeBytes def clientBit(source: UInt): UInt = { if (clientBitsRaw == 0) { 0.U } else { Cat(inner.client.clients.filter(_.supports.probe).map(_.sourceId.contains(source)).reverse) } } def clientSource(bit: UInt): UInt = { if (clientBitsRaw == 0) { 0.U } else { Mux1H(bit, inner.client.clients.filter(_.supports.probe).map(c => c.sourceId.start.U)) } } def parseAddress(x: UInt): (UInt, UInt, UInt) = { val offset = Cat(addressMapping.map(o => x(o,o)).reverse) val set = offset >> offsetBits val tag = set >> setBits (tag(tagBits-1, 0), set(setBits-1, 0), offset(offsetBits-1, 0)) } def widen(x: UInt, width: Int): UInt = { val y = x | 0.U(width.W) assert (y >> width === 0.U) y(width-1, 0) } def expandAddress(tag: UInt, set: UInt, offset: UInt): UInt = { val base = Cat(widen(tag, tagBits), widen(set, setBits), widen(offset, offsetBits)) val bits = Array.fill(outer.bundle.addressBits) { 0.U(1.W) } addressMapping.zipWithIndex.foreach { case (a, i) => bits(a) = base(i,i) } Cat(bits.reverse) } def restoreAddress(expanded: UInt): UInt = { val missingBits = flatAddresses .map { a => (a.widen(pickMask).base, a.widen(~pickMask)) } // key is the bits to restore on match .groupBy(_._1) .view .mapValues(_.map(_._2)) val muxMask = AddressDecoder(missingBits.values.toList) val mux = missingBits.toList.map { case (bits, addrs) => val widen = addrs.map(_.widen(~muxMask)) val matches = AddressSet .unify(widen.distinct) .map(_.contains(expanded)) .reduce(_ || _) (matches, bits.U) } expanded | Mux1H(mux) } def dirReg[T <: Data](x: T, en: Bool = true.B): T = { if (micro.dirReg) RegEnable(x, en) else x } def ccover(cond: Bool, label: String, desc: String)(implicit sourceInfo: SourceInfo) = cover(cond, "CCACHE_L" + cache.level + "_" + label, "MemorySystem;;" + desc) } object MetaData { val stateBits = 2 def INVALID: UInt = 0.U(stateBits.W) // way is empty def BRANCH: UInt = 1.U(stateBits.W) // outer slave cache is trunk def TRUNK: UInt = 2.U(stateBits.W) // unique inner master cache is trunk def TIP: UInt = 3.U(stateBits.W) // we are trunk, inner masters are branch // Does a request need trunk? def needT(opcode: UInt, param: UInt): Bool = { !opcode(2) || (opcode === TLMessages.Hint && param === TLHints.PREFETCH_WRITE) || ((opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm) && param =/= TLPermissions.NtoB) } // Does a request prove the client need not be probed? def skipProbeN(opcode: UInt, hintsSkipProbe: Boolean): Bool = { // Acquire(toB) and Get => is N, so no probe // Acquire(*toT) => is N or B, but need T, so no probe // Hint => could be anything, so probe IS needed, if hintsSkipProbe is enabled, skip probe the same client // Put* => is N or B, so probe IS needed opcode === TLMessages.AcquireBlock || opcode === TLMessages.AcquirePerm || opcode === TLMessages.Get || (opcode === TLMessages.Hint && hintsSkipProbe.B) } def isToN(param: UInt): Bool = { param === TLPermissions.TtoN || param === TLPermissions.BtoN || param === TLPermissions.NtoN } def isToB(param: UInt): Bool = { param === TLPermissions.TtoB || param === TLPermissions.BtoB } } object InclusiveCacheParameters { val lfsrBits = 10 val L2ControlAddress = 0x2010000 val L2ControlSize = 0x1000 def out_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = { // We need 2-3 normal MSHRs to cover the Directory latency // To fully exploit memory bandwidth-delay-product, we need memCyles/blockBeats MSHRs max(if (micro.dirReg) 3 else 2, (micro.memCycles + cache.blockBeats - 1) / cache.blockBeats) } def all_mshrs(cache: CacheParameters, micro: InclusiveCacheMicroParameters): Int = // We need a dedicated MSHR for B+C each 2 + out_mshrs(cache, micro) } class InclusiveCacheBundle(params: InclusiveCacheParameters) extends Bundle File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module SinkC( // @[SinkC.scala:41:7] input clock, // @[SinkC.scala:41:7] input reset, // @[SinkC.scala:41:7] input io_req_ready, // @[SinkC.scala:43:14] output io_req_valid, // @[SinkC.scala:43:14] output [2:0] io_req_bits_opcode, // @[SinkC.scala:43:14] output [2:0] io_req_bits_param, // @[SinkC.scala:43:14] output [2:0] io_req_bits_size, // @[SinkC.scala:43:14] output [5:0] io_req_bits_source, // @[SinkC.scala:43:14] output [12:0] io_req_bits_tag, // @[SinkC.scala:43:14] output [5:0] io_req_bits_offset, // @[SinkC.scala:43:14] output [5:0] io_req_bits_put, // @[SinkC.scala:43:14] output [9:0] io_req_bits_set, // @[SinkC.scala:43:14] output io_resp_valid, // @[SinkC.scala:43:14] output io_resp_bits_last, // @[SinkC.scala:43:14] output [9:0] io_resp_bits_set, // @[SinkC.scala:43:14] output [12:0] io_resp_bits_tag, // @[SinkC.scala:43:14] output [5:0] io_resp_bits_source, // @[SinkC.scala:43:14] output [2:0] io_resp_bits_param, // @[SinkC.scala:43:14] output io_resp_bits_data, // @[SinkC.scala:43:14] output io_c_ready, // @[SinkC.scala:43:14] input io_c_valid, // @[SinkC.scala:43:14] input [2:0] io_c_bits_opcode, // @[SinkC.scala:43:14] input [2:0] io_c_bits_param, // @[SinkC.scala:43:14] input [2:0] io_c_bits_size, // @[SinkC.scala:43:14] input [5:0] io_c_bits_source, // @[SinkC.scala:43:14] input [31:0] io_c_bits_address, // @[SinkC.scala:43:14] input [127:0] io_c_bits_data, // @[SinkC.scala:43:14] input io_c_bits_corrupt, // @[SinkC.scala:43:14] output [9:0] io_set, // @[SinkC.scala:43:14] input [2:0] io_way, // @[SinkC.scala:43:14] input io_bs_adr_ready, // @[SinkC.scala:43:14] output io_bs_adr_valid, // @[SinkC.scala:43:14] output io_bs_adr_bits_noop, // @[SinkC.scala:43:14] output [2:0] io_bs_adr_bits_way, // @[SinkC.scala:43:14] output [9:0] io_bs_adr_bits_set, // @[SinkC.scala:43:14] output [1:0] io_bs_adr_bits_beat, // @[SinkC.scala:43:14] output [1:0] io_bs_adr_bits_mask, // @[SinkC.scala:43:14] output [127:0] io_bs_dat_data, // @[SinkC.scala:43:14] output io_rel_pop_ready, // @[SinkC.scala:43:14] input io_rel_pop_valid, // @[SinkC.scala:43:14] input [5:0] io_rel_pop_bits_index, // @[SinkC.scala:43:14] input io_rel_pop_bits_last, // @[SinkC.scala:43:14] output [127:0] io_rel_beat_data, // @[SinkC.scala:43:14] output io_rel_beat_corrupt // @[SinkC.scala:43:14] ); wire [9:0] io_set_0; // @[SinkC.scala:41:7] wire _putbuffer_io_push_ready; // @[SinkC.scala:115:27] wire [1:0] _putbuffer_io_valid; // @[SinkC.scala:115:27] wire _c_q_io_deq_valid; // @[Decoupled.scala:362:21] wire [2:0] _c_q_io_deq_bits_opcode; // @[Decoupled.scala:362:21] wire [2:0] _c_q_io_deq_bits_param; // @[Decoupled.scala:362:21] wire [2:0] _c_q_io_deq_bits_size; // @[Decoupled.scala:362:21] wire [5:0] _c_q_io_deq_bits_source; // @[Decoupled.scala:362:21] wire [31:0] _c_q_io_deq_bits_address; // @[Decoupled.scala:362:21] wire [127:0] _c_q_io_deq_bits_data; // @[Decoupled.scala:362:21] wire _c_q_io_deq_bits_corrupt; // @[Decoupled.scala:362:21] wire io_req_ready_0 = io_req_ready; // @[SinkC.scala:41:7] wire io_c_valid_0 = io_c_valid; // @[SinkC.scala:41:7] wire [2:0] io_c_bits_opcode_0 = io_c_bits_opcode; // @[SinkC.scala:41:7] wire [2:0] io_c_bits_param_0 = io_c_bits_param; // @[SinkC.scala:41:7] wire [2:0] io_c_bits_size_0 = io_c_bits_size; // @[SinkC.scala:41:7] wire [5:0] io_c_bits_source_0 = io_c_bits_source; // @[SinkC.scala:41:7] wire [31:0] io_c_bits_address_0 = io_c_bits_address; // @[SinkC.scala:41:7] wire [127:0] io_c_bits_data_0 = io_c_bits_data; // @[SinkC.scala:41:7] wire io_c_bits_corrupt_0 = io_c_bits_corrupt; // @[SinkC.scala:41:7] wire [2:0] io_way_0 = io_way; // @[SinkC.scala:41:7] wire io_bs_adr_ready_0 = io_bs_adr_ready; // @[SinkC.scala:41:7] wire io_rel_pop_valid_0 = io_rel_pop_valid; // @[SinkC.scala:41:7] wire [5:0] io_rel_pop_bits_index_0 = io_rel_pop_bits_index; // @[SinkC.scala:41:7] wire io_rel_pop_bits_last_0 = io_rel_pop_bits_last; // @[SinkC.scala:41:7] wire io_req_bits_prio_0 = 1'h0; // @[SinkC.scala:41:7] wire io_req_bits_prio_1 = 1'h0; // @[SinkC.scala:41:7] wire io_req_bits_control = 1'h0; // @[SinkC.scala:41:7] wire io_req_bits_prio_2 = 1'h1; // @[SinkC.scala:41:7] wire [1:0] bs_adr_bits_mask = 2'h3; // @[SinkC.scala:96:22] wire [1:0] _bs_adr_bits_mask_T = 2'h3; // @[SinkC.scala:104:25] wire _io_req_valid_T_6; // @[SinkC.scala:136:61] wire [12:0] tag_1; // @[Parameters.scala:217:9] wire [5:0] offset_1; // @[Parameters.scala:217:50] wire [9:0] set_1; // @[Parameters.scala:217:28] wire _io_resp_valid_T_5; // @[SinkC.scala:107:57] wire last; // @[Edges.scala:232:33] wire hasData; // @[Edges.scala:102:36] wire [9:0] _io_set_T; // @[SinkC.scala:92:18] wire [9:0] bs_adr_bits_set = io_set_0; // @[SinkC.scala:41:7, :96:22] wire [2:0] bs_adr_bits_way = io_way_0; // @[SinkC.scala:41:7, :96:22] wire _io_rel_pop_ready_T_2; // @[SinkC.scala:160:43] wire [2:0] io_req_bits_opcode_0; // @[SinkC.scala:41:7] wire [2:0] io_req_bits_param_0; // @[SinkC.scala:41:7] wire [2:0] io_req_bits_size_0; // @[SinkC.scala:41:7] wire [5:0] io_req_bits_source_0; // @[SinkC.scala:41:7] wire [12:0] io_req_bits_tag_0; // @[SinkC.scala:41:7] wire [5:0] io_req_bits_offset_0; // @[SinkC.scala:41:7] wire [5:0] io_req_bits_put_0; // @[SinkC.scala:41:7] wire [9:0] io_req_bits_set_0; // @[SinkC.scala:41:7] wire io_req_valid_0; // @[SinkC.scala:41:7] wire io_resp_bits_last_0; // @[SinkC.scala:41:7] wire [9:0] io_resp_bits_set_0; // @[SinkC.scala:41:7] wire [12:0] io_resp_bits_tag_0; // @[SinkC.scala:41:7] wire [5:0] io_resp_bits_source_0; // @[SinkC.scala:41:7] wire [2:0] io_resp_bits_param_0; // @[SinkC.scala:41:7] wire io_resp_bits_data_0; // @[SinkC.scala:41:7] wire io_resp_valid_0; // @[SinkC.scala:41:7] wire io_c_ready_0; // @[SinkC.scala:41:7] wire io_bs_adr_bits_noop_0; // @[SinkC.scala:41:7] wire [2:0] io_bs_adr_bits_way_0; // @[SinkC.scala:41:7] wire [9:0] io_bs_adr_bits_set_0; // @[SinkC.scala:41:7] wire [1:0] io_bs_adr_bits_beat_0; // @[SinkC.scala:41:7] wire [1:0] io_bs_adr_bits_mask_0; // @[SinkC.scala:41:7] wire io_bs_adr_valid_0; // @[SinkC.scala:41:7] wire [127:0] io_bs_dat_data_0; // @[SinkC.scala:41:7] wire io_rel_pop_ready_0; // @[SinkC.scala:41:7] wire [127:0] io_rel_beat_data_0; // @[SinkC.scala:41:7] wire io_rel_beat_corrupt_0; // @[SinkC.scala:41:7] wire _offset_T = _c_q_io_deq_bits_address[0]; // @[Decoupled.scala:362:21] wire _offset_T_1 = _c_q_io_deq_bits_address[1]; // @[Decoupled.scala:362:21] wire _offset_T_2 = _c_q_io_deq_bits_address[2]; // @[Decoupled.scala:362:21] wire _offset_T_3 = _c_q_io_deq_bits_address[3]; // @[Decoupled.scala:362:21] wire _offset_T_4 = _c_q_io_deq_bits_address[4]; // @[Decoupled.scala:362:21] wire _offset_T_5 = _c_q_io_deq_bits_address[5]; // @[Decoupled.scala:362:21] wire _offset_T_6 = _c_q_io_deq_bits_address[6]; // @[Decoupled.scala:362:21] wire _offset_T_7 = _c_q_io_deq_bits_address[7]; // @[Decoupled.scala:362:21] wire _offset_T_8 = _c_q_io_deq_bits_address[8]; // @[Decoupled.scala:362:21] wire _offset_T_9 = _c_q_io_deq_bits_address[9]; // @[Decoupled.scala:362:21] wire _offset_T_10 = _c_q_io_deq_bits_address[10]; // @[Decoupled.scala:362:21] wire _offset_T_11 = _c_q_io_deq_bits_address[11]; // @[Decoupled.scala:362:21] wire _offset_T_12 = _c_q_io_deq_bits_address[12]; // @[Decoupled.scala:362:21] wire _offset_T_13 = _c_q_io_deq_bits_address[13]; // @[Decoupled.scala:362:21] wire _offset_T_14 = _c_q_io_deq_bits_address[14]; // @[Decoupled.scala:362:21] wire _offset_T_15 = _c_q_io_deq_bits_address[15]; // @[Decoupled.scala:362:21] wire _offset_T_16 = _c_q_io_deq_bits_address[16]; // @[Decoupled.scala:362:21] wire _offset_T_17 = _c_q_io_deq_bits_address[17]; // @[Decoupled.scala:362:21] wire _offset_T_18 = _c_q_io_deq_bits_address[18]; // @[Decoupled.scala:362:21] wire _offset_T_19 = _c_q_io_deq_bits_address[19]; // @[Decoupled.scala:362:21] wire _offset_T_20 = _c_q_io_deq_bits_address[20]; // @[Decoupled.scala:362:21] wire _offset_T_21 = _c_q_io_deq_bits_address[21]; // @[Decoupled.scala:362:21] wire _offset_T_22 = _c_q_io_deq_bits_address[22]; // @[Decoupled.scala:362:21] wire _offset_T_23 = _c_q_io_deq_bits_address[23]; // @[Decoupled.scala:362:21] wire _offset_T_24 = _c_q_io_deq_bits_address[24]; // @[Decoupled.scala:362:21] wire _offset_T_25 = _c_q_io_deq_bits_address[25]; // @[Decoupled.scala:362:21] wire _offset_T_26 = _c_q_io_deq_bits_address[26]; // @[Decoupled.scala:362:21] wire _offset_T_27 = _c_q_io_deq_bits_address[27]; // @[Decoupled.scala:362:21] wire _offset_T_28 = _c_q_io_deq_bits_address[31]; // @[Decoupled.scala:362:21] wire [1:0] offset_lo_lo_lo_hi = {_offset_T_2, _offset_T_1}; // @[Parameters.scala:214:{21,47}] wire [2:0] offset_lo_lo_lo = {offset_lo_lo_lo_hi, _offset_T}; // @[Parameters.scala:214:{21,47}] wire [1:0] offset_lo_lo_hi_lo = {_offset_T_4, _offset_T_3}; // @[Parameters.scala:214:{21,47}] wire [1:0] offset_lo_lo_hi_hi = {_offset_T_6, _offset_T_5}; // @[Parameters.scala:214:{21,47}] wire [3:0] offset_lo_lo_hi = {offset_lo_lo_hi_hi, offset_lo_lo_hi_lo}; // @[Parameters.scala:214:21] wire [6:0] offset_lo_lo = {offset_lo_lo_hi, offset_lo_lo_lo}; // @[Parameters.scala:214:21] wire [1:0] offset_lo_hi_lo_hi = {_offset_T_9, _offset_T_8}; // @[Parameters.scala:214:{21,47}] wire [2:0] offset_lo_hi_lo = {offset_lo_hi_lo_hi, _offset_T_7}; // @[Parameters.scala:214:{21,47}] wire [1:0] offset_lo_hi_hi_lo = {_offset_T_11, _offset_T_10}; // @[Parameters.scala:214:{21,47}] wire [1:0] offset_lo_hi_hi_hi = {_offset_T_13, _offset_T_12}; // @[Parameters.scala:214:{21,47}] wire [3:0] offset_lo_hi_hi = {offset_lo_hi_hi_hi, offset_lo_hi_hi_lo}; // @[Parameters.scala:214:21] wire [6:0] offset_lo_hi = {offset_lo_hi_hi, offset_lo_hi_lo}; // @[Parameters.scala:214:21] wire [13:0] offset_lo = {offset_lo_hi, offset_lo_lo}; // @[Parameters.scala:214:21] wire [1:0] offset_hi_lo_lo_hi = {_offset_T_16, _offset_T_15}; // @[Parameters.scala:214:{21,47}] wire [2:0] offset_hi_lo_lo = {offset_hi_lo_lo_hi, _offset_T_14}; // @[Parameters.scala:214:{21,47}] wire [1:0] offset_hi_lo_hi_lo = {_offset_T_18, _offset_T_17}; // @[Parameters.scala:214:{21,47}] wire [1:0] offset_hi_lo_hi_hi = {_offset_T_20, _offset_T_19}; // @[Parameters.scala:214:{21,47}] wire [3:0] offset_hi_lo_hi = {offset_hi_lo_hi_hi, offset_hi_lo_hi_lo}; // @[Parameters.scala:214:21] wire [6:0] offset_hi_lo = {offset_hi_lo_hi, offset_hi_lo_lo}; // @[Parameters.scala:214:21] wire [1:0] offset_hi_hi_lo_lo = {_offset_T_22, _offset_T_21}; // @[Parameters.scala:214:{21,47}] wire [1:0] offset_hi_hi_lo_hi = {_offset_T_24, _offset_T_23}; // @[Parameters.scala:214:{21,47}] wire [3:0] offset_hi_hi_lo = {offset_hi_hi_lo_hi, offset_hi_hi_lo_lo}; // @[Parameters.scala:214:21] wire [1:0] offset_hi_hi_hi_lo = {_offset_T_26, _offset_T_25}; // @[Parameters.scala:214:{21,47}] wire [1:0] offset_hi_hi_hi_hi = {_offset_T_28, _offset_T_27}; // @[Parameters.scala:214:{21,47}] wire [3:0] offset_hi_hi_hi = {offset_hi_hi_hi_hi, offset_hi_hi_hi_lo}; // @[Parameters.scala:214:21] wire [7:0] offset_hi_hi = {offset_hi_hi_hi, offset_hi_hi_lo}; // @[Parameters.scala:214:21] wire [14:0] offset_hi = {offset_hi_hi, offset_hi_lo}; // @[Parameters.scala:214:21] wire [28:0] offset = {offset_hi, offset_lo}; // @[Parameters.scala:214:21] wire [22:0] set = offset[28:6]; // @[Parameters.scala:214:21, :215:22] wire [12:0] tag = set[22:10]; // @[Parameters.scala:215:22, :216:19] assign tag_1 = tag; // @[Parameters.scala:216:19, :217:9] assign io_req_bits_tag_0 = tag_1; // @[SinkC.scala:41:7] assign io_resp_bits_tag_0 = tag_1; // @[SinkC.scala:41:7] assign set_1 = set[9:0]; // @[Parameters.scala:215:22, :217:28] assign io_req_bits_set_0 = set_1; // @[SinkC.scala:41:7] assign io_resp_bits_set_0 = set_1; // @[SinkC.scala:41:7] assign offset_1 = offset[5:0]; // @[Parameters.scala:214:21, :217:50] assign io_req_bits_offset_0 = offset_1; // @[SinkC.scala:41:7] wire _q_io_deq_ready_T_7; // @[SinkC.scala:134:19] wire _T = _q_io_deq_ready_T_7 & _c_q_io_deq_valid; // @[Decoupled.scala:51:35, :362:21] wire [12:0] _r_beats1_decode_T = 13'h3F << _c_q_io_deq_bits_size; // @[Decoupled.scala:362:21] wire [5:0] _r_beats1_decode_T_1 = _r_beats1_decode_T[5:0]; // @[package.scala:243:{71,76}] wire [5:0] _r_beats1_decode_T_2 = ~_r_beats1_decode_T_1; // @[package.scala:243:{46,76}] wire [1:0] r_beats1_decode = _r_beats1_decode_T_2[5:4]; // @[package.scala:243:46] wire r_beats1_opdata = _c_q_io_deq_bits_opcode[0]; // @[Decoupled.scala:362:21] assign hasData = _c_q_io_deq_bits_opcode[0]; // @[Decoupled.scala:362:21] wire [1:0] r_beats1 = r_beats1_opdata ? r_beats1_decode : 2'h0; // @[Edges.scala:102:36, :220:59, :221:14] reg [1:0] r_counter; // @[Edges.scala:229:27] wire [2:0] _r_counter1_T = {1'h0, r_counter} - 3'h1; // @[Edges.scala:229:27, :230:28] wire [1:0] r_counter1 = _r_counter1_T[1:0]; // @[Edges.scala:230:28] wire first = r_counter == 2'h0; // @[Edges.scala:229:27, :231:25] wire _r_last_T = r_counter == 2'h1; // @[Edges.scala:229:27, :232:25] wire _r_last_T_1 = r_beats1 == 2'h0; // @[Edges.scala:221:14, :232:43] assign last = _r_last_T | _r_last_T_1; // @[Edges.scala:232:{25,33,43}] assign io_resp_bits_last_0 = last; // @[Edges.scala:232:33] wire r_3 = last & _T; // @[Decoupled.scala:51:35] wire [1:0] _r_count_T = ~r_counter1; // @[Edges.scala:230:28, :234:27] wire [1:0] beat = r_beats1 & _r_count_T; // @[Edges.scala:221:14, :234:{25,27}] wire [1:0] _r_counter_T = first ? r_beats1 : r_counter1; // @[Edges.scala:221:14, :230:28, :231:25, :236:21] assign io_resp_bits_data_0 = hasData; // @[Edges.scala:102:36] wire _raw_resp_T = _c_q_io_deq_bits_opcode == 3'h4; // @[Decoupled.scala:362:21] wire _raw_resp_T_1 = _c_q_io_deq_bits_opcode == 3'h5; // @[Decoupled.scala:362:21] wire raw_resp = _raw_resp_T | _raw_resp_T_1; // @[SinkC.scala:78:{34,58,75}] reg resp_r; // @[SinkC.scala:79:48] wire resp = _c_q_io_deq_valid ? raw_resp : resp_r; // @[Decoupled.scala:362:21]
Generate the Verilog code corresponding to the following Chisel files. File Monitor.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceLine import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import freechips.rocketchip.diplomacy.EnableMonitors import freechips.rocketchip.formal.{MonitorDirection, IfThen, Property, PropertyClass, TestplanTestType, TLMonitorStrictMode} import freechips.rocketchip.util.PlusArg case class TLMonitorArgs(edge: TLEdge) abstract class TLMonitorBase(args: TLMonitorArgs) extends Module { val io = IO(new Bundle { val in = Input(new TLBundle(args.edge.bundle)) }) def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit legalize(io.in, args.edge, reset) } object TLMonitor { def apply(enable: Boolean, node: TLNode)(implicit p: Parameters): TLNode = { if (enable) { EnableMonitors { implicit p => node := TLEphemeralNode()(ValName("monitor")) } } else { node } } } class TLMonitor(args: TLMonitorArgs, monitorDir: MonitorDirection = MonitorDirection.Monitor) extends TLMonitorBase(args) { require (args.edge.params(TLMonitorStrictMode) || (! args.edge.params(TestplanTestType).formal)) val cover_prop_class = PropertyClass.Default //Like assert but can flip to being an assumption for formal verification def monAssert(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir, cond, message, PropertyClass.Default) } def assume(cond: Bool, message: String): Unit = if (monitorDir == MonitorDirection.Monitor) { assert(cond, message) } else { Property(monitorDir.flip, cond, message, PropertyClass.Default) } def extra = { args.edge.sourceInfo match { case SourceLine(filename, line, col) => s" (connected at $filename:$line:$col)" case _ => "" } } def visible(address: UInt, source: UInt, edge: TLEdge) = edge.client.clients.map { c => !c.sourceId.contains(source) || c.visibility.map(_.contains(address)).reduce(_ || _) }.reduce(_ && _) def legalizeFormatA(bundle: TLBundleA, edge: TLEdge): Unit = { //switch this flag to turn on diplomacy in error messages def diplomacyInfo = if (true) "" else "\nThe diplomacy information for the edge is as follows:\n" + edge.formatEdge + "\n" monAssert (TLMessages.isA(bundle.opcode), "'A' channel has invalid opcode" + extra) // Reuse these subexpressions to save some firrtl lines val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) monAssert (visible(edge.address(bundle), bundle.source, edge), "'A' channel carries an address illegal for the specified bank visibility") //The monitor doesn’t check for acquire T vs acquire B, it assumes that acquire B implies acquire T and only checks for acquire B //TODO: check for acquireT? when (bundle.opcode === TLMessages.AcquireBlock) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquireBlock from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquireBlock carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquireBlock smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquireBlock address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquireBlock carries invalid grow param" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquireBlock contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquireBlock is corrupt" + extra) } when (bundle.opcode === TLMessages.AcquirePerm) { monAssert (edge.master.emitsAcquireB(bundle.source, bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'A' channel carries AcquirePerm from a client which does not support Probe" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel AcquirePerm carries invalid source ID" + diplomacyInfo + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'A' channel AcquirePerm smaller than a beat" + extra) monAssert (is_aligned, "'A' channel AcquirePerm address not aligned to size" + extra) monAssert (TLPermissions.isGrow(bundle.param), "'A' channel AcquirePerm carries invalid grow param" + extra) monAssert (bundle.param =/= TLPermissions.NtoB, "'A' channel AcquirePerm requests NtoB" + extra) monAssert (~bundle.mask === 0.U, "'A' channel AcquirePerm contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel AcquirePerm is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.emitsGet(bundle.source, bundle.size), "'A' channel carries Get type which master claims it can't emit" + diplomacyInfo + extra) monAssert (edge.slave.supportsGetSafe(edge.address(bundle), bundle.size, None), "'A' channel carries Get type which slave claims it can't support" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel Get carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.emitsPutFull(bundle.source, bundle.size) && edge.slave.supportsPutFullSafe(edge.address(bundle), bundle.size), "'A' channel carries PutFull type which is unexpected using diplomatic parameters" + diplomacyInfo + extra) monAssert (source_ok, "'A' channel PutFull carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'A' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.emitsPutPartial(bundle.source, bundle.size) && edge.slave.supportsPutPartialSafe(edge.address(bundle), bundle.size), "'A' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel PutPartial carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'A' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'A' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.emitsArithmetic(bundle.source, bundle.size) && edge.slave.supportsArithmeticSafe(edge.address(bundle), bundle.size), "'A' channel carries Arithmetic type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Arithmetic carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'A' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.emitsLogical(bundle.source, bundle.size) && edge.slave.supportsLogicalSafe(edge.address(bundle), bundle.size), "'A' channel carries Logical type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Logical carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'A' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.emitsHint(bundle.source, bundle.size) && edge.slave.supportsHintSafe(edge.address(bundle), bundle.size), "'A' channel carries Hint type which is unexpected using diplomatic parameters" + extra) monAssert (source_ok, "'A' channel Hint carries invalid source ID" + diplomacyInfo + extra) monAssert (is_aligned, "'A' channel Hint address not aligned to size" + extra) monAssert (TLHints.isHints(bundle.param), "'A' channel Hint carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'A' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'A' channel Hint is corrupt" + extra) } } def legalizeFormatB(bundle: TLBundleB, edge: TLEdge): Unit = { monAssert (TLMessages.isB(bundle.opcode), "'B' channel has invalid opcode" + extra) monAssert (visible(edge.address(bundle), bundle.source, edge), "'B' channel carries an address illegal for the specified bank visibility") // Reuse these subexpressions to save some firrtl lines val address_ok = edge.manager.containsSafe(edge.address(bundle)) val is_aligned = edge.isAligned(bundle.address, bundle.size) val mask = edge.full_mask(bundle) val legal_source = Mux1H(edge.client.find(bundle.source), edge.client.clients.map(c => c.sourceId.start.U)) === bundle.source when (bundle.opcode === TLMessages.Probe) { assume (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'B' channel carries Probe type which is unexpected using diplomatic parameters" + extra) assume (address_ok, "'B' channel Probe carries unmanaged address" + extra) assume (legal_source, "'B' channel Probe carries source that is not first source" + extra) assume (is_aligned, "'B' channel Probe address not aligned to size" + extra) assume (TLPermissions.isCap(bundle.param), "'B' channel Probe carries invalid cap param" + extra) assume (bundle.mask === mask, "'B' channel Probe contains invalid mask" + extra) assume (!bundle.corrupt, "'B' channel Probe is corrupt" + extra) } when (bundle.opcode === TLMessages.Get) { monAssert (edge.master.supportsGet(edge.source(bundle), bundle.size) && edge.slave.emitsGetSafe(edge.address(bundle), bundle.size), "'B' channel carries Get type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel Get carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Get carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Get address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel Get carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel Get contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Get is corrupt" + extra) } when (bundle.opcode === TLMessages.PutFullData) { monAssert (edge.master.supportsPutFull(edge.source(bundle), bundle.size) && edge.slave.emitsPutFullSafe(edge.address(bundle), bundle.size), "'B' channel carries PutFull type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutFull carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutFull carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutFull address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutFull carries invalid param" + extra) monAssert (bundle.mask === mask, "'B' channel PutFull contains invalid mask" + extra) } when (bundle.opcode === TLMessages.PutPartialData) { monAssert (edge.master.supportsPutPartial(edge.source(bundle), bundle.size) && edge.slave.emitsPutPartialSafe(edge.address(bundle), bundle.size), "'B' channel carries PutPartial type which is unexpected using diplomatic parameters" + extra) monAssert (address_ok, "'B' channel PutPartial carries unmanaged address" + extra) monAssert (legal_source, "'B' channel PutPartial carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel PutPartial address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'B' channel PutPartial carries invalid param" + extra) monAssert ((bundle.mask & ~mask) === 0.U, "'B' channel PutPartial contains invalid mask" + extra) } when (bundle.opcode === TLMessages.ArithmeticData) { monAssert (edge.master.supportsArithmetic(edge.source(bundle), bundle.size) && edge.slave.emitsArithmeticSafe(edge.address(bundle), bundle.size), "'B' channel carries Arithmetic type unsupported by master" + extra) monAssert (address_ok, "'B' channel Arithmetic carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Arithmetic carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Arithmetic address not aligned to size" + extra) monAssert (TLAtomics.isArithmetic(bundle.param), "'B' channel Arithmetic carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Arithmetic contains invalid mask" + extra) } when (bundle.opcode === TLMessages.LogicalData) { monAssert (edge.master.supportsLogical(edge.source(bundle), bundle.size) && edge.slave.emitsLogicalSafe(edge.address(bundle), bundle.size), "'B' channel carries Logical type unsupported by client" + extra) monAssert (address_ok, "'B' channel Logical carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Logical carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Logical address not aligned to size" + extra) monAssert (TLAtomics.isLogical(bundle.param), "'B' channel Logical carries invalid opcode param" + extra) monAssert (bundle.mask === mask, "'B' channel Logical contains invalid mask" + extra) } when (bundle.opcode === TLMessages.Hint) { monAssert (edge.master.supportsHint(edge.source(bundle), bundle.size) && edge.slave.emitsHintSafe(edge.address(bundle), bundle.size), "'B' channel carries Hint type unsupported by client" + extra) monAssert (address_ok, "'B' channel Hint carries unmanaged address" + extra) monAssert (legal_source, "'B' channel Hint carries source that is not first source" + extra) monAssert (is_aligned, "'B' channel Hint address not aligned to size" + extra) monAssert (bundle.mask === mask, "'B' channel Hint contains invalid mask" + extra) monAssert (!bundle.corrupt, "'B' channel Hint is corrupt" + extra) } } def legalizeFormatC(bundle: TLBundleC, edge: TLEdge): Unit = { monAssert (TLMessages.isC(bundle.opcode), "'C' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val is_aligned = edge.isAligned(bundle.address, bundle.size) val address_ok = edge.manager.containsSafe(edge.address(bundle)) monAssert (visible(edge.address(bundle), bundle.source, edge), "'C' channel carries an address illegal for the specified bank visibility") when (bundle.opcode === TLMessages.ProbeAck) { monAssert (address_ok, "'C' channel ProbeAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAck carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAck smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAck address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAck carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel ProbeAck is corrupt" + extra) } when (bundle.opcode === TLMessages.ProbeAckData) { monAssert (address_ok, "'C' channel ProbeAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel ProbeAckData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ProbeAckData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ProbeAckData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ProbeAckData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.Release) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries Release type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel Release carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel Release smaller than a beat" + extra) monAssert (is_aligned, "'C' channel Release address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel Release carries invalid report param" + extra) monAssert (!bundle.corrupt, "'C' channel Release is corrupt" + extra) } when (bundle.opcode === TLMessages.ReleaseData) { monAssert (edge.master.emitsAcquireB(edge.source(bundle), bundle.size) && edge.slave.supportsAcquireBSafe(edge.address(bundle), bundle.size), "'C' channel carries ReleaseData type unsupported by manager" + extra) monAssert (edge.master.supportsProbe(edge.source(bundle), bundle.size) && edge.slave.emitsProbeSafe(edge.address(bundle), bundle.size), "'C' channel carries Release from a client which does not support Probe" + extra) monAssert (source_ok, "'C' channel ReleaseData carries invalid source ID" + extra) monAssert (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'C' channel ReleaseData smaller than a beat" + extra) monAssert (is_aligned, "'C' channel ReleaseData address not aligned to size" + extra) monAssert (TLPermissions.isReport(bundle.param), "'C' channel ReleaseData carries invalid report param" + extra) } when (bundle.opcode === TLMessages.AccessAck) { monAssert (address_ok, "'C' channel AccessAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel AccessAck is corrupt" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { monAssert (address_ok, "'C' channel AccessAckData carries unmanaged address" + extra) monAssert (source_ok, "'C' channel AccessAckData carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel AccessAckData address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel AccessAckData carries invalid param" + extra) } when (bundle.opcode === TLMessages.HintAck) { monAssert (address_ok, "'C' channel HintAck carries unmanaged address" + extra) monAssert (source_ok, "'C' channel HintAck carries invalid source ID" + extra) monAssert (is_aligned, "'C' channel HintAck address not aligned to size" + extra) monAssert (bundle.param === 0.U, "'C' channel HintAck carries invalid param" + extra) monAssert (!bundle.corrupt, "'C' channel HintAck is corrupt" + extra) } } def legalizeFormatD(bundle: TLBundleD, edge: TLEdge): Unit = { assume (TLMessages.isD(bundle.opcode), "'D' channel has invalid opcode" + extra) val source_ok = edge.client.contains(bundle.source) val sink_ok = bundle.sink < edge.manager.endSinkId.U val deny_put_ok = edge.manager.mayDenyPut.B val deny_get_ok = edge.manager.mayDenyGet.B when (bundle.opcode === TLMessages.ReleaseAck) { assume (source_ok, "'D' channel ReleaseAck carries invalid source ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel ReleaseAck smaller than a beat" + extra) assume (bundle.param === 0.U, "'D' channel ReleaseeAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel ReleaseAck is corrupt" + extra) assume (!bundle.denied, "'D' channel ReleaseAck is denied" + extra) } when (bundle.opcode === TLMessages.Grant) { assume (source_ok, "'D' channel Grant carries invalid source ID" + extra) assume (sink_ok, "'D' channel Grant carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel Grant smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel Grant carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel Grant carries toN param" + extra) assume (!bundle.corrupt, "'D' channel Grant is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel Grant is denied" + extra) } when (bundle.opcode === TLMessages.GrantData) { assume (source_ok, "'D' channel GrantData carries invalid source ID" + extra) assume (sink_ok, "'D' channel GrantData carries invalid sink ID" + extra) assume (bundle.size >= log2Ceil(edge.manager.beatBytes).U, "'D' channel GrantData smaller than a beat" + extra) assume (TLPermissions.isCap(bundle.param), "'D' channel GrantData carries invalid cap param" + extra) assume (bundle.param =/= TLPermissions.toN, "'D' channel GrantData carries toN param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel GrantData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel GrantData is denied" + extra) } when (bundle.opcode === TLMessages.AccessAck) { assume (source_ok, "'D' channel AccessAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel AccessAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel AccessAck is denied" + extra) } when (bundle.opcode === TLMessages.AccessAckData) { assume (source_ok, "'D' channel AccessAckData carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel AccessAckData carries invalid param" + extra) assume (!bundle.denied || bundle.corrupt, "'D' channel AccessAckData is denied but not corrupt" + extra) assume (deny_get_ok || !bundle.denied, "'D' channel AccessAckData is denied" + extra) } when (bundle.opcode === TLMessages.HintAck) { assume (source_ok, "'D' channel HintAck carries invalid source ID" + extra) // size is ignored assume (bundle.param === 0.U, "'D' channel HintAck carries invalid param" + extra) assume (!bundle.corrupt, "'D' channel HintAck is corrupt" + extra) assume (deny_put_ok || !bundle.denied, "'D' channel HintAck is denied" + extra) } } def legalizeFormatE(bundle: TLBundleE, edge: TLEdge): Unit = { val sink_ok = bundle.sink < edge.manager.endSinkId.U monAssert (sink_ok, "'E' channels carries invalid sink ID" + extra) } def legalizeFormat(bundle: TLBundle, edge: TLEdge) = { when (bundle.a.valid) { legalizeFormatA(bundle.a.bits, edge) } when (bundle.d.valid) { legalizeFormatD(bundle.d.bits, edge) } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { when (bundle.b.valid) { legalizeFormatB(bundle.b.bits, edge) } when (bundle.c.valid) { legalizeFormatC(bundle.c.bits, edge) } when (bundle.e.valid) { legalizeFormatE(bundle.e.bits, edge) } } else { monAssert (!bundle.b.valid, "'B' channel valid and not TL-C" + extra) monAssert (!bundle.c.valid, "'C' channel valid and not TL-C" + extra) monAssert (!bundle.e.valid, "'E' channel valid and not TL-C" + extra) } } def legalizeMultibeatA(a: DecoupledIO[TLBundleA], edge: TLEdge): Unit = { val a_first = edge.first(a.bits, a.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (a.valid && !a_first) { monAssert (a.bits.opcode === opcode, "'A' channel opcode changed within multibeat operation" + extra) monAssert (a.bits.param === param, "'A' channel param changed within multibeat operation" + extra) monAssert (a.bits.size === size, "'A' channel size changed within multibeat operation" + extra) monAssert (a.bits.source === source, "'A' channel source changed within multibeat operation" + extra) monAssert (a.bits.address=== address,"'A' channel address changed with multibeat operation" + extra) } when (a.fire && a_first) { opcode := a.bits.opcode param := a.bits.param size := a.bits.size source := a.bits.source address := a.bits.address } } def legalizeMultibeatB(b: DecoupledIO[TLBundleB], edge: TLEdge): Unit = { val b_first = edge.first(b.bits, b.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (b.valid && !b_first) { monAssert (b.bits.opcode === opcode, "'B' channel opcode changed within multibeat operation" + extra) monAssert (b.bits.param === param, "'B' channel param changed within multibeat operation" + extra) monAssert (b.bits.size === size, "'B' channel size changed within multibeat operation" + extra) monAssert (b.bits.source === source, "'B' channel source changed within multibeat operation" + extra) monAssert (b.bits.address=== address,"'B' channel addresss changed with multibeat operation" + extra) } when (b.fire && b_first) { opcode := b.bits.opcode param := b.bits.param size := b.bits.size source := b.bits.source address := b.bits.address } } def legalizeADSourceFormal(bundle: TLBundle, edge: TLEdge): Unit = { // Symbolic variable val sym_source = Wire(UInt(edge.client.endSourceId.W)) // TODO: Connect sym_source to a fixed value for simulation and to a // free wire in formal sym_source := 0.U // Type casting Int to UInt val maxSourceId = Wire(UInt(edge.client.endSourceId.W)) maxSourceId := edge.client.endSourceId.U // Delayed verison of sym_source val sym_source_d = Reg(UInt(edge.client.endSourceId.W)) sym_source_d := sym_source // These will be constraints for FV setup Property( MonitorDirection.Monitor, (sym_source === sym_source_d), "sym_source should remain stable", PropertyClass.Default) Property( MonitorDirection.Monitor, (sym_source <= maxSourceId), "sym_source should take legal value", PropertyClass.Default) val my_resp_pend = RegInit(false.B) val my_opcode = Reg(UInt()) val my_size = Reg(UInt()) val a_first = bundle.a.valid && edge.first(bundle.a.bits, bundle.a.fire) val d_first = bundle.d.valid && edge.first(bundle.d.bits, bundle.d.fire) val my_a_first_beat = a_first && (bundle.a.bits.source === sym_source) val my_d_first_beat = d_first && (bundle.d.bits.source === sym_source) val my_clr_resp_pend = (bundle.d.fire && my_d_first_beat) val my_set_resp_pend = (bundle.a.fire && my_a_first_beat && !my_clr_resp_pend) when (my_set_resp_pend) { my_resp_pend := true.B } .elsewhen (my_clr_resp_pend) { my_resp_pend := false.B } when (my_a_first_beat) { my_opcode := bundle.a.bits.opcode my_size := bundle.a.bits.size } val my_resp_size = Mux(my_a_first_beat, bundle.a.bits.size, my_size) val my_resp_opcode = Mux(my_a_first_beat, bundle.a.bits.opcode, my_opcode) val my_resp_opcode_legal = Wire(Bool()) when ((my_resp_opcode === TLMessages.Get) || (my_resp_opcode === TLMessages.ArithmeticData) || (my_resp_opcode === TLMessages.LogicalData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAckData) } .elsewhen ((my_resp_opcode === TLMessages.PutFullData) || (my_resp_opcode === TLMessages.PutPartialData)) { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.AccessAck) } .otherwise { my_resp_opcode_legal := (bundle.d.bits.opcode === TLMessages.HintAck) } monAssert (IfThen(my_resp_pend, !my_a_first_beat), "Request message should not be sent with a source ID, for which a response message" + "is already pending (not received until current cycle) for a prior request message" + "with the same source ID" + extra) assume (IfThen(my_clr_resp_pend, (my_set_resp_pend || my_resp_pend)), "Response message should be accepted with a source ID only if a request message with the" + "same source ID has been accepted or is being accepted in the current cycle" + extra) assume (IfThen(my_d_first_beat, (my_a_first_beat || my_resp_pend)), "Response message should be sent with a source ID only if a request message with the" + "same source ID has been accepted or is being sent in the current cycle" + extra) assume (IfThen(my_d_first_beat, (bundle.d.bits.size === my_resp_size)), "If d_valid is 1, then d_size should be same as a_size of the corresponding request" + "message" + extra) assume (IfThen(my_d_first_beat, my_resp_opcode_legal), "If d_valid is 1, then d_opcode should correspond with a_opcode of the corresponding" + "request message" + extra) } def legalizeMultibeatC(c: DecoupledIO[TLBundleC], edge: TLEdge): Unit = { val c_first = edge.first(c.bits, c.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val address = Reg(UInt()) when (c.valid && !c_first) { monAssert (c.bits.opcode === opcode, "'C' channel opcode changed within multibeat operation" + extra) monAssert (c.bits.param === param, "'C' channel param changed within multibeat operation" + extra) monAssert (c.bits.size === size, "'C' channel size changed within multibeat operation" + extra) monAssert (c.bits.source === source, "'C' channel source changed within multibeat operation" + extra) monAssert (c.bits.address=== address,"'C' channel address changed with multibeat operation" + extra) } when (c.fire && c_first) { opcode := c.bits.opcode param := c.bits.param size := c.bits.size source := c.bits.source address := c.bits.address } } def legalizeMultibeatD(d: DecoupledIO[TLBundleD], edge: TLEdge): Unit = { val d_first = edge.first(d.bits, d.fire) val opcode = Reg(UInt()) val param = Reg(UInt()) val size = Reg(UInt()) val source = Reg(UInt()) val sink = Reg(UInt()) val denied = Reg(Bool()) when (d.valid && !d_first) { assume (d.bits.opcode === opcode, "'D' channel opcode changed within multibeat operation" + extra) assume (d.bits.param === param, "'D' channel param changed within multibeat operation" + extra) assume (d.bits.size === size, "'D' channel size changed within multibeat operation" + extra) assume (d.bits.source === source, "'D' channel source changed within multibeat operation" + extra) assume (d.bits.sink === sink, "'D' channel sink changed with multibeat operation" + extra) assume (d.bits.denied === denied, "'D' channel denied changed with multibeat operation" + extra) } when (d.fire && d_first) { opcode := d.bits.opcode param := d.bits.param size := d.bits.size source := d.bits.source sink := d.bits.sink denied := d.bits.denied } } def legalizeMultibeat(bundle: TLBundle, edge: TLEdge): Unit = { legalizeMultibeatA(bundle.a, edge) legalizeMultibeatD(bundle.d, edge) if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { legalizeMultibeatB(bundle.b, edge) legalizeMultibeatC(bundle.c, edge) } } //This is left in for almond which doesn't adhere to the tilelink protocol @deprecated("Use legalizeADSource instead if possible","") def legalizeADSourceOld(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.client.endSourceId.W)) val a_first = edge.first(bundle.a.bits, bundle.a.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val a_set = WireInit(0.U(edge.client.endSourceId.W)) when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) assert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) assume((a_set | inflight)(bundle.d.bits.source), "'D' channel acknowledged for nothing inflight" + extra) } if (edge.manager.minLatency > 0) { assume(a_set =/= d_clr || !a_set.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") assert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeADSource(bundle: TLBundle, edge: TLEdge): Unit = { val a_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val a_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_a_opcode_bus_size = log2Ceil(a_opcode_bus_size) val log_a_size_bus_size = log2Ceil(a_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) // size up to avoid width error inflight.suggestName("inflight") val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) inflight_opcodes.suggestName("inflight_opcodes") val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) inflight_sizes.suggestName("inflight_sizes") val a_first = edge.first(bundle.a.bits, bundle.a.fire) a_first.suggestName("a_first") val d_first = edge.first(bundle.d.bits, bundle.d.fire) d_first.suggestName("d_first") val a_set = WireInit(0.U(edge.client.endSourceId.W)) val a_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) a_set.suggestName("a_set") a_set_wo_ready.suggestName("a_set_wo_ready") val a_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) a_opcodes_set.suggestName("a_opcodes_set") val a_sizes_set = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) a_sizes_set.suggestName("a_sizes_set") val a_opcode_lookup = WireInit(0.U((a_opcode_bus_size - 1).W)) a_opcode_lookup.suggestName("a_opcode_lookup") a_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_a_opcode_bus_size.U) & size_to_numfullbits(1.U << log_a_opcode_bus_size.U)) >> 1.U val a_size_lookup = WireInit(0.U((1 << log_a_size_bus_size).W)) a_size_lookup.suggestName("a_size_lookup") a_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_a_size_bus_size.U) & size_to_numfullbits(1.U << log_a_size_bus_size.U)) >> 1.U val responseMap = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.Grant, TLMessages.Grant)) val responseMapSecondOption = VecInit(Seq(TLMessages.AccessAck, TLMessages.AccessAck, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.AccessAckData, TLMessages.HintAck, TLMessages.GrantData, TLMessages.Grant)) val a_opcodes_set_interm = WireInit(0.U(a_opcode_bus_size.W)) a_opcodes_set_interm.suggestName("a_opcodes_set_interm") val a_sizes_set_interm = WireInit(0.U(a_size_bus_size.W)) a_sizes_set_interm.suggestName("a_sizes_set_interm") when (bundle.a.valid && a_first && edge.isRequest(bundle.a.bits)) { a_set_wo_ready := UIntToOH(bundle.a.bits.source) } when (bundle.a.fire && a_first && edge.isRequest(bundle.a.bits)) { a_set := UIntToOH(bundle.a.bits.source) a_opcodes_set_interm := (bundle.a.bits.opcode << 1.U) | 1.U a_sizes_set_interm := (bundle.a.bits.size << 1.U) | 1.U a_opcodes_set := (a_opcodes_set_interm) << (bundle.a.bits.source << log_a_opcode_bus_size.U) a_sizes_set := (a_sizes_set_interm) << (bundle.a.bits.source << log_a_size_bus_size.U) monAssert(!inflight(bundle.a.bits.source), "'A' channel re-used a source ID" + extra) } val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_a_opcode_bus_size).W)) d_opcodes_clr.suggestName("d_opcodes_clr") val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_a_size_bus_size).W)) d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_a_opcode_bus_size.U) << (bundle.d.bits.source << log_a_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_a_size_bus_size.U) << (bundle.d.bits.source << log_a_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && !d_release_ack) { val same_cycle_resp = bundle.a.valid && a_first && edge.isRequest(bundle.a.bits) && (bundle.a.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.opcode === responseMap(bundle.a.bits.opcode)) || (bundle.d.bits.opcode === responseMapSecondOption(bundle.a.bits.opcode)), "'D' channel contains improper opcode response" + extra) assume((bundle.a.bits.size === bundle.d.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.opcode === responseMap(a_opcode_lookup)) || (bundle.d.bits.opcode === responseMapSecondOption(a_opcode_lookup)), "'D' channel contains improper opcode response" + extra) assume((bundle.d.bits.size === a_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && a_first && bundle.a.valid && (bundle.a.bits.source === bundle.d.bits.source) && !d_release_ack) { assume((!bundle.d.ready) || bundle.a.ready, "ready check") } if (edge.manager.minLatency > 0) { assume(a_set_wo_ready =/= d_clr_wo_ready || !a_set_wo_ready.orR, s"'A' and 'D' concurrent, despite minlatency > 0" + extra) } inflight := (inflight | a_set) & ~d_clr inflight_opcodes := (inflight_opcodes | a_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | a_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.a.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeCDSource(bundle: TLBundle, edge: TLEdge): Unit = { val c_size_bus_size = edge.bundle.sizeBits + 1 //add one so that 0 is not mapped to anything (size 0 -> size 1 in map, size 0 in map means unset) val c_opcode_bus_size = 3 + 1 //opcode size is 3, but add so that 0 is not mapped to anything val log_c_opcode_bus_size = log2Ceil(c_opcode_bus_size) val log_c_size_bus_size = log2Ceil(c_size_bus_size) def size_to_numfullbits(x: UInt): UInt = (1.U << x) - 1.U //convert a number to that many full bits val inflight = RegInit(0.U((2 max edge.client.endSourceId).W)) val inflight_opcodes = RegInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val inflight_sizes = RegInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) inflight.suggestName("inflight") inflight_opcodes.suggestName("inflight_opcodes") inflight_sizes.suggestName("inflight_sizes") val c_first = edge.first(bundle.c.bits, bundle.c.fire) val d_first = edge.first(bundle.d.bits, bundle.d.fire) c_first.suggestName("c_first") d_first.suggestName("d_first") val c_set = WireInit(0.U(edge.client.endSourceId.W)) val c_set_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val c_opcodes_set = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val c_sizes_set = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) c_set.suggestName("c_set") c_set_wo_ready.suggestName("c_set_wo_ready") c_opcodes_set.suggestName("c_opcodes_set") c_sizes_set.suggestName("c_sizes_set") val c_opcode_lookup = WireInit(0.U((1 << log_c_opcode_bus_size).W)) val c_size_lookup = WireInit(0.U((1 << log_c_size_bus_size).W)) c_opcode_lookup := ((inflight_opcodes) >> (bundle.d.bits.source << log_c_opcode_bus_size.U) & size_to_numfullbits(1.U << log_c_opcode_bus_size.U)) >> 1.U c_size_lookup := ((inflight_sizes) >> (bundle.d.bits.source << log_c_size_bus_size.U) & size_to_numfullbits(1.U << log_c_size_bus_size.U)) >> 1.U c_opcode_lookup.suggestName("c_opcode_lookup") c_size_lookup.suggestName("c_size_lookup") val c_opcodes_set_interm = WireInit(0.U(c_opcode_bus_size.W)) val c_sizes_set_interm = WireInit(0.U(c_size_bus_size.W)) c_opcodes_set_interm.suggestName("c_opcodes_set_interm") c_sizes_set_interm.suggestName("c_sizes_set_interm") when (bundle.c.valid && c_first && edge.isRequest(bundle.c.bits)) { c_set_wo_ready := UIntToOH(bundle.c.bits.source) } when (bundle.c.fire && c_first && edge.isRequest(bundle.c.bits)) { c_set := UIntToOH(bundle.c.bits.source) c_opcodes_set_interm := (bundle.c.bits.opcode << 1.U) | 1.U c_sizes_set_interm := (bundle.c.bits.size << 1.U) | 1.U c_opcodes_set := (c_opcodes_set_interm) << (bundle.c.bits.source << log_c_opcode_bus_size.U) c_sizes_set := (c_sizes_set_interm) << (bundle.c.bits.source << log_c_size_bus_size.U) monAssert(!inflight(bundle.c.bits.source), "'C' channel re-used a source ID" + extra) } val c_probe_ack = bundle.c.bits.opcode === TLMessages.ProbeAck || bundle.c.bits.opcode === TLMessages.ProbeAckData val d_clr = WireInit(0.U(edge.client.endSourceId.W)) val d_clr_wo_ready = WireInit(0.U(edge.client.endSourceId.W)) val d_opcodes_clr = WireInit(0.U((edge.client.endSourceId << log_c_opcode_bus_size).W)) val d_sizes_clr = WireInit(0.U((edge.client.endSourceId << log_c_size_bus_size).W)) d_clr.suggestName("d_clr") d_clr_wo_ready.suggestName("d_clr_wo_ready") d_opcodes_clr.suggestName("d_opcodes_clr") d_sizes_clr.suggestName("d_sizes_clr") val d_release_ack = bundle.d.bits.opcode === TLMessages.ReleaseAck when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr_wo_ready := UIntToOH(bundle.d.bits.source) } when (bundle.d.fire && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { d_clr := UIntToOH(bundle.d.bits.source) d_opcodes_clr := size_to_numfullbits(1.U << log_c_opcode_bus_size.U) << (bundle.d.bits.source << log_c_opcode_bus_size.U) d_sizes_clr := size_to_numfullbits(1.U << log_c_size_bus_size.U) << (bundle.d.bits.source << log_c_size_bus_size.U) } when (bundle.d.valid && d_first && edge.isResponse(bundle.d.bits) && d_release_ack) { val same_cycle_resp = bundle.c.valid && c_first && edge.isRequest(bundle.c.bits) && (bundle.c.bits.source === bundle.d.bits.source) assume(((inflight)(bundle.d.bits.source)) || same_cycle_resp, "'D' channel acknowledged for nothing inflight" + extra) when (same_cycle_resp) { assume((bundle.d.bits.size === bundle.c.bits.size), "'D' channel contains improper response size" + extra) } .otherwise { assume((bundle.d.bits.size === c_size_lookup), "'D' channel contains improper response size" + extra) } } when(bundle.d.valid && d_first && c_first && bundle.c.valid && (bundle.c.bits.source === bundle.d.bits.source) && d_release_ack && !c_probe_ack) { assume((!bundle.d.ready) || bundle.c.ready, "ready check") } if (edge.manager.minLatency > 0) { when (c_set_wo_ready.orR) { assume(c_set_wo_ready =/= d_clr_wo_ready, s"'C' and 'D' concurrent, despite minlatency > 0" + extra) } } inflight := (inflight | c_set) & ~d_clr inflight_opcodes := (inflight_opcodes | c_opcodes_set) & ~d_opcodes_clr inflight_sizes := (inflight_sizes | c_sizes_set) & ~d_sizes_clr val watchdog = RegInit(0.U(32.W)) val limit = PlusArg("tilelink_timeout", docstring="Kill emulation after INT waiting TileLink cycles. Off if 0.") monAssert (!inflight.orR || limit === 0.U || watchdog < limit, "TileLink timeout expired" + extra) watchdog := watchdog + 1.U when (bundle.c.fire || bundle.d.fire) { watchdog := 0.U } } def legalizeDESink(bundle: TLBundle, edge: TLEdge): Unit = { val inflight = RegInit(0.U(edge.manager.endSinkId.W)) val d_first = edge.first(bundle.d.bits, bundle.d.fire) val e_first = true.B val d_set = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.d.fire && d_first && edge.isRequest(bundle.d.bits)) { d_set := UIntToOH(bundle.d.bits.sink) assume(!inflight(bundle.d.bits.sink), "'D' channel re-used a sink ID" + extra) } val e_clr = WireInit(0.U(edge.manager.endSinkId.W)) when (bundle.e.fire && e_first && edge.isResponse(bundle.e.bits)) { e_clr := UIntToOH(bundle.e.bits.sink) monAssert((d_set | inflight)(bundle.e.bits.sink), "'E' channel acknowledged for nothing inflight" + extra) } // edge.client.minLatency applies to BC, not DE inflight := (inflight | d_set) & ~e_clr } def legalizeUnique(bundle: TLBundle, edge: TLEdge): Unit = { val sourceBits = log2Ceil(edge.client.endSourceId) val tooBig = 14 // >16kB worth of flight information gets to be too much if (sourceBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with source bits (${sourceBits}) > ${tooBig}; A=>D transaction flight will not be checked") } else { if (args.edge.params(TestplanTestType).simulation) { if (args.edge.params(TLMonitorStrictMode)) { legalizeADSource(bundle, edge) legalizeCDSource(bundle, edge) } else { legalizeADSourceOld(bundle, edge) } } if (args.edge.params(TestplanTestType).formal) { legalizeADSourceFormal(bundle, edge) } } if (edge.client.anySupportProbe && edge.manager.anySupportAcquireB) { // legalizeBCSourceAddress(bundle, edge) // too much state needed to synthesize... val sinkBits = log2Ceil(edge.manager.endSinkId) if (sinkBits > tooBig) { println(s"WARNING: TLMonitor instantiated on a bus with sink bits (${sinkBits}) > ${tooBig}; D=>E transaction flight will not be checked") } else { legalizeDESink(bundle, edge) } } } def legalize(bundle: TLBundle, edge: TLEdge, reset: Reset): Unit = { legalizeFormat (bundle, edge) legalizeMultibeat (bundle, edge) legalizeUnique (bundle, edge) } } File Misc.scala: // See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.util._ import chisel3.util.random.LFSR import org.chipsalliance.cde.config.Parameters import scala.math._ class ParameterizedBundle(implicit p: Parameters) extends Bundle trait Clocked extends Bundle { val clock = Clock() val reset = Bool() } object DecoupledHelper { def apply(rvs: Bool*) = new DecoupledHelper(rvs) } class DecoupledHelper(val rvs: Seq[Bool]) { def fire(exclude: Bool, includes: Bool*) = { require(rvs.contains(exclude), "Excluded Bool not present in DecoupledHelper! Note that DecoupledHelper uses referential equality for exclusion! If you don't want to exclude anything, use fire()!") (rvs.filter(_ ne exclude) ++ includes).reduce(_ && _) } def fire() = { rvs.reduce(_ && _) } } object MuxT { def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2)) def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3)) def apply[T <: Data, U <: Data, W <: Data, X <: Data](cond: Bool, con: (T, U, W, X), alt: (T, U, W, X)): (T, U, W, X) = (Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3), Mux(cond, con._4, alt._4)) } /** Creates a cascade of n MuxTs to search for a key value. */ object MuxTLookup { def apply[S <: UInt, T <: Data, U <: Data](key: S, default: (T, U), mapping: Seq[(S, (T, U))]): (T, U) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } def apply[S <: UInt, T <: Data, U <: Data, W <: Data](key: S, default: (T, U, W), mapping: Seq[(S, (T, U, W))]): (T, U, W) = { var res = default for ((k, v) <- mapping.reverse) res = MuxT(k === key, v, res) res } } object ValidMux { def apply[T <: Data](v1: ValidIO[T], v2: ValidIO[T]*): ValidIO[T] = { apply(v1 +: v2.toSeq) } def apply[T <: Data](valids: Seq[ValidIO[T]]): ValidIO[T] = { val out = Wire(Valid(valids.head.bits.cloneType)) out.valid := valids.map(_.valid).reduce(_ || _) out.bits := MuxCase(valids.head.bits, valids.map(v => (v.valid -> v.bits))) out } } object Str { def apply(s: String): UInt = { var i = BigInt(0) require(s.forall(validChar _)) for (c <- s) i = (i << 8) | c i.U((s.length*8).W) } def apply(x: Char): UInt = { require(validChar(x)) x.U(8.W) } def apply(x: UInt): UInt = apply(x, 10) def apply(x: UInt, radix: Int): UInt = { val rad = radix.U val w = x.getWidth require(w > 0) var q = x var s = digit(q % rad) for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad s = Cat(Mux((radix == 10).B && q === 0.U, Str(' '), digit(q % rad)), s) } s } def apply(x: SInt): UInt = apply(x, 10) def apply(x: SInt, radix: Int): UInt = { val neg = x < 0.S val abs = x.abs.asUInt if (radix != 10) { Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix)) } else { val rad = radix.U val w = abs.getWidth require(w > 0) var q = abs var s = digit(q % rad) var needSign = neg for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) { q = q / rad val placeSpace = q === 0.U val space = Mux(needSign, Str('-'), Str(' ')) needSign = needSign && !placeSpace s = Cat(Mux(placeSpace, space, digit(q % rad)), s) } Cat(Mux(needSign, Str('-'), Str(' ')), s) } } private def digit(d: UInt): UInt = Mux(d < 10.U, Str('0')+d, Str(('a'-10).toChar)+d)(7,0) private def validChar(x: Char) = x == (x & 0xFF) } object Split { def apply(x: UInt, n0: Int) = { val w = x.getWidth (x.extract(w-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } def apply(x: UInt, n2: Int, n1: Int, n0: Int) = { val w = x.getWidth (x.extract(w-1,n2), x.extract(n2-1,n1), x.extract(n1-1,n0), x.extract(n0-1,0)) } } object Random { def apply(mod: Int, random: UInt): UInt = { if (isPow2(mod)) random.extract(log2Ceil(mod)-1,0) else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod)) } def apply(mod: Int): UInt = apply(mod, randomizer) def oneHot(mod: Int, random: UInt): UInt = { if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0)) else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt } def oneHot(mod: Int): UInt = oneHot(mod, randomizer) private def randomizer = LFSR(16) private def partition(value: UInt, slices: Int) = Seq.tabulate(slices)(i => value < (((i + 1) << value.getWidth) / slices).U) } object Majority { def apply(in: Set[Bool]): Bool = { val n = (in.size >> 1) + 1 val clauses = in.subsets(n).map(_.reduce(_ && _)) clauses.reduce(_ || _) } def apply(in: Seq[Bool]): Bool = apply(in.toSet) def apply(in: UInt): Bool = apply(in.asBools.toSet) } object PopCountAtLeast { private def two(x: UInt): (Bool, Bool) = x.getWidth match { case 1 => (x.asBool, false.B) case n => val half = x.getWidth / 2 val (leftOne, leftTwo) = two(x(half - 1, 0)) val (rightOne, rightTwo) = two(x(x.getWidth - 1, half)) (leftOne || rightOne, leftTwo || rightTwo || (leftOne && rightOne)) } def apply(x: UInt, n: Int): Bool = n match { case 0 => true.B case 1 => x.orR case 2 => two(x)._2 case 3 => PopCount(x) >= n.U } } // This gets used everywhere, so make the smallest circuit possible ... // Given an address and size, create a mask of beatBytes size // eg: (0x3, 0, 4) => 0001, (0x3, 1, 4) => 0011, (0x3, 2, 4) => 1111 // groupBy applies an interleaved OR reduction; groupBy=2 take 0010 => 01 object MaskGen { def apply(addr_lo: UInt, lgSize: UInt, beatBytes: Int, groupBy: Int = 1): UInt = { require (groupBy >= 1 && beatBytes >= groupBy) require (isPow2(beatBytes) && isPow2(groupBy)) val lgBytes = log2Ceil(beatBytes) val sizeOH = UIntToOH(lgSize | 0.U(log2Up(beatBytes).W), log2Up(beatBytes)) | (groupBy*2 - 1).U def helper(i: Int): Seq[(Bool, Bool)] = { if (i == 0) { Seq((lgSize >= lgBytes.asUInt, true.B)) } else { val sub = helper(i-1) val size = sizeOH(lgBytes - i) val bit = addr_lo(lgBytes - i) val nbit = !bit Seq.tabulate (1 << i) { j => val (sub_acc, sub_eq) = sub(j/2) val eq = sub_eq && (if (j % 2 == 1) bit else nbit) val acc = sub_acc || (size && eq) (acc, eq) } } } if (groupBy == beatBytes) 1.U else Cat(helper(lgBytes-log2Ceil(groupBy)).map(_._1).reverse) } } File PlusArg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ import chisel3.experimental._ import chisel3.util.HasBlackBoxResource @deprecated("This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05") case class PlusArgInfo(default: BigInt, docstring: String) /** Case class for PlusArg information * * @tparam A scala type of the PlusArg value * @param default optional default value * @param docstring text to include in the help * @param doctype description of the Verilog type of the PlusArg value (e.g. STRING, INT) */ private case class PlusArgContainer[A](default: Option[A], docstring: String, doctype: String) /** Typeclass for converting a type to a doctype string * @tparam A some type */ trait Doctypeable[A] { /** Return the doctype string for some option */ def toDoctype(a: Option[A]): String } /** Object containing implementations of the Doctypeable typeclass */ object Doctypes { /** Converts an Int => "INT" */ implicit val intToDoctype = new Doctypeable[Int] { def toDoctype(a: Option[Int]) = "INT" } /** Converts a BigInt => "INT" */ implicit val bigIntToDoctype = new Doctypeable[BigInt] { def toDoctype(a: Option[BigInt]) = "INT" } /** Converts a String => "STRING" */ implicit val stringToDoctype = new Doctypeable[String] { def toDoctype(a: Option[String]) = "STRING" } } class plusarg_reader(val format: String, val default: BigInt, val docstring: String, val width: Int) extends BlackBox(Map( "FORMAT" -> StringParam(format), "DEFAULT" -> IntParam(default), "WIDTH" -> IntParam(width) )) with HasBlackBoxResource { val io = IO(new Bundle { val out = Output(UInt(width.W)) }) addResource("/vsrc/plusarg_reader.v") } /* This wrapper class has no outputs, making it clear it is a simulation-only construct */ class PlusArgTimeout(val format: String, val default: BigInt, val docstring: String, val width: Int) extends Module { val io = IO(new Bundle { val count = Input(UInt(width.W)) }) val max = Module(new plusarg_reader(format, default, docstring, width)).io.out when (max > 0.U) { assert (io.count < max, s"Timeout exceeded: $docstring") } } import Doctypes._ object PlusArg { /** PlusArg("foo") will return 42.U if the simulation is run with +foo=42 * Do not use this as an initial register value. The value is set in an * initial block and thus accessing it from another initial is racey. * Add a docstring to document the arg, which can be dumped in an elaboration * pass. */ def apply(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32): UInt = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new plusarg_reader(name + "=%d", default, docstring, width)).io.out } /** PlusArg.timeout(name, default, docstring)(count) will use chisel.assert * to kill the simulation when count exceeds the specified integer argument. * Default 0 will never assert. */ def timeout(name: String, default: BigInt = 0, docstring: String = "", width: Int = 32)(count: UInt): Unit = { PlusArgArtefacts.append(name, Some(default), docstring) Module(new PlusArgTimeout(name + "=%d", default, docstring, width)).io.count := count } } object PlusArgArtefacts { private var artefacts: Map[String, PlusArgContainer[_]] = Map.empty /* Add a new PlusArg */ @deprecated( "Use `Some(BigInt)` to specify a `default` value. This will be removed in Rocket Chip 2020.08", "Rocket Chip 2020.05" ) def append(name: String, default: BigInt, docstring: String): Unit = append(name, Some(default), docstring) /** Add a new PlusArg * * @tparam A scala type of the PlusArg value * @param name name for the PlusArg * @param default optional default value * @param docstring text to include in the help */ def append[A : Doctypeable](name: String, default: Option[A], docstring: String): Unit = artefacts = artefacts ++ Map(name -> PlusArgContainer(default, docstring, implicitly[Doctypeable[A]].toDoctype(default))) /* From plus args, generate help text */ private def serializeHelp_cHeader(tab: String = ""): String = artefacts .map{ case(arg, info) => s"""|$tab+$arg=${info.doctype}\\n\\ |$tab${" "*20}${info.docstring}\\n\\ |""".stripMargin ++ info.default.map{ case default => s"$tab${" "*22}(default=${default})\\n\\\n"}.getOrElse("") }.toSeq.mkString("\\n\\\n") ++ "\"" /* From plus args, generate a char array of their names */ private def serializeArray_cHeader(tab: String = ""): String = { val prettyTab = tab + " " * 44 // Length of 'static const ...' s"${tab}static const char * verilog_plusargs [] = {\\\n" ++ artefacts .map{ case(arg, _) => s"""$prettyTab"$arg",\\\n""" } .mkString("")++ s"${prettyTab}0};" } /* Generate C code to be included in emulator.cc that helps with * argument parsing based on available Verilog PlusArgs */ def serialize_cHeader(): String = s"""|#define PLUSARG_USAGE_OPTIONS \"EMULATOR VERILOG PLUSARGS\\n\\ |${serializeHelp_cHeader(" "*7)} |${serializeArray_cHeader()} |""".stripMargin } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Parameters.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.diplomacy import chisel3._ import chisel3.util.{DecoupledIO, Queue, ReadyValidIO, isPow2, log2Ceil, log2Floor} import freechips.rocketchip.util.ShiftQueue /** Options for describing the attributes of memory regions */ object RegionType { // Define the 'more relaxed than' ordering val cases = Seq(CACHED, TRACKED, UNCACHED, IDEMPOTENT, VOLATILE, PUT_EFFECTS, GET_EFFECTS) sealed trait T extends Ordered[T] { def compare(that: T): Int = cases.indexOf(that) compare cases.indexOf(this) } case object CACHED extends T // an intermediate agent may have cached a copy of the region for you case object TRACKED extends T // the region may have been cached by another master, but coherence is being provided case object UNCACHED extends T // the region has not been cached yet, but should be cached when possible case object IDEMPOTENT extends T // gets return most recently put content, but content should not be cached case object VOLATILE extends T // content may change without a put, but puts and gets have no side effects case object PUT_EFFECTS extends T // puts produce side effects and so must not be combined/delayed case object GET_EFFECTS extends T // gets produce side effects and so must not be issued speculatively } // A non-empty half-open range; [start, end) case class IdRange(start: Int, end: Int) extends Ordered[IdRange] { require (start >= 0, s"Ids cannot be negative, but got: $start.") require (start <= end, "Id ranges cannot be negative.") def compare(x: IdRange) = { val primary = (this.start - x.start).signum val secondary = (x.end - this.end).signum if (primary != 0) primary else secondary } def overlaps(x: IdRange) = start < x.end && x.start < end def contains(x: IdRange) = start <= x.start && x.end <= end def contains(x: Int) = start <= x && x < end def contains(x: UInt) = if (size == 0) { false.B } else if (size == 1) { // simple comparison x === start.U } else { // find index of largest different bit val largestDeltaBit = log2Floor(start ^ (end-1)) val smallestCommonBit = largestDeltaBit + 1 // may not exist in x val uncommonMask = (1 << smallestCommonBit) - 1 val uncommonBits = (x | 0.U(smallestCommonBit.W))(largestDeltaBit, 0) // the prefix must match exactly (note: may shift ALL bits away) (x >> smallestCommonBit) === (start >> smallestCommonBit).U && // firrtl constant prop range analysis can eliminate these two: (start & uncommonMask).U <= uncommonBits && uncommonBits <= ((end-1) & uncommonMask).U } def shift(x: Int) = IdRange(start+x, end+x) def size = end - start def isEmpty = end == start def range = start until end } object IdRange { def overlaps(s: Seq[IdRange]) = if (s.isEmpty) None else { val ranges = s.sorted (ranges.tail zip ranges.init) find { case (a, b) => a overlaps b } } } // An potentially empty inclusive range of 2-powers [min, max] (in bytes) case class TransferSizes(min: Int, max: Int) { def this(x: Int) = this(x, x) require (min <= max, s"Min transfer $min > max transfer $max") require (min >= 0 && max >= 0, s"TransferSizes must be positive, got: ($min, $max)") require (max == 0 || isPow2(max), s"TransferSizes must be a power of 2, got: $max") require (min == 0 || isPow2(min), s"TransferSizes must be a power of 2, got: $min") require (max == 0 || min != 0, s"TransferSize 0 is forbidden unless (0,0), got: ($min, $max)") def none = min == 0 def contains(x: Int) = isPow2(x) && min <= x && x <= max def containsLg(x: Int) = contains(1 << x) def containsLg(x: UInt) = if (none) false.B else if (min == max) { log2Ceil(min).U === x } else { log2Ceil(min).U <= x && x <= log2Ceil(max).U } def contains(x: TransferSizes) = x.none || (min <= x.min && x.max <= max) def intersect(x: TransferSizes) = if (x.max < min || max < x.min) TransferSizes.none else TransferSizes(scala.math.max(min, x.min), scala.math.min(max, x.max)) // Not a union, because the result may contain sizes contained by neither term // NOT TO BE CONFUSED WITH COVERPOINTS def mincover(x: TransferSizes) = { if (none) { x } else if (x.none) { this } else { TransferSizes(scala.math.min(min, x.min), scala.math.max(max, x.max)) } } override def toString() = "TransferSizes[%d, %d]".format(min, max) } object TransferSizes { def apply(x: Int) = new TransferSizes(x) val none = new TransferSizes(0) def mincover(seq: Seq[TransferSizes]) = seq.foldLeft(none)(_ mincover _) def intersect(seq: Seq[TransferSizes]) = seq.reduce(_ intersect _) implicit def asBool(x: TransferSizes) = !x.none } // AddressSets specify the address space managed by the manager // Base is the base address, and mask are the bits consumed by the manager // e.g: base=0x200, mask=0xff describes a device managing 0x200-0x2ff // e.g: base=0x1000, mask=0xf0f decribes a device managing 0x1000-0x100f, 0x1100-0x110f, ... case class AddressSet(base: BigInt, mask: BigInt) extends Ordered[AddressSet] { // Forbid misaligned base address (and empty sets) require ((base & mask) == 0, s"Mis-aligned AddressSets are forbidden, got: ${this.toString}") require (base >= 0, s"AddressSet negative base is ambiguous: $base") // TL2 address widths are not fixed => negative is ambiguous // We do allow negative mask (=> ignore all high bits) def contains(x: BigInt) = ((x ^ base) & ~mask) == 0 def contains(x: UInt) = ((x ^ base.U).zext & (~mask).S) === 0.S // turn x into an address contained in this set def legalize(x: UInt): UInt = base.U | (mask.U & x) // overlap iff bitwise: both care (~mask0 & ~mask1) => both equal (base0=base1) def overlaps(x: AddressSet) = (~(mask | x.mask) & (base ^ x.base)) == 0 // contains iff bitwise: x.mask => mask && contains(x.base) def contains(x: AddressSet) = ((x.mask | (base ^ x.base)) & ~mask) == 0 // The number of bytes to which the manager must be aligned def alignment = ((mask + 1) & ~mask) // Is this a contiguous memory range def contiguous = alignment == mask+1 def finite = mask >= 0 def max = { require (finite, "Max cannot be calculated on infinite mask"); base | mask } // Widen the match function to ignore all bits in imask def widen(imask: BigInt) = AddressSet(base & ~imask, mask | imask) // Return an AddressSet that only contains the addresses both sets contain def intersect(x: AddressSet): Option[AddressSet] = { if (!overlaps(x)) { None } else { val r_mask = mask & x.mask val r_base = base | x.base Some(AddressSet(r_base, r_mask)) } } def subtract(x: AddressSet): Seq[AddressSet] = { intersect(x) match { case None => Seq(this) case Some(remove) => AddressSet.enumerateBits(mask & ~remove.mask).map { bit => val nmask = (mask & (bit-1)) | remove.mask val nbase = (remove.base ^ bit) & ~nmask AddressSet(nbase, nmask) } } } // AddressSets have one natural Ordering (the containment order, if contiguous) def compare(x: AddressSet) = { val primary = (this.base - x.base).signum // smallest address first val secondary = (x.mask - this.mask).signum // largest mask first if (primary != 0) primary else secondary } // We always want to see things in hex override def toString() = { if (mask >= 0) { "AddressSet(0x%x, 0x%x)".format(base, mask) } else { "AddressSet(0x%x, ~0x%x)".format(base, ~mask) } } def toRanges = { require (finite, "Ranges cannot be calculated on infinite mask") val size = alignment val fragments = mask & ~(size-1) val bits = bitIndexes(fragments) (BigInt(0) until (BigInt(1) << bits.size)).map { i => val off = bitIndexes(i).foldLeft(base) { case (a, b) => a.setBit(bits(b)) } AddressRange(off, size) } } } object AddressSet { val everything = AddressSet(0, -1) def misaligned(base: BigInt, size: BigInt, tail: Seq[AddressSet] = Seq()): Seq[AddressSet] = { if (size == 0) tail.reverse else { val maxBaseAlignment = base & (-base) // 0 for infinite (LSB) val maxSizeAlignment = BigInt(1) << log2Floor(size) // MSB of size val step = if (maxBaseAlignment == 0 || maxBaseAlignment > maxSizeAlignment) maxSizeAlignment else maxBaseAlignment misaligned(base+step, size-step, AddressSet(base, step-1) +: tail) } } def unify(seq: Seq[AddressSet], bit: BigInt): Seq[AddressSet] = { // Pair terms up by ignoring 'bit' seq.distinct.groupBy(x => x.copy(base = x.base & ~bit)).map { case (key, seq) => if (seq.size == 1) { seq.head // singleton -> unaffected } else { key.copy(mask = key.mask | bit) // pair - widen mask by bit } }.toList } def unify(seq: Seq[AddressSet]): Seq[AddressSet] = { val bits = seq.map(_.base).foldLeft(BigInt(0))(_ | _) AddressSet.enumerateBits(bits).foldLeft(seq) { case (acc, bit) => unify(acc, bit) }.sorted } def enumerateMask(mask: BigInt): Seq[BigInt] = { def helper(id: BigInt, tail: Seq[BigInt]): Seq[BigInt] = if (id == mask) (id +: tail).reverse else helper(((~mask | id) + 1) & mask, id +: tail) helper(0, Nil) } def enumerateBits(mask: BigInt): Seq[BigInt] = { def helper(x: BigInt): Seq[BigInt] = { if (x == 0) { Nil } else { val bit = x & (-x) bit +: helper(x & ~bit) } } helper(mask) } } case class BufferParams(depth: Int, flow: Boolean, pipe: Boolean) { require (depth >= 0, "Buffer depth must be >= 0") def isDefined = depth > 0 def latency = if (isDefined && !flow) 1 else 0 def apply[T <: Data](x: DecoupledIO[T]) = if (isDefined) Queue(x, depth, flow=flow, pipe=pipe) else x def irrevocable[T <: Data](x: ReadyValidIO[T]) = if (isDefined) Queue.irrevocable(x, depth, flow=flow, pipe=pipe) else x def sq[T <: Data](x: DecoupledIO[T]) = if (!isDefined) x else { val sq = Module(new ShiftQueue(x.bits, depth, flow=flow, pipe=pipe)) sq.io.enq <> x sq.io.deq } override def toString() = "BufferParams:%d%s%s".format(depth, if (flow) "F" else "", if (pipe) "P" else "") } object BufferParams { implicit def apply(depth: Int): BufferParams = BufferParams(depth, false, false) val default = BufferParams(2) val none = BufferParams(0) val flow = BufferParams(1, true, false) val pipe = BufferParams(1, false, true) } case class TriStateValue(value: Boolean, set: Boolean) { def update(orig: Boolean) = if (set) value else orig } object TriStateValue { implicit def apply(value: Boolean): TriStateValue = TriStateValue(value, true) def unset = TriStateValue(false, false) } trait DirectedBuffers[T] { def copyIn(x: BufferParams): T def copyOut(x: BufferParams): T def copyInOut(x: BufferParams): T } trait IdMapEntry { def name: String def from: IdRange def to: IdRange def isCache: Boolean def requestFifo: Boolean def maxTransactionsInFlight: Option[Int] def pretty(fmt: String) = if (from ne to) { // if the subclass uses the same reference for both from and to, assume its format string has an arity of 5 fmt.format(to.start, to.end, from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } else { fmt.format(from.start, from.end, s""""$name"""", if (isCache) " [CACHE]" else "", if (requestFifo) " [FIFO]" else "") } } abstract class IdMap[T <: IdMapEntry] { protected val fmt: String val mapping: Seq[T] def pretty: String = mapping.map(_.pretty(fmt)).mkString(",\n") } File Edges.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config.Parameters import freechips.rocketchip.util._ class TLEdge( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdgeParameters(client, manager, params, sourceInfo) { def isAligned(address: UInt, lgSize: UInt): Bool = { if (maxLgSize == 0) true.B else { val mask = UIntToOH1(lgSize, maxLgSize) (address & mask) === 0.U } } def mask(address: UInt, lgSize: UInt): UInt = MaskGen(address, lgSize, manager.beatBytes) def staticHasData(bundle: TLChannel): Option[Boolean] = { bundle match { case _:TLBundleA => { // Do there exist A messages with Data? val aDataYes = manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportPutFull || manager.anySupportPutPartial // Do there exist A messages without Data? val aDataNo = manager.anySupportAcquireB || manager.anySupportGet || manager.anySupportHint // Statically optimize the case where hasData is a constant if (!aDataYes) Some(false) else if (!aDataNo) Some(true) else None } case _:TLBundleB => { // Do there exist B messages with Data? val bDataYes = client.anySupportArithmetic || client.anySupportLogical || client.anySupportPutFull || client.anySupportPutPartial // Do there exist B messages without Data? val bDataNo = client.anySupportProbe || client.anySupportGet || client.anySupportHint // Statically optimize the case where hasData is a constant if (!bDataYes) Some(false) else if (!bDataNo) Some(true) else None } case _:TLBundleC => { // Do there eixst C messages with Data? val cDataYes = client.anySupportGet || client.anySupportArithmetic || client.anySupportLogical || client.anySupportProbe // Do there exist C messages without Data? val cDataNo = client.anySupportPutFull || client.anySupportPutPartial || client.anySupportHint || client.anySupportProbe if (!cDataYes) Some(false) else if (!cDataNo) Some(true) else None } case _:TLBundleD => { // Do there eixst D messages with Data? val dDataYes = manager.anySupportGet || manager.anySupportArithmetic || manager.anySupportLogical || manager.anySupportAcquireB // Do there exist D messages without Data? val dDataNo = manager.anySupportPutFull || manager.anySupportPutPartial || manager.anySupportHint || manager.anySupportAcquireT if (!dDataYes) Some(false) else if (!dDataNo) Some(true) else None } case _:TLBundleE => Some(false) } } def isRequest(x: TLChannel): Bool = { x match { case a: TLBundleA => true.B case b: TLBundleB => true.B case c: TLBundleC => c.opcode(2) && c.opcode(1) // opcode === TLMessages.Release || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(2) && !d.opcode(1) // opcode === TLMessages.Grant || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } } def isResponse(x: TLChannel): Bool = { x match { case a: TLBundleA => false.B case b: TLBundleB => false.B case c: TLBundleC => !c.opcode(2) || !c.opcode(1) // opcode =/= TLMessages.Release && // opcode =/= TLMessages.ReleaseData case d: TLBundleD => true.B // Grant isResponse + isRequest case e: TLBundleE => true.B } } def hasData(x: TLChannel): Bool = { val opdata = x match { case a: TLBundleA => !a.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case b: TLBundleB => !b.opcode(2) // opcode === TLMessages.PutFullData || // opcode === TLMessages.PutPartialData || // opcode === TLMessages.ArithmeticData || // opcode === TLMessages.LogicalData case c: TLBundleC => c.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.ProbeAckData || // opcode === TLMessages.ReleaseData case d: TLBundleD => d.opcode(0) // opcode === TLMessages.AccessAckData || // opcode === TLMessages.GrantData case e: TLBundleE => false.B } staticHasData(x).map(_.B).getOrElse(opdata) } def opcode(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.opcode case b: TLBundleB => b.opcode case c: TLBundleC => c.opcode case d: TLBundleD => d.opcode } } def param(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.param case b: TLBundleB => b.param case c: TLBundleC => c.param case d: TLBundleD => d.param } } def size(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.size case b: TLBundleB => b.size case c: TLBundleC => c.size case d: TLBundleD => d.size } } def data(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.data case b: TLBundleB => b.data case c: TLBundleC => c.data case d: TLBundleD => d.data } } def corrupt(x: TLDataChannel): Bool = { x match { case a: TLBundleA => a.corrupt case b: TLBundleB => b.corrupt case c: TLBundleC => c.corrupt case d: TLBundleD => d.corrupt } } def mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.mask case b: TLBundleB => b.mask case c: TLBundleC => mask(c.address, c.size) } } def full_mask(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => mask(a.address, a.size) case b: TLBundleB => mask(b.address, b.size) case c: TLBundleC => mask(c.address, c.size) } } def address(x: TLAddrChannel): UInt = { x match { case a: TLBundleA => a.address case b: TLBundleB => b.address case c: TLBundleC => c.address } } def source(x: TLDataChannel): UInt = { x match { case a: TLBundleA => a.source case b: TLBundleB => b.source case c: TLBundleC => c.source case d: TLBundleD => d.source } } def addr_hi(x: UInt): UInt = x >> log2Ceil(manager.beatBytes) def addr_lo(x: UInt): UInt = if (manager.beatBytes == 1) 0.U else x(log2Ceil(manager.beatBytes)-1, 0) def addr_hi(x: TLAddrChannel): UInt = addr_hi(address(x)) def addr_lo(x: TLAddrChannel): UInt = addr_lo(address(x)) def numBeats(x: TLChannel): UInt = { x match { case _: TLBundleE => 1.U case bundle: TLDataChannel => { val hasData = this.hasData(bundle) val size = this.size(bundle) val cutoff = log2Ceil(manager.beatBytes) val small = if (manager.maxTransfer <= manager.beatBytes) true.B else size <= (cutoff).U val decode = UIntToOH(size, maxLgSize+1) >> cutoff Mux(hasData, decode | small.asUInt, 1.U) } } } def numBeats1(x: TLChannel): UInt = { x match { case _: TLBundleE => 0.U case bundle: TLDataChannel => { if (maxLgSize == 0) { 0.U } else { val decode = UIntToOH1(size(bundle), maxLgSize) >> log2Ceil(manager.beatBytes) Mux(hasData(bundle), decode, 0.U) } } } } def firstlastHelper(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val beats1 = numBeats1(bits) val counter = RegInit(0.U(log2Up(maxTransfer / manager.beatBytes).W)) val counter1 = counter - 1.U val first = counter === 0.U val last = counter === 1.U || beats1 === 0.U val done = last && fire val count = (beats1 & ~counter1) when (fire) { counter := Mux(first, beats1, counter1) } (first, last, done, count) } def first(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._1 def first(x: DecoupledIO[TLChannel]): Bool = first(x.bits, x.fire) def first(x: ValidIO[TLChannel]): Bool = first(x.bits, x.valid) def last(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._2 def last(x: DecoupledIO[TLChannel]): Bool = last(x.bits, x.fire) def last(x: ValidIO[TLChannel]): Bool = last(x.bits, x.valid) def done(bits: TLChannel, fire: Bool): Bool = firstlastHelper(bits, fire)._3 def done(x: DecoupledIO[TLChannel]): Bool = done(x.bits, x.fire) def done(x: ValidIO[TLChannel]): Bool = done(x.bits, x.valid) def firstlast(bits: TLChannel, fire: Bool): (Bool, Bool, Bool) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3) } def firstlast(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.fire) def firstlast(x: ValidIO[TLChannel]): (Bool, Bool, Bool) = firstlast(x.bits, x.valid) def count(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4) } def count(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.fire) def count(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = count(x.bits, x.valid) def addr_inc(bits: TLChannel, fire: Bool): (Bool, Bool, Bool, UInt) = { val r = firstlastHelper(bits, fire) (r._1, r._2, r._3, r._4 << log2Ceil(manager.beatBytes)) } def addr_inc(x: DecoupledIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.fire) def addr_inc(x: ValidIO[TLChannel]): (Bool, Bool, Bool, UInt) = addr_inc(x.bits, x.valid) // Does the request need T permissions to be executed? def needT(a: TLBundleA): Bool = { val acq_needT = MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLPermissions.NtoB -> false.B, TLPermissions.NtoT -> true.B, TLPermissions.BtoT -> true.B)) MuxLookup(a.opcode, WireDefault(Bool(), DontCare))(Array( TLMessages.PutFullData -> true.B, TLMessages.PutPartialData -> true.B, TLMessages.ArithmeticData -> true.B, TLMessages.LogicalData -> true.B, TLMessages.Get -> false.B, TLMessages.Hint -> MuxLookup(a.param, WireDefault(Bool(), DontCare))(Array( TLHints.PREFETCH_READ -> false.B, TLHints.PREFETCH_WRITE -> true.B)), TLMessages.AcquireBlock -> acq_needT, TLMessages.AcquirePerm -> acq_needT)) } // This is a very expensive circuit; use only if you really mean it! def inFlight(x: TLBundle): (UInt, UInt) = { val flight = RegInit(0.U(log2Ceil(3*client.endSourceId+1).W)) val bce = manager.anySupportAcquireB && client.anySupportProbe val (a_first, a_last, _) = firstlast(x.a) val (b_first, b_last, _) = firstlast(x.b) val (c_first, c_last, _) = firstlast(x.c) val (d_first, d_last, _) = firstlast(x.d) val (e_first, e_last, _) = firstlast(x.e) val (a_request, a_response) = (isRequest(x.a.bits), isResponse(x.a.bits)) val (b_request, b_response) = (isRequest(x.b.bits), isResponse(x.b.bits)) val (c_request, c_response) = (isRequest(x.c.bits), isResponse(x.c.bits)) val (d_request, d_response) = (isRequest(x.d.bits), isResponse(x.d.bits)) val (e_request, e_response) = (isRequest(x.e.bits), isResponse(x.e.bits)) val a_inc = x.a.fire && a_first && a_request val b_inc = x.b.fire && b_first && b_request val c_inc = x.c.fire && c_first && c_request val d_inc = x.d.fire && d_first && d_request val e_inc = x.e.fire && e_first && e_request val inc = Cat(Seq(a_inc, d_inc) ++ (if (bce) Seq(b_inc, c_inc, e_inc) else Nil)) val a_dec = x.a.fire && a_last && a_response val b_dec = x.b.fire && b_last && b_response val c_dec = x.c.fire && c_last && c_response val d_dec = x.d.fire && d_last && d_response val e_dec = x.e.fire && e_last && e_response val dec = Cat(Seq(a_dec, d_dec) ++ (if (bce) Seq(b_dec, c_dec, e_dec) else Nil)) val next_flight = flight + PopCount(inc) - PopCount(dec) flight := next_flight (flight, next_flight) } def prettySourceMapping(context: String): String = { s"TL-Source mapping for $context:\n${(new TLSourceIdMap(client)).pretty}\n" } } class TLEdgeOut( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { // Transfers def AcquireBlock(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquireBlock a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AcquirePerm(fromSource: UInt, toAddress: UInt, lgSize: UInt, growPermissions: UInt) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.AcquirePerm a.param := growPermissions a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.Release c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleC) = { require (manager.anySupportAcquireB, s"TileLink: No managers visible from this edge support Acquires, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsAcquireBFast(toAddress, lgSize) val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ReleaseData c.param := shrinkPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt (legal, c) } def Release(fromSource: UInt, toAddress: UInt, lgSize: UInt, shrinkPermissions: UInt, data: UInt): (Bool, TLBundleC) = Release(fromSource, toAddress, lgSize, shrinkPermissions, data, false.B) def ProbeAck(b: TLBundleB, reportPermissions: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAck c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def ProbeAck(b: TLBundleB, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(b.source, b.address, b.size, reportPermissions, data) def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt, corrupt: Bool): TLBundleC = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.ProbeAckData c.param := reportPermissions c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def ProbeAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, reportPermissions: UInt, data: UInt): TLBundleC = ProbeAck(fromSource, toAddress, lgSize, reportPermissions, data, false.B) def GrantAck(d: TLBundleD): TLBundleE = GrantAck(d.sink) def GrantAck(toSink: UInt): TLBundleE = { val e = Wire(new TLBundleE(bundle)) e.sink := toSink e } // Accesses def Get(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { require (manager.anySupportGet, s"TileLink: No managers visible from this edge support Gets, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsGetFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Get a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutFull, s"TileLink: No managers visible from this edge support Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutFullFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutFullData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleA) = Put(fromSource, toAddress, lgSize, data, mask, false.B) def Put(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleA) = { require (manager.anySupportPutPartial, s"TileLink: No managers visible from this edge support masked Puts, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsPutPartialFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.PutPartialData a.param := 0.U a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask a.data := data a.corrupt := corrupt (legal, a) } def Arithmetic(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B): (Bool, TLBundleA) = { require (manager.anySupportArithmetic, s"TileLink: No managers visible from this edge support arithmetic AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsArithmeticFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.ArithmeticData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Logical(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (manager.anySupportLogical, s"TileLink: No managers visible from this edge support logical AMOs, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsLogicalFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.LogicalData a.param := atomic a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := data a.corrupt := corrupt (legal, a) } def Hint(fromSource: UInt, toAddress: UInt, lgSize: UInt, param: UInt) = { require (manager.anySupportHint, s"TileLink: No managers visible from this edge support Hints, but one of these clients would try to request one: ${client.clients}") val legal = manager.supportsHintFast(toAddress, lgSize) val a = Wire(new TLBundleA(bundle)) a.opcode := TLMessages.Hint a.param := param a.size := lgSize a.source := fromSource a.address := toAddress a.user := DontCare a.echo := DontCare a.mask := mask(toAddress, lgSize) a.data := DontCare a.corrupt := false.B (legal, a) } def AccessAck(b: TLBundleB): TLBundleC = AccessAck(b.source, address(b), b.size) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } def AccessAck(b: TLBundleB, data: UInt): TLBundleC = AccessAck(b.source, address(b), b.size, data) def AccessAck(b: TLBundleB, data: UInt, corrupt: Bool): TLBundleC = AccessAck(b.source, address(b), b.size, data, corrupt) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt): TLBundleC = AccessAck(fromSource, toAddress, lgSize, data, false.B) def AccessAck(fromSource: UInt, toAddress: UInt, lgSize: UInt, data: UInt, corrupt: Bool) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.AccessAckData c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := data c.corrupt := corrupt c } def HintAck(b: TLBundleB): TLBundleC = HintAck(b.source, address(b), b.size) def HintAck(fromSource: UInt, toAddress: UInt, lgSize: UInt) = { val c = Wire(new TLBundleC(bundle)) c.opcode := TLMessages.HintAck c.param := 0.U c.size := lgSize c.source := fromSource c.address := toAddress c.user := DontCare c.echo := DontCare c.data := DontCare c.corrupt := false.B c } } class TLEdgeIn( client: TLClientPortParameters, manager: TLManagerPortParameters, params: Parameters, sourceInfo: SourceInfo) extends TLEdge(client, manager, params, sourceInfo) { private def myTranspose[T](x: Seq[Seq[T]]): Seq[Seq[T]] = { val todo = x.filter(!_.isEmpty) val heads = todo.map(_.head) val tails = todo.map(_.tail) if (todo.isEmpty) Nil else { heads +: myTranspose(tails) } } // Transfers def Probe(fromAddress: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt) = { require (client.anySupportProbe, s"TileLink: No clients visible from this edge support probes, but one of these managers tried to issue one: ${manager.managers}") val legal = client.supportsProbe(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Probe b.param := capPermissions b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.Grant d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt): TLBundleD = Grant(fromSink, toSource, lgSize, capPermissions, data, false.B, false.B) def Grant(fromSink: UInt, toSource: UInt, lgSize: UInt, capPermissions: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.GrantData d.param := capPermissions d.size := lgSize d.source := toSource d.sink := fromSink d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def ReleaseAck(c: TLBundleC): TLBundleD = ReleaseAck(c.source, c.size, false.B) def ReleaseAck(toSource: UInt, lgSize: UInt, denied: Bool): TLBundleD = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.ReleaseAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } // Accesses def Get(fromAddress: UInt, toSource: UInt, lgSize: UInt) = { require (client.anySupportGet, s"TileLink: No clients visible from this edge support Gets, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsGet(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Get b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutFull, s"TileLink: No clients visible from this edge support Puts, but one of these managers would try to issue one: ${manager.managers}") val legal = client.supportsPutFull(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutFullData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt): (Bool, TLBundleB) = Put(fromAddress, toSource, lgSize, data, mask, false.B) def Put(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, mask: UInt, corrupt: Bool): (Bool, TLBundleB) = { require (client.anySupportPutPartial, s"TileLink: No clients visible from this edge support masked Puts, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsPutPartial(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.PutPartialData b.param := 0.U b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask b.data := data b.corrupt := corrupt (legal, b) } def Arithmetic(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportArithmetic, s"TileLink: No clients visible from this edge support arithmetic AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsArithmetic(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.ArithmeticData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Logical(fromAddress: UInt, toSource: UInt, lgSize: UInt, data: UInt, atomic: UInt, corrupt: Bool = false.B) = { require (client.anySupportLogical, s"TileLink: No clients visible from this edge support logical AMOs, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsLogical(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.LogicalData b.param := atomic b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := data b.corrupt := corrupt (legal, b) } def Hint(fromAddress: UInt, toSource: UInt, lgSize: UInt, param: UInt) = { require (client.anySupportHint, s"TileLink: No clients visible from this edge support Hints, but one of these managers would try to request one: ${manager.managers}") val legal = client.supportsHint(toSource, lgSize) val b = Wire(new TLBundleB(bundle)) b.opcode := TLMessages.Hint b.param := param b.size := lgSize b.source := toSource b.address := fromAddress b.mask := mask(fromAddress, lgSize) b.data := DontCare b.corrupt := false.B (legal, b) } def AccessAck(a: TLBundleA): TLBundleD = AccessAck(a.source, a.size) def AccessAck(a: TLBundleA, denied: Bool): TLBundleD = AccessAck(a.source, a.size, denied) def AccessAck(toSource: UInt, lgSize: UInt): TLBundleD = AccessAck(toSource, lgSize, false.B) def AccessAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } def AccessAck(a: TLBundleA, data: UInt): TLBundleD = AccessAck(a.source, a.size, data) def AccessAck(a: TLBundleA, data: UInt, denied: Bool, corrupt: Bool): TLBundleD = AccessAck(a.source, a.size, data, denied, corrupt) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt): TLBundleD = AccessAck(toSource, lgSize, data, false.B, false.B) def AccessAck(toSource: UInt, lgSize: UInt, data: UInt, denied: Bool, corrupt: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.AccessAckData d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := data d.corrupt := corrupt d } def HintAck(a: TLBundleA): TLBundleD = HintAck(a, false.B) def HintAck(a: TLBundleA, denied: Bool): TLBundleD = HintAck(a.source, a.size, denied) def HintAck(toSource: UInt, lgSize: UInt): TLBundleD = HintAck(toSource, lgSize, false.B) def HintAck(toSource: UInt, lgSize: UInt, denied: Bool) = { val d = Wire(new TLBundleD(bundle)) d.opcode := TLMessages.HintAck d.param := 0.U d.size := lgSize d.source := toSource d.sink := 0.U d.denied := denied d.user := DontCare d.echo := DontCare d.data := DontCare d.corrupt := false.B d } }
module TLMonitor_84( // @[Monitor.scala:36:7] input clock, // @[Monitor.scala:36:7] input reset, // @[Monitor.scala:36:7] input io_in_a_ready, // @[Monitor.scala:20:14] input io_in_a_valid, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_opcode, // @[Monitor.scala:20:14] input [2:0] io_in_a_bits_param, // @[Monitor.scala:20:14] input [1:0] io_in_a_bits_size, // @[Monitor.scala:20:14] input [10:0] io_in_a_bits_source, // @[Monitor.scala:20:14] input [25:0] io_in_a_bits_address, // @[Monitor.scala:20:14] input [7:0] io_in_a_bits_mask, // @[Monitor.scala:20:14] input io_in_a_bits_corrupt, // @[Monitor.scala:20:14] input io_in_d_ready, // @[Monitor.scala:20:14] input io_in_d_valid, // @[Monitor.scala:20:14] input [2:0] io_in_d_bits_opcode, // @[Monitor.scala:20:14] input [1:0] io_in_d_bits_size, // @[Monitor.scala:20:14] input [10:0] io_in_d_bits_source // @[Monitor.scala:20:14] ); wire [31:0] _plusarg_reader_1_out; // @[PlusArg.scala:80:11] wire [31:0] _plusarg_reader_out; // @[PlusArg.scala:80:11] wire a_first_done = io_in_a_ready & io_in_a_valid; // @[Decoupled.scala:51:35] reg a_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode; // @[Monitor.scala:387:22] reg [2:0] param; // @[Monitor.scala:388:22] reg [1:0] size; // @[Monitor.scala:389:22] reg [10:0] source; // @[Monitor.scala:390:22] reg [25:0] address; // @[Monitor.scala:391:22] reg d_first_counter; // @[Edges.scala:229:27] reg [2:0] opcode_1; // @[Monitor.scala:538:22] reg [1:0] size_1; // @[Monitor.scala:540:22] reg [10:0] source_1; // @[Monitor.scala:541:22] reg [1039:0] inflight; // @[Monitor.scala:614:27] reg [4159:0] inflight_opcodes; // @[Monitor.scala:616:35] reg [4159:0] inflight_sizes; // @[Monitor.scala:618:33] reg a_first_counter_1; // @[Edges.scala:229:27] reg d_first_counter_1; // @[Edges.scala:229:27] wire _GEN = a_first_done & ~a_first_counter_1; // @[Decoupled.scala:51:35] wire d_release_ack = io_in_d_bits_opcode == 3'h6; // @[Monitor.scala:673:46] wire _GEN_0 = io_in_d_bits_opcode != 3'h6; // @[Monitor.scala:673:46, :674:74] reg [31:0] watchdog; // @[Monitor.scala:709:27] reg [1039:0] inflight_1; // @[Monitor.scala:726:35] reg [4159:0] inflight_sizes_1; // @[Monitor.scala:728:35] reg d_first_counter_2; // @[Edges.scala:229:27] reg [31:0] watchdog_1; // @[Monitor.scala:818:27]
Generate the Verilog code corresponding to the following Chisel files. File EgressUnit.scala: package constellation.router import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.util._ import constellation.channel._ import constellation.routing.{FlowRoutingBundle} class EgressUnit(coupleSAVA: Boolean, combineSAST: Boolean, inParams: Seq[ChannelParams], ingressParams: Seq[IngressChannelParams], cParam: EgressChannelParams) (implicit p: Parameters) extends AbstractOutputUnit(inParams, ingressParams, cParam)(p) { class EgressUnitIO extends AbstractOutputUnitIO(inParams, ingressParams, cParam) { val out = Decoupled(new EgressFlit(cParam.payloadBits)) } val io = IO(new EgressUnitIO) val channel_empty = RegInit(true.B) val flow = Reg(new FlowRoutingBundle) val q = Module(new Queue(new EgressFlit(cParam.payloadBits), 3 - (if (combineSAST) 1 else 0), flow=true)) q.io.enq.valid := io.in(0).valid q.io.enq.bits.head := io.in(0).bits.head q.io.enq.bits.tail := io.in(0).bits.tail val flows = cParam.possibleFlows.toSeq if (flows.size == 0) { q.io.enq.bits.ingress_id := 0.U(1.W) } else { q.io.enq.bits.ingress_id := Mux1H( flows.map(f => (f.ingressNode.U === io.in(0).bits.flow.ingress_node && f.ingressNodeId.U === io.in(0).bits.flow.ingress_node_id)), flows.map(f => f.ingressId.U(ingressIdBits.W)) ) } q.io.enq.bits.payload := io.in(0).bits.payload io.out <> q.io.deq assert(!(q.io.enq.valid && !q.io.enq.ready)) io.credit_available(0) := q.io.count === 0.U io.channel_status(0).occupied := !channel_empty io.channel_status(0).flow := flow when (io.credit_alloc(0).alloc && io.credit_alloc(0).tail) { channel_empty := true.B if (coupleSAVA) io.channel_status(0).occupied := false.B } when (io.allocs(0).alloc) { channel_empty := false.B flow := io.allocs(0).flow } }
module EgressUnit_26( // @[EgressUnit.scala:12:7] input clock, // @[EgressUnit.scala:12:7] input reset, // @[EgressUnit.scala:12:7] input io_in_0_valid, // @[EgressUnit.scala:18:14] input io_in_0_bits_head, // @[EgressUnit.scala:18:14] input io_in_0_bits_tail, // @[EgressUnit.scala:18:14] input [72:0] io_in_0_bits_payload, // @[EgressUnit.scala:18:14] input [4:0] io_in_0_bits_flow_ingress_node, // @[EgressUnit.scala:18:14] input [1:0] io_in_0_bits_flow_ingress_node_id, // @[EgressUnit.scala:18:14] output io_credit_available_0, // @[EgressUnit.scala:18:14] output io_channel_status_0_occupied, // @[EgressUnit.scala:18:14] input io_allocs_0_alloc, // @[EgressUnit.scala:18:14] input io_credit_alloc_0_alloc, // @[EgressUnit.scala:18:14] input io_credit_alloc_0_tail, // @[EgressUnit.scala:18:14] output io_out_valid, // @[EgressUnit.scala:18:14] output io_out_bits_head, // @[EgressUnit.scala:18:14] output io_out_bits_tail, // @[EgressUnit.scala:18:14] output [72:0] io_out_bits_payload // @[EgressUnit.scala:18:14] ); wire _q_io_enq_ready; // @[EgressUnit.scala:22:17] wire [1:0] _q_io_count; // @[EgressUnit.scala:22:17] reg channel_empty; // @[EgressUnit.scala:20:30] wire _q_io_enq_bits_ingress_id_T_22 = io_in_0_bits_flow_ingress_node_id == 2'h2; // @[EgressUnit.scala:32:27]
Generate the Verilog code corresponding to the following Chisel files. File AsyncResetReg.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.util import chisel3._ /** This black-boxes an Async Reset * (or Set) * Register. * * Because Chisel doesn't support * parameterized black boxes, * we unfortunately have to * instantiate a number of these. * * We also have to hard-code the set/ * reset behavior. * * Do not confuse an asynchronous * reset signal with an asynchronously * reset reg. You should still * properly synchronize your reset * deassertion. * * @param d Data input * @param q Data Output * @param clk Clock Input * @param rst Reset Input * @param en Write Enable Input * */ class AsyncResetReg(resetValue: Int = 0) extends RawModule { val io = IO(new Bundle { val d = Input(Bool()) val q = Output(Bool()) val en = Input(Bool()) val clk = Input(Clock()) val rst = Input(Reset()) }) val reg = withClockAndReset(io.clk, io.rst.asAsyncReset)(RegInit(resetValue.U(1.W))) when (io.en) { reg := io.d } io.q := reg } class SimpleRegIO(val w: Int) extends Bundle{ val d = Input(UInt(w.W)) val q = Output(UInt(w.W)) val en = Input(Bool()) } class AsyncResetRegVec(val w: Int, val init: BigInt) extends Module { override def desiredName = s"AsyncResetRegVec_w${w}_i${init}" val io = IO(new SimpleRegIO(w)) val reg = withReset(reset.asAsyncReset)(RegInit(init.U(w.W))) when (io.en) { reg := io.d } io.q := reg } object AsyncResetReg { // Create Single Registers def apply(d: Bool, clk: Clock, rst: Bool, init: Boolean, name: Option[String]): Bool = { val reg = Module(new AsyncResetReg(if (init) 1 else 0)) reg.io.d := d reg.io.clk := clk reg.io.rst := rst reg.io.en := true.B name.foreach(reg.suggestName(_)) reg.io.q } def apply(d: Bool, clk: Clock, rst: Bool): Bool = apply(d, clk, rst, false, None) def apply(d: Bool, clk: Clock, rst: Bool, name: String): Bool = apply(d, clk, rst, false, Some(name)) // Create Vectors of Registers def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: Option[String] = None): UInt = { val w = updateData.getWidth max resetData.bitLength val reg = Module(new AsyncResetRegVec(w, resetData)) name.foreach(reg.suggestName(_)) reg.io.d := updateData reg.io.en := enable reg.io.q } def apply(updateData: UInt, resetData: BigInt, enable: Bool, name: String): UInt = apply(updateData, resetData, enable, Some(name)) def apply(updateData: UInt, resetData: BigInt): UInt = apply(updateData, resetData, enable = true.B) def apply(updateData: UInt, resetData: BigInt, name: String): UInt = apply(updateData, resetData, enable = true.B, Some(name)) def apply(updateData: UInt, enable: Bool): UInt = apply(updateData, resetData=BigInt(0), enable) def apply(updateData: UInt, enable: Bool, name: String): UInt = apply(updateData, resetData = BigInt(0), enable, Some(name)) def apply(updateData: UInt): UInt = apply(updateData, resetData = BigInt(0), enable = true.B) def apply(updateData: UInt, name:String): UInt = apply(updateData, resetData = BigInt(0), enable = true.B, Some(name)) }
module AsyncResetRegVec_w1_i0_8( // @[AsyncResetReg.scala:56:7] input clock, // @[AsyncResetReg.scala:56:7] input reset, // @[AsyncResetReg.scala:56:7] input io_d, // @[AsyncResetReg.scala:59:14] output io_q // @[AsyncResetReg.scala:59:14] ); wire io_d_0 = io_d; // @[AsyncResetReg.scala:56:7] wire _reg_T = reset; // @[AsyncResetReg.scala:61:29] wire io_en = 1'h1; // @[AsyncResetReg.scala:56:7, :59:14] wire io_q_0; // @[AsyncResetReg.scala:56:7] reg reg_0; // @[AsyncResetReg.scala:61:50] assign io_q_0 = reg_0; // @[AsyncResetReg.scala:56:7, :61:50] always @(posedge clock or posedge _reg_T) begin // @[AsyncResetReg.scala:56:7, :61:29] if (_reg_T) // @[AsyncResetReg.scala:56:7, :61:29] reg_0 <= 1'h0; // @[AsyncResetReg.scala:61:50] else // @[AsyncResetReg.scala:56:7] reg_0 <= io_d_0; // @[AsyncResetReg.scala:56:7, :61:50] always @(posedge, posedge)
Generate the Verilog code corresponding to the following Chisel files. File Fragmenter.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.lazymodule._ import freechips.rocketchip.diplomacy.{AddressSet, BufferParams, IdRange, TransferSizes} import freechips.rocketchip.util.{Repeater, OH1ToUInt, UIntToOH1} import scala.math.min import freechips.rocketchip.util.DataToAugmentedData object EarlyAck { sealed trait T case object AllPuts extends T case object PutFulls extends T case object None extends T } // minSize: minimum size of transfers supported by all outward managers // maxSize: maximum size of transfers supported after the Fragmenter is applied // alwaysMin: fragment all requests down to minSize (else fragment to maximum supported by manager) // earlyAck: should a multibeat Put should be acknowledged on the first beat or last beat // holdFirstDeny: allow the Fragmenter to unsafely combine multibeat Gets by taking the first denied for the whole burst // nameSuffix: appends a suffix to the module name // Fragmenter modifies: PutFull, PutPartial, LogicalData, Get, Hint // Fragmenter passes: ArithmeticData (truncated to minSize if alwaysMin) // Fragmenter cannot modify acquire (could livelock); thus it is unsafe to put caches on both sides class TLFragmenter(val minSize: Int, val maxSize: Int, val alwaysMin: Boolean = false, val earlyAck: EarlyAck.T = EarlyAck.None, val holdFirstDeny: Boolean = false, val nameSuffix: Option[String] = None)(implicit p: Parameters) extends LazyModule { require(isPow2 (maxSize), s"TLFragmenter expects pow2(maxSize), but got $maxSize") require(isPow2 (minSize), s"TLFragmenter expects pow2(minSize), but got $minSize") require(minSize <= maxSize, s"TLFragmenter expects min <= max, but got $minSize > $maxSize") val fragmentBits = log2Ceil(maxSize / minSize) val fullBits = if (earlyAck == EarlyAck.PutFulls) 1 else 0 val toggleBits = 1 val addedBits = fragmentBits + toggleBits + fullBits def expandTransfer(x: TransferSizes, op: String) = if (!x) x else { // validate that we can apply the fragmenter correctly require (x.max >= minSize, s"TLFragmenter (with parent $parent) max transfer size $op(${x.max}) must be >= min transfer size (${minSize})") TransferSizes(x.min, maxSize) } private def noChangeRequired = minSize == maxSize private def shrinkTransfer(x: TransferSizes) = if (!alwaysMin) x else if (x.min <= minSize) TransferSizes(x.min, min(minSize, x.max)) else TransferSizes.none private def mapManager(m: TLSlaveParameters) = m.v1copy( supportsArithmetic = shrinkTransfer(m.supportsArithmetic), supportsLogical = shrinkTransfer(m.supportsLogical), supportsGet = expandTransfer(m.supportsGet, "Get"), supportsPutFull = expandTransfer(m.supportsPutFull, "PutFull"), supportsPutPartial = expandTransfer(m.supportsPutPartial, "PutParital"), supportsHint = expandTransfer(m.supportsHint, "Hint")) val node = new TLAdapterNode( // We require that all the responses are mutually FIFO // Thus we need to compact all of the masters into one big master clientFn = { c => (if (noChangeRequired) c else c.v2copy( masters = Seq(TLMasterParameters.v2( name = "TLFragmenter", sourceId = IdRange(0, if (minSize == maxSize) c.endSourceId else (c.endSourceId << addedBits)), requestFifo = true, emits = TLMasterToSlaveTransferSizes( acquireT = shrinkTransfer(c.masters.map(_.emits.acquireT) .reduce(_ mincover _)), acquireB = shrinkTransfer(c.masters.map(_.emits.acquireB) .reduce(_ mincover _)), arithmetic = shrinkTransfer(c.masters.map(_.emits.arithmetic).reduce(_ mincover _)), logical = shrinkTransfer(c.masters.map(_.emits.logical) .reduce(_ mincover _)), get = shrinkTransfer(c.masters.map(_.emits.get) .reduce(_ mincover _)), putFull = shrinkTransfer(c.masters.map(_.emits.putFull) .reduce(_ mincover _)), putPartial = shrinkTransfer(c.masters.map(_.emits.putPartial).reduce(_ mincover _)), hint = shrinkTransfer(c.masters.map(_.emits.hint) .reduce(_ mincover _)) ) )) ))}, managerFn = { m => if (noChangeRequired) m else m.v2copy(slaves = m.slaves.map(mapManager)) } ) { override def circuitIdentity = noChangeRequired } lazy val module = new Impl class Impl extends LazyModuleImp(this) { override def desiredName = (Seq("TLFragmenter") ++ nameSuffix).mkString("_") (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => if (noChangeRequired) { out <> in } else { // All managers must share a common FIFO domain (responses might end up interleaved) val manager = edgeOut.manager val managers = manager.managers val beatBytes = manager.beatBytes val fifoId = managers(0).fifoId require (fifoId.isDefined && managers.map(_.fifoId == fifoId).reduce(_ && _)) require (!manager.anySupportAcquireB || !edgeOut.client.anySupportProbe, s"TLFragmenter (with parent $parent) can't fragment a caching client's requests into a cacheable region") require (minSize >= beatBytes, s"TLFragmenter (with parent $parent) can't support fragmenting ($minSize) to sub-beat ($beatBytes) accesses") // We can't support devices which are cached on both sides of us require (!edgeOut.manager.anySupportAcquireB || !edgeIn.client.anySupportProbe) // We can't support denied because we reassemble fragments require (!edgeOut.manager.mayDenyGet || holdFirstDeny, s"TLFragmenter (with parent $parent) can't support denials without holdFirstDeny=true") require (!edgeOut.manager.mayDenyPut || earlyAck == EarlyAck.None) /* The Fragmenter is a bit tricky, because there are 5 sizes in play: * max size -- the maximum transfer size possible * orig size -- the original pre-fragmenter size * frag size -- the modified post-fragmenter size * min size -- the threshold below which frag=orig * beat size -- the amount transfered on any given beat * * The relationships are as follows: * max >= orig >= frag * max > min >= beat * It IS possible that orig <= min (then frag=orig; ie: no fragmentation) * * The fragment# (sent via TL.source) is measured in multiples of min size. * Meanwhile, to track the progress, counters measure in multiples of beat size. * * Here is an example of a bus with max=256, min=8, beat=4 and a device supporting 16. * * in.A out.A (frag#) out.D (frag#) in.D gen# ack# * get64 get16 6 ackD16 6 ackD64 12 15 * ackD16 6 ackD64 14 * ackD16 6 ackD64 13 * ackD16 6 ackD64 12 * get16 4 ackD16 4 ackD64 8 11 * ackD16 4 ackD64 10 * ackD16 4 ackD64 9 * ackD16 4 ackD64 8 * get16 2 ackD16 2 ackD64 4 7 * ackD16 2 ackD64 6 * ackD16 2 ackD64 5 * ackD16 2 ackD64 4 * get16 0 ackD16 0 ackD64 0 3 * ackD16 0 ackD64 2 * ackD16 0 ackD64 1 * ackD16 0 ackD64 0 * * get8 get8 0 ackD8 0 ackD8 0 1 * ackD8 0 ackD8 0 * * get4 get4 0 ackD4 0 ackD4 0 0 * get1 get1 0 ackD1 0 ackD1 0 0 * * put64 put16 6 15 * put64 put16 6 14 * put64 put16 6 13 * put64 put16 6 ack16 6 12 12 * put64 put16 4 11 * put64 put16 4 10 * put64 put16 4 9 * put64 put16 4 ack16 4 8 8 * put64 put16 2 7 * put64 put16 2 6 * put64 put16 2 5 * put64 put16 2 ack16 2 4 4 * put64 put16 0 3 * put64 put16 0 2 * put64 put16 0 1 * put64 put16 0 ack16 0 ack64 0 0 * * put8 put8 0 1 * put8 put8 0 ack8 0 ack8 0 0 * * put4 put4 0 ack4 0 ack4 0 0 * put1 put1 0 ack1 0 ack1 0 0 */ val counterBits = log2Up(maxSize/beatBytes) val maxDownSize = if (alwaysMin) minSize else min(manager.maxTransfer, maxSize) // Consider the following waveform for two 4-beat bursts: // ---A----A------------ // -------D-----DDD-DDDD // Under TL rules, the second A can use the same source as the first A, // because the source is released for reuse on the first response beat. // // However, if we fragment the requests, it looks like this: // ---3210-3210--------- // -------3-----210-3210 // ... now we've broken the rules because 210 are twice inflight. // // This phenomenon means we can have essentially 2*maxSize/minSize-1 // fragmented transactions in flight per original transaction source. // // To keep the source unique, we encode the beat counter in the low // bits of the source. To solve the overlap, we use a toggle bit. // Whatever toggle bit the D is reassembling, A will use the opposite. // First, handle the return path val acknum = RegInit(0.U(counterBits.W)) val dOrig = Reg(UInt()) val dToggle = RegInit(false.B) val dFragnum = out.d.bits.source(fragmentBits-1, 0) val dFirst = acknum === 0.U val dLast = dFragnum === 0.U // only for AccessAck (!Data) val dsizeOH = UIntToOH (out.d.bits.size, log2Ceil(maxDownSize)+1) val dsizeOH1 = UIntToOH1(out.d.bits.size, log2Up(maxDownSize)) val dHasData = edgeOut.hasData(out.d.bits) // calculate new acknum val acknum_fragment = dFragnum << log2Ceil(minSize/beatBytes) val acknum_size = dsizeOH1 >> log2Ceil(beatBytes) assert (!out.d.valid || (acknum_fragment & acknum_size) === 0.U) val dFirst_acknum = acknum_fragment | Mux(dHasData, acknum_size, 0.U) val ack_decrement = Mux(dHasData, 1.U, dsizeOH >> log2Ceil(beatBytes)) // calculate the original size val dFirst_size = OH1ToUInt((dFragnum << log2Ceil(minSize)) | dsizeOH1) when (out.d.fire) { acknum := Mux(dFirst, dFirst_acknum, acknum - ack_decrement) when (dFirst) { dOrig := dFirst_size dToggle := out.d.bits.source(fragmentBits) } } // Swallow up non-data ack fragments val doEarlyAck = earlyAck match { case EarlyAck.AllPuts => true.B case EarlyAck.PutFulls => out.d.bits.source(fragmentBits+1) case EarlyAck.None => false.B } val drop = !dHasData && !Mux(doEarlyAck, dFirst, dLast) out.d.ready := in.d.ready || drop in.d.valid := out.d.valid && !drop in.d.bits := out.d.bits // pass most stuff unchanged in.d.bits.source := out.d.bits.source >> addedBits in.d.bits.size := Mux(dFirst, dFirst_size, dOrig) if (edgeOut.manager.mayDenyPut) { val r_denied = Reg(Bool()) val d_denied = (!dFirst && r_denied) || out.d.bits.denied when (out.d.fire) { r_denied := d_denied } in.d.bits.denied := d_denied } if (edgeOut.manager.mayDenyGet) { // Take denied only from the first beat and hold that value val d_denied = out.d.bits.denied holdUnless dFirst when (dHasData) { in.d.bits.denied := d_denied in.d.bits.corrupt := d_denied || out.d.bits.corrupt } } // What maximum transfer sizes do downstream devices support? val maxArithmetics = managers.map(_.supportsArithmetic.max) val maxLogicals = managers.map(_.supportsLogical.max) val maxGets = managers.map(_.supportsGet.max) val maxPutFulls = managers.map(_.supportsPutFull.max) val maxPutPartials = managers.map(_.supportsPutPartial.max) val maxHints = managers.map(m => if (m.supportsHint) maxDownSize else 0) // We assume that the request is valid => size 0 is impossible val lgMinSize = log2Ceil(minSize).U val maxLgArithmetics = maxArithmetics.map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgLogicals = maxLogicals .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgGets = maxGets .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgPutFulls = maxPutFulls .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgPutPartials = maxPutPartials.map(m => if (m == 0) lgMinSize else log2Ceil(m).U) val maxLgHints = maxHints .map(m => if (m == 0) lgMinSize else log2Ceil(m).U) // Make the request repeatable val repeater = Module(new Repeater(in.a.bits)) repeater.io.enq <> in.a val in_a = repeater.io.deq // If this is infront of a single manager, these become constants val find = manager.findFast(edgeIn.address(in_a.bits)) val maxLgArithmetic = Mux1H(find, maxLgArithmetics) val maxLgLogical = Mux1H(find, maxLgLogicals) val maxLgGet = Mux1H(find, maxLgGets) val maxLgPutFull = Mux1H(find, maxLgPutFulls) val maxLgPutPartial = Mux1H(find, maxLgPutPartials) val maxLgHint = Mux1H(find, maxLgHints) val limit = if (alwaysMin) lgMinSize else MuxLookup(in_a.bits.opcode, lgMinSize)(Array( TLMessages.PutFullData -> maxLgPutFull, TLMessages.PutPartialData -> maxLgPutPartial, TLMessages.ArithmeticData -> maxLgArithmetic, TLMessages.LogicalData -> maxLgLogical, TLMessages.Get -> maxLgGet, TLMessages.Hint -> maxLgHint)) val aOrig = in_a.bits.size val aFrag = Mux(aOrig > limit, limit, aOrig) val aOrigOH1 = UIntToOH1(aOrig, log2Ceil(maxSize)) val aFragOH1 = UIntToOH1(aFrag, log2Up(maxDownSize)) val aHasData = edgeIn.hasData(in_a.bits) val aMask = Mux(aHasData, 0.U, aFragOH1) val gennum = RegInit(0.U(counterBits.W)) val aFirst = gennum === 0.U val old_gennum1 = Mux(aFirst, aOrigOH1 >> log2Ceil(beatBytes), gennum - 1.U) val new_gennum = ~(~old_gennum1 | (aMask >> log2Ceil(beatBytes))) // ~(~x|y) is width safe val aFragnum = ~(~(old_gennum1 >> log2Ceil(minSize/beatBytes)) | (aFragOH1 >> log2Ceil(minSize))) val aLast = aFragnum === 0.U val aToggle = !Mux(aFirst, dToggle, RegEnable(dToggle, aFirst)) val aFull = if (earlyAck == EarlyAck.PutFulls) Some(in_a.bits.opcode === TLMessages.PutFullData) else None when (out.a.fire) { gennum := new_gennum } repeater.io.repeat := !aHasData && aFragnum =/= 0.U out.a <> in_a out.a.bits.address := in_a.bits.address | ~(old_gennum1 << log2Ceil(beatBytes) | ~aOrigOH1 | aFragOH1 | (minSize-1).U) out.a.bits.source := Cat(Seq(in_a.bits.source) ++ aFull ++ Seq(aToggle.asUInt, aFragnum)) out.a.bits.size := aFrag // Optimize away some of the Repeater's registers assert (!repeater.io.full || !aHasData) out.a.bits.data := in.a.bits.data val fullMask = ((BigInt(1) << beatBytes) - 1).U assert (!repeater.io.full || in_a.bits.mask === fullMask) out.a.bits.mask := Mux(repeater.io.full, fullMask, in.a.bits.mask) out.a.bits.user.waiveAll :<= in.a.bits.user.subset(_.isData) // Tie off unused channels in.b.valid := false.B in.c.ready := true.B in.e.ready := true.B out.b.ready := true.B out.c.valid := false.B out.e.valid := false.B } } } } object TLFragmenter { def apply(minSize: Int, maxSize: Int, alwaysMin: Boolean = false, earlyAck: EarlyAck.T = EarlyAck.None, holdFirstDeny: Boolean = false, nameSuffix: Option[String] = None)(implicit p: Parameters): TLNode = { if (minSize <= maxSize) { val fragmenter = LazyModule(new TLFragmenter(minSize, maxSize, alwaysMin, earlyAck, holdFirstDeny, nameSuffix)) fragmenter.node } else { TLEphemeralNode()(ValName("no_fragmenter")) } } def apply(wrapper: TLBusWrapper, nameSuffix: Option[String])(implicit p: Parameters): TLNode = apply(wrapper.beatBytes, wrapper.blockBytes, nameSuffix = nameSuffix) def apply(wrapper: TLBusWrapper)(implicit p: Parameters): TLNode = apply(wrapper, None) } // Synthesizable unit tests import freechips.rocketchip.unittest._ class TLRAMFragmenter(ramBeatBytes: Int, maxSize: Int, txns: Int)(implicit p: Parameters) extends LazyModule { val fuzz = LazyModule(new TLFuzzer(txns)) val model = LazyModule(new TLRAMModel("Fragmenter")) val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff), beatBytes = ramBeatBytes)) (ram.node := TLDelayer(0.1) := TLBuffer(BufferParams.flow) := TLDelayer(0.1) := TLFragmenter(ramBeatBytes, maxSize, earlyAck = EarlyAck.AllPuts) := TLDelayer(0.1) := TLBuffer(BufferParams.flow) := TLFragmenter(ramBeatBytes, maxSize/2) := TLDelayer(0.1) := TLBuffer(BufferParams.flow) := model.node := fuzz.node) lazy val module = new Impl class Impl extends LazyModuleImp(this) with UnitTestModule { io.finished := fuzz.module.io.finished } } class TLRAMFragmenterTest(ramBeatBytes: Int, maxSize: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { val dut = Module(LazyModule(new TLRAMFragmenter(ramBeatBytes,maxSize,txns)).module) io.finished := dut.io.finished dut.io.start := io.start } File package.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip import chisel3._ import chisel3.util._ import scala.math.min import scala.collection.{immutable, mutable} package object util { implicit class UnzippableOption[S, T](val x: Option[(S, T)]) { def unzip = (x.map(_._1), x.map(_._2)) } implicit class UIntIsOneOf(private val x: UInt) extends AnyVal { def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).orR def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq) } implicit class VecToAugmentedVec[T <: Data](private val x: Vec[T]) extends AnyVal { /** Like Vec.apply(idx), but tolerates indices of mismatched width */ def extract(idx: UInt): T = x((idx | 0.U(log2Ceil(x.size).W)).extract(log2Ceil(x.size) - 1, 0)) } implicit class SeqToAugmentedSeq[T <: Data](private val x: Seq[T]) extends AnyVal { def apply(idx: UInt): T = { if (x.size <= 1) { x.head } else if (!isPow2(x.size)) { // For non-power-of-2 seqs, reflect elements to simplify decoder (x ++ x.takeRight(x.size & -x.size)).toSeq(idx) } else { // Ignore MSBs of idx val truncIdx = if (idx.isWidthKnown && idx.getWidth <= log2Ceil(x.size)) idx else (idx | 0.U(log2Ceil(x.size).W))(log2Ceil(x.size)-1, 0) x.zipWithIndex.tail.foldLeft(x.head) { case (prev, (cur, i)) => Mux(truncIdx === i.U, cur, prev) } } } def extract(idx: UInt): T = VecInit(x).extract(idx) def asUInt: UInt = Cat(x.map(_.asUInt).reverse) def rotate(n: Int): Seq[T] = x.drop(n) ++ x.take(n) def rotate(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotate(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } def rotateRight(n: Int): Seq[T] = x.takeRight(n) ++ x.dropRight(n) def rotateRight(n: UInt): Seq[T] = { if (x.size <= 1) { x } else { require(isPow2(x.size)) val amt = n.padTo(log2Ceil(x.size)) (0 until log2Ceil(x.size)).foldLeft(x)((r, i) => (r.rotateRight(1 << i) zip r).map { case (s, a) => Mux(amt(i), s, a) }) } } } // allow bitwise ops on Seq[Bool] just like UInt implicit class SeqBoolBitwiseOps(private val x: Seq[Bool]) extends AnyVal { def & (y: Seq[Bool]): Seq[Bool] = (x zip y).map { case (a, b) => a && b } def | (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a || b } def ^ (y: Seq[Bool]): Seq[Bool] = padZip(x, y).map { case (a, b) => a ^ b } def << (n: Int): Seq[Bool] = Seq.fill(n)(false.B) ++ x def >> (n: Int): Seq[Bool] = x drop n def unary_~ : Seq[Bool] = x.map(!_) def andR: Bool = if (x.isEmpty) true.B else x.reduce(_&&_) def orR: Bool = if (x.isEmpty) false.B else x.reduce(_||_) def xorR: Bool = if (x.isEmpty) false.B else x.reduce(_^_) private def padZip(y: Seq[Bool], z: Seq[Bool]): Seq[(Bool, Bool)] = y.padTo(z.size, false.B) zip z.padTo(y.size, false.B) } implicit class DataToAugmentedData[T <: Data](private val x: T) extends AnyVal { def holdUnless(enable: Bool): T = Mux(enable, x, RegEnable(x, enable)) def getElements: Seq[Element] = x match { case e: Element => Seq(e) case a: Aggregate => a.getElements.flatMap(_.getElements) } } /** Any Data subtype that has a Bool member named valid. */ type DataCanBeValid = Data { val valid: Bool } implicit class SeqMemToAugmentedSeqMem[T <: Data](private val x: SyncReadMem[T]) extends AnyVal { def readAndHold(addr: UInt, enable: Bool): T = x.read(addr, enable) holdUnless RegNext(enable) } implicit class StringToAugmentedString(private val x: String) extends AnyVal { /** converts from camel case to to underscores, also removing all spaces */ def underscore: String = x.tail.foldLeft(x.headOption.map(_.toLower + "") getOrElse "") { case (acc, c) if c.isUpper => acc + "_" + c.toLower case (acc, c) if c == ' ' => acc case (acc, c) => acc + c } /** converts spaces or underscores to hyphens, also lowering case */ def kebab: String = x.toLowerCase map { case ' ' => '-' case '_' => '-' case c => c } def named(name: Option[String]): String = { x + name.map("_named_" + _ ).getOrElse("_with_no_name") } def named(name: String): String = named(Some(name)) } implicit def uintToBitPat(x: UInt): BitPat = BitPat(x) implicit def wcToUInt(c: WideCounter): UInt = c.value implicit class UIntToAugmentedUInt(private val x: UInt) extends AnyVal { def sextTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x) } def padTo(n: Int): UInt = { require(x.getWidth <= n) if (x.getWidth == n) x else Cat(0.U((n - x.getWidth).W), x) } // shifts left by n if n >= 0, or right by -n if n < 0 def << (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << n(w-1, 0) Mux(n(w), shifted >> (1 << w), shifted) } // shifts right by n if n >= 0, or left by -n if n < 0 def >> (n: SInt): UInt = { val w = n.getWidth - 1 require(w <= 30) val shifted = x << (1 << w) >> n(w-1, 0) Mux(n(w), shifted, shifted >> (1 << w)) } // Like UInt.apply(hi, lo), but returns 0.U for zero-width extracts def extract(hi: Int, lo: Int): UInt = { require(hi >= lo-1) if (hi == lo-1) 0.U else x(hi, lo) } // Like Some(UInt.apply(hi, lo)), but returns None for zero-width extracts def extractOption(hi: Int, lo: Int): Option[UInt] = { require(hi >= lo-1) if (hi == lo-1) None else Some(x(hi, lo)) } // like x & ~y, but first truncate or zero-extend y to x's width def andNot(y: UInt): UInt = x & ~(y | (x & 0.U)) def rotateRight(n: Int): UInt = if (n == 0) x else Cat(x(n-1, 0), x >> n) def rotateRight(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateRight(1 << i), r)) } } def rotateLeft(n: Int): UInt = if (n == 0) x else Cat(x(x.getWidth-1-n,0), x(x.getWidth-1,x.getWidth-n)) def rotateLeft(n: UInt): UInt = { if (x.getWidth <= 1) { x } else { val amt = n.padTo(log2Ceil(x.getWidth)) (0 until log2Ceil(x.getWidth)).foldLeft(x)((r, i) => Mux(amt(i), r.rotateLeft(1 << i), r)) } } // compute (this + y) % n, given (this < n) and (y < n) def addWrap(y: UInt, n: Int): UInt = { val z = x +& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z >= n.U, z - n.U, z)(log2Ceil(n)-1, 0) } // compute (this - y) % n, given (this < n) and (y < n) def subWrap(y: UInt, n: Int): UInt = { val z = x -& y if (isPow2(n)) z(n.log2-1, 0) else Mux(z(z.getWidth-1), z + n.U, z)(log2Ceil(n)-1, 0) } def grouped(width: Int): Seq[UInt] = (0 until x.getWidth by width).map(base => x(base + width - 1, base)) def inRange(base: UInt, bounds: UInt) = x >= base && x < bounds def ## (y: Option[UInt]): UInt = y.map(x ## _).getOrElse(x) // Like >=, but prevents x-prop for ('x >= 0) def >== (y: UInt): Bool = x >= y || y === 0.U } implicit class OptionUIntToAugmentedOptionUInt(private val x: Option[UInt]) extends AnyVal { def ## (y: UInt): UInt = x.map(_ ## y).getOrElse(y) def ## (y: Option[UInt]): Option[UInt] = x.map(_ ## y) } implicit class BooleanToAugmentedBoolean(private val x: Boolean) extends AnyVal { def toInt: Int = if (x) 1 else 0 // this one's snagged from scalaz def option[T](z: => T): Option[T] = if (x) Some(z) else None } implicit class IntToAugmentedInt(private val x: Int) extends AnyVal { // exact log2 def log2: Int = { require(isPow2(x)) log2Ceil(x) } } def OH1ToOH(x: UInt): UInt = (x << 1 | 1.U) & ~Cat(0.U(1.W), x) def OH1ToUInt(x: UInt): UInt = OHToUInt(OH1ToOH(x)) def UIntToOH1(x: UInt, width: Int): UInt = ~((-1).S(width.W).asUInt << x)(width-1, 0) def UIntToOH1(x: UInt): UInt = UIntToOH1(x, (1 << x.getWidth) - 1) def trailingZeros(x: Int): Option[Int] = if (x > 0) Some(log2Ceil(x & -x)) else None // Fill 1s from low bits to high bits def leftOR(x: UInt): UInt = leftOR(x, x.getWidth, x.getWidth) def leftOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x << s)(width-1,0)) helper(1, x)(width-1, 0) } // Fill 1s form high bits to low bits def rightOR(x: UInt): UInt = rightOR(x, x.getWidth, x.getWidth) def rightOR(x: UInt, width: Integer, cap: Integer = 999999): UInt = { val stop = min(width, cap) def helper(s: Int, x: UInt): UInt = if (s >= stop) x else helper(s+s, x | (x >> s)) helper(1, x)(width-1, 0) } def OptimizationBarrier[T <: Data](in: T): T = { val barrier = Module(new Module { val io = IO(new Bundle { val x = Input(chiselTypeOf(in)) val y = Output(chiselTypeOf(in)) }) io.y := io.x override def desiredName = s"OptimizationBarrier_${in.typeName}" }) barrier.io.x := in barrier.io.y } /** Similar to Seq.groupBy except this returns a Seq instead of a Map * Useful for deterministic code generation */ def groupByIntoSeq[A, K](xs: Seq[A])(f: A => K): immutable.Seq[(K, immutable.Seq[A])] = { val map = mutable.LinkedHashMap.empty[K, mutable.ListBuffer[A]] for (x <- xs) { val key = f(x) val l = map.getOrElseUpdate(key, mutable.ListBuffer.empty[A]) l += x } map.view.map({ case (k, vs) => k -> vs.toList }).toList } def heterogeneousOrGlobalSetting[T](in: Seq[T], n: Int): Seq[T] = in.size match { case 1 => List.fill(n)(in.head) case x if x == n => in case _ => throw new Exception(s"must provide exactly 1 or $n of some field, but got:\n$in") } // HeterogeneousBag moved to standalond diplomacy @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") def HeterogeneousBag[T <: Data](elts: Seq[T]) = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag[T](elts) @deprecated("HeterogeneousBag has been absorbed into standalone diplomacy library", "rocketchip 2.0.0") val HeterogeneousBag = _root_.org.chipsalliance.diplomacy.nodes.HeterogeneousBag } File Nodes.scala: // See LICENSE.SiFive for license details. package freechips.rocketchip.tilelink import chisel3._ import chisel3.experimental.SourceInfo import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy._ import org.chipsalliance.diplomacy.nodes._ import freechips.rocketchip.util.{AsyncQueueParams,RationalDirection} case object TLMonitorBuilder extends Field[TLMonitorArgs => TLMonitorBase](args => new TLMonitor(args)) object TLImp extends NodeImp[TLMasterPortParameters, TLSlavePortParameters, TLEdgeOut, TLEdgeIn, TLBundle] { def edgeO(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeOut(pd, pu, p, sourceInfo) def edgeI(pd: TLMasterPortParameters, pu: TLSlavePortParameters, p: Parameters, sourceInfo: SourceInfo) = new TLEdgeIn (pd, pu, p, sourceInfo) def bundleO(eo: TLEdgeOut) = TLBundle(eo.bundle) def bundleI(ei: TLEdgeIn) = TLBundle(ei.bundle) def render(ei: TLEdgeIn) = RenderedEdge(colour = "#000000" /* black */, label = (ei.manager.beatBytes * 8).toString) override def monitor(bundle: TLBundle, edge: TLEdgeIn): Unit = { val monitor = Module(edge.params(TLMonitorBuilder)(TLMonitorArgs(edge))) monitor.io.in := bundle } override def mixO(pd: TLMasterPortParameters, node: OutwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLMasterPortParameters = pd.v1copy(clients = pd.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) }) override def mixI(pu: TLSlavePortParameters, node: InwardNode[TLMasterPortParameters, TLSlavePortParameters, TLBundle]): TLSlavePortParameters = pu.v1copy(managers = pu.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) }) } trait TLFormatNode extends FormatNode[TLEdgeIn, TLEdgeOut] case class TLClientNode(portParams: Seq[TLMasterPortParameters])(implicit valName: ValName) extends SourceNode(TLImp)(portParams) with TLFormatNode case class TLManagerNode(portParams: Seq[TLSlavePortParameters])(implicit valName: ValName) extends SinkNode(TLImp)(portParams) with TLFormatNode case class TLAdapterNode( clientFn: TLMasterPortParameters => TLMasterPortParameters = { s => s }, managerFn: TLSlavePortParameters => TLSlavePortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLJunctionNode( clientFn: Seq[TLMasterPortParameters] => Seq[TLMasterPortParameters], managerFn: Seq[TLSlavePortParameters] => Seq[TLSlavePortParameters])( implicit valName: ValName) extends JunctionNode(TLImp)(clientFn, managerFn) with TLFormatNode case class TLIdentityNode()(implicit valName: ValName) extends IdentityNode(TLImp)() with TLFormatNode object TLNameNode { def apply(name: ValName) = TLIdentityNode()(name) def apply(name: Option[String]): TLIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLIdentityNode = apply(Some(name)) } case class TLEphemeralNode()(implicit valName: ValName) extends EphemeralNode(TLImp)() object TLTempNode { def apply(): TLEphemeralNode = TLEphemeralNode()(ValName("temp")) } case class TLNexusNode( clientFn: Seq[TLMasterPortParameters] => TLMasterPortParameters, managerFn: Seq[TLSlavePortParameters] => TLSlavePortParameters)( implicit valName: ValName) extends NexusNode(TLImp)(clientFn, managerFn) with TLFormatNode abstract class TLCustomNode(implicit valName: ValName) extends CustomNode(TLImp) with TLFormatNode // Asynchronous crossings trait TLAsyncFormatNode extends FormatNode[TLAsyncEdgeParameters, TLAsyncEdgeParameters] object TLAsyncImp extends SimpleNodeImp[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncEdgeParameters, TLAsyncBundle] { def edge(pd: TLAsyncClientPortParameters, pu: TLAsyncManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLAsyncEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLAsyncEdgeParameters) = new TLAsyncBundle(e.bundle) def render(e: TLAsyncEdgeParameters) = RenderedEdge(colour = "#ff0000" /* red */, label = e.manager.async.depth.toString) override def mixO(pd: TLAsyncClientPortParameters, node: OutwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLAsyncManagerPortParameters, node: InwardNode[TLAsyncClientPortParameters, TLAsyncManagerPortParameters, TLAsyncBundle]): TLAsyncManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLAsyncAdapterNode( clientFn: TLAsyncClientPortParameters => TLAsyncClientPortParameters = { s => s }, managerFn: TLAsyncManagerPortParameters => TLAsyncManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLAsyncImp)(clientFn, managerFn) with TLAsyncFormatNode case class TLAsyncIdentityNode()(implicit valName: ValName) extends IdentityNode(TLAsyncImp)() with TLAsyncFormatNode object TLAsyncNameNode { def apply(name: ValName) = TLAsyncIdentityNode()(name) def apply(name: Option[String]): TLAsyncIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLAsyncIdentityNode = apply(Some(name)) } case class TLAsyncSourceNode(sync: Option[Int])(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLAsyncImp)( dFn = { p => TLAsyncClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = p.base.minLatency + sync.getOrElse(p.async.sync)) }) with FormatNode[TLEdgeIn, TLAsyncEdgeParameters] // discard cycles in other clock domain case class TLAsyncSinkNode(async: AsyncQueueParams)(implicit valName: ValName) extends MixedAdapterNode(TLAsyncImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = p.base.minLatency + async.sync) }, uFn = { p => TLAsyncManagerPortParameters(async, p) }) with FormatNode[TLAsyncEdgeParameters, TLEdgeOut] // Rationally related crossings trait TLRationalFormatNode extends FormatNode[TLRationalEdgeParameters, TLRationalEdgeParameters] object TLRationalImp extends SimpleNodeImp[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalEdgeParameters, TLRationalBundle] { def edge(pd: TLRationalClientPortParameters, pu: TLRationalManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLRationalEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLRationalEdgeParameters) = new TLRationalBundle(e.bundle) def render(e: TLRationalEdgeParameters) = RenderedEdge(colour = "#00ff00" /* green */) override def mixO(pd: TLRationalClientPortParameters, node: OutwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLRationalManagerPortParameters, node: InwardNode[TLRationalClientPortParameters, TLRationalManagerPortParameters, TLRationalBundle]): TLRationalManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLRationalAdapterNode( clientFn: TLRationalClientPortParameters => TLRationalClientPortParameters = { s => s }, managerFn: TLRationalManagerPortParameters => TLRationalManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLRationalImp)(clientFn, managerFn) with TLRationalFormatNode case class TLRationalIdentityNode()(implicit valName: ValName) extends IdentityNode(TLRationalImp)() with TLRationalFormatNode object TLRationalNameNode { def apply(name: ValName) = TLRationalIdentityNode()(name) def apply(name: Option[String]): TLRationalIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLRationalIdentityNode = apply(Some(name)) } case class TLRationalSourceNode()(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLRationalImp)( dFn = { p => TLRationalClientPortParameters(p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLRationalEdgeParameters] // discard cycles from other clock domain case class TLRationalSinkNode(direction: RationalDirection)(implicit valName: ValName) extends MixedAdapterNode(TLRationalImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLRationalManagerPortParameters(direction, p) }) with FormatNode[TLRationalEdgeParameters, TLEdgeOut] // Credited version of TileLink channels trait TLCreditedFormatNode extends FormatNode[TLCreditedEdgeParameters, TLCreditedEdgeParameters] object TLCreditedImp extends SimpleNodeImp[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedEdgeParameters, TLCreditedBundle] { def edge(pd: TLCreditedClientPortParameters, pu: TLCreditedManagerPortParameters, p: Parameters, sourceInfo: SourceInfo) = TLCreditedEdgeParameters(pd, pu, p, sourceInfo) def bundle(e: TLCreditedEdgeParameters) = new TLCreditedBundle(e.bundle) def render(e: TLCreditedEdgeParameters) = RenderedEdge(colour = "#ffff00" /* yellow */, e.delay.toString) override def mixO(pd: TLCreditedClientPortParameters, node: OutwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedClientPortParameters = pd.copy(base = pd.base.v1copy(clients = pd.base.clients.map { c => c.v1copy (nodePath = node +: c.nodePath) })) override def mixI(pu: TLCreditedManagerPortParameters, node: InwardNode[TLCreditedClientPortParameters, TLCreditedManagerPortParameters, TLCreditedBundle]): TLCreditedManagerPortParameters = pu.copy(base = pu.base.v1copy(managers = pu.base.managers.map { m => m.v1copy (nodePath = node +: m.nodePath) })) } case class TLCreditedAdapterNode( clientFn: TLCreditedClientPortParameters => TLCreditedClientPortParameters = { s => s }, managerFn: TLCreditedManagerPortParameters => TLCreditedManagerPortParameters = { s => s })( implicit valName: ValName) extends AdapterNode(TLCreditedImp)(clientFn, managerFn) with TLCreditedFormatNode case class TLCreditedIdentityNode()(implicit valName: ValName) extends IdentityNode(TLCreditedImp)() with TLCreditedFormatNode object TLCreditedNameNode { def apply(name: ValName) = TLCreditedIdentityNode()(name) def apply(name: Option[String]): TLCreditedIdentityNode = apply(ValName(name.getOrElse("with_no_name"))) def apply(name: String): TLCreditedIdentityNode = apply(Some(name)) } case class TLCreditedSourceNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLImp, TLCreditedImp)( dFn = { p => TLCreditedClientPortParameters(delay, p) }, uFn = { p => p.base.v1copy(minLatency = 1) }) with FormatNode[TLEdgeIn, TLCreditedEdgeParameters] // discard cycles from other clock domain case class TLCreditedSinkNode(delay: TLCreditedDelay)(implicit valName: ValName) extends MixedAdapterNode(TLCreditedImp, TLImp)( dFn = { p => p.base.v1copy(minLatency = 1) }, uFn = { p => TLCreditedManagerPortParameters(delay, p) }) with FormatNode[TLCreditedEdgeParameters, TLEdgeOut] File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } }
module TLFragmenter_Debug( // @[Fragmenter.scala:92:9] input clock, // @[Fragmenter.scala:92:9] input reset, // @[Fragmenter.scala:92:9] output auto_anon_in_a_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_in_a_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_a_bits_opcode, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_a_bits_param, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_in_a_bits_size, // @[LazyModuleImp.scala:107:25] input [6:0] auto_anon_in_a_bits_source, // @[LazyModuleImp.scala:107:25] input [11:0] auto_anon_in_a_bits_address, // @[LazyModuleImp.scala:107:25] input [7:0] auto_anon_in_a_bits_mask, // @[LazyModuleImp.scala:107:25] input [63:0] auto_anon_in_a_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_in_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] input auto_anon_in_d_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_in_d_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_in_d_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_in_d_bits_size, // @[LazyModuleImp.scala:107:25] output [6:0] auto_anon_in_d_bits_source, // @[LazyModuleImp.scala:107:25] output [63:0] auto_anon_in_d_bits_data, // @[LazyModuleImp.scala:107:25] input auto_anon_out_a_ready, // @[LazyModuleImp.scala:107:25] output auto_anon_out_a_valid, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_a_bits_opcode, // @[LazyModuleImp.scala:107:25] output [2:0] auto_anon_out_a_bits_param, // @[LazyModuleImp.scala:107:25] output [1:0] auto_anon_out_a_bits_size, // @[LazyModuleImp.scala:107:25] output [10:0] auto_anon_out_a_bits_source, // @[LazyModuleImp.scala:107:25] output [11:0] auto_anon_out_a_bits_address, // @[LazyModuleImp.scala:107:25] output [7:0] auto_anon_out_a_bits_mask, // @[LazyModuleImp.scala:107:25] output [63:0] auto_anon_out_a_bits_data, // @[LazyModuleImp.scala:107:25] output auto_anon_out_a_bits_corrupt, // @[LazyModuleImp.scala:107:25] output auto_anon_out_d_ready, // @[LazyModuleImp.scala:107:25] input auto_anon_out_d_valid, // @[LazyModuleImp.scala:107:25] input [2:0] auto_anon_out_d_bits_opcode, // @[LazyModuleImp.scala:107:25] input [1:0] auto_anon_out_d_bits_size, // @[LazyModuleImp.scala:107:25] input [10:0] auto_anon_out_d_bits_source, // @[LazyModuleImp.scala:107:25] input [63:0] auto_anon_out_d_bits_data // @[LazyModuleImp.scala:107:25] ); wire _repeater_io_full; // @[Fragmenter.scala:274:30] wire _repeater_io_enq_ready; // @[Fragmenter.scala:274:30] wire _repeater_io_deq_valid; // @[Fragmenter.scala:274:30] wire [2:0] _repeater_io_deq_bits_opcode; // @[Fragmenter.scala:274:30] wire [2:0] _repeater_io_deq_bits_size; // @[Fragmenter.scala:274:30] wire [6:0] _repeater_io_deq_bits_source; // @[Fragmenter.scala:274:30] wire [11:0] _repeater_io_deq_bits_address; // @[Fragmenter.scala:274:30] wire [7:0] _repeater_io_deq_bits_mask; // @[Fragmenter.scala:274:30] reg [2:0] acknum; // @[Fragmenter.scala:201:29] reg [2:0] dOrig; // @[Fragmenter.scala:202:24] reg dToggle; // @[Fragmenter.scala:203:30] wire dFirst = acknum == 3'h0; // @[Fragmenter.scala:201:29, :205:29] wire [5:0] _dsizeOH1_T = 6'h7 << auto_anon_out_d_bits_size; // @[package.scala:243:71] wire [2:0] _GEN = ~(auto_anon_out_d_bits_source[2:0]); // @[package.scala:241:49] wire [2:0] dFirst_size_hi = auto_anon_out_d_bits_source[2:0] & {1'h1, _GEN[2:1]}; // @[OneHot.scala:30:18] wire [2:0] _dFirst_size_T_8 = {1'h0, dFirst_size_hi[2:1]} | ~(_dsizeOH1_T[2:0]) & {_GEN[0], _dsizeOH1_T[2:1]}; // @[OneHot.scala:30:18, :31:18, :32:28] wire [2:0] dFirst_size = {|dFirst_size_hi, |(_dFirst_size_T_8[2:1]), _dFirst_size_T_8[2] | _dFirst_size_T_8[0]}; // @[OneHot.scala:30:18, :31:18, :32:{10,14,28}] wire drop = ~(auto_anon_out_d_bits_opcode[0]) & (|(auto_anon_out_d_bits_source[2:0])); // @[Fragmenter.scala:204:41, :206:30, :234:{20,30}] wire anonOut_d_ready = auto_anon_in_d_ready | drop; // @[Fragmenter.scala:234:30, :235:35] wire anonIn_d_valid = auto_anon_out_d_valid & ~drop; // @[Fragmenter.scala:234:30, :236:{36,39}] wire [2:0] anonIn_d_bits_size = dFirst ? dFirst_size : dOrig; // @[OneHot.scala:32:10] wire [12:0] _aOrigOH1_T = 13'h3F << _repeater_io_deq_bits_size; // @[package.scala:243:71] reg [2:0] gennum; // @[Fragmenter.scala:303:29] wire aFirst = gennum == 3'h0; // @[Fragmenter.scala:303:29, :304:29] wire [2:0] aFragnum = aFirst ? ~(_aOrigOH1_T[5:3]) : gennum - 3'h1; // @[package.scala:243:{46,71,76}] reg aToggle_r; // @[Fragmenter.scala:309:54]
Generate the Verilog code corresponding to the following Chisel files. File Tile.scala: // See README.md for license details. package gemmini import chisel3._ import chisel3.util._ import Util._ /** * A Tile is a purely combinational 2D array of passThrough PEs. * a, b, s, and in_propag are broadcast across the entire array and are passed through to the Tile's outputs * @param width The data width of each PE in bits * @param rows Number of PEs on each row * @param columns Number of PEs on each column */ class Tile[T <: Data](inputType: T, outputType: T, accType: T, df: Dataflow.Value, tree_reduction: Boolean, max_simultaneous_matmuls: Int, val rows: Int, val columns: Int)(implicit ev: Arithmetic[T]) extends Module { val io = IO(new Bundle { val in_a = Input(Vec(rows, inputType)) val in_b = Input(Vec(columns, outputType)) // This is the output of the tile next to it val in_d = Input(Vec(columns, outputType)) val in_control = Input(Vec(columns, new PEControl(accType))) val in_id = Input(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val in_last = Input(Vec(columns, Bool())) val out_a = Output(Vec(rows, inputType)) val out_c = Output(Vec(columns, outputType)) val out_b = Output(Vec(columns, outputType)) val out_control = Output(Vec(columns, new PEControl(accType))) val out_id = Output(Vec(columns, UInt(log2Up(max_simultaneous_matmuls).W))) val out_last = Output(Vec(columns, Bool())) val in_valid = Input(Vec(columns, Bool())) val out_valid = Output(Vec(columns, Bool())) val bad_dataflow = Output(Bool()) }) import ev._ val tile = Seq.fill(rows, columns)(Module(new PE(inputType, outputType, accType, df, max_simultaneous_matmuls))) val tileT = tile.transpose // TODO: abstract hori/vert broadcast, all these connections look the same // Broadcast 'a' horizontally across the Tile for (r <- 0 until rows) { tile(r).foldLeft(io.in_a(r)) { case (in_a, pe) => pe.io.in_a := in_a pe.io.out_a } } // Broadcast 'b' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_b(c)) { case (in_b, pe) => pe.io.in_b := (if (tree_reduction) in_b.zero else in_b) pe.io.out_b } } // Broadcast 'd' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_d(c)) { case (in_d, pe) => pe.io.in_d := in_d pe.io.out_c } } // Broadcast 'control' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_control(c)) { case (in_ctrl, pe) => pe.io.in_control := in_ctrl pe.io.out_control } } // Broadcast 'garbage' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_valid(c)) { case (v, pe) => pe.io.in_valid := v pe.io.out_valid } } // Broadcast 'id' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_id(c)) { case (id, pe) => pe.io.in_id := id pe.io.out_id } } // Broadcast 'last' vertically across the Tile for (c <- 0 until columns) { tileT(c).foldLeft(io.in_last(c)) { case (last, pe) => pe.io.in_last := last pe.io.out_last } } // Drive the Tile's bottom IO for (c <- 0 until columns) { io.out_c(c) := tile(rows-1)(c).io.out_c io.out_control(c) := tile(rows-1)(c).io.out_control io.out_id(c) := tile(rows-1)(c).io.out_id io.out_last(c) := tile(rows-1)(c).io.out_last io.out_valid(c) := tile(rows-1)(c).io.out_valid io.out_b(c) := { if (tree_reduction) { val prods = tileT(c).map(_.io.out_b) accumulateTree(prods :+ io.in_b(c)) } else { tile(rows - 1)(c).io.out_b } } } io.bad_dataflow := tile.map(_.map(_.io.bad_dataflow).reduce(_||_)).reduce(_||_) // Drive the Tile's right IO for (r <- 0 until rows) { io.out_a(r) := tile(r)(columns-1).io.out_a } }
module Tile_4( // @[Tile.scala:16:7] input clock, // @[Tile.scala:16:7] input reset, // @[Tile.scala:16:7] input [7:0] io_in_a_0, // @[Tile.scala:17:14] input [19:0] io_in_b_0, // @[Tile.scala:17:14] input [19:0] io_in_d_0, // @[Tile.scala:17:14] input io_in_control_0_dataflow, // @[Tile.scala:17:14] input io_in_control_0_propagate, // @[Tile.scala:17:14] input [4:0] io_in_control_0_shift, // @[Tile.scala:17:14] input [2:0] io_in_id_0, // @[Tile.scala:17:14] input io_in_last_0, // @[Tile.scala:17:14] output [7:0] io_out_a_0, // @[Tile.scala:17:14] output [19:0] io_out_c_0, // @[Tile.scala:17:14] output [19:0] io_out_b_0, // @[Tile.scala:17:14] output io_out_control_0_dataflow, // @[Tile.scala:17:14] output io_out_control_0_propagate, // @[Tile.scala:17:14] output [4:0] io_out_control_0_shift, // @[Tile.scala:17:14] output [2:0] io_out_id_0, // @[Tile.scala:17:14] output io_out_last_0, // @[Tile.scala:17:14] input io_in_valid_0, // @[Tile.scala:17:14] output io_out_valid_0 // @[Tile.scala:17:14] ); wire [7:0] io_in_a_0_0 = io_in_a_0; // @[Tile.scala:16:7] wire [19:0] io_in_b_0_0 = io_in_b_0; // @[Tile.scala:16:7] wire [19:0] io_in_d_0_0 = io_in_d_0; // @[Tile.scala:16:7] wire io_in_control_0_dataflow_0 = io_in_control_0_dataflow; // @[Tile.scala:16:7] wire io_in_control_0_propagate_0 = io_in_control_0_propagate; // @[Tile.scala:16:7] wire [4:0] io_in_control_0_shift_0 = io_in_control_0_shift; // @[Tile.scala:16:7] wire [2:0] io_in_id_0_0 = io_in_id_0; // @[Tile.scala:16:7] wire io_in_last_0_0 = io_in_last_0; // @[Tile.scala:16:7] wire io_in_valid_0_0 = io_in_valid_0; // @[Tile.scala:16:7] wire io_bad_dataflow = 1'h0; // @[Tile.scala:16:7, :17:14, :42:44] wire [7:0] io_out_a_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_c_0_0; // @[Tile.scala:16:7] wire [19:0] io_out_b_0_0; // @[Tile.scala:16:7] wire io_out_control_0_dataflow_0; // @[Tile.scala:16:7] wire io_out_control_0_propagate_0; // @[Tile.scala:16:7] wire [4:0] io_out_control_0_shift_0; // @[Tile.scala:16:7] wire [2:0] io_out_id_0_0; // @[Tile.scala:16:7] wire io_out_last_0_0; // @[Tile.scala:16:7] wire io_out_valid_0_0; // @[Tile.scala:16:7] PE_260 tile_0_0 ( // @[Tile.scala:42:44] .clock (clock), .reset (reset), .io_in_a (io_in_a_0_0), // @[Tile.scala:16:7] .io_in_b (io_in_b_0_0), // @[Tile.scala:16:7] .io_in_d (io_in_d_0_0), // @[Tile.scala:16:7] .io_out_a (io_out_a_0_0), .io_out_b (io_out_b_0_0), .io_out_c (io_out_c_0_0), .io_in_control_dataflow (io_in_control_0_dataflow_0), // @[Tile.scala:16:7] .io_in_control_propagate (io_in_control_0_propagate_0), // @[Tile.scala:16:7] .io_in_control_shift (io_in_control_0_shift_0), // @[Tile.scala:16:7] .io_out_control_dataflow (io_out_control_0_dataflow_0), .io_out_control_propagate (io_out_control_0_propagate_0), .io_out_control_shift (io_out_control_0_shift_0), .io_in_id (io_in_id_0_0), // @[Tile.scala:16:7] .io_out_id (io_out_id_0_0), .io_in_last (io_in_last_0_0), // @[Tile.scala:16:7] .io_out_last (io_out_last_0_0), .io_in_valid (io_in_valid_0_0), // @[Tile.scala:16:7] .io_out_valid (io_out_valid_0_0) ); // @[Tile.scala:42:44] assign io_out_a_0 = io_out_a_0_0; // @[Tile.scala:16:7] assign io_out_c_0 = io_out_c_0_0; // @[Tile.scala:16:7] assign io_out_b_0 = io_out_b_0_0; // @[Tile.scala:16:7] assign io_out_control_0_dataflow = io_out_control_0_dataflow_0; // @[Tile.scala:16:7] assign io_out_control_0_propagate = io_out_control_0_propagate_0; // @[Tile.scala:16:7] assign io_out_control_0_shift = io_out_control_0_shift_0; // @[Tile.scala:16:7] assign io_out_id_0 = io_out_id_0_0; // @[Tile.scala:16:7] assign io_out_last_0 = io_out_last_0_0; // @[Tile.scala:16:7] assign io_out_valid_0 = io_out_valid_0_0; // @[Tile.scala:16:7] endmodule
Generate the Verilog code corresponding to the following Chisel files. File ClockDomain.scala: package freechips.rocketchip.prci import chisel3._ import org.chipsalliance.cde.config._ import org.chipsalliance.diplomacy.lazymodule._ abstract class Domain(implicit p: Parameters) extends LazyModule with HasDomainCrossing { def clockBundle: ClockBundle lazy val module = new Impl class Impl extends LazyRawModuleImp(this) { childClock := clockBundle.clock childReset := clockBundle.reset override def provideImplicitClockToLazyChildren = true // these are just for backwards compatibility with external devices // that were manually wiring themselves to the domain's clock/reset input: val clock = IO(Output(chiselTypeOf(clockBundle.clock))) val reset = IO(Output(chiselTypeOf(clockBundle.reset))) clock := clockBundle.clock reset := clockBundle.reset } } abstract class ClockDomain(implicit p: Parameters) extends Domain with HasClockDomainCrossing class ClockSinkDomain(val clockSinkParams: ClockSinkParameters)(implicit p: Parameters) extends ClockDomain { def this(take: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSinkParameters(take = take, name = name)) val clockNode = ClockSinkNode(Seq(clockSinkParams)) def clockBundle = clockNode.in.head._1 override lazy val desiredName = (clockSinkParams.name.toSeq :+ "ClockSinkDomain").mkString } class ClockSourceDomain(val clockSourceParams: ClockSourceParameters)(implicit p: Parameters) extends ClockDomain { def this(give: Option[ClockParameters] = None, name: Option[String] = None)(implicit p: Parameters) = this(ClockSourceParameters(give = give, name = name)) val clockNode = ClockSourceNode(Seq(clockSourceParams)) def clockBundle = clockNode.out.head._1 override lazy val desiredName = (clockSourceParams.name.toSeq :+ "ClockSourceDomain").mkString } abstract class ResetDomain(implicit p: Parameters) extends Domain with HasResetDomainCrossing File LazyModuleImp.scala: package org.chipsalliance.diplomacy.lazymodule import chisel3.{withClockAndReset, Module, RawModule, Reset, _} import chisel3.experimental.{ChiselAnnotation, CloneModuleAsRecord, SourceInfo} import firrtl.passes.InlineAnnotation import org.chipsalliance.cde.config.Parameters import org.chipsalliance.diplomacy.nodes.Dangle import scala.collection.immutable.SortedMap /** Trait describing the actual [[Module]] implementation wrapped by a [[LazyModule]]. * * This is the actual Chisel module that is lazily-evaluated in the second phase of Diplomacy. */ sealed trait LazyModuleImpLike extends RawModule { /** [[LazyModule]] that contains this instance. */ val wrapper: LazyModule /** IOs that will be automatically "punched" for this instance. */ val auto: AutoBundle /** The metadata that describes the [[HalfEdge]]s which generated [[auto]]. */ protected[diplomacy] val dangles: Seq[Dangle] // [[wrapper.module]] had better not be accessed while LazyModules are still being built! require( LazyModule.scope.isEmpty, s"${wrapper.name}.module was constructed before LazyModule() was run on ${LazyModule.scope.get.name}" ) /** Set module name. Defaults to the containing LazyModule's desiredName. */ override def desiredName: String = wrapper.desiredName suggestName(wrapper.suggestedName) /** [[Parameters]] for chisel [[Module]]s. */ implicit val p: Parameters = wrapper.p /** instantiate this [[LazyModule]], return [[AutoBundle]] and a unconnected [[Dangle]]s from this module and * submodules. */ protected[diplomacy] def instantiate(): (AutoBundle, List[Dangle]) = { // 1. It will recursively append [[wrapper.children]] into [[chisel3.internal.Builder]], // 2. return [[Dangle]]s from each module. val childDangles = wrapper.children.reverse.flatMap { c => implicit val sourceInfo: SourceInfo = c.info c.cloneProto.map { cp => // If the child is a clone, then recursively set cloneProto of its children as well def assignCloneProtos(bases: Seq[LazyModule], clones: Seq[LazyModule]): Unit = { require(bases.size == clones.size) (bases.zip(clones)).map { case (l, r) => require(l.getClass == r.getClass, s"Cloned children class mismatch ${l.name} != ${r.name}") l.cloneProto = Some(r) assignCloneProtos(l.children, r.children) } } assignCloneProtos(c.children, cp.children) // Clone the child module as a record, and get its [[AutoBundle]] val clone = CloneModuleAsRecord(cp.module).suggestName(c.suggestedName) val clonedAuto = clone("auto").asInstanceOf[AutoBundle] // Get the empty [[Dangle]]'s of the cloned child val rawDangles = c.cloneDangles() require(rawDangles.size == clonedAuto.elements.size) // Assign the [[AutoBundle]] fields of the cloned record to the empty [[Dangle]]'s val dangles = (rawDangles.zip(clonedAuto.elements)).map { case (d, (_, io)) => d.copy(dataOpt = Some(io)) } dangles }.getOrElse { // For non-clones, instantiate the child module val mod = try { Module(c.module) } catch { case e: ChiselException => { println(s"Chisel exception caught when instantiating ${c.name} within ${this.name} at ${c.line}") throw e } } mod.dangles } } // Ask each node in this [[LazyModule]] to call [[BaseNode.instantiate]]. // This will result in a sequence of [[Dangle]] from these [[BaseNode]]s. val nodeDangles = wrapper.nodes.reverse.flatMap(_.instantiate()) // Accumulate all the [[Dangle]]s from this node and any accumulated from its [[wrapper.children]] val allDangles = nodeDangles ++ childDangles // Group [[allDangles]] by their [[source]]. val pairing = SortedMap(allDangles.groupBy(_.source).toSeq: _*) // For each [[source]] set of [[Dangle]]s of size 2, ensure that these // can be connected as a source-sink pair (have opposite flipped value). // Make the connection and mark them as [[done]]. val done = Set() ++ pairing.values.filter(_.size == 2).map { case Seq(a, b) => require(a.flipped != b.flipped) // @todo <> in chisel3 makes directionless connection. if (a.flipped) { a.data <> b.data } else { b.data <> a.data } a.source case _ => None } // Find all [[Dangle]]s which are still not connected. These will end up as [[AutoBundle]] [[IO]] ports on the module. val forward = allDangles.filter(d => !done(d.source)) // Generate [[AutoBundle]] IO from [[forward]]. val auto = IO(new AutoBundle(forward.map { d => (d.name, d.data, d.flipped) }: _*)) // Pass the [[Dangle]]s which remained and were used to generate the [[AutoBundle]] I/O ports up to the [[parent]] [[LazyModule]] val dangles = (forward.zip(auto.elements)).map { case (d, (_, io)) => if (d.flipped) { d.data <> io } else { io <> d.data } d.copy(dataOpt = Some(io), name = wrapper.suggestedName + "_" + d.name) } // Push all [[LazyModule.inModuleBody]] to [[chisel3.internal.Builder]]. wrapper.inModuleBody.reverse.foreach { _() } if (wrapper.shouldBeInlined) { chisel3.experimental.annotate(new ChiselAnnotation { def toFirrtl = InlineAnnotation(toNamed) }) } // Return [[IO]] and [[Dangle]] of this [[LazyModuleImp]]. (auto, dangles) } } /** Actual description of a [[Module]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyModuleImp(val wrapper: LazyModule) extends Module with LazyModuleImpLike { /** Instantiate hardware of this `Module`. */ val (auto, dangles) = instantiate() } /** Actual description of a [[RawModule]] which can be instantiated by a call to [[LazyModule.module]]. * * @param wrapper * the [[LazyModule]] from which the `.module` call is being made. */ class LazyRawModuleImp(val wrapper: LazyModule) extends RawModule with LazyModuleImpLike { // These wires are the default clock+reset for all LazyModule children. // It is recommended to drive these even if you manually drive the [[clock]] and [[reset]] of all of the // [[LazyRawModuleImp]] children. // Otherwise, anonymous children ([[Monitor]]s for example) will not have their [[clock]] and/or [[reset]] driven properly. /** drive clock explicitly. */ val childClock: Clock = Wire(Clock()) /** drive reset explicitly. */ val childReset: Reset = Wire(Reset()) // the default is that these are disabled childClock := false.B.asClock childReset := chisel3.DontCare def provideImplicitClockToLazyChildren: Boolean = false val (auto, dangles) = if (provideImplicitClockToLazyChildren) { withClockAndReset(childClock, childReset) { instantiate() } } else { instantiate() } } File NoC.scala: package constellation.noc import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.{Field, Parameters} import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp, BundleBridgeSink, InModuleBody} import freechips.rocketchip.util.ElaborationArtefacts import freechips.rocketchip.prci._ import constellation.router._ import constellation.channel._ import constellation.routing.{RoutingRelation, ChannelRoutingInfo} import constellation.topology.{PhysicalTopology, UnidirectionalLine} class NoCTerminalIO( val ingressParams: Seq[IngressChannelParams], val egressParams: Seq[EgressChannelParams])(implicit val p: Parameters) extends Bundle { val ingress = MixedVec(ingressParams.map { u => Flipped(new IngressChannel(u)) }) val egress = MixedVec(egressParams.map { u => new EgressChannel(u) }) } class NoC(nocParams: NoCParams)(implicit p: Parameters) extends LazyModule { override def shouldBeInlined = nocParams.inlineNoC val internalParams = InternalNoCParams(nocParams) val allChannelParams = internalParams.channelParams val allIngressParams = internalParams.ingressParams val allEgressParams = internalParams.egressParams val allRouterParams = internalParams.routerParams val iP = p.alterPartial({ case InternalNoCKey => internalParams }) val nNodes = nocParams.topology.nNodes val nocName = nocParams.nocName val skipValidationChecks = nocParams.skipValidationChecks val clockSourceNodes = Seq.tabulate(nNodes) { i => ClockSourceNode(Seq(ClockSourceParameters())) } val router_sink_domains = Seq.tabulate(nNodes) { i => val router_sink_domain = LazyModule(new ClockSinkDomain(ClockSinkParameters( name = Some(s"${nocName}_router_$i") ))) router_sink_domain.clockNode := clockSourceNodes(i) router_sink_domain } val routers = Seq.tabulate(nNodes) { i => router_sink_domains(i) { val inParams = allChannelParams.filter(_.destId == i).map( _.copy(payloadBits=allRouterParams(i).user.payloadBits) ) val outParams = allChannelParams.filter(_.srcId == i).map( _.copy(payloadBits=allRouterParams(i).user.payloadBits) ) val ingressParams = allIngressParams.filter(_.destId == i).map( _.copy(payloadBits=allRouterParams(i).user.payloadBits) ) val egressParams = allEgressParams.filter(_.srcId == i).map( _.copy(payloadBits=allRouterParams(i).user.payloadBits) ) val noIn = inParams.size + ingressParams.size == 0 val noOut = outParams.size + egressParams.size == 0 if (noIn || noOut) { println(s"Constellation WARNING: $nocName router $i seems to be unused, it will not be generated") None } else { Some(LazyModule(new Router( routerParams = allRouterParams(i), preDiplomaticInParams = inParams, preDiplomaticIngressParams = ingressParams, outDests = outParams.map(_.destId), egressIds = egressParams.map(_.egressId) )(iP))) } }}.flatten val ingressNodes = allIngressParams.map { u => IngressChannelSourceNode(u.destId) } val egressNodes = allEgressParams.map { u => EgressChannelDestNode(u) } // Generate channels between routers diplomatically Seq.tabulate(nNodes, nNodes) { case (i, j) => if (i != j) { val routerI = routers.find(_.nodeId == i) val routerJ = routers.find(_.nodeId == j) if (routerI.isDefined && routerJ.isDefined) { val sourceNodes: Seq[ChannelSourceNode] = routerI.get.sourceNodes.filter(_.destId == j) val destNodes: Seq[ChannelDestNode] = routerJ.get.destNodes.filter(_.destParams.srcId == i) require (sourceNodes.size == destNodes.size) (sourceNodes zip destNodes).foreach { case (src, dst) => val channelParam = allChannelParams.find(c => c.srcId == i && c.destId == j).get router_sink_domains(j) { implicit val p: Parameters = iP (dst := ChannelWidthWidget(routerJ.get.payloadBits, routerI.get.payloadBits) := channelParam.channelGen(p)(src) ) } } } }} // Generate terminal channels diplomatically routers.foreach { dst => router_sink_domains(dst.nodeId) { implicit val p: Parameters = iP dst.ingressNodes.foreach(n => { val ingressId = n.destParams.ingressId require(dst.payloadBits <= allIngressParams(ingressId).payloadBits) (n := IngressWidthWidget(dst.payloadBits, allIngressParams(ingressId).payloadBits) := ingressNodes(ingressId) ) }) dst.egressNodes.foreach(n => { val egressId = n.egressId require(dst.payloadBits <= allEgressParams(egressId).payloadBits) (egressNodes(egressId) := EgressWidthWidget(allEgressParams(egressId).payloadBits, dst.payloadBits) := n ) }) }} val debugNodes = routers.map { r => val sink = BundleBridgeSink[DebugBundle]() sink := r.debugNode sink } val ctrlNodes = if (nocParams.hasCtrl) { (0 until nNodes).map { i => routers.find(_.nodeId == i).map { r => val sink = BundleBridgeSink[RouterCtrlBundle]() sink := r.ctrlNode.get sink } } } else { Nil } println(s"Constellation: $nocName Finished parameter validation") lazy val module = new Impl class Impl extends LazyModuleImp(this) { println(s"Constellation: $nocName Starting NoC RTL generation") val io = IO(new NoCTerminalIO(allIngressParams, allEgressParams)(iP) { val router_clocks = Vec(nNodes, Input(new ClockBundle(ClockBundleParameters()))) val router_ctrl = if (nocParams.hasCtrl) Vec(nNodes, new RouterCtrlBundle) else Nil }) (io.ingress zip ingressNodes.map(_.out(0)._1)).foreach { case (l,r) => r <> l } (io.egress zip egressNodes .map(_.in (0)._1)).foreach { case (l,r) => l <> r } (io.router_clocks zip clockSourceNodes.map(_.out(0)._1)).foreach { case (l,r) => l <> r } if (nocParams.hasCtrl) { ctrlNodes.zipWithIndex.map { case (c,i) => if (c.isDefined) { io.router_ctrl(i) <> c.get.in(0)._1 } else { io.router_ctrl(i) <> DontCare } } } // TODO: These assume a single clock-domain across the entire noc val debug_va_stall_ctr = RegInit(0.U(64.W)) val debug_sa_stall_ctr = RegInit(0.U(64.W)) val debug_any_stall_ctr = debug_va_stall_ctr + debug_sa_stall_ctr debug_va_stall_ctr := debug_va_stall_ctr + debugNodes.map(_.in(0)._1.va_stall.reduce(_+_)).reduce(_+_) debug_sa_stall_ctr := debug_sa_stall_ctr + debugNodes.map(_.in(0)._1.sa_stall.reduce(_+_)).reduce(_+_) dontTouch(debug_va_stall_ctr) dontTouch(debug_sa_stall_ctr) dontTouch(debug_any_stall_ctr) def prepend(s: String) = Seq(nocName, s).mkString(".") ElaborationArtefacts.add(prepend("noc.graphml"), graphML) val adjList = routers.map { r => val outs = r.outParams.map(o => s"${o.destId}").mkString(" ") val egresses = r.egressParams.map(e => s"e${e.egressId}").mkString(" ") val ingresses = r.ingressParams.map(i => s"i${i.ingressId} ${r.nodeId}") (Seq(s"${r.nodeId} $outs $egresses") ++ ingresses).mkString("\n") }.mkString("\n") ElaborationArtefacts.add(prepend("noc.adjlist"), adjList) val xys = routers.map(r => { val n = r.nodeId val ids = (Seq(r.nodeId.toString) ++ r.egressParams.map(e => s"e${e.egressId}") ++ r.ingressParams.map(i => s"i${i.ingressId}") ) val plotter = nocParams.topology.plotter val coords = (Seq(plotter.node(r.nodeId)) ++ Seq.tabulate(r.egressParams.size ) { i => plotter. egress(i, r. egressParams.size, r.nodeId) } ++ Seq.tabulate(r.ingressParams.size) { i => plotter.ingress(i, r.ingressParams.size, r.nodeId) } ) (ids zip coords).map { case (i, (x, y)) => s"$i $x $y" }.mkString("\n") }).mkString("\n") ElaborationArtefacts.add(prepend("noc.xy"), xys) val edgeProps = routers.map { r => val outs = r.outParams.map { o => (Seq(s"${r.nodeId} ${o.destId}") ++ (if (o.possibleFlows.size == 0) Some("unused") else None)) .mkString(" ") } val egresses = r.egressParams.map { e => (Seq(s"${r.nodeId} e${e.egressId}") ++ (if (e.possibleFlows.size == 0) Some("unused") else None)) .mkString(" ") } val ingresses = r.ingressParams.map { i => (Seq(s"i${i.ingressId} ${r.nodeId}") ++ (if (i.possibleFlows.size == 0) Some("unused") else None)) .mkString(" ") } (outs ++ egresses ++ ingresses).mkString("\n") }.mkString("\n") ElaborationArtefacts.add(prepend("noc.edgeprops"), edgeProps) println(s"Constellation: $nocName Finished NoC RTL generation") } }
module TLSplitACDxBENoC_acd_router_1ClockSinkDomain( // @[ClockDomain.scala:14:9] output [1:0] auto_routers_debug_out_va_stall_0, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_debug_out_va_stall_1, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_debug_out_va_stall_2, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_debug_out_va_stall_3, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_debug_out_va_stall_4, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_debug_out_sa_stall_0, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_debug_out_sa_stall_1, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_debug_out_sa_stall_2, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_debug_out_sa_stall_3, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_debug_out_sa_stall_4, // @[LazyModuleImp.scala:107:25] input auto_routers_egress_nodes_out_flit_ready, // @[LazyModuleImp.scala:107:25] output auto_routers_egress_nodes_out_flit_valid, // @[LazyModuleImp.scala:107:25] output auto_routers_egress_nodes_out_flit_bits_head, // @[LazyModuleImp.scala:107:25] output auto_routers_egress_nodes_out_flit_bits_tail, // @[LazyModuleImp.scala:107:25] output [144:0] auto_routers_egress_nodes_out_flit_bits_payload, // @[LazyModuleImp.scala:107:25] output auto_routers_ingress_nodes_in_1_flit_ready, // @[LazyModuleImp.scala:107:25] input auto_routers_ingress_nodes_in_1_flit_valid, // @[LazyModuleImp.scala:107:25] input auto_routers_ingress_nodes_in_1_flit_bits_head, // @[LazyModuleImp.scala:107:25] input auto_routers_ingress_nodes_in_1_flit_bits_tail, // @[LazyModuleImp.scala:107:25] input [144:0] auto_routers_ingress_nodes_in_1_flit_bits_payload, // @[LazyModuleImp.scala:107:25] input [4:0] auto_routers_ingress_nodes_in_1_flit_bits_egress_id, // @[LazyModuleImp.scala:107:25] output auto_routers_ingress_nodes_in_0_flit_ready, // @[LazyModuleImp.scala:107:25] input auto_routers_ingress_nodes_in_0_flit_valid, // @[LazyModuleImp.scala:107:25] input auto_routers_ingress_nodes_in_0_flit_bits_head, // @[LazyModuleImp.scala:107:25] input auto_routers_ingress_nodes_in_0_flit_bits_tail, // @[LazyModuleImp.scala:107:25] input [144:0] auto_routers_ingress_nodes_in_0_flit_bits_payload, // @[LazyModuleImp.scala:107:25] input [4:0] auto_routers_ingress_nodes_in_0_flit_bits_egress_id, // @[LazyModuleImp.scala:107:25] output auto_routers_source_nodes_out_2_flit_0_valid, // @[LazyModuleImp.scala:107:25] output auto_routers_source_nodes_out_2_flit_0_bits_head, // @[LazyModuleImp.scala:107:25] output auto_routers_source_nodes_out_2_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25] output [144:0] auto_routers_source_nodes_out_2_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_source_nodes_out_2_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25] output [3:0] auto_routers_source_nodes_out_2_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25] output [2:0] auto_routers_source_nodes_out_2_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25] output [3:0] auto_routers_source_nodes_out_2_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_source_nodes_out_2_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_source_nodes_out_2_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25] input [2:0] auto_routers_source_nodes_out_2_credit_return, // @[LazyModuleImp.scala:107:25] input [2:0] auto_routers_source_nodes_out_2_vc_free, // @[LazyModuleImp.scala:107:25] output auto_routers_source_nodes_out_1_flit_0_valid, // @[LazyModuleImp.scala:107:25] output auto_routers_source_nodes_out_1_flit_0_bits_head, // @[LazyModuleImp.scala:107:25] output auto_routers_source_nodes_out_1_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25] output [144:0] auto_routers_source_nodes_out_1_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_source_nodes_out_1_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25] output [3:0] auto_routers_source_nodes_out_1_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25] output [2:0] auto_routers_source_nodes_out_1_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25] output [3:0] auto_routers_source_nodes_out_1_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_source_nodes_out_1_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_source_nodes_out_1_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25] input [2:0] auto_routers_source_nodes_out_1_credit_return, // @[LazyModuleImp.scala:107:25] input [2:0] auto_routers_source_nodes_out_1_vc_free, // @[LazyModuleImp.scala:107:25] output auto_routers_source_nodes_out_0_flit_0_valid, // @[LazyModuleImp.scala:107:25] output auto_routers_source_nodes_out_0_flit_0_bits_head, // @[LazyModuleImp.scala:107:25] output auto_routers_source_nodes_out_0_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25] output [144:0] auto_routers_source_nodes_out_0_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_source_nodes_out_0_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25] output [3:0] auto_routers_source_nodes_out_0_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25] output [2:0] auto_routers_source_nodes_out_0_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25] output [3:0] auto_routers_source_nodes_out_0_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_source_nodes_out_0_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25] output [1:0] auto_routers_source_nodes_out_0_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25] input [2:0] auto_routers_source_nodes_out_0_credit_return, // @[LazyModuleImp.scala:107:25] input [2:0] auto_routers_source_nodes_out_0_vc_free, // @[LazyModuleImp.scala:107:25] input auto_routers_dest_nodes_in_2_flit_0_valid, // @[LazyModuleImp.scala:107:25] input auto_routers_dest_nodes_in_2_flit_0_bits_head, // @[LazyModuleImp.scala:107:25] input auto_routers_dest_nodes_in_2_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25] input [144:0] auto_routers_dest_nodes_in_2_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25] input [1:0] auto_routers_dest_nodes_in_2_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25] input [3:0] auto_routers_dest_nodes_in_2_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25] input [2:0] auto_routers_dest_nodes_in_2_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25] input [3:0] auto_routers_dest_nodes_in_2_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25] input [1:0] auto_routers_dest_nodes_in_2_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25] input [1:0] auto_routers_dest_nodes_in_2_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25] output [2:0] auto_routers_dest_nodes_in_2_credit_return, // @[LazyModuleImp.scala:107:25] output [2:0] auto_routers_dest_nodes_in_2_vc_free, // @[LazyModuleImp.scala:107:25] input auto_routers_dest_nodes_in_1_flit_0_valid, // @[LazyModuleImp.scala:107:25] input auto_routers_dest_nodes_in_1_flit_0_bits_head, // @[LazyModuleImp.scala:107:25] input auto_routers_dest_nodes_in_1_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25] input [144:0] auto_routers_dest_nodes_in_1_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25] input [1:0] auto_routers_dest_nodes_in_1_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25] input [3:0] auto_routers_dest_nodes_in_1_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25] input [2:0] auto_routers_dest_nodes_in_1_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25] input [3:0] auto_routers_dest_nodes_in_1_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25] input [1:0] auto_routers_dest_nodes_in_1_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25] input [1:0] auto_routers_dest_nodes_in_1_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25] output [2:0] auto_routers_dest_nodes_in_1_credit_return, // @[LazyModuleImp.scala:107:25] output [2:0] auto_routers_dest_nodes_in_1_vc_free, // @[LazyModuleImp.scala:107:25] input auto_routers_dest_nodes_in_0_flit_0_valid, // @[LazyModuleImp.scala:107:25] input auto_routers_dest_nodes_in_0_flit_0_bits_head, // @[LazyModuleImp.scala:107:25] input auto_routers_dest_nodes_in_0_flit_0_bits_tail, // @[LazyModuleImp.scala:107:25] input [144:0] auto_routers_dest_nodes_in_0_flit_0_bits_payload, // @[LazyModuleImp.scala:107:25] input [1:0] auto_routers_dest_nodes_in_0_flit_0_bits_flow_vnet_id, // @[LazyModuleImp.scala:107:25] input [3:0] auto_routers_dest_nodes_in_0_flit_0_bits_flow_ingress_node, // @[LazyModuleImp.scala:107:25] input [2:0] auto_routers_dest_nodes_in_0_flit_0_bits_flow_ingress_node_id, // @[LazyModuleImp.scala:107:25] input [3:0] auto_routers_dest_nodes_in_0_flit_0_bits_flow_egress_node, // @[LazyModuleImp.scala:107:25] input [1:0] auto_routers_dest_nodes_in_0_flit_0_bits_flow_egress_node_id, // @[LazyModuleImp.scala:107:25] input [1:0] auto_routers_dest_nodes_in_0_flit_0_bits_virt_channel_id, // @[LazyModuleImp.scala:107:25] output [2:0] auto_routers_dest_nodes_in_0_credit_return, // @[LazyModuleImp.scala:107:25] output [2:0] auto_routers_dest_nodes_in_0_vc_free, // @[LazyModuleImp.scala:107:25] input auto_clock_in_clock, // @[LazyModuleImp.scala:107:25] input auto_clock_in_reset // @[LazyModuleImp.scala:107:25] ); Router_1 routers ( // @[NoC.scala:67:22] .clock (auto_clock_in_clock), .reset (auto_clock_in_reset), .auto_debug_out_va_stall_0 (auto_routers_debug_out_va_stall_0), .auto_debug_out_va_stall_1 (auto_routers_debug_out_va_stall_1), .auto_debug_out_va_stall_2 (auto_routers_debug_out_va_stall_2), .auto_debug_out_va_stall_3 (auto_routers_debug_out_va_stall_3), .auto_debug_out_va_stall_4 (auto_routers_debug_out_va_stall_4), .auto_debug_out_sa_stall_0 (auto_routers_debug_out_sa_stall_0), .auto_debug_out_sa_stall_1 (auto_routers_debug_out_sa_stall_1), .auto_debug_out_sa_stall_2 (auto_routers_debug_out_sa_stall_2), .auto_debug_out_sa_stall_3 (auto_routers_debug_out_sa_stall_3), .auto_debug_out_sa_stall_4 (auto_routers_debug_out_sa_stall_4), .auto_egress_nodes_out_flit_ready (auto_routers_egress_nodes_out_flit_ready), .auto_egress_nodes_out_flit_valid (auto_routers_egress_nodes_out_flit_valid), .auto_egress_nodes_out_flit_bits_head (auto_routers_egress_nodes_out_flit_bits_head), .auto_egress_nodes_out_flit_bits_tail (auto_routers_egress_nodes_out_flit_bits_tail), .auto_egress_nodes_out_flit_bits_payload (auto_routers_egress_nodes_out_flit_bits_payload), .auto_ingress_nodes_in_1_flit_ready (auto_routers_ingress_nodes_in_1_flit_ready), .auto_ingress_nodes_in_1_flit_valid (auto_routers_ingress_nodes_in_1_flit_valid), .auto_ingress_nodes_in_1_flit_bits_head (auto_routers_ingress_nodes_in_1_flit_bits_head), .auto_ingress_nodes_in_1_flit_bits_tail (auto_routers_ingress_nodes_in_1_flit_bits_tail), .auto_ingress_nodes_in_1_flit_bits_payload (auto_routers_ingress_nodes_in_1_flit_bits_payload), .auto_ingress_nodes_in_1_flit_bits_egress_id (auto_routers_ingress_nodes_in_1_flit_bits_egress_id), .auto_ingress_nodes_in_0_flit_ready (auto_routers_ingress_nodes_in_0_flit_ready), .auto_ingress_nodes_in_0_flit_valid (auto_routers_ingress_nodes_in_0_flit_valid), .auto_ingress_nodes_in_0_flit_bits_head (auto_routers_ingress_nodes_in_0_flit_bits_head), .auto_ingress_nodes_in_0_flit_bits_tail (auto_routers_ingress_nodes_in_0_flit_bits_tail), .auto_ingress_nodes_in_0_flit_bits_payload (auto_routers_ingress_nodes_in_0_flit_bits_payload), .auto_ingress_nodes_in_0_flit_bits_egress_id (auto_routers_ingress_nodes_in_0_flit_bits_egress_id), .auto_source_nodes_out_2_flit_0_valid (auto_routers_source_nodes_out_2_flit_0_valid), .auto_source_nodes_out_2_flit_0_bits_head (auto_routers_source_nodes_out_2_flit_0_bits_head), .auto_source_nodes_out_2_flit_0_bits_tail (auto_routers_source_nodes_out_2_flit_0_bits_tail), .auto_source_nodes_out_2_flit_0_bits_payload (auto_routers_source_nodes_out_2_flit_0_bits_payload), .auto_source_nodes_out_2_flit_0_bits_flow_vnet_id (auto_routers_source_nodes_out_2_flit_0_bits_flow_vnet_id), .auto_source_nodes_out_2_flit_0_bits_flow_ingress_node (auto_routers_source_nodes_out_2_flit_0_bits_flow_ingress_node), .auto_source_nodes_out_2_flit_0_bits_flow_ingress_node_id (auto_routers_source_nodes_out_2_flit_0_bits_flow_ingress_node_id), .auto_source_nodes_out_2_flit_0_bits_flow_egress_node (auto_routers_source_nodes_out_2_flit_0_bits_flow_egress_node), .auto_source_nodes_out_2_flit_0_bits_flow_egress_node_id (auto_routers_source_nodes_out_2_flit_0_bits_flow_egress_node_id), .auto_source_nodes_out_2_flit_0_bits_virt_channel_id (auto_routers_source_nodes_out_2_flit_0_bits_virt_channel_id), .auto_source_nodes_out_2_credit_return (auto_routers_source_nodes_out_2_credit_return), .auto_source_nodes_out_2_vc_free (auto_routers_source_nodes_out_2_vc_free), .auto_source_nodes_out_1_flit_0_valid (auto_routers_source_nodes_out_1_flit_0_valid), .auto_source_nodes_out_1_flit_0_bits_head (auto_routers_source_nodes_out_1_flit_0_bits_head), .auto_source_nodes_out_1_flit_0_bits_tail (auto_routers_source_nodes_out_1_flit_0_bits_tail), .auto_source_nodes_out_1_flit_0_bits_payload (auto_routers_source_nodes_out_1_flit_0_bits_payload), .auto_source_nodes_out_1_flit_0_bits_flow_vnet_id (auto_routers_source_nodes_out_1_flit_0_bits_flow_vnet_id), .auto_source_nodes_out_1_flit_0_bits_flow_ingress_node (auto_routers_source_nodes_out_1_flit_0_bits_flow_ingress_node), .auto_source_nodes_out_1_flit_0_bits_flow_ingress_node_id (auto_routers_source_nodes_out_1_flit_0_bits_flow_ingress_node_id), .auto_source_nodes_out_1_flit_0_bits_flow_egress_node (auto_routers_source_nodes_out_1_flit_0_bits_flow_egress_node), .auto_source_nodes_out_1_flit_0_bits_flow_egress_node_id (auto_routers_source_nodes_out_1_flit_0_bits_flow_egress_node_id), .auto_source_nodes_out_1_flit_0_bits_virt_channel_id (auto_routers_source_nodes_out_1_flit_0_bits_virt_channel_id), .auto_source_nodes_out_1_credit_return (auto_routers_source_nodes_out_1_credit_return), .auto_source_nodes_out_1_vc_free (auto_routers_source_nodes_out_1_vc_free), .auto_source_nodes_out_0_flit_0_valid (auto_routers_source_nodes_out_0_flit_0_valid), .auto_source_nodes_out_0_flit_0_bits_head (auto_routers_source_nodes_out_0_flit_0_bits_head), .auto_source_nodes_out_0_flit_0_bits_tail (auto_routers_source_nodes_out_0_flit_0_bits_tail), .auto_source_nodes_out_0_flit_0_bits_payload (auto_routers_source_nodes_out_0_flit_0_bits_payload), .auto_source_nodes_out_0_flit_0_bits_flow_vnet_id (auto_routers_source_nodes_out_0_flit_0_bits_flow_vnet_id), .auto_source_nodes_out_0_flit_0_bits_flow_ingress_node (auto_routers_source_nodes_out_0_flit_0_bits_flow_ingress_node), .auto_source_nodes_out_0_flit_0_bits_flow_ingress_node_id (auto_routers_source_nodes_out_0_flit_0_bits_flow_ingress_node_id), .auto_source_nodes_out_0_flit_0_bits_flow_egress_node (auto_routers_source_nodes_out_0_flit_0_bits_flow_egress_node), .auto_source_nodes_out_0_flit_0_bits_flow_egress_node_id (auto_routers_source_nodes_out_0_flit_0_bits_flow_egress_node_id), .auto_source_nodes_out_0_flit_0_bits_virt_channel_id (auto_routers_source_nodes_out_0_flit_0_bits_virt_channel_id), .auto_source_nodes_out_0_credit_return (auto_routers_source_nodes_out_0_credit_return), .auto_source_nodes_out_0_vc_free (auto_routers_source_nodes_out_0_vc_free), .auto_dest_nodes_in_2_flit_0_valid (auto_routers_dest_nodes_in_2_flit_0_valid), .auto_dest_nodes_in_2_flit_0_bits_head (auto_routers_dest_nodes_in_2_flit_0_bits_head), .auto_dest_nodes_in_2_flit_0_bits_tail (auto_routers_dest_nodes_in_2_flit_0_bits_tail), .auto_dest_nodes_in_2_flit_0_bits_payload (auto_routers_dest_nodes_in_2_flit_0_bits_payload), .auto_dest_nodes_in_2_flit_0_bits_flow_vnet_id (auto_routers_dest_nodes_in_2_flit_0_bits_flow_vnet_id), .auto_dest_nodes_in_2_flit_0_bits_flow_ingress_node (auto_routers_dest_nodes_in_2_flit_0_bits_flow_ingress_node), .auto_dest_nodes_in_2_flit_0_bits_flow_ingress_node_id (auto_routers_dest_nodes_in_2_flit_0_bits_flow_ingress_node_id), .auto_dest_nodes_in_2_flit_0_bits_flow_egress_node (auto_routers_dest_nodes_in_2_flit_0_bits_flow_egress_node), .auto_dest_nodes_in_2_flit_0_bits_flow_egress_node_id (auto_routers_dest_nodes_in_2_flit_0_bits_flow_egress_node_id), .auto_dest_nodes_in_2_flit_0_bits_virt_channel_id (auto_routers_dest_nodes_in_2_flit_0_bits_virt_channel_id), .auto_dest_nodes_in_2_credit_return (auto_routers_dest_nodes_in_2_credit_return), .auto_dest_nodes_in_2_vc_free (auto_routers_dest_nodes_in_2_vc_free), .auto_dest_nodes_in_1_flit_0_valid (auto_routers_dest_nodes_in_1_flit_0_valid), .auto_dest_nodes_in_1_flit_0_bits_head (auto_routers_dest_nodes_in_1_flit_0_bits_head), .auto_dest_nodes_in_1_flit_0_bits_tail (auto_routers_dest_nodes_in_1_flit_0_bits_tail), .auto_dest_nodes_in_1_flit_0_bits_payload (auto_routers_dest_nodes_in_1_flit_0_bits_payload), .auto_dest_nodes_in_1_flit_0_bits_flow_vnet_id (auto_routers_dest_nodes_in_1_flit_0_bits_flow_vnet_id), .auto_dest_nodes_in_1_flit_0_bits_flow_ingress_node (auto_routers_dest_nodes_in_1_flit_0_bits_flow_ingress_node), .auto_dest_nodes_in_1_flit_0_bits_flow_ingress_node_id (auto_routers_dest_nodes_in_1_flit_0_bits_flow_ingress_node_id), .auto_dest_nodes_in_1_flit_0_bits_flow_egress_node (auto_routers_dest_nodes_in_1_flit_0_bits_flow_egress_node), .auto_dest_nodes_in_1_flit_0_bits_flow_egress_node_id (auto_routers_dest_nodes_in_1_flit_0_bits_flow_egress_node_id), .auto_dest_nodes_in_1_flit_0_bits_virt_channel_id (auto_routers_dest_nodes_in_1_flit_0_bits_virt_channel_id), .auto_dest_nodes_in_1_credit_return (auto_routers_dest_nodes_in_1_credit_return), .auto_dest_nodes_in_1_vc_free (auto_routers_dest_nodes_in_1_vc_free), .auto_dest_nodes_in_0_flit_0_valid (auto_routers_dest_nodes_in_0_flit_0_valid), .auto_dest_nodes_in_0_flit_0_bits_head (auto_routers_dest_nodes_in_0_flit_0_bits_head), .auto_dest_nodes_in_0_flit_0_bits_tail (auto_routers_dest_nodes_in_0_flit_0_bits_tail), .auto_dest_nodes_in_0_flit_0_bits_payload (auto_routers_dest_nodes_in_0_flit_0_bits_payload), .auto_dest_nodes_in_0_flit_0_bits_flow_vnet_id (auto_routers_dest_nodes_in_0_flit_0_bits_flow_vnet_id), .auto_dest_nodes_in_0_flit_0_bits_flow_ingress_node (auto_routers_dest_nodes_in_0_flit_0_bits_flow_ingress_node), .auto_dest_nodes_in_0_flit_0_bits_flow_ingress_node_id (auto_routers_dest_nodes_in_0_flit_0_bits_flow_ingress_node_id), .auto_dest_nodes_in_0_flit_0_bits_flow_egress_node (auto_routers_dest_nodes_in_0_flit_0_bits_flow_egress_node), .auto_dest_nodes_in_0_flit_0_bits_flow_egress_node_id (auto_routers_dest_nodes_in_0_flit_0_bits_flow_egress_node_id), .auto_dest_nodes_in_0_flit_0_bits_virt_channel_id (auto_routers_dest_nodes_in_0_flit_0_bits_virt_channel_id), .auto_dest_nodes_in_0_credit_return (auto_routers_dest_nodes_in_0_credit_return), .auto_dest_nodes_in_0_vc_free (auto_routers_dest_nodes_in_0_vc_free) ); // @[NoC.scala:67:22] endmodule